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Comparison of Low-Amplitude Oscillatory Shear in Experimental and
Computational Studies of Model Foams

Abstract
A fundamental difference between fluids and solids is their response to applied shear. Solids possess static
shear moduli, while fluids do not. Complex fluids such as foams display an intermediate response to shear
with nontrivial frequency-dependent shear moduli. In this paper, we conduct coordinated experiments and
numerical simulations of model foams subjected to boundary-driven oscillatory planar shear. Our studies are
performed on bubble rafts (experiments) and the bubble model (simulations) in two dimensions. We focus
on the low amplitude flow regime in which T1 events, i.e., bubble rearrangement events where originally
touching bubbles switch nearest neighbors, do not occur, yet the system transitions from solid- to liquidlike
behavior as the driving frequency is increased. In both simulations and experiments, we observe two distinct
flow regimes. At low frequencies ω, the velocity profile of the bubbles increases linearly with distance from the
stationary wall, and there is a nonzero total phase shift between the moving boundary and interior bubbles. In
this frequency regime, the total phase shift scales as a power law ∆~ωn with n ≈ 3. In contrast, for frequencies
above a crossover frequency ω>ωp, the total phase shift ∆ scales linearly with the driving frequency. At even
higher frequencies above a characteristic frequency ωnl>ωp, the velocity profile changes from linear to
nonlinear. We fully characterize this transition from solid- to liquidlike flow behavior in both the simulations
and experiments and find qualitative and quantitative agreements for the characteristic frequencies.
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A fundamental difference between fluids and solids is their response to applied shear. Solids possess static
shear moduli, while fluids do not. Complex fluids such as foams display an intermediate response to shear with
nontrivial frequency-dependent shear moduli. In this paper, we conduct coordinated experiments and numerical
simulations of model foams subjected to boundary-driven oscillatory planar shear. Our studies are performed
on bubble rafts �experiments� and the bubble model �simulations� in two dimensions. We focus on the low-
amplitude flow regime in which T1 events, i.e., bubble rearrangement events where originally touching bubbles
switch nearest neighbors, do not occur, yet the system transitions from solid- to liquidlike behavior as the
driving frequency is increased. In both simulations and experiments, we observe two distinct flow regimes. At
low frequencies �, the velocity profile of the bubbles increases linearly with distance from the stationary wall,
and there is a nonzero total phase shift between the moving boundary and interior bubbles. In this frequency
regime, the total phase shift scales as a power law ���n with n�3. In contrast, for frequencies above a
crossover frequency ���p, the total phase shift � scales linearly with the driving frequency. At even higher
frequencies above a characteristic frequency �nl��p, the velocity profile changes from linear to nonlinear. We
fully characterize this transition from solid- to liquidlike flow behavior in both the simulations and experiments
and find qualitative and quantitative agreements for the characteristic frequencies.

DOI: 10.1103/PhysRevE.79.041405 PACS number�s�: 83.80.Iz, 05.20.Gg, 05.70.Ln

I. INTRODUCTION

Aqueous foams are collections of gas bubbles that are
separated by liquid walls �1�, and like other complex fluids,
such as pastes, emulsions, and granular media, they exhibit
transitions from solid- to liquidlike behavior in the response
to applied stress or strain. For small strains, foams behave
elastically with stress proportional to strain. Above the yield
strain or stress, bubble rearrangements occur and the system
behaves as a liquid. In contrast to Newtonian fluids, foams
display complex spatiotemporal behavior in response to ap-
plied shear including intermittency, shear banding, and non-
linear velocity profiles �2–12�. Despite a number of experi-
mental, numerical, and theoretical studies of driven foams, a
fundamental understanding of the response of foam to ap-
plied shear is still lacking.

In this paper, we describe a coordinated set of experimen-
tal and numerical studies of model two-dimensional �2D�
foams undergoing applied oscillatory planar shear to charac-
terize the transition from solid- to liquidlike behavior and
from linear to nonlinear velocity profiles. There have been
several studies of the response of foam to steady shear; how-
ever, most of these have been performed in the Couette ge-
ometry in which flow is confined between two concentric
cylinders �13�. Instead, we focus on planar shear to avoid the
“trivial” transition to nonlinear velocity profiles that stems
from the fact that in the Couette geometry the shear stress
varies with distance from the center of the shearing cell.

Another distinguishing feature of this work is its focus on

oscillatory rather than steady shear as the driving mecha-
nism. There are several reasons for selecting oscillatory
shear. First, oscillatory shear allows one to control the am-
plitude independently from the frequency of the driving.
When foams �and other complex fluids� are driven by steady
shear, they exist in a highly fluidized state that is character-
ized by continuous, often highly correlated bubble rearrange-
ments, or T1 events �1�. In the highly fluidized state, the
statistics of T1 events determine the flow curve and control
stress fluctuations �14–21�. With oscillatory shear, one can
study the low-amplitude flow regime in which particle rear-
rangement events do not occur, yet the system can transition
from solid- to liquidlike behavior and from linear to nonlin-
ear velocity profiles as the driving frequency is increased.
Since T1 events can be suppressed when using oscillatory
shear at low amplitude, the dissipation between fluid films
becomes the dominant relaxation mechanism �22�. Thus, in
this regime one can directly probe the dissipation mechanism
by tuning the driving frequency.

