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Nonlinear Evolution of ƒ(R) Cosmologies. III. Halo Statistics

Abstract
The statistical properties of dark matter halos, the building blocks of cosmological observables associated with
structure in the Universe, offer many opportunities to test models for cosmic acceleration, especially those
that seek to modify gravitational forces. We study the abundance, bias, and profiles of halos in cosmological
simulations for one such model: the modified action ƒ(R) theory. The effects of ƒ(R) modified gravity can be
separated into a large- and small-field limit. In the large-field limit, which is accessible to current observations,
enhanced gravitational forces raise the abundance of rare massive halos and decrease their bias but leave their
(lensing) mass profiles largely unchanged. This regime is well described by scaling relations based on a
modification of spherical collapse calculations. In the small-field limit, the enhancement of the gravitational
force is suppressed inside halos and the effects on halo properties are substantially reduced for the most
massive halos. Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing
conservative upper limits on the modification to gravity.
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The statistical properties of dark matter halos, the building blocks of cosmological observables

associated with structure in the Universe, offer many opportunities to test models for cosmic acceleration,

especially those that seek to modify gravitational forces. We study the abundance, bias, and profiles of

halos in cosmological simulations for one such model: the modified action fðRÞ theory. The effects of

fðRÞ modified gravity can be separated into a large- and small-field limit. In the large-field limit, which is

accessible to current observations, enhanced gravitational forces raise the abundance of rare massive halos

and decrease their bias but leave their (lensing) mass profiles largely unchanged. This regime is well

described by scaling relations based on a modification of spherical collapse calculations. In the small-field

limit, the enhancement of the gravitational force is suppressed inside halos and the effects on halo

properties are substantially reduced for the most massive halos. Nonetheless, the scaling relations still

retain limited applicability for the purpose of establishing conservative upper limits on the modification to

gravity.

DOI: 10.1103/PhysRevD.79.083518 PACS numbers: 98.80.�k, 95.36.+x, 04.50.Kd

I. INTRODUCTION

In the so-called fðRÞ class of models (see [1,2] and
references therein) cosmic acceleration arises not from
an exotic form of energy with negative pressure but
from a modification of gravity that replaces the Einstein-
Hilbert action by a function of the Ricci or curvature scalar
R [3–5].

Cosmological simulations are crucial for exposing the
phenomenology of fðRÞ models. In order to satisfy local
tests of gravity, fðRÞ models exhibit a nonlinear process,
called the chameleon mechanism, to suppress force mod-
ifications in the deep potential wells of cosmological struc-
ture [6–10]. Upcoming tests of cosmic acceleration from
gravitational lensing, galaxy, and cluster surveys have most
of their statistical weight in the weakly to fully nonlinear
regime. Stringent constraints on modified gravity can be
expected from current and future surveys, once the impact
on observables in the nonlinear regime is understood.

In the previous papers in this series, we have established
the methodology for cosmological fðRÞ simulations [11]
and conducted a suite of simulations that uncover the
chameleon mechanism and its effect on the matter power
spectrum [12]. In this paper, we continue our exploration of
the nonlinear aspects of the fðRÞ model by examining the
properties of the basic building blocks of cosmological
structure: dark matter halos. Specifically, we quantify their
abundance (i.e. the halo mass function), clustering proper-
ties (i.e. the linear bias), and their density profiles to see

how each are modified from the standard cosmological
constant, cold dark matter model �CDM.
We begin in Sec. II with a brief review of the important

properties of fðRÞ models and a discussion of the simula-
tion and analysis methodology. We present our results on
halo statistics in Sec. III and discuss them in Sec. IV.
Throughout the article we place a special emphasis on
exploring the impact of the chameleon mechanism and
highlighting differences between the simulations and con-
ventional scaling relations based on linear theory and
�CDM. These differences expose crucial distinctions
that must be considered when observationally testing
modified gravity theories.

II. METHODS

We begin in Sec. II A by briefly reviewing the basic
properties of the fðRÞ model that are important for under-
standing the cosmological simulations described in
Sec. II B. We refer the reader to [12] for a more detailed
treatment. Finally, in Sec. II C, we discuss the methods
used in identifying the halos and measuring their abun-
dance, bias, and profiles.

A. fðRÞ gravity
The fðRÞ model generalizes the Einstein-Hilbert action

to include an arbitrary function of the scalar curvature R,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Rþ fðRÞ
16�G

þ Lm

�
: (1)

Here Lm is the Lagrangian of the ordinary matter, and*fabians@uchicago.edu
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throughout c ¼ @ ¼ 1. Force modifications are associated
with an additional scalar degree of freedom, fR � df=dR.
For definiteness, we choose the functional form for fðRÞ
given in [10] (with n ¼ 1), but neglect higher corrections
of order jfR0j � 10�4, which results in the following ef-
fective fðRÞ:

fðRÞ ¼ �16�G�� � fR0
�R2
0

R
: (2)

Here we define �R0 ¼ �Rðz ¼ 0Þ and fR0 ¼ fRð �R0Þ, where
overbars denote the quantities of the background space-
time. For jfR0j � 1 the background expansion history
mimics �CDM with �� ¼ ��=�crit.

Variation of Eq. (1) with respect to the metric yields the
modified Einstein equations. We work in the quasistatic
limit, where time derivatives may be neglected compared
with spatial derivatives. The trace of the modified Einstein
equations yields the fR field equation

r2�fR ¼ a2

3
½�RðfRÞ � 8�G��m�; (3)

where coordinates are comoving, �fR ¼ fRðRÞ � fRð �RÞ,
�R ¼ R� �R, ��m ¼ �m � ��m. The time-time component
of the Einstein equations yields the modified Poisson equa-
tion

r2� ¼ 16�G

3
a2��m � a2

6
�RðfRÞ: (4)

Here � is the Newtonian potential or time-time metric
perturbation 2� ¼ �g00=g00 in the longitudinal gauge.
These two equations define a closed system for the
Newtonian potential given the density field. The matter
falls in the Newtonian potential as usual, and so the mod-
ifications to gravity are completely contained in the equa-
tion for �.

