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Casimir Effect for Massless Fermions in One Dimension: A Force-
Operator Approach

Abstract
We calculate the Casimir interaction between two short-range scatterers embedded in a background of one-
dimensional massless Dirac fermions using a force-operator approach. We obtain the force between two finite-
width square barriers and take the limit of zero width and infinite potential strength to study the Casimir force
mediated by the fermions. For the case of identical scatterers, we recover the conventional attractive one-
dimensional Casimir force. For the general problem with inequivalent scatterers, we find that the magnitude
and sign of this force depend on the relative spinor polarizations of the two scattering potentials, which can be
tuned to give an attractive, a repulsive, or a compensated null Casimir interaction.
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Casimir effect for massless fermions in one dimension: A force-operator approach

Dina Zhabinskaya,* Jesse M. Kinder, and E. J. Mele
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
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We calculate the Casimir interaction between two short-range scatterers embedded in a background of
one-dimensional massless Dirac fermions using a force-operator approach. We obtain the force between two
finite-width square barriers and take the limit of zero width and infinite potential strength to study the Casimir
force mediated by the fermions. For the case of identical scatterers, we recover the conventional attractive
one-dimensional Casimir force. For the general problem with inequivalent scatterers, we find that the magni-
tude and sign of this force depend on the relative spinor polarizations of the two scattering potentials, which
can be tuned to give an attractive, a repulsive, or a compensated null Casimir interaction.

DOI: 10.1103/PhysRevA.78.060103 PACS number�s�: 03.70.�k, 05.30.Fk, 11.80.�m, 68.65.�k

Boundaries modify the spectrum of zero-point fluctua-
tions of a quantum field, resulting in fluctuation-induced
forces and pressures on the boundaries that are known gen-
erally as Casimir effects �1�. When sharp boundary condi-
tions are used to model the Casimir effect, they yield perfect
reflection of the incident propagating quantum field at all
energies �1�. However, in many physical applications this
hard-wall limit is not appropriate; of special interest in the
present work are interactions between localized scatterers in
one dimension that have energy-dependent scattering proper-
ties controlled by the strength, range, and shape of the po-
tential. Along this line, previous work has recognized that the
finite reflectance of partially transmitting mirrors provides a
natural high-energy regularization scheme for computing the
effect of sharp reflecting boundaries on the zero-point energy
of the electromagnetic field �2,3�. In more recent work,
Sundberg and Jaffe approached the problem of computing
the effect of confining boundary conditions on a degenerate
gas of fermions in one dimension as the limiting behavior for
rectangular barriers of finite width and height. Interestingly,
they encounter a divergence of the Casimir energy in the
zero-width limit �a sharp boundary� even for finite potential
strength �4�.

In this Rapid Communication we address the problem of
Casimir interactions between scatterers mediated by a one-
dimensional Fermi gas. The fermions in our calculation are
massless Dirac fermions appropriate to describe, for ex-
ample, the �single-valley� electronic spectrum of a metallic
carbon nanotube. We employ the Hellmann-Feynman theo-
rem to calculate the force, rather than energy, of the interac-
tion between two scatterers as a function of their separation
d. This approach renders our calculation free from ultraviolet
divergences even for the limiting case of sharp scatterers. We
demonstrate that for the case of identical scatterers, this for-
malism recovers the well-known attractive 1 /d2 Casimir
force in one dimension. Furthermore, we find that for Dirac
fermions the internal structure of the matrix-valued scatter-
ing potential admits a long-range Casimir interaction which
can also be repulsive or even compensated. This provides a
physical situation where the Casimir interaction is continu-

ously tunable from attractive to repulsive by variation of an
internal control parameter, realizing the known bounds for
the one-dimensional Casimir interaction as two limiting
cases. The results may be relevant for indirect interactions
between defects and adsorbed species on carbon nanotubes.

The fermions in our model are massless one-dimensional
Dirac fermions described by the Hamiltonian

�− i�x�x + V̂�x� − E��k�x� = 0, �1�

where we set �=c=1. In graphene and carbon nanotubes the
spinor polarizations describe the internal degrees of freedom
generated by the two-sublattice structure in its primitive cell.

When V̂�x�=0, the eigenstates of H0 are plane waves multi-
plying two-dimensional spinors, �k�x�=�ke

ikx /�2�. When
the chemical potential is fixed at �=0, the filled Dirac sea
has E=−�k� with �	k

T = �1, 
1� /�2.