In this paper, we report on combined experiments and
simulations on model 2D foams: bubble rafts in experiments
�23� and the bubble model in simulations �24�. Bubble rafts
consist of a single layer of bubbles floating on the surface of
water. �See Fig. 1 for a snapshot of the bubble raft used in
experiments.� Bubble rafts have a storied history as 2D
model systems for both crystalline and disordered solids
�23,25�. In addition, we have performed a number of studies
characterizing these model systems by measuring and quan-
tifying T1 events �26�, stress fluctuations �27�, velocity pro-
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files �5–8,28,29�, and flow transitions �8�. In this work, ex-
periments on 2D bubble rafts will be compared to
simulations of the 2D bubble model introduced by Durian
�24�. The bubble model treats foams as soft disks that expe-
rience two pairwise forces when they overlap: a repulsive
linear spring force proportional to bubble overlap and a dis-
sipative force proportional to velocity differences between
bubbles. A useful feature of the bubble model is that it can be
generalized to particles with finite mass �6,7�. Thus, the ratio
of the damping and inertial forces can be varied to interro-
gate the damping mechanism. Recent work has shown that
the bubble model successfully captures some of the features
of the dynamics of bubble rafts under shear, for example, the
statistics of individual T1 events �26�. Thus, a comparison of
experiments of bubble rafts and simulations of the bubble
model in a well-controlled planar shear geometry will allow
us to further test under what conditions the bubble model
accurately captures the dynamics of model foams.

We will focus on measurements of the total phase shift
between the driving wall and interior bubble displacements
and on velocity profiles in systems subjected to low-
amplitude oscillatory planar shear. At low driving frequen-
cies �, we observe a nonzero total phase shift, while the
velocity profiles rise linearly with distance from the station-
ary wall. At low frequencies, the total phase shift scales as a
power law ���n with n�3. In contrast, for frequencies
above a crossover frequency ���p, the total phase shift �
scales linearly with the driving frequency. At even higher
driving frequencies �nl��p, the velocity profiles transition
from linear to nonlinear. We compare the two crossover fre-
quencies �p and �nl in the experiments and simulations and
find both qualitative and quantitative agreements. The struc-
ture of the remainder of the paper is organized as follows:
Sec. II presents theoretical background, Sec. III discusses
simulation methods, Sec. IV highlights experimental meth-
ods, Sec. V describes experimental and simulation results,
and Sec. VI presents conclusions.

II. THEORETICAL BACKGROUND

We will now review a simple theoretical treatment of the
response of an idealized viscoelastic material to an applied

oscillatory strain, which will provide a framework in which
to interpret the experimental and simulation results in Sec. V.
The main point of this section is to identify the possible flow
regimes in viscoelastic materials and their distinguishing
properties. For illustration purposes, we have selected the
Kelvin-Voigt linear viscoelastic model with frequency-
independent elastic modulus and viscosity, although we will
discuss how the results from this model can be generalized.

If a planar oscillatory shear strain is applied to a vis-
coelastic material �with shear along x and shear gradient
along y�, the x-displacement field ux�y� of the system relative
to the initial positions can be obtained by solving the force
balance equation �30�

��xy

�y
= �

�ux
2�y�

�t2 , �1�

where the velocity field is vx=�ux /�t and � is the areal mass
density. The shear stress �xy includes both the elastic and
viscous contributions. As mentioned, we will focus on a lin-
ear viscoelastic material with

�xy = G� + ��̇ , �2�

where the elastic contribution is proportional to the shear
strain �=�ux /�y and the viscous contribution is proportional
to the shear rate �̇=�vx /�y. G is the elastic modulus and � is
the dynamic viscosity of the material. In general, complex
fluids possess complex shear moduli with arbitrary frequency
dependence. We have also investigated a frequency-
dependent elastic modulus and viscosity, and find that the
quantitative scaling of the crossover frequency �p depends
on the details of the viscoelastic model. However, the quali-
tative features of the Kelvin-Voigt model, i.e., the existence
of �p and �nl, are robust.

We consider the case of parallel plates aligned along the x
axis separated by a distance Ly in the y direction as depicted
in Fig. 1. The boundary at y=0 is stationary ux�0, t�=0 �bot-
tom boundary� and the boundary at y=Ly moves according to
xb�t�=ux�Ly , t�=A sin��t� �top boundary�. The same geom-
etry and notation is used for the experiments and simula-
tions. To solve Eq. �1�, we use the ansatz ux�y , t�
=A�y�sin��t� for the displacement field. Putting these ele-
ments together, we find the following solution to Eq. �1� for
the displacement field:

ux�y,t� = Im�Aei�t sin�ky�
sin�kLy�

� �3�

and

vx�y,t� = Im�Ai�ei�t sin�ky�
sin�kLy�

� �4�

for the velocity field. In Eqs. �3� and �4�, the wave number k
is complex and satisfies the dispersion relation