The field equation (3) is a nonlinear Poisson-type equa-
tion, where the nonlinearity is determined by �RðfRÞ. If the
background field fR0 is sufficiently large, then field fluc-
tuations are relatively small and this term may be linear-
ized as �R � ðdR=dfRÞj �R�fR. It is straightforward to
show that the Fourier space solution to Eqs. (3) and (4)
in this approximation is

k2�ðkÞ ¼ �4�G

�
4

3
� 1

3

�2a2

k2 þ�2a2

�
a2��mðkÞ; (5)

with � ¼ ð3dfR=dRÞ�1=2. Hence, gravitational forces are
enhanced by a factor of 4=3 on scales below ��1, the
Compton wavelength of the field. We call this regime the
large-field limit.

Equations (3) and (4) in the large-field limit imply that
the field fluctuations are of order the gravitational potential
j�fRj � j�j. Therefore if the background field is of order
the typical gravitational potentials of cosmological struc-
ture j�j & 10�5 or smaller, field fluctuations become of
order unity and �R � ðdR=dfRÞ�fR which causes the

Compton wavelength to shrink [10]. We call this the
small-field limit. The large- and small-field limits are sepa-
rated by a value of the background field of jfR0j � 10�5.
In the small-field limit, the field equation (3) then

requires �R � 8�G��m, which drives the Poisson equa-
tion (4) back to its usual form. This is the so-called
chameleon mechanism which occurs when the background
field is small compared with the depth of the gravitational
potential. Hence, force law deviations are suppressed in the
deepest gravitational potentials, i.e. inside the high over-
densities of collapsed dark matter halos.
It is important to note that due to the modified Poisson

equation (4) for the dynamical potential, the masses dealt
with in this paper correspond observationally to gravita-
tional lensing masses, and not to dynamical masses (see
Appendix A).

B. Simulations

To solve the system of equations defined by the modified
Poisson equation (4) and the fR field equation (3) in the
context of cosmological structure formation, we employ
the methodology described in [11] and implemented in
[12]. Briefly, the field equation for fR is solved on a regular
grid using relaxation techniques and multigrid iteration
[13,14]. The potential � is computed from the density
and fR fields using the fast Fourier transform method.
The dark matter particles are then moved according to
the gradient of the computed potential, �r�, using a
second order accurate leapfrog integrator.
We choose a range of background field values jfR0j ¼

10�6–10�4 to expose the impact of the chameleon mecha-
nism. Since cosmological potentials range from
10�6–10�5, we expect the chameleon mechanism to be
operative in the small-field limit of this range but absent in
the large-field limit. We also include jfR0j ¼ 0, which is
equivalent to �CDM. Note that the background expansion
history for all runs is indistinguishable from �CDM to
OðfR0Þ. More specifically, we take a flat background cos-
mology defined by �� ¼ 0:76, �b ¼ 0:041 81, H0 ¼
73 km=s=Mpc and initial power in curvature fluctuations
As ¼ ð4:73	 10�5Þ2 at k ¼ 0:05 Mpc�1 with a tilt of
ns ¼ 0:958.
To more directly assess the impact of the chameleon

mechanism, we also carry out linearized fR simulations in
which the gravitational potential,�, is evaluated according
to Eq. (5). In the linearized treatment, the Compton wave-
length is assumed to be fixed by the background field and
thus chameleon effects are not present. Therefore, the
difference between the full fR simulations and the linear-
ized fR simulations are wholly due to the chameleon
effects. We will call these runs the ‘‘no-chameleon’’
simulations.
Table I lists the properties of the simulations used in the

analysis below. All simulations possess 512 grid cells in
each direction and Np ¼ 2563 particles.
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C. Halo properties

We identify halos and measure their masses in simula-
tions with a spherical overdensity algorithm similar to [15].
We use cloud-in-cell interpolation to assign the particles to
the grid. Starting at the highest overdensity grid point, we
then count the particles within a growing sphere centered
on the center of mass, until the desired overdensity with
respect to the mean matter density �th ¼ �m= ��m is
reached. Here, we take �th ¼ 300 for definiteness. The
mass M300 of the halo is then defined by the mass of all
particles enclosed within this radius r300. We move onto
the next highest density grid cell and repeat the procedure
until all halos have been identified. We implicitly take
M ¼ M300 below unless otherwise specified.

In our final results we only keep halos with at least Nmin

dark matter particles, and since our simulations are not of
high resolution, we conservatively take Nmin ¼ 800. We
verified that a lower minimum particle number of Nmin ¼
400 provides results consistent with statistical uncertain-
ties for all our quoted halo properties. The corresponding
minimum masses of halos are listed in Table I.

For each simulation run, we determine the halo mass
function by binning halos in logarithmic mass intervals,
and dividing by the comoving volume of the simulation
box. We then combine different runs and box sizes using a
bootstrap procedure to produce the estimate of the mass
function and its errors. We weight each box by volume and
use only those boxes whose minimum halo mass is below
the mass bin considered. When measuring differences
between �CDM and fðRÞ, we average the differences
between simulations with the same initial conditions to
reduce the sample variance.

We compare simulation results to the Sheth-Tormen
(ST) prescription [16] given in Appendix B with modifi-
cations to spherical collapse as detailed in Appendix A.
Semianalytic prescriptions of this type are widely used
when analyzing data for cosmological constraints, and so
an assessment of their range of validity is of practical
importance.