The general form of the potential entering �1� is V̂�x�
=V0�x�Î+V� �x� ·�� . The �x part of the potential can be elimi-
nated by a gauge transformation �4�, and a scalar potential
proportional to the identity matrix produces no backscatter-
ing in the massless Dirac equation. Therefore, we consider

potentials for which V� lies in the yz plane. In this paper, we
consider the effects of the orientation of the potential deter-
mined by the angle �. Thus, a square barrier potential lo-
cated between points x1 and x2 is written as

V̂�x,�� = V̂�����x − x1���x2 − x� , �2�

where V̂���=Vei�x�/2�ze
−i�x�/2 and ��x� is a step function.

To study the force on a square well scatterer, we use the

Hellmann-Feynman theorem ��Ĥ�� /��=�E /� �5�. Tak-
ing the control parameter = �x1+x2� /2= x̄, the ground-state
average gives the force acting on a rigid barrier. For a barrier
with sharp walls the expectation value becomes

���x��
�Ĥ
�x̄

���x�� = ���x̄ + a/2��V̂���x̄ + a/2��

− ���x̄ − a/2��V̂���x̄ − a/2�� , �3�

where V̂ is the square-barrier potential, x̄ is its center, and a
is its width. The total force is the expectation value of this*dinaz@physics.upenn.edu
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force operator, F̂=−�Ĥ /�x̄, summed over all the occupied
states; Eq. �3� then gives the difference between the pres-
sures exerted on the right and left sides of the barrier. For
potentials of general shape, a similar expression can be de-
veloped in terms of an integral over the scattering region.

First, we apply Eq. �3� to calculate the force on an iso-
lated barrier. The eigenstates are represented as linear com-
binations of right- and left-moving solutions of H0: ��x�
= 1

�2�
��k�ke

ikx+�k�−ke
−ikx�, where �k and �k represent the

amplitudes of the counterpropagating waves in each region.
The yz-polarized potential defined in Eq. �2� gives

V̂����	k=Ve	i��
k, so the general expression for the ex-
pectation values in Eq. �3� at some position x is

���x��V̂������x�� =
V

�
Re��k�k

*ei�2kx+��� . �4�

We use a transfer matrix to obtain the coefficients �k and
�k entering Eq. �4�. The transfer matrix is defined so that
��x2�=T��x1�, where x1 and x2 are the left and right bound-
aries of a barrier, respectively; T is calculated by integrating
Eq. �1�,

T = Px exp	i

x1

x2

dx �x�E − V̂�x��� , �5�

where Px is a spatial ordering operator. For the square poten-
tial of width a defined in Eq. �2�, the transfer matrix for
negative energy states is

T = cos�qa� −
i�xk − �� · �x̂ � V� �

q
sin�qa� , �6�

where V� =V�0,sin � , cos �� defines a potential in the yz
plane, q=�k2−V2, and k�0.

From the transfer matrix we calculate the scattering ma-
trix S, which gives the transmitted �t� and reflected �r� am-
plitudes for wave incident on the barrier from the right and
left. The unitary S matrix for a single square barrier is

S1 = 	 te−ika re−i�2kx2+��

rei�2kx1+�� te−ika � . �7�

The transmission and reflection coefficients can then be pa-
rametrized t=�ei� and r= i�1−�2ei�, where

� =


�V2 cosh2 a − k2�1/2 , � = tan−1	 k tanh a


� , �8�

with =−iq=�V2−k2. To obtain the hard-wall limit, we fix
�=Va and take �→�. In this limit, �r�2→1 and �t�2→0 at all
energies.

For a single barrier, the contributions to the force from the
particles incoming from the right and left cancel, resulting in
no net force. A nonzero force arises from the multiple reflec-
tion of electron waves between two barriers. An illustration
of a scattering process for two square potentials with differ-
ent spinor polarizations �1 and �2 separated by distance d is
shown in Fig. 1. The contributions from waves incoming
from the right are also included in the calculation.

The S matrix for the two-barrier system �6� in Fig. 1 is

S2 = 	 T Rei�1

Re−i�2 T
� . �9�

The total reflection and transmission coefficients shown in
regions I and III of Fig. 1 are given by

T =
t2

1 − r2ei� , R = re−ik�2a+d�	1 +
t2ei�2ka+��

1 − r2ei� � , �10�

where �=2kd+�� and ����2−�1. T1 and R1 in region II
of Fig. 1 are given by

T1 =
t

1 − r2ei� , R1 =
rtei�kd+�2�

1 − r2ei� . �11�

The coefficients for the waves incoming from the left �R1 and
T1� and the ones incoming from the right �R1� and T1�� are
related by R1�=R1e−i��1+�2� and T1�=T1.