�2 =
Gk2

�
+ i

��k2

�
�5�

or

FIG. 1. A typical snapshot of the 2D bubble raft used in experi-
ments with packing fraction ��0.86 and N�3700 bubbles. The
bubble raft is composed of a bidisperse distribution of bubble sizes:
a 4 to 1 ratio of 2.5	0.3-mm- to 5.3	0.5-mm-diameter bubbles.
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k = ��	��
�G − i���1/2

�G2 + ����2�1/2 . �6�

Distinctive features of the velocity profile are best de-
scribed by rewriting Eq. �4� in terms of a y-dependent am-
plitude vmag�y� and local phase 
�y�,

vx�y,t� = vmag�y�cos��t − 
�y�� . �7�

We define the total phase shift �

�0�−
�Ly�. Because the
flow is periodic, the velocity profile at a given time t repeats
at subsequent times separated by period T=2� /�. To sim-
plify the analysis, we will focus below on velocity profiles at
times when the boundary velocity is maximum �t=0 and
vx�y ,0�=vmag�y�cos�
�y���. In the simulations and experi-
ments, statistical accuracy was improved by averaging over
driving cycles. We defined vx�y�
�vx�y ,2�p /���p, where
�·�p indicates an average over p cycles. Monitoring the full
time dependence of the velocity profile is important but is
outside the scope of the present work. Error bars on the local
phase shift and velocity profile in the simulations and experi-
ments are given by the rms fluctuations within each bin and
are typically the size of the data points in the figures unless
otherwise noted.

It is instructive to consider two limits of the dispersion
relation in Eq. �6�: the limit of a pure solid �G�0, �=0�
and the limit of a pure liquid �G=0, ��0�. For the pure
solid, we recover the dispersion relation � /k=	G /�
vs,
where vs is the speed of shear waves in the solid. In this case,
k=� /vs is real and the velocity field is a standing wave
given by

vx�y,t� = A� cos��t�
sin��y/vs�
sin��Ly/vs�

. �8�

For ���nl
s 
vs /Ly, sin��y /vs���y /vs, and the velocity

profile becomes linear in y /Ly, i.e., vx�y , t�
�A� cos��t�y /Ly. For fixed system size, the transition from
linear to nonlinear velocity profiles occurs when ���nl

s . Be-
cause k is real for the case of the pure solid, the total phase
shift �=0, and the system oscillates in phase with the driv-
ing wall.

In the limit of the pure liquid, we recover the dispersion
relation i�=−
k2, where 
=� /� is the kinematic viscosity.
In this case, k= �1− i� /D with D=	2� / ����. The form of the
velocity profile is more complex than that for the pure solid.
However, for small driving frequencies the velocity profile
can be expanded in powers of Ly /D, and the first term is
linear in y /Ly. Thus, for Ly /D�1 or ��2�nl

l , where �nl
l

=� / ��Ly
2�, the velocity profiles are approximately linear, as

we found for the pure solid. However, in contrast to the pure
solid, there is a nonzero total phase shift � in the pure liquid
since the wave number k is complex. The full form of the
phase shift is complicated, but at low driving frequencies one
can expand � about �=0. For the pure liquid, at lowest order
in �, we find that the total phase shift scales linearly with the
frequency, ��� /6�nl

l .
In Fig. 2, we plot the velocity profiles that satisfy Eq. �1�

for two cases: �a� the pure solid �G�0 and �=0� and �b� the
pure liquid �G=0 and ��0�. In Fig. 2�a�, we show that the

velocity profiles for the pure solid become nonlinear when
� /�nl

s �1. Note that the profiles first become nonlinear by
developing negative curvature above the linear profile, and
then as the frequency is increased further the profile develops
positive curvature below the linear profile. This nonmono-
tonic behavior is caused by the standing-wave solution in Eq.
�8�. In Fig. 2�b�, the velocity profile for the pure liquid be-
gins to deviate from a linear profile when ��2�nl

l . In con-
trast to the pure solid, the liquid system only exhibits mono-
tonically decaying nonlinear velocity profiles with a “decay
length” that decreases continuously with increasing driving
frequency. An interesting feature of these profiles is that one
can observe negative velocities at sufficiently high frequen-
cies as in the case of the pure solid.

We now consider the solution to Eq. �1� for the velocity
profile in the more general case of a viscoelastic material
with nonzero G and �. In Fig. 3, we show an expanded range
of driving frequencies for a viscoelastic material with �

��nl

s /�nl
l �2=G�Ly

2 /�2=1, so that �nl
s =�nl

l . Similar to the
case of the pure solid, when ���nl

s the velocity profiles
show a small negative curvature with the profile slightly
above the linear profile at � /�nl

s =0.1. At higher frequencies,
the system behaves similar to the pure liquid with monotoni-
cally decaying profiles and a continuous decrease in the de-
cay length with increasing frequency. At sufficiently high
frequencies, we also observe a regime in which the velocity
becomes negative. For viscoelastic materials, we define �d
��nl as the frequency above which the system begins to

FIG. 2. �Color online� Normalized horizontal velocity profiles
vx�y� /vx�Ly� at t=0 for the �a� pure solid and �b� pure liquid ob-
tained from solutions to Eq. �1� as a function of the driving fre-
quency �. We show � /�nl=0.1 �squares�, 1.1. �circles�, 2.1 �up-
ward triangles�, 4.1 �downward triangles�, 6.1 �diamonds, only in
�b��, and 20.1 �left triangles, only in �b��. When referring to the
solid �liquid�, �nl corresponds to �nl

s ��nl
l �.
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display monotonically decaying “liquidlike” velocity pro-
files.