Next we extract the linear halo bias bLðMÞ from our
simulations. For halos of a given logarithmic mass range in
a box of size Lbox, we first obtain the halo bias bðk;MÞ by
dividing the halo-mass cross spectrum by the matter power

spectrum for each simulation,

bðk;MÞ ¼ Phmðk;MÞ
PmmðkÞ ¼ h�


hðk;MÞ�ðkÞik
h�
ðkÞ�ðkÞik ; (6)

where �hðk;MÞ is the halo number density contrast,
whereas �ðkÞ is the matter mass density contrast. The
average is over the k modes in a k bin. For each box we
employ the modes k � kmin ¼ 2kfun, where kfun is the
fundamental mode of the box (see Table I), and thus the
smallest boxes barely probe the linear regime. For the
larger mass bins, we probe more of the linear regime but
are more limited by small statistical samples. Note that the
definition of bias adopted will differ from alternate choices

such as ðPhh=PmmÞ1=2 or Phh=Phm in the nonlinear regime
where the correlation coefficient between halos and matter
can differ from unity.
In order to remove trends from the nonlinearity of the

bias, we fit a linear relation to bðk;MÞ ¼ a0ðMÞ þ a1ðMÞk
between kmin and 10kmin, where bðk;MÞ is the combined
measurement from all boxes. The linear halo bias in this
mass range is then extrapolated as bLðMÞ ¼ bðk ¼
0;MÞ ¼ a0ðMÞ. When considering the modifications in
the fðRÞ simulations, the same bootstrap and linear fit
procedure is applied but to the quantity �b=b � ðbfðRÞ �
b�CDMÞ=b�CDM. Again we compare these results to the
peak-background split predictions based on the ST mass
function detailed in Appendix B.
Finally, we stack the halos in each mass interval and

measure the average density profile and mass correlations
of the halos. To reduce scatter within the mass bin, we scale
each density profile to its own r300 before stacking; i.e. we
measure

��ðr=r300Þ �
�
�hðr=r300Þ

��m

� 1

�
h
: (7)

The spatial resolution of our particle-mesh simulations is
limited by the fixed size of grid cells rcell (see Table I). We
measure halo profiles down to the grid scale, though we
expect that profiles have converged only at scales of several
grid cells. When the resolution becomes too low, the inner
profile flattens leading to a misestimation of both the mass
enclosed at r300 and the shape of the halo profiles. We

TABLE I. Simulation type and number of runs per box size.

Lboxðh�1 MpcÞ
jfR0j 400 256 128 64

Number of boxes 10�4 6 6 6 6

10�5 6 6 6 6

10�6 6 6 6 6

0 (�CDM) 6 6 6 6

Mh;minð1012h�1M�Þ 204 53.7 6.61 0.83

kfun ¼ �=LboxðhMpc�1Þ 0.008 0.012 0.025 0.049

rcellðh�1 MpcÞ 0.78 0.50 0.25 0.125
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therefore use only the highest resolution boxes for our
comparisons with the fðRÞ simulations. The maximum
radius for each profile is set to 0:4Lbox.

In order to avoid biases from incompleteness effects, we
further limit the range of the stacked profile to radii where
more than 90% of the halos in the mass bin contribute. We
then bootstrap over all halos in the given mass range in
order to determine the average profile and its error. Profiles
and the halo-mass correlation function results are com-
pared to the Navarro-Frenk-White (NFW) profile and
halo model, respectively (see Appendix B).

III. RESULTS

In this section we present the results obtained from
N-body simulations of the fðRÞ models for the halo mass
function (Sec. III A), halo bias (Sec. III B), density profiles
(Sec. III C), and matter power spectrum (Sec. III D). In all
cases, we compare the simulation results with predictions
using scaling relations based on spherical collapse calcu-
lations, the Press-Schechter prescription, and findings from
simulations of �CDM. These calculations are detailed in
the appendixes.

Since spherical collapse predictions depend on the
gravitational force modification, we give a range of pre-
dictions in each case. The extremes are given by collapse
with standard gravity and with enhanced forces through-
out. The former follows the �CDM expectation of a
linear density extrapolated to collapse of �c ¼ 1:673 and
a virial overdensity of �v ¼ 390; the latter modifies these
parameters to �c ¼ 1:692 and �v ¼ 309 as detailed in
Appendix A.

Neither assumption for the nonlinear collapse is com-
pletely valid given the evolving Compton wavelength and
the chameleon mechanism. Moreover, the evolution of
linear density perturbations used as the reference for the
scaling relations in Eqs. (B1), (B4), (B8), and (B10) as-
sumes in both cases the full linear growth of the fðRÞ
model through �ðMÞ, including the effects of the evolving
background Compton wavelength but not the chameleon
mechanism. Thus, unmodified spherical collapse parame-
ters do not equate to unmodified spherical collapse
predictions.

A. Mass function

In Fig. 1, we show the halo mass function measured
from our suite of �CDM simulations along with the boot-
strap errors described in Sec. II C. For reference, we com-
pare the simulations to the ST mass function of Eq. (B1).
The ST formula gives the mass function in terms of the
virial mass, and we rescale it to M300 assuming a NFW
profile (see Appendix B). Our �CDM simulations are
consistent with the 10%–20% level of accuracy expected
of the ST formula and internally between boxes of differ-
ing resolution.

Next, we compare the fðRÞ and�CDM simulations. Our
measurement of the halo mass function itself is limited by
statistics and, to a lesser extent, resolution (see Fig. 1).
However, we can reduce the impact of both effects by
considering the relative difference between the halo-mass
functions measured in fðRÞ and �CDM simulations with
the same initial conditions and resolution.
Figure 2 shows this relative enhancement of the halo-

mass function in the fðRÞ simulations for different values
of fR0, the background field today, combining different box
sizes as described in Sec. II C. We show results for the full
simulations as well as the no-chameleon simulations to
help highlight the impact of the chameleon mechanism.
For the large-field value of jfR0j ¼ 10�4, the number of

halos increases significantly, especially at the high-mass
end, by up to 50%–150% for cluster-sized halos. The
chameleon effect slightly suppresses the abundance in
the high-mass end. A similar effect occurs for the power
spectrum [12] and arises due to the appearance of the
chameleon effect in deep potentials at high redshifts where
the background field values are smaller. The overall trend
is captured by the spherical collapse predictions (shaded
band in Fig. 2). The upper limit corresponds to unmodified
forces, whereas the lower limit corresponds to enhanced
forces during the entirety of the collapse. The enhancement
of the linear �ðMÞ in fðRÞ effectively makes objects of the
same mass less rare and causes the increase in the Sheth-

FIG. 1 (color online). The halo mass function as a function of
M300 measured in �CDM simulations with bootstrap errors on
the mean. The upper panel combines different box sizes from 64
to 400 Mpc=h and compares results with the Sheth-Tormen
prediction rescaled from Mv to M300 as described in the text.
The lower panel shows the relative deviations from this predic-
tion separately for different box sizes.
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Tormen predictions for the exponentially suppressed high-
mass end of the mass function (� � �c=� > 1). Compared
to this effect, that of modifying spherical collapse parame-
ters is much smaller. It mainly arises from the increase in
virial mass with respect to M300 making the same M300

correspond to rarer virialized objects. In this large-field
limit, all but the most massive halos are better described by
the modified collapse parameters. Moreover, for the pur-
poses of establishing upper limits on jfR0j using the halo
mass function, use of this prediction would only err on the
conservative side.

