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Quasi-Two-Dimensional Diffusion of Single Ellipsoids: Aspect Ratio and
Confinement Effects

Abstract
We report on video-microscopy measurements of the translational and rotational Brownian motions of
isolated ellipsoidal particles in quasi-two-dimensional sample cells of increasing thickness. The long-time
diffusion coefficients were measured along the long (Da) and short (Db) ellipsoid axes, respectively, and the
ratio, Da /Db, was determined as a function of wall confinement and particle aspect ratio. In three dimensions
(3D), this ratio (Da /Db) cannot be larger than 2, but in quasi-two dimensions, wall confinement was found
to substantially alter diffusion anisotropy and substantially slow particle diffusion along the short axis
compared to 3D.
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Quasi-two-dimensional diffusion of single ellipsoids: Aspect ratio and confinement effects

Yilong Han,1,2 Ahmed Alsayed,2,3 Maurizio Nobili,4 and Arjun G. Yodh2

1Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
2Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA

3Complex Fluid Lab, CNRS/Rhodia Joint Lab FRE3084, 350 George Patterson Drive, Bristol, Pennsylvania 19007, USA
4Laboratoire des Colloides, Verres et Nanomateriaux, CNRS, University Montpellier II, Place E. Bataillon, 34090 Montpellier, France

�Received 24 February 2009; revised manuscript received 7 May 2009; published 21 July 2009�

We report on video-microscopy measurements of the translational and rotational Brownian motions of
isolated ellipsoidal particles in quasi-two-dimensional sample cells of increasing thickness. The long-time
diffusion coefficients were measured along the long �Da� and short �Db� ellipsoid axes, respectively, and the
ratio, Da /Db, was determined as a function of wall confinement and particle aspect ratio. In three dimensions
�3D�, this ratio �Da /Db� cannot be larger than 2, but in quasi-two dimensions, wall confinement was found to
substantially alter diffusion anisotropy and substantially slow particle diffusion along the short axis compared
to 3D.

DOI: 10.1103/PhysRevE.80.011403 PACS number�s�: 82.70.Dd, 67.25.bf, 47.15.G�, 05.40.Jc

I. INTRODUCTION

In many biological and industrial processes, diffusing par-
ticles are often nonspherical and often move in confined ge-
ometries. Examples of such particles include proteins diffus-
ing in membranes �1� and fine grains migrating through the
pores of micro- and nanoporous media. To date, few quanti-
tative measurements of anisotropic particle diffusion in con-
fined geometries have been reported. However, new particle
fabrication schemes and imaging technologies with novel
image analysis tools now make direct measurement of the
diffusion of anisotropic particles readily possible. In this
contribution, we investigate anisotropic diffusion and hydro-
dynamic confinement effects associated with the motions of
isolated ellipsoidal particles between two parallel plates. The
paper expands upon related results presented cursorily in the
supplementary online materials of a short recent report �2�.
In particular, the problem is given historical and theoretical
context, the experimental methods for measurement of par-
ticle confinement and tracking errors are described at length,
the systematic effects of counter-ion screening and vertical
displacements are assessed, and the anisotropy results are
discussed at length and in the context of a simple qualitative
picture.

The Brownian diffusion coefficient D of an isolated
spherical particle is well understood. It is inversely propor-
tional to the drag �or friction� coefficient � via the Einstein
relation

D = kBT/� , �1�

where kB is the Boltzmann constant and T is the temperature.
For a prolate spheroid with long axis of length 2a and two
short axes of length 2b, translational diffusion is anisotropic
and is described by diffusion coefficients Da=kBT /�a along
the long axis and Db=kBT /�b along the short axes. The ro-
tational diffusion coefficient of the prolate spheroid about its
short axes is D�=kBT /��. Generally, the drag coefficients �a,
�b, and �� depend on the shape and size of the ellipsoid.
Brownian motion of anisotropic particles was first seriously
considered by F. Perrin �3,4�, who computed these drag co-

efficients analytically for a spheroid diffusing in three dimen-
sions �3D�. Interestingly, the ratio Da /Db varies from 1 to 2
in 3D, as the spheroid aspect ratio, �=a /b, varies from 1 to
infinity.

The problem of diffusion in confined geometries, such as
quasi-two-dimensional �2D� media, is different from the 3D
case as a result of a complex interplay between hydrody-
namic drag, the boundaries of the medium, and the particle
geometry. Surfaces near a moving particle modify fluid flow
fields, often increasing particle hydrodynamic drag. A full
theoretical formulation of wall hydrodynamic effects has
been developed for one sphere �or ellipsoid� coupled to one
wall �5�. However, for more complicated situations such as a
sphere or an ellipsoid confined by two parallel walls, the
only available analytical solutions are for weak confinement
in a few special symmetric configurations �5�. Recent nu-
merical calculations �6�, on the other hand, have been devel-
oped to derive the hydrodynamic drag of a single sphere and
a linear chain of spheres confined more strongly in quasi-2D.