In Fig. 4, we show the total phase shift � for the pure
liquid and viscoelastic materials as a function of the driving
frequency. �The pure solid is not shown since � is identically
zero for all frequencies.� As expected, � for the pure liquid
��=0� scales linearly with �. For viscoelastic materials with
��0, there is a clear crossover from low-frequency scaling
���n to high-frequency scaling ���m with m�n. For the
Kelvin-Voigt model, the high-frequency limit is equivalent to
G=0, and �=� /6�nl

l , corresponding to m=1, and the low-
frequency limit is �=�3�nl

l / �6�nl
s4�, corresponding to n=3.

Using these expressions, one can derive the crossover fre-
quency explicitly, �p=�nl

s2 /�nl
l =�nl

l �. For a more general
model with a complex shear modulus, where the stress is
given by �xy =G�����, G����=G����+ iG����, and G� and
G� are the storage and loss moduli; the values of n and m
depend on the frequency dependence of G� and G�. How-

ever, for physically motivated G����, the crossover from the
low frequency elastically dominated to high-frequency vis-
cously dominated behavior persists. One consequence of the
crossover in frequency dependence is that the low-frequency
total phase shift tends to zero rapidly at low frequencies, and
thus � may be difficult to measure at low frequencies in
experiments. In our experimental studies, we were able to
detect the change in scaling behavior of �, but were not able
to measure the scaling exponents accurately. Much more sen-
sitive experiments are planned to measure �p and the storage
and loss moduli at low frequencies.

The dependence of �p and �d on � for the viscoelastic
Kelvin-Voigt model is given in Fig. 5. Here we used the
analytical result for �p, but �d is determined numerically.
This figure illustrates an important feature of the model: for
��1, �d is relatively insensitive to �, i.e., whether the sys-
tem is solid or liquid, while �p decreases linearly with �.
Thus, as �→0, �p /�d→0. This is consistent with the fact
that as the system becomes more solidlike, the initial devia-
tions from nonlinearity are positive, so the transition to liq-
uidlike behavior is delayed to higher frequencies. We expect
similar behavior for more general models. By measuring
these characteristic frequencies, future experimental studies
will be able to characterize the material properties of foams
and other complex fluids.

It is helpful to summarize the three characteristic
frequencies—�p, �nl, and �d—that were defined above. �p
is the crossover frequency that characterizes the change in
the scaling behavior of the total phase shift as a function of
frequency. For pure solids, �p is not defined, for pure liquids,
�p=0, and for viscoelastic materials �p�0. �nl is the fre-
quency above which we observe deviations from linear be-
havior in the horizontal velocity profile. For ���nl, pure
liquids display decaying nonlinear velocity profiles with
positive curvature and decay more strongly with increasing
frequency. In solids and viscoelastic fluids, when ���nl, the
horizontal velocity profile initially possesses negative curva-
ture with deviations “above” the linear velocity profile. Thus,
the curvature of the profile at low frequencies near �nl can be
used to differentiate liquidlike from “solidlike” velocity pro-
files. In the experiments, the solidlike response of the system
at low frequencies is weak. Thus, we focus on measuring �d,
the frequency above which the system begins to display de-
caying liquidlike velocity profiles �instead of �nl� and �p in
the simulations and experiments.

FIG. 3. �Color online� Normalized horizontal velocity profiles
vx�y� /vx�Ly� at t=0 for a viscoelastic material with �=G�Ly

2 /�2

=1 obtained from solutions to Eq. �1� as a function of the driving
frequency �. We show � /�nl=0.1 �squares�, 1.1 �circles�, 2.1 �up-
ward triangles�, 4.1 �downward triangles�, 6.1 �diamonds�, 8 �left
triangles�, and 20 �right triangles�. �nl corresponds to �nl

l =�nl
s .

FIG. 4. �Color online� The total phase shift �=
�0�−
�Ly� for
viscoelastic materials with different values of �=G�Ly

2 /�2 versus
the normalized driving frequency � /�nl

l . The curves for all � scale
linearly with � at sufficiently high frequencies. We include �=0
�solid line�, 0.0005 �squares�, 0.005 �upward triangles�, 0.05 �down-
ward triangles�, and 0.5 �filled circles�. The crossover frequency �p

can be obtained by locating the intersection of the low-frequency
and high-frequency power-law scaling forms for �. The slope of the
black solid �dashed� line is 1 �3�.