When the value of the fR field becomes comparable to
the cosmological potential wells, the chameleon effect
starts to operate. This can be seen in the mass-function
deviations for jfR0j ¼ 10�5 and 10�6 (see Fig. 2). For the
smallest field value, the departures from �CDM become
very small, so that individual high-mass halos change only
slightly in mass. Because of the limited statistics in our
simulation sample, we are not able to reliably estimate the
uncertainties on the mass-function deviation for the highest
mass bin in this case. However, the mean deviation in this
mass bin is consistent with zero.

The no-chameleon simulations show a behavior of in-
creasing deviations at high masses similar to the large-field
case, while the full fðRÞ simulations deviate significantly
from this trend, especially at high masses. For jfR0j ¼

10�6 the excess almost entirely disappears at the highest
masses, leaving a pileup of halos at intermediate masses.
As in the power spectrum [12], the chameleon mechanism
qualitatively changes the predictions for the mass function
for jfR0j & 10�5.
It is also apparent from Fig. 2 (lower panel) that the

spherical collapse predictions are less accurate for the
small-field limit. The range of predictions encompasses a
deficit of high-mass halos that is not seen in the simula-
tions. Since �ðMÞ is calculated from the linear prediction
at a radius that encloses the mass M at the background
density, there would be no predicted enhancement of linear
fluctuations if this radius is larger than the Compton scale
in the background. This is in spite of the fact that in the no-
chameleon simulations forces are still enhanced once the
perturbation collapses to smaller scales. Combined with
the rescaling of the virial mass, this can produce a deficit of
predicted objects at a fixed overdensity. This problem
highlights the difficulties in applying scaling relations
between the linear and nonlinear regimes, which were
developed for scale-free �CDM-type models, to modified
gravity theories.
In the case of the full fðRÞ simulations, the problem is

partially compensated by the appearance of the chameleon
mechanism which also reduces the abundance of the high-
est mass objects by eliminating the extra force during the
collapse. While the full simulation results lie within the
range of spherical collapse predictions at the high-mass
end, spherical collapse fails to predict the pileup of halos at
intermediate masses.
Still, the ST mass-function predictions can be used to

conservatively place upper limits on jfR0j from the abun-
dance of halos withM> 1014M�=h. Employing the modi-
fied collapse prescription for the enhancement or zero,
whichever is greater, will always underestimate the true
enhancement in the suite of models we have tested. This
underestimate becomes a small fraction of the total en-
hancement for jfR0j> 10�5.

B. Halo bias

The halo bias computed from Eq. (6) in the �CDM
simulations is shown in Fig. 3 for halos with masses in
the range M300 ¼ 1013–1013:5h�1M� as an example. The
points and error bars are bootstrap averages and errors of
individual bias computations from the various boxes and
runs. In this case, only boxes with size Lbox ¼ 64 and
128h�1 Mpc have halos in the mass range and contribute
to the bias calculation (see Table I). Note that due to the
limited halo statistics and our small simulation sample, the
scatter in the errors themselves is significant. We have
verified that consistent results are also obtained with a
lowered Nmin ¼ 100–400, which increases halo statistics
allowing the larger, more linear boxes to be used for the
bias. In the lower panel of Fig. 3 we show the variation of
the bias measurements with box size. In the regime of

FIG. 2 (color online). Relative deviations of the fðRÞ halo-
mass functions from �CDM, with jfR0j ¼ 10�4 (top panel),
10�5 (middle panel), and 10�6 (lower panel). In each case,
blue squares denote the full simulations, while red triangles
(displaced horizontally for visibility) denote the no-chameleon
simulations. The shaded band shows the range of enhancement
expected from spherical collapse rescaled from Mv to M300.
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mutual applicability, the bias measurements between boxes
are consistent within the statistical uncertainties.

In Fig. 4, we show the linear halo bias in our �CDM
simulations as a function of halo mass, measured as de-
scribed in Sec. II C. We compare these results to the ST
bias prediction of Eq. (B4). We again remap the virial mass
Mv to M300 and plot the prediction for bLðM300Þ. The
simulation results are consistent within �20% of the
prediction.

Whereas the abundance of halos can be significantly
changed in fðRÞ, their clustering properties are relatively
less affected compared with�CDM. In Fig. 5 we show the
relative difference between the halo bias in fðRÞ simula-
tions with jfR0j ¼ 10�4 and �CDM for the same mass bin
of Fig. 3. For each box and run contribution, we subtracted
the fðRÞ simulation bias from that of the corresponding
�CDM simulation with the same initial conditions to form
�bðk;MÞ=bðk;MÞ. The averages and error displayed are
again obtained by the bootstrap procedure of the individual
differences. The same linear fit procedure is applied and
evaluated at k ¼ 0 to estimate the relative difference in the
linear bias �bLðMÞ=bLðMÞ � �b=bðk;MÞjk¼0.

In Fig. 6 we compare the linear bias from fðRÞ and
�CDM simulations, computed as above, and the range of
predictions from spherical collapse. The bias decreases
with increasing jfR0j since halos of a fixed mass become

FIG. 3 (color online). The halo bias as a function of wave
number k in �CDM. The upper panel combines different box
sizes and runs for halos with mass M300 ¼ 1013–1013:5 h�1M�.
The solid black line indicates a linear fit, whose extrapolation to
k ¼ 0 gives bL (dotted red line). Error bars denote bootstrap
errors on the mean. The lower panel shows the relative devia-
tions from the fit separately for each box contributing in this
mass range.