To calculate the force in the two-barrier problem we fix
the position of the left barrier in Fig. 1 and differentiate the
Hamiltonian with respect to d. To obtain the total force, we
sum over the occupied states of the filled Dirac sea at fixed
chemical potential. We find that the force between two
square barriers of finite height and width is

F = − 2V

0

� dk

2�
Re�Reik�d+2a� − R1T1

*e−i�kd+�2��1 + ei��� .

�12�

The first term in the integrand arises from the exterior modes
pushing the two barriers together. The second term accounts
for the confined modes in between the barriers pushing them
apart. Since incoming waves are fully transmitted at high
energies for barriers of finite height and width, the integral in
Eq. �12� converges even in the case of sharp barriers
�a→0�, with �=Va fixed. Thus, the reflection coefficient
provides a natural cutoff for the computation of the force
�though not the energy �4�� even in the limit of infinitely high
barriers.

The Casimir force for hard-wall boundary conditions re-
quires the limits of infinite barrier strength �→� and zero
width a→0. This limit enforces a vanishing current at the

V(x)

φ φ
21

a a

-d/2 d/2

R

T

R

T
1

1

V

Region I Region II Region III

x

FIG. 1. �Color online� Scattering of massless Dirac fermions
�incoming from the left� between two square barriers of height V,
width a, and separation d. The two potentials defined in Eq. �2�
have a spinor polarization determined by angle �. The reflection
and transmission coefficients are labeled in each scattering region.
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boundaries, the so-called bag boundary conditions. Since the
force in Eq. �12� is multiplied by V, we keep terms to O�k /V�
in the integrand. The first term in Eq. �12� becomes propor-
tional to k, thus implying a continuous spectrum of modes
scattering off the barriers from the outside. The second term
exhibits resonances that arise from the quantized modes be-
tween the boundaries. These resonances, similar to ones seen
in Fabry-Perot cavities, are represented by Dirac � functions
�3� to constrain the k integration:

lim
�→0

�2

�1 + �1 − �2�ei��+2���2
=

�

2d

n=0

�

��k − kn� , �13�

where kn=��n+ �1−�� /�� /2� /d and �→0 in the limit of
infinite potential strength. Here �� is the difference in the
spinor polarizations of the two scattering potentials and ��
=2�n denotes the situation for identical scatterers. An in-
coming wave vector satisfying the resonance condition in
Eq. �13� gets fully transmitted through the two-barrier sys-
tem. The modes in between the barriers, on the other hand,
are fully reflected, yielding the appropriate quantization con-
dition. Combining these results, we obtain

F = 2

0

� dk

2�
k�1 −

�

d

n=0

�

��k − kn�� + O	 1

V
� . �14�

The Casimir force in Eq. �14� can be calculated by apply-
ing the generalized Abel-Plana formula



0

�

t dt − 
n=0

�

�n + ��

= − 

0

�

t dt	 sinh�2�t�
cos�2��� − cosh�2�t�

+ 1� , �15�

which is valid for 0���1. Due to the rapid convergence of
the integral in Eq. �15�, the result does not require the intro-
duction of an explicit ultraviolet cutoff function �7�. More
generally, since the reflection coefficient vanishes at high
energy, it will regularize the calculation of the force. Using
Eq. �15�, we obtain the force for two barriers satisfying bag
boundary conditions,

F = −
�

24d2�1 − 3	��

�
�2� , �16�

for −������, beyond which it is periodic. We also ex-
plore the force between two scatterers of finite height and
width. In the small barrier strength limit, the force becomes

F = −
�2 cos����

2�d2 �1 + O	a

d
�� . �17�

The force in the limits of �→� and ��1 for a→0 is plot-
ted for three periods in �� in Fig. 2.

The scaling of the force with distance as 1 /d2 and the
ratio of 1 /2 between the repulsive and attractive forces are
universal results for massless one-dimensional fluctuating
fields in the limit d�a. When the range of the potentials
becomes comparable to their separation, the first-order cor-
rection due to the shape of the scatterer scales with �F /F

�a /d as seen in Eq. �17�, analogous to a multipole expan-
sion of an electrostatic interaction.