FIG. 5. Plot of �p �solid line� and �d �stars� versus
�=G�Ly

2 /�2 for the viscoelastic Kelvin-Voigt model. Note that
�p��d over a wide range of �.
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III. SIMULATION METHODS

We performed numerical simulations in 2D of the bubble
model, which was generalized to include particles with non-
zero mass m, undergoing boundary-driven oscillatory planar
shear flow. The systems were composed of a total of Nt
=1280 disks with the same mass. Half of the disks were
small and the other half were large with diameter ratio r=2
to avoid crystallization under shear and match the bubble
distribution used in the bubble raft experiments. The original
simulation cell was rectangular with x coordinates in the
range �0,Lx� and y coordinates in the range �−Ly /8,9Ly /8�.
Bubbles were initialized with random initial positions within
this rectangular domain at a given packing fraction � and
then the system was relaxed to the nearest local potential-
energy minimum using conjugate gradient-energy minimiza-
tion �31� with periodic boundary conditions in both the x and
y directions. All bubbles outside y= �0,Ly� formed two rough
rigid boundaries. Bubbles with y coordinates in the range
�Ly ,9Ly /8� ��−Ly /8,0�� formed the top �bottom� boundary.
N�1000 disks filled the interior of the cell between the two
rigid boundaries. After the top and bottom boundaries were
formed, we used periodic boundary conditions only in the x
direction. Packing fractions in the range �= �0.85,0.9� were
investigated.

In the bubble model, bubble i experiences two pairwise
forces from neighboring bubbles j that overlap i: �1� repul-
sive linear spring forces that arise from bubble deformation

F� ij
r =

�

�ij

1 −

rij

�ij
�r̂ij �9�

and �2� viscous damping forces proportional to the relative
velocity between bubbles that arise from dissipation between
the fluid walls

F� ij
v = − b�v� i − v� j� , �10�

where � sets the energy scale for elastic deformation, �ij
= ��i+� j� /2 is the average diameter, rij is the center-to-
center separation between bubbles i and j, r̂ij =r�ij /rij is the
unit vector that points from the center of bubble j to the
center of bubble i, and b is the damping coefficient. Note that
when bubbles i and j do not overlap, the pairwise forces

F� ij
r =F� ij

v =0.
The ratio of the damping to inertial forces can be ex-

pressed via a dimensionless damping coefficient b�

=b� /	�m, where � is the small bubble diameter. Under-
damped �overdamped� systems are characterized by b��bc

�

�b��bc
��, where bc

�=	2 for linear spring interactions. We
studied both under- and overdamped systems in the range
b�= �0.1,3�. The units of energy, length, and time in the
simulations are �, �, and � /	� /m, respectively.

The time evolution of the position r�i and velocity v� i of an
interior bubble i can be obtained by integrating the equation
of motion

m
d2r�i

dt2 = �
j

�F� ij
r + F� ij

v � . �11�

We employed standard Gear predictor-corrector algorithms
to numerically integrate Eq. �11� for the positions and veloci-
ties of the interior bubbles �32�. This simple “discrete ele-
ment” short-range model for 2D foams allows us to quickly
and efficiently generate an ensemble of configurations with a
given set of external boundary conditions.

Oscillatory planar shear was imposed by rigidly moving
all of the bubbles that comprise the top boundary in the x
direction as a function of time according to

xb�t� = A sin��t� , �12�

while bubbles that comprise the bottom boundary remain
stationary. A=0.8� and � are the amplitude and angular fre-
quency of the sinusoidal driving. At this amplitude, we did
not observe any T1 events �26� over the entire range of driv-
ing frequencies studied.

We calculated several important physical quantities in the
simulations, including the phase shift of bubble x displace-
ments relative to the motion of the boundary and the hori-
zontal velocity profiles of the bubbles. The x displacements
and velocity profiles reached steady state after a few cycles;
thus, we began measurements after 5 cycles and continued
for an additional 15 cycles to calculate averages. The height
dependence of the phase shift and velocity profiles were
measured by partitioning the simulation cell into equal-sized
rectangular bins centered at y with height �y�2 large par-
ticle diameters, with y measured from the bottom stationary
boundary.

To calculate the local phase shift 
�y�, we averaged the
bubble x displacement ux�y , t� relative to the initial position
over all bubbles within the bin located at y. We then fit the
average bubble x displacement in each bin to ux�y , t�
�sin��t−
�y�� to determine the local phase shift 
�y�. We
measured 
�y� at several times during a given cycle to verify
that it was time independent, and the bubble motion was
periodic. To measure the average horizontal velocity profile
vx�y , t� of the interior bubbles, we used a binning procedure
identical to that employed to measure 
�y�.

An important characteristic time �or frequency� scale in
the bubble model is the shear rate �̇c at which the system
transitions from quasistatic behavior at low shear rate �shear
stress �xy ��̇0� to highly fluidized behavior at high shear rate
��xy ��̇�, where ��0� when the system is driven by steady
planar shear �15�. This frequency scale has also been mea-
sured in the bubble raft experiments, and thus �c=2��̇c can
be used to normalize the crossover frequencies obtained in
experiments and simulations. To simulate systems undergo-
ing steady planar shear, we employed the same boundary-
driven method as described above except xb�t�=Ly�̇t instead
of Eq. �12�. The flow curve for a system with �=0.86 and
b�=2 is shown in Fig. 6, where the virial expression includ-
ing dissipative forces was used to calculate the shear stress
�32�. To determine �̇c, we calculated the median of the data
point at which the flow curve first deviates by more than
10% from the power-law behavior and the previous data
point at higher shear rate. For the flow curve in Fig. 6, we
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estimate �̇c�2�10−4. �̇c was determined for each value of b
and �.