FIG. 4 (color online). The linear halo bias as a function of
M300 extrapolated from the �CDM simulations with bootstrap
errors on the mean. The upper panel combines different box sizes
and runs and compares the result to the Sheth-Tormen prediction
rescaling masses from Mv to M300. The lower panel shows the
relative deviations from this prediction.

FIG. 5 (color online). Relative deviations in the halo bias,
�b=b � ðbfðRÞ � b�CDMÞ=b�CDM, as a function of wave number

k between jfR0j ¼ 10�4 and �CDM for M300 ¼
1013–1013:5 h�1M�. The solid black line indicates a linear fit
to the bootstrap means and errors of the combined boxes, whose
extrapolation to k ¼ 0 gives �bL=bL (dotted red line).
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less rare and thus less highly biased. The chameleon effect
in the full simulations decreases the difference in bias
versus the no-chameleon simulations, as expected. As
with the mass function, the spherical collapse range ade-
quately describes the high-mass halos even for the small-
field chameleon cases, due to a fortuitous cancellation of
modeling errors.

C. Halo profiles

The final ingredient in a basic understanding of halos
and cosmological statistics that are built out of them is their
average profiles. We plot the fractional density contrast
��ðr=r300Þ defined in Eq. (7) and measured in the �CDM

simulations for the largest and hence best resolved mass
bin in Fig. 7 (upper panel), for different box sizes of the
�CDM simulations. For reference we compare these with
the corresponding halo model prediction (shaded region)
from the halo-mass correlation function of Eq. (B11),
consisting of a NFW profile plus a two-halo term describ-
ing the surrounding mass, averaged over the same mass bin
as the simulations. The range of predictions shown is
bounded from above by a continued NFW profile, and
bounded from below by a NFW profile truncated at rv ¼
r390, as used in the halo model description of power spec-
tra, Eq. (B8). In the lower panel of Fig. 7, we show the
same profiles relative to the halo model prediction with
continued profiles. Removing the overall trend with the

halo model better reveals the internal consistency of our
simulations. The agreement between the smallest box and
the larger boxes with coarser resolution and smaller parti-
cle number is & 20% in the case of the 128 Mpc=h boxes,
and& 40% for the 256 Mpc=h boxes. In the following, we
show results from the 128 Mpc=h boxes for the largest
mass halos, in order to increase halo statistics, and from the
64 Mpc=h boxes for all other masses.
Figure 8, top panel, shows the stacked halo profiles for

three mass bins, for �CDM and full fðRÞ simulations with
jfR0j ¼ 10�4. The lower panel of Fig. 8 shows the relative
deviation between �CDM and fðRÞ halo profiles. When
scaled to the same overdensity radius, halos in �CDM and
fðRÞ apparently have very similar profiles, especially in the
inner part of the halo. Although a precise measurement of
the NFW scale radius is not possible with our limited
resolution, it is apparent that there are no dramatic effects
of modified gravity on the halo concentration c300 �
r300=rs. Moreover, the deviations are consistent with zero
well within r300. The same holds for the no-chameleon
fðRÞ simulations.
For the intermediate and larger halo masses, there is an

enhancement of the halo profile at r=r300 � few, i.e. in the
transition region between one-halo and two-halo contribu-
tions. The smallness of the enhancement of �hm can be
explained by a partial cancellation between the increased

FIG. 6 (color online). Relative deviations in the fðRÞ linear
halo bias from �CDM, with jfR0j ¼ 10�4 (top panel), 10�5

(middle panel), and 10�6 (lower panel). The no-chameleon
simulations are again displaced horizontally for better visibility.
The shaded bands show the range of deviations of halo bias in
fðRÞ expected from spherical collapse with the upper limit
corresponding to modified spherical collapse parameters.

FIG. 7 (color online). Halo density profile, expressed as the
fractional overdensity ��, forM ¼ 1014–1015M�=h measured in

the �CDM simulations (upper panel). The halo-mass correlation
predictions (shaded region) represent the range from with profile
truncation to without it (dotted line) [Eq. (B11)] averaged over
the same mass bin. The lower panel shows the relative deviation
and bootstrap errors measured in the different boxes from the
prediction without truncation.
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linear power spectrum and reduced linear bias in fðRÞ
(Sec. III B). However, a quantitative understanding of the
behavior of the halo-mass correlation at these radii is not
possible with the simple halo model adopted here, as it fails
in the transition region between one- and two-halo terms
(see Fig. 7). In the small-field simulations, the deviations in
the halo profiles are too small to be measured with our
current suite of simulations.

Given the relative smallness of the modified gravity
effects on halo profiles, the main effect of enhanced forces
in the large-field simulations is to change the mass and
hence the abundance and bias of halos.

D. Halo model power spectrum

We can now put the halo properties together and discuss
statistics that can be interpreted under the halo model
paradigm outlined in Sec. III B. The matter power spec-
trum Pmm is especially interesting in that the enhancement
in the large-field fðRÞ simulations found in [12] was not
well described by standard linear to nonlinear scaling
relations [17]. Without an adequate description of the
large-field limit, robust upper limits on jfRj, which should
be available from current observations, are difficult to
obtain.

The halo model provides a somewhat more physically
motivated scaling relation between the linear and nonlinear
power spectra [18]. Specifically, we use the same range of
ST predictions for the mass function and linear bias dis-
cussed in the previous sections in Eq. (B8). In addition, we
vary the concentration parameter of the halos, using either
an unmodified cvðMvÞ relation [Eq. (B6)] or an unmodified
c300ðM300Þ � r300=rs. The latter relation is motivated by
our finding that the inner parts of halo profiles are unmodi-
fied in fðRÞ when referred to the same overdensity radius
(Sec. III C). Converting c300 to the virial concentration, we
obtain a �10% higher cv, which increases the power
spectrum enhancement at k * 1h=Mpc through the one-
halo term [Eq. (B8)].
The range of halo model predictions is shown in Fig. 9

for different values of fR0, together with the simulation
results from [12]. The upper boundary of each shaded band
corresponds to unmodified spherical collapse parameters
and unchanged c300, while the lower boundary uses the
modified spherical collapse parameters, assuming en-
hanced forces throughout in the fðRÞ prediction, and un-
changed cv.
The halo model provides a reasonable approximation to

the relative deviations in the large-field limit out to the k�
1–3h=Mpc scales that can be resolved by the simulations.
The modified collapse provides a somewhat better and
more conservative approximation for the purposes of es-
tablishing upper limits for jfR0j * 10�4.