The relative orientation can be expressed as ��

=cos−1�V1
� ·V2

� / ��V1
� � · �V2

� ���. When the two potentials are
aligned at ��=2�n, we have F=−� /24d2. This yields the
attractive fermionic Casimir force as found in Ref. �4�. When
��= �2n+1��, the relative polarization of the defect poten-
tials is antiparallel and F=� /12d2, i.e., a repulsive Casimir
force is obtained. An analog of our result for a one-
dimensional bosonic field is obtained by imposing mixed
Dirichlet and Neumann boundary conditions where attractive
and repulsive Casimir forces are found for like and unlike
boundary conditions, respectively �9�. A Casimir force that
oscillates as a function of defect separation d is known to
arise from large momentum backscattering �Friedel oscilla-
tions� of the Fermi gas �8�. However, the interaction we cal-
culate here is monotonic as a function of distance. In our
calculation, the magnitude and sign of the force vary as a
function of the relative polarization of two scatterers at a
fixed distance. As shown in Fig. 2, this behavior occurs for
both finite barriers and hard-wall boundaries.

The cusps seen in Fig. 2 at the odd multiples of n result
from a sum over the discrete number of energy levels
En����. The energy bands found in Eq. �13� cross zero en-
ergy at ��= �2n+1�� as shown in Fig. 3. At fixed chemical
potential, with negative energy states of the Dirac sea occu-
pied, the number of states changes by 1 in each 2�-periodic
region indicated by dotted vertical lines in Fig. 3. Conse-
quently, the force exhibits a discontinuity in slope in Fig. 2
exactly at the values of � at which there is a jump in the
number of occupied energy levels. When the barrier strength
is finite, the cusps in the force disappear. The resonance con-
dition resulting in quantized states between the barriers is
only valid for hard-wall boundaries since the quasibound
states between finite barriers exhibit a continuous spectrum.

The interaction, Eq. �16�, is likely to be important for
defect interactions on carbon nanotubes and possibly for
other one-dimensional systems as well. Reinserting dimen-
sional factors this force corresponds to an interaction energy
Ec=−��vF /24d for two identical scatterers. With �vF
�5.4 eV Å this gives an energy of 1.4 meV at a range d
=50 nm. Note that its spatial form follows the same scaling

−3π −2π −π

df

F/( )
π
24d

2

1

2

-1

0

3p2ππ

FIG. 2. �Color online� Force between two barriers as a function
of their relative spinor polarization ��. The solid and dashed lines
represent the forces in Eqs. �16� and �17�, respectively. The magni-
tude of the force in the ��1 limit, the dashed curve, is rescaled to
�=1 /2, so the two curves can be compared.
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law as the Coulomb interaction between uncompensated
charges, but it is reduced by a factor ��vF /24e2�0.05.
Thus, for charge-neutral dipoles p=es whose electrostatic
interactions scale as Ed�−p2 /d3=−�e2 /d�� �s /d�2, they are
dominated by the Casimir interaction in the far field d�5s.
Similarly, this one-dimensional Casimir interaction com-
pletely dominates the familiar van der Waals interactions be-
tween charge neutral species that are mediated by the fluc-
tuations of the exterior three-dimensional electromagnetic
fields.

In order to fully understand the Casimir effect between
defects on carbon nanotubes, one needs to consider the sym-
metry and range of the potentials produced by localized de-
fects. The spinor polarization discussed in this paper is de-
termined by the form of the impurity potential: �z and �y

potentials define a sublattice-asymmetric and bond-centered
defects, respectively. In addition, the electronic spectrum
contains two distinct Fermi points at inequivalent corners of
the two-dimensional Brillouin zone. Short-range potentials
couple the two Fermi points, resulting in intervalley scatter-
ing �10�. Therefore, both the structure of the defects and the
effect of intervalley scattering determine the sign and mag-
nitude of the Casimir interaction. In the context of our
model, a sharp potential is one with a range on the order of
the tube radius R for which the effects of intervalley scatter-
ing are suppressed by a factor of ac /R, where ac is the width
of the graphene primitive cell. Atomically sharp scatterers,
on the other hand, will usually require a treatment of the
effects of intervalley as well as intravalley scattering.

To summarize, we introduced a force operator approach
for calculating the Casimir effect and obtained the
fluctuation-induced force between two finite square barriers
mediated by massless Dirac fermions in one dimension. In
taking the limit of sharp barriers of infinite strength, we ob-
tained a Casimir force that scales as 1 /d2 and is tunable from
attractive to repulsive form as a function of the relative
spinor polarizations of the two scattering potentials.

This work was supported by the Department of Energy
under Grant No. DE-FG02-ER45118.
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FIG. 3. �Color online� Quantized energy bands for massless
Dirac fermions due to hard-wall boundary conditions as a function
of the relative polarization of the two potentials ��. Solid lines
denote the energy levels of the filled Dirac sea. Vertical dashed lines
define 2�-periodic states where the number of occupied states
changes by 1.
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