IV. EXPERIMENTAL METHODS

The experimental setup to apply oscillatory planar shear
to bubble rafts includes three components: a rectangular ba-
sin, oscillating paddle, and imaging system. A schematic of
the experimental setup is shown in Fig. 7. The basin has
dimensions of 37�15 cm2 and was filled to a depth of 5 cm
with a surfactant solution. A paddle was located in the
middle of the basin, leaving a span of 9 cm between it and
the opposite wall. As illustrated in the schematic in Fig. 7,
the ends of the system are “open” in the following sense. The
entire basin is filled with bubbles, and the paddle only spans
the central portion of the system. Furthermore, only the cen-
tral third of the bubbles in the region covered by the paddle
are used in the data analysis, and thus edge effects are mini-
mized. The paddle was driven by an M-drive 23 stepper
motor located outside the basin. A rotor and universal �U-�
joint were used to convert the axial drive of the motor into
linear sinusoidal motion. The amplitude of oscillation was
varied by changing the contact point between the rotor and U
joint.

The bubbles were confined between a movable paddle and
a fixed wall. The bubbles were constrained to move with the
paddle using metal tabs that extended one bubble diameter
into the system. The tabs were spaced approximately every
five bubbles. The fixed wall consisted of a series of square

indentations approximately the size of a bubble. This fixed
the bubble velocities at the stationary wall to zero. Because
the first row of bubbles at each wall is interspersed with
elements to hold it in place, slight distortions of the bubbles
prevented accurate measurement of their positions. There-
fore, in the experiments we defined the location of y=0 and
y=Ly to be the boundary between the first and second rows
of bubbles at the stationary wall and paddle, respectively,
instead of the location of the physical boundaries. For a si-
nusoidally oscillating paddle that is initially undisplaced, this
gives the boundary condition at y=Ly: xb�t�=A sin��t�,
where A=0.8� and � are the amplitude and frequency of the
driving. At this amplitude, no T1 events were recorded over
the entire range of �.

The bubble raft consisted of a bidisperse distribution of
bubble sizes: a 4 to 1 ratio of 2.5	0.3-mm- to
5.3	0.5-mm-diameter bubbles, which corresponds to a di-
ameter ratio r�2.1. The solution composition was 80%
deionized water, 15% glycerol, and 5% miracle bubble �Im-
perial Toy Corp.�, which is a commercially available surfac-
tant. The bubbles were produced by passing compressed ni-
trogen through the solution via a needle. The diameter of the
needle and nitrogen pressure determine the final size of the
bubbles. To create bidisperse bubble mixtures, we used two
needles with different sizes at constant pressure. After the
bubbles were produced, we stirred the solution with a glass
rod to break up large-scale crystalline domains, so that only
short-range order persisted. We tuned the pressure to prevent
multiple layers of bubbles from building up in the z direc-
tion.

The definition of the gas �or liquid� area fraction for a
bubble raft is somewhat imprecise because the bubbles form
three-dimensional �3D� structures on the water surface,
which makes it difficult to define the amount of fluid in the
walls. Also, using definitions based on T1 events present
challenges because true vertices do not exist in bubble rafts,
and therefore minimum edge lengths are not well defined.
This is in contrast to fully confined two-dimensional sys-
tems, such as soap films, for which more precise definitions
of liquid area fraction exist �33�. Therefore, for bubble rafts,
one typically reports an operational definition of the gas area
fraction � as the average cross-sectional area of bubbles that
is visible in the images. This is typically done by applying a
fixed cutoff to the images to separate pixels inside and out-
side the bubbles. One expects that this method will provide
values for � that approximate the definition of the packing
fraction used in the bubble model. Using this operational
definition, we find �=0.86	0.04 for the bubble raft experi-
ments. The error is estimated based on a range of choices for
reasonable cutoff values. As we will show, one advantage of
our studies is that they can provide a method for calibrating
our definition of the gas area fraction for bubble rafts with
the packing fraction for the bubble model.

To visualize the bubble motions, a 210�240 pixel
charge-coupled device �CCD� camera was held above the
basin. The floor of the basin was constructed from glass,
which allowed the entire bubble raft to be illuminated from
below by an electroluminescent film �manufactured by Lu-
minous Film Inc.�. A frame rate of 60 frames per second was
sufficient to capture the bubble motion. The raw experimen-
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FIG. 6. Average shear stress �xy plotted versus the applied shear
rate �̇ for a system with �=0.86 and b�=2 undergoing steady pla-
nar shear flow in 2D simulations of the bubble model. The cross-
over shear rate at which the system transitions from quasistatic to
power-law behavior is �̇c�10−4.

FIG. 7. A schematic of the experimental setup that applied os-
cillatory planar shear to the bubble rafts. The U joint highlighted in
the figure is used to convert the rotary motion of the driving motor
into oscillatory planar shear.
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tal images were filtered and thresholded to demarcate the
spatial location of each bubble. Further details of the image
processing are provided in Refs. �28,29,34�.