FIG. 8 (color online). Halo density profile �� in the full fðRÞ
(jfR0j ¼ 10�4, dashed and dotted lines) and �CDM (solid lines)
simulations, for different halo masses (upper panel). Profiles for
1013–1014 and 1014–1015M�=h have been multiplied by 10 and
100, respectively. The profiles of the highest mass halos were
obtained from 128 Mpc=h boxes, while the lower mass profiles
are from 64 Mpc=h boxes. The lower panel shows the relative
deviation of the fðRÞ profiles from those of �CDM, with boot-
strap error bars.

FIG. 9 (color online). Power spectrum enhancement relative to
�CDM for full and no-chameleon simulations and different fR0
field strengths. The shaded band shows the predictions from the
halo model using parameters derived from spherical collapse
(see text).
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The halo model still fails to capture the chameleon
suppression in the small-field limit. Its failure is apparent
even at jfR0j ¼ 10�5 for 0:1 & kðh=MpcÞ & 1 and is rela-
tively larger than the error in the mass function, linear bias,
and halo profiles themselves. This range also corresponds
to the regime where the one-halo and two-halo terms are
comparable, i.e. where our simple prescription of linear
clustering of halos with density profiles truncated at the
virial radius cannot be expected to apply.

A prescription that seeks to interpolate between modi-
fied and unmodified force law predictions [18] and a better
treatment of the transition regime that includes nonlinear
halo clustering and halo exclusion could potentially pro-
vide a better description but is beyond the scope of this
study.

IV. DISCUSSION

Dark matter halos are the building blocks of cosmologi-
cal observables associated with structure in the Universe.
Their statistical properties provide many interesting tests
of cosmic acceleration, especially of those that seek to
modify gravitational forces.

Here we have examined the abundance, clustering, and
profiles of dark matter halos in fðRÞ modified gravity
models. In these models, gravitational forces are enhanced
below the local Compton scale of an extra scalar degree of
freedom fR. Generically, this extra force leads to an en-
hanced abundance of massive halos and a decrease in the
bias of such halos, but relatively little change to the density
profile or mass correlation around halos of fixed mass. The
extent of these effects on halo statistics depends strongly
on whether the background scalar field is in the large-field
(jfR0j * 10�5) or small-field limit (jfR0j & 10�5).

In the large-field limit, forces are modified everywhere
below the background Compton scale (�C * 10 Mpc=h
today [12]). The modifications in this regime are relatively
well described by scaling relations for halo statistics. By
modifying spherical collapse parameters to include the
enhanced forces, we have shown that the mass function
and linear halo bias can be described well by the Sheth-
Tormen prescription. The halo-mass correlation and aver-
age density profiles are little changed from�CDM due to a
cancellation of effects from the enhanced forces and de-
creased bias.

Together these provide a description of the enhanced
matter power spectrum that corresponds to a relatively
small overestimate of jfR0j by �50% or less. This level
of accuracy more than suffices for an order of magnitude
constraint on field values. Moreover, the overestimate de-
pends only weakly on jfR0j and can largely be corrected. In
this prescription, concentration uncertainties which are
unresolved in our simulations should be marginalized.
Concentration uncertainties also arise from baryonic ef-
fects in�CDM [19], and marginalization over these leaves

only the more unique intermediate scale deviations to
distinguish modifications of gravity [20].
In the small-field limit, potential wells of dark matter

halos are comparable to or larger than the background fR
field, so that the local Compton wavelength decreases
substantially from the background value. Modifications
to gravitational forces then decrease in the interior of halos
by the so-called chameleon mechanism. This decrease has
the effect of bringing deviations in all of the halo statistics
down at the high-mass end. At intermediate masses, the
excess in the halo abundance can actually increase further
due to a pileup of halos which also suppresses the change
in the bias.
Scaling relations are not as easily modified to include the

chameleon effect but do still have limited applicability.
Because of a fortuitous cancellation of problems associated
with a small background Compton wavelength and the
chameleon mechanism, the modified Sheth-Tormen mass
function can still be used to provide upper limits on the
field values that err only on the conservative side.
Likewise, the bias description is reasonably accurate for
intermediate- to high-mass halos. We caution that this
fortuitous cancellation does not apply to all quantities
that can be built out of halo statistics. For example, the
halo model for the power spectrum overpredicts the en-
hancement in the weakly nonlinear regime.
To summarize, in the large-field limit which encom-

passes the range that current cosmological observations
can test, the scaling relations presented here should already
enable strong tests of the model. However, more work in
calibrating the effects of fðRÞ gravity will be required
when cosmological observations reach the �10% level of
precision required to test the small-field limit of fðRÞ
modified gravity.
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APPENDIX A: SPHERICAL COLLAPSE

In this appendix, we examine the modifications to
spherical collapse induced by the enhanced forces of the
fðRÞmodel and, in particular, derive the collapse threshold
�c and the virial overdensity �v used in the main text.
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We begin with the nonlinear continuity and Euler equa-
tion for a pressureless fluid of nonrelativistic matter. When
expressed in terms of the gravitational potential �, these
equations are unaltered by the modification to gravity that
remains a metric theory (e.g. [21]),

@�

@t
þ 1

a
r  ð1þ �Þv ¼ 0;

@v

@t
þ 1

a
ðv  rÞvþHv ¼ � 1

a
r�;

(A1)

where � ¼ ��m= ��m and spatial coordinates are comoving.
These can be combined to a second order equation for �,

@2�

@t2
þ 2H

@�

@t
� 1

a2
@2ð1þ �Þvivj

@xi@xj
¼ r  ð1þ �Þr�

a2
;

(A2)

but require further information about the velocity and
potential fields to form a closed system.

The potential is given by the field equation (3) and the
modified Poisson equation (4) in terms of the density
fluctuation. For the velocity field, we will take an initial
top-hat density perturbation and make the approximation
that it remains a top hat throughout the evolution. This
approximation is valid in the limiting cases that the
Compton radius is either much larger or much smaller
than the perturbation.

Given the top-hat assumption for the density, the veloc-
ity field in the interior takes the form v ¼ AðtÞr to have a
spatially constant divergence. Its amplitude is related to the
top-hat density perturbation through the continuity equa-
tion (A1),

_�þ 3

a
ð1þ �ÞA ¼ 0: (A3)

With the relation

@2vivj

@xi@xj
¼ 12A2 ¼ 4

3
a2

_�2

ð1þ �Þ2 ; (A4)

the spherical collapse equation in the top-hat approxima-
tion becomes

@2�

@t2
þ 2H

@�

@t
� 4

3

_�2

ð1þ �Þ ¼
ð1þ �Þ

a2
r2�; (A5)

which, along with Eqs. (3) and (4) (Sec. II A), completes
the system.

We can bring this equation to its more usual form for the
radius of the top hat by using mass conservation,

M ¼ ð4�=3Þr3 ��mð1þ �Þ ¼ const: (A6)

Therefore the evolution of r and � may be related as

€r

r
¼ H2 þ _H � 1

3ð1þ �Þ
�
€�þ 2 _�H � 4

3

_�2

1þ �

�
: (A7)

Combining this relation with the top-hat density equation

(A5), we obtain

€r

r
¼ � 4�G

3
½ ��m þ ð1þ 3wÞ ��eff� � 1

3a2
r2�; (A8)

where we have expressed the background expansion in
terms of an effective dark energy contribution. Note that
this set of equations also applies to any smooth dark energy
contribution as long as we take �R ¼ 8�G��m in the
Poisson equation.
For the fðRÞ system, there are two limiting cases worth

noting, and these both fall into the class of top-hat preserv-
ing evolution. In the large-field case the Compton wave-
length is so long that fR ignores the collapse. In this case
�R � 8�G��m in the interior. In the opposite small-field
case, the Compton wavelength in the background is always
smaller than the scale of the perturbation. In this case
�R ¼ 8�G��m as in ordinary gravity with smooth dark
energy. The two limits for the top-hat equation (A5) can be
parametrized as

€r

r
¼ � 4�G

3
½�m þ ð1þ 3wÞ ��eff� � 4�G

3
F��m (A9)

with F ¼ 1=3 corresponding to the large-field limit and
F ¼ 0 corresponding to the small-field limit or smooth
dark energy. Note that �m in the first term on the right-
hand side stands for the total matter overdensity, so that for
F ¼ 0 the top-hat overdensity follows the same equation of
motion as the background expansion in a smooth dark
energy model.
We now specialize this equation for a background ex-

pansion that is close to �CDM, w ¼ �1 and ��eff ¼ ��.
Rewriting the time derivatives in terms of 0 ¼ d=d lna,
assuming a �CDM background, and with y ¼ ½r�
ria=ai�=ri, we obtain

y00 þH0

H
y0 ¼ � 1

2

�ma
�3 � 2��

�ma
�3 þ��

y

� 1

2

�ma
�3

�ma
�3 þ��

ð1þ FÞ
�
a

ai
þ y

�
� (A10)

with

� ¼
�

1

yai=aþ 1

�
3ð1þ �iÞ � 1 (A11)

and �i as the initial density perturbation at ai. Turnaround
occurs when r0 ¼ 0 or y0 ¼ �a=ai and collapse occurs
when r ¼ 0 or y ¼ �a=ai.
Under the assumption that the initial conditions are set

during matter domination when � � 1, linear theory says
that � / a1þp where

p ¼ � 5

4
þ 5

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

25
F

s
: (A12)

The initial conditions are then y ¼ 0 and y0 ¼ ��ið1þ
pÞ=3. More generally, the linearization of the continuity
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and Euler equations implies

�00 þ 3
H0

H
�0 ¼ 4�G�m

H2
F�: (A13)

The linear overdensity extrapolated to the collapse epoch is
then a function of F. For collapse during matter domina-
tion, �c ¼ 1:686 for F ¼ 0 as usual and �c ¼ 1:706 for
F ¼ 1=3. In Fig. 10 (lower panel), we show the threshold
for collapse at z ¼ 0 as a function of�m. In particular, for
�m ¼ 0:24, �c ¼ 1:673 for F ¼ 0 and �c ¼ 1:692 for
F ¼ 1=3.

To relate spherical collapse with virialized halos, one
also has to modify the virial theorem for fðRÞ. All the steps
in the usual derivation of the tensor virial theorem from the
Boltzmann equation still apply to fðRÞ since the
Boltzmann equation (energy momentum conservation in
the metric) is unchanged (see e.g. [22]). The only change is
in relating the potential energy to the matter in the top hat,

W ¼ � 3

5
ð1þ FÞGM

2

r
: (A14)

The implications for spherical collapse then remain
largely unchanged when expressed in terms of the turn-
around radius. During matter domination the scalar virial
theorem still reads W ¼ �2T and WðrmaxÞ ¼ WðrvÞ þ
TðrvÞ ¼ WðrvÞ=2, and so rv ¼ rmax=2. The difference is
in the density evolution in spherical collapse. The tradi-
tional way of expressing the virial overdensity�v is to take
the overdensity at rv during the collapse �mðrvÞ and divide

by the average density at the end of collapse ��mðr ¼ 0Þ.
For collapse in the matter dominated limit F ¼ 0 gives the
usual �v ¼ 177:6 and F ¼ 1=3 gives �v ¼ 143:1.
These conditions are modified by the acceleration of the

expansion at low redshifts. Following [23], the metric
effect of � can be considered as providing a potential
energy per unit mass of w� ¼ �4�G ��effr

2=3.
Integrating this up through the top hat, we get W� ¼
�ð4�G ��eff=5ÞMr2. The virial theorem with the combined
potential energy gives

T ¼ �1
2W þW�: (A15)