To measure the velocity profiles, we divided the system in
the y direction into �20 equal-sized rectangular bins be-
tween y=0 and y=Ly. The instantaneous velocities of
bubbles were then calculated by subtracting the center of
mass positions of the bubbles in consecutive image frames
for each bin. We employed a particle image velocimetry
�PIV� procedure to measure the time evolution of the bubble
velocities and thus calculate the phase shift relative to the
driving. The horizontal component of the velocity of the in-
terior bubbles can be parametrized by the rms velocity vrms


	�vx
2�y��, frequency of oscillation �, and local phase shift


�y� with respect to the moving top boundary. The horizontal

component of the velocity of the interior bubbles is therefore
given by

vx�y,t� = vmag�y�cos��t − 
�y�� , �13�

where vmag=	2vrms, which allows us to calculate the local
phase shift 
�y� relative to the moving boundary. In Sec. V
below, we will show results for the total phase shift �


�0�−
�Ly�.

In the oscillatory planar shear experimental setup, we are
not able to directly measure the shear stress and thus the flow
curve. However, the flow curve has been measured previ-
ously for a bubble raft with similar parameters �shown in
Fig. 8� �27�. We employed the same method as in the simu-
lations to determine the crossover shear rate �̇c�0.065 s−1

at which the system transitions from the quasistatic to the
power-law flow regime.

V. EXPERIMENTAL AND SIMULATION RESULTS

In Figs. 9 and 10, we show the results from the experi-

FIG. 8. �Color online� Shear stress �xy versus the applied shear
rate �̇ for the same bubble raft system described in Fig. 1 undergo-
ing steady planar shear. We estimate the crossover frequency
�̇c�0.065 s−1 above which the system transitions from the quasi-
static to the power-law flow regime.

FIG. 9. �Color online� The normalized average horizontal veloc-
ity vx�y� /vx�Ly� �averaged over times when the boundary velocity is
maximum� as a function of distance y from the stationary bottom
wall for several driving frequencies � in the bubble raft experi-
ments. At frequencies ���d�4.0 s−1, the profiles are roughly lin-
ear, while above this characteristic frequency, liquidlike nonlinear
profiles are observed.

FIG. 10. �Color online� Total phase difference � plotted as a
function of the driving frequency � for the bubble raft experiments
�black squares�. The two triangles represent an upper limit for the
measured phase-shift given the resolution of our experiment at the
corresponding frequencies. The solid and dashed lines have slopes
1 and 2, respectively. The intersection of these two lines provides a
rough estimate for the crossover frequency, �p�1.9	0.9 s−1.
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FIG. 11. �Color online� The normalized average velocity
vx�y� /vx�Ly� �averaged over times when the boundary velocity is
maximum� as a function of distance y from the stationary wall
plotted for several driving frequencies � in the bubble model simu-
lations. For ���d�0.02, the velocity profiles display liquidlike
nonlinear decay.
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ments in which bubble rafts were subjected to low-amplitude
oscillatory planar shear. Figure 9 displays the horizontal ve-
locity profiles vx�y� �measured at times when the boundary
velocity is maximum as defined in Sec. IV� over a range of
driving frequencies. For this system, we find that the velocity
profiles transition from nearly linear to liquidlike nonlinear
near �d�4.0	0.5 s−1. Note that at the lowest driving fre-
quency, it appears that the velocity profile displays solidlike
behavior with slight negative curvature above a linear pro-
file, but this feature is comparable to the size of the fluctua-
tions. Since this feature is difficult to detect and the nonlinear
liquidlike profiles are more robust in the experiments, we
will focus on measurements of �d instead of �nl.

In Fig. 10, we show measurements of the total phase dif-
ference � between bubbles near the top and bottom bound-
aries as a function of the driving frequency. As discussed in
Sec. II, for a viscoelastic material we expect a crossover in
the scaling of the total phase difference as the driving fre-
quency is increased. For the experiments, we were unable to

fully characterize the crossover behavior due to limits in our
ability to measure the phase shift at low frequencies. How-
ever, using the maximum possible values of the total phase
shift at the lowest frequencies �triangles in Fig. 10�, we can
set a lower limit on the exponent for the low-frequency scal-
ing regime. This gives us a transition from ������n with
n�2 at low frequencies to linear scaling at high frequencies.
Thus, for the bubble raft system, we estimate �p
�1.9	0.9 s−1, and thus �p��d.

We also performed simulations of the bubble model un-
dergoing small amplitude oscillatory planar shear over a
range of packing fractions � and damping coefficients b� to
compare to the bubble raft experiments. The trend for each
set of � and b� was similar: low-frequency profiles are linear
with a nonzero total phase shift followed by a transition to
nonlinear liquidlike profiles when ���d. In addition, the
crossover in the scaling behavior of � versus � was ob-
served. This characteristic behavior is highlighted in Figs. 11
and 12, which show the velocity profiles and total phase shift
for the bubble model with �=0.86 and b�=2. We find �d
�0.02 and �p�0.015 for this set of parameters. In the low-
frequency limit, we find ������n with n�2.8	0.3 �blue
dashed line in Fig. 12�, which is similar to the scaling pre-
dicted for the Kelvin-Voigt model �35�.