The different dependence on r changes the virialization
radius to the extent that W� is important. Let us define the
ratio at turnaround,

	 ¼ 2�eff

ð1þ FÞ�m

¼ 2��

ð1þ FÞ�ma
�3ð1þ �Þ : (A16)

The relationship between the virial radius and the turn-
around radius s ¼ rv=rmax can then be obtained from in-
verting

	 ¼ 2s� 1

2s3 � s
: (A17)

Note that as 	 ! 0, s ! 1=2 as expected. The effect of F
is to make the � term less important.
In Fig. 10 (lower panel), we show the virial overdensity

for collapse at z ¼ 0 as a function of�m. In particular, for
F ¼ 0 the virial overdensity is �v ¼ 390 for collapse to-
day, and for F ¼ 1=3 it is lowered to �v ¼ 309.
These modifications also imply that the virial tempera-

ture of halos of a fixed virial mass is proportional to ð1þ
FÞ�1=3

v and hence increases for F ¼ 1=3. Likewise, hydro-
static equilibrium masses or any masses defined dynami-
cally by the velocity dispersion of the matter would be
larger than lensing masses by a factor of ð1þ FÞ.

APPENDIX B: SCALING RELATIONS

In this appendix, we present the scaling relations that
were used for comparisons with the simulations in Sec. III.
For the mass function we use the ST prescription [16].
Though other, potentially more accurate, descriptions for
�CDM exist (e.g. [24]), this choice enables us to explore
the changes expected in the fðRÞ simulations from spheri-
cal collapse (see Appendix A). We also found a good
match to the ST mass function in our �CDM simulations
(Sec. III A).
The ST description for the comoving number density of

halos per logarithmic interval in the virial massMv is given
by

nlnMv
� dn

d lnMv

¼ ��m

Mv

fð�Þ d�

d lnMv

; (B1)

where the peak threshold � ¼ �c=�ðMvÞ and

FIG. 10 (color online). Spherical collapse parameters. The
linear overdensity extrapolated to the collapse epoch �c and
the virial overdensity �v are modified from the flat �CDM
values (F ¼ 0) by the enhanced forces during collapse (F ¼
1=3).
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�fð�Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a�2

s
½1þ ða�2Þ�p� exp½�a�2=2�: (B2)

Here �ðMÞ is the variance of the linear density field con-
volved with a top hat of radius r that encloses M ¼
4�r3 ��m=3 at the background density

�2ðrÞ ¼
Z d3k

ð2�Þ3 j
~WðkrÞj2PLðkÞ; (B3)

where PLðkÞ is the linear power spectrum and ~W is the
Fourier transform of the top-hat window. The normaliza-
tion constant A is chosen such that

R
d�fð�Þ ¼ 1. The

parameter values of p ¼ 0:3, a ¼ 0:75, and �c ¼ 1:673
for the spherical collapse threshold have previously been
shown to match simulations of �CDM at the 10%–20%
level. The virial mass is defined as the mass enclosed at the
virial radius rv, where �v ¼ 390 in the�CDMmodel. We
discuss modifications to these parameters for the fðRÞ
model in Sec. III.

The peak-background split for halos predicts that the
linear bias of halos should be consistent with the mass
function. For the ST mass function, the bias is given by
[16]

bLðMvÞ � bðk ¼ 0;MvÞ

¼ 1þ a�2 � 1

�c

þ 2p

�c½1þ ða�2Þp� : (B4)

For the halo profiles, we take a NFW form [25],

�NFWðrÞ ¼ �s

r=rsð1þ r=rsÞ2
; (B5)

where rs is the scale radius of the halo and the normaliza-
tion �s is given by the virial mass Mv. We parametrize rs
via the concentration cv � rv=rs given by [26]

cvðMv; z ¼ 0Þ ¼ 9

�
Mv

M


��0:13
; (B6)

whereM
 is defined via �ðM
Þ ¼ �c. By assuming a NFW
form, we can also rescale mass definitions from the virial
mass Mv toM300 as outlined in [27]. We use this approach
to compare these scaling relation predictions to the simu-
lations in Sec. III since the definition of the virial mass
varies with cosmological parameters and fðRÞ modifica-
tions. For a given halo in �CDM, M300 is slightly larger

thanMv. Given that we generally rescale toM300, when no
specific overdensity is given, we implicitly take M ¼
M300, e.g.,

nlnM � dn

d lnM300

¼ nlnMv

d lnMv

d lnM300

: (B7)

These properties are combined together in the halo
model which treats cosmological statistics associated
with structures through the halos that form them (see
[28] for a review). For example, the matter power spectrum
can be decomposed into one-halo and two-halo terms,

PmmðkÞ ¼ I2ðkÞPLðkÞ þ P1hðkÞ;

P1hðkÞ ¼
Z

d lnMvnlnMv

M2
v

��2
m

jyðk;MvÞj2;
(B8)

where

IðkÞ ¼
Z

d lnMvnlnMv

Mv

��m

yðk;MvÞbLðMvÞ: (B9)

Here, yðk;MÞ is the Fourier transform of a NFW density
profile truncated at rv, unless otherwise specified, and
normalized so that yðk;MÞ ! 1 as k ! 0. Note that with
the ST mass function and bias, limk!0IðkÞ ¼ 1.
Likewise, the halo-mass cross spectrum Phm for an

infinitesimally narrow mass bin around Mv is given by

Phm ¼ bLðMvÞIðkÞPLðkÞ þMv

��m

yðk;MvÞ: (B10)

Note that the Fourier transform of this quantity is the halo-
mass correlation function, or average mass profile,

�hmðrÞ � h�hðrÞi
��m

� 1 ¼
Z d3k

ð2�Þ3 Phme
�ikx;

¼ bLðMvÞ
Z d3k

ð2�Þ3 IðkÞPLðkÞe�ikx þ �NFWðrÞ
��m

:

(B11)

For comparison with simulations, we show the �NFW term
with and without the truncation at the virial radius in
Sec. III C. Both the overly simplistic treatment of halo
profiles and the use of linear halo correlations make our
simple model inaccurate in the region where the one- and
two-halo pieces are comparable.
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