Figure 13 summarizes the simulation data �black squares�
for the transition to liquidlike nonlinear profiles ��d� and the
crossover frequency ��p�. We show both characteristic fre-
quencies �d and �p at fixed �=0.86 as a function of b�

including the under- and overdamped regimes and at fixed
b�=2 as a function of �. To directly compare the results in
experiments and simulations, we normalize �d and �p by
�c=2��̇c obtained from the steady planar shear flow curves
at each b and �. The experimental results are also displayed
in Fig. 13; they are represented as solid lines since � and b�

are not known precisely for the bubble raft experiments. The
simulations indicate that at fixed �, the b� dependence of
�d /�c and �p /�c is fairly weak as the dissipation switches
from underdamped to overdamped. At fixed b�, both �d /�c

FIG. 12. �Color online� Total phase difference � plotted as a
function of the driving frequency � for the bubble model simula-
tions at �=0.86 and b�=2. From the intersection of the solid red
and dashed blue lines with slopes 1 and 3, respectively, we estimate
�p�0.015.

FIG. 13. �Color online� Summary of the mea-
surements of the normalized frequencies �d /�c

�top panels� and �p /�c �bottom panels� for the
bubble model simulations �solid squares� and
bubble raft experiments �solid lines�. �d and �p

are normalized by �c, which is the frequency at
which steady planar shear flows crossover from
highly fluidized to quasistatic behavior. For the
simulations, we show �d /�c and �p /�c as func-
tions of b� at fixed �=0.86 �left panels� and � at
fixed b�=2 �right panels�. Because it is difficult
to define � and b� precisely in experiments, the
results for the bubble rafts are presented as solid
lines �in between dashed lines, which give error
bars for the experimental measurements� to iden-
tify the range of � and b� that best fit the
experiments.
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and �p /�c increase with packing fraction, if we exclude the
first point at �=0.85.

VI. CONCLUSION

We find that the bubble model captures all of the qualita-
tive features of the response of the bubble rafts to low-
amplitude oscillatory planar shear flow. The key elements of
the response include: �1� a regime with linear velocity pro-
files, but a nonzero total phase shift at low frequencies, and
�2� at the highest frequencies, a regime with liquidlike non-
linear profiles and nonzero total phase shift. In addition, in
the low-frequency regime, there is a crossover in the scaling
of the total phase shift as a function of the driving frequency.
The bubble model reproduces each of these distinctive fea-
tures found in the bubble rafts.

The quantitative agreement shown in Fig. 13 between the
simulations and the experiments is also encouraging. In the
range of parameters that we expect to correspond most
closely to the experiments ���0.86 and b��	2�, we find
agreement to within error bars between the experiment and
simulations for the characteristic frequency �d at which the
system transitions from linear to liquidlike nonlinear velocity
profiles, and �p, which characterizes the change in scaling of
the total phase shift.

The bubble model is often used to characterize highly
fluidized flows where T1 bubble rearrangement events occur
since it can quantify the statistics of these rearrangement
events. It has not been employed as often to quantitatively
study slow dense flows where bubble rearrangements are rare
since the results can depend on the dissipation model. One of
the unique aspects of this study is that it allows a direct
comparison between the bubble model and bubble raft ex-
periments in the regime where T1 events and other large-
scale bubble rearrangements do not occur, which enables
stringent tests of the dissipation mechanism in the bubble
model. The observed qualitative and quantitative agreements
between simulation and experiment provide evidence that the
bubble model provides a faithful, yet simple description of
dissipation between liquid walls in bubble rafts.

Our focus on the low-amplitude oscillatory shear regime,
in the absence of T1 events, provides important insights into
the response of foams to applied stress. First, we find that the
bubble rafts clearly exhibit dissipative behavior despite the

absence of T1 events. This can only be due to motion in the
fluid films and emphasizes that further quantitative studies of
film-level dissipation mechanisms are crucial to understand-
ing foam rheology �22�. Second, studies of the response of
3D foams and emulsions to oscillatory shear suggest that
there are important differences between the two systems in
the low-amplitude regime �36–38�. Thus, studying the low-
amplitude regime will highlight key differences in the me-
chanical response of a variety of soft glassy materials. Fi-
nally, in this paper we presented results that demonstrate the
existence of two additional time �or frequency� scales asso-
ciated with the response of foam to applied shear: �p and �d
�or �nl�. Thus, we expect that these characteristic time scales
will also play a key role in determining the flow curve and
velocity profiles for foams undergoing steady planar shear
flow.

A quantitative comparison between the bubble raft experi-
ments and bubble model simulations also provides a method
to calibrate the gas area fraction of the bubble rafts, which is
notoriously difficult to measure in foam experiments. Of the
three frequently used quasi-two-dimensional experimental
setups �bubble rafts, bubble rafts with a top glass plate, and
bubbles confined between two solid surfaces�, it is most dif-
ficult to define the area fraction in the bubble rafts. By com-
bining the bubble model simulations and surface evolver
computations �39,40�, it will be possible to define an effec-
tive area fraction that will allow direct comparison between
bubble raft experiments and other quasi-two-dimensional
glassy and jammed systems confined to surfaces and thin
films. In the future, we will perform additional experiments
over a range of packing fractions, surfactants that yield
bubbles with varied elastic properties, and liquid viscosities
to investigate whether the predictions of the simple vis-
coelastic model in Sec. II for the G and � dependences of �nl
and �p are valid for the bubble rafts.
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