On the experimental side, the hydrodynamic drag of
single spheres in weak confinement has been measured �7,8�
and video microscopy has been applied recently to measure
anisotropic particle diffusion, including ellipsoids in
quasi-2D �2� and 3D �9�, colloidal clusters near one wall
�10�, and carbon nanotubes in weak confinement �11�. In the
present contribution, we report measurements of hydrody-
namic drag on ellipsoids in quasi-2D, confined between two
parallel walls. We explore the strong confinement regime
where drag coefficients are not readily available from theory
and simulation, and we report on a light interference method
to accurately measure the confinement. We find that the dif-
fusion anisotropy is made stronger and the diffusion along
ellipsoid short axes is dramatically slowed by wall confine-
ment. Note that the present work examines how spatial con-
finement affects long-time scale traditional diffusion coeffi-
cients; this aim contrasts with the investigation of short-time
scale time-dependent translation-rotation coupling and non-
Gaussian Brownian dynamics of a single ellipsoid, which
was the focus of Ref. �2�.
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II. THEORY BACKGROUND

When a spheroid with semiaxes �a ,b ,b� moves along one
of its principle axes with velocity v, through an unbounded
quiescent fluid with viscosity � at low Reynolds number,
then the translational and rotational �about short axis� drag
coefficients affecting the spheroid are

� = 6��bG , �2a�

�� = 6�VG�, �2b�

where V is the volume of the spheroid and G is the geometric
factor that renders the ellipsoid different relative to the case
of a sphere. The geometric factors for prolate spheroids dif-
fusing in 3D are analytically derived from Perrin’s equations
�5�

Ga =
8

3

1

� 2�

1−�2 + 2�2−1
��2−1�3/2 ln��+��2−1

�−��2−1��
, �3a�

Gb =
8

3

1

� �

�2−1
+ 2�2−3

��2−1�3/2 ln�� + ��2 − 1��
, �3b�

and �3,12�

G� =
2

3

�4 − 1

�� 2�2−1
��2−1

ln�� + ��2 − 1� − ��
. �3c�

Here, �=a /b is the ellipsoid aspect ratio. When �=1, then
G=G�=1 and Eq. �2� reduces to the translational and rota-
tional Stokes laws for a sphere. Note also that Eqs. �2� and
�3� are obtained using stick boundary conditions, valid when
the particle is much larger than the fluid molecules �13,14�.
In Fig. 1, Eq. �3� is plotted as a function of � for � less than
10. When the aspect ratio ��1, Eqs. �1�, �2a�, �2b�, and
�3a�–�3c� yield

Da =
kBT ln �

2��a
, Db =

kBT ln �

4��a
. �4�

The ratio between these diffusion coefficients along long and
short axes, i.e., Da /Db=Gb /Ga, increases monotonically

from 1 to 2 as � increases from 1 to infinity �in 3D�. In
quasi-2D, however, Da /Db can be larger than 2.

III. EXPERIMENT

The diffusion of micrometer size polymethyl methacrylate
�PMMA� and polystyrene �PS� ellipsoids was measured in
water confined between two glass walls. Both PS and
PMMA ellipsoids are synthesized by the method described in
Ref. �15�. Briefly, we placed 0.5% �by weight� PS spheres
into a 12% �by weight� aqueous polyvinyl alcohol �PVA�
solution residing in a Petri dish. After water evaporation, the
PVA film was stretched at 130 °C. The PS �or PMMA�
spheres embedded in the film are readily stretched under
these circumstances because their glass transition tempera-
tures are below 130 °C. After cooling to room temperature,
the PVA was dissolved and ellipsoids obtained. Note that the
initial PMMA or PS spheres must not be cross-linked, other-
wise they cannot be stretched. We measured the size of el-
lipsoids by scanning electron microscopy �SEM� and by op-
tical microscopy.

The ellipsoid solutions were cleaned and stabilized with 7
mM sodium dodecyl sulfate �SDS�. The ellipsoids were not
expected to have strong interactions with the glass surfaces
because the solution ionic strength was more than 0.1 mM
and the Debye screening length for the particles was corre-
spondingly less than 30 nm. However, it is difficult to esti-
mate the ionic strength accurately in a thin cell because the
glass surfaces can release Na+ ions �16�. Nevertheless, we
found that the addition of 2 mM salt to the solution did not
induce a detectable change in particle diffusion coefficients.
This observation suggests the double layers are not signifi-
cantly affecting particle diffusion.

Glass surfaces of the sample cell were rigorously cleaned
in a 1:4 mixture of hydrogen peroxide and sulfuric acid by
sonication. Then the glass was thoroughly rinsed in deion-
ized water and quickly dried with an air blow gun. Typically
0.3 �L solution spread over the entire 1.8	1.8 mm2 cov-
erslip area and ellipsoids did not stick to the surfaces. Be-
cause the ellipsoid’s gravitational height, kBT /mg, is much
larger than the cell thickness, H, the ellipsoids were readily
suspended around midplane between the two walls. Finally,
the cell was sealed with UV-cured adhesive �Norland 63�.

We measure the wall separation by light interference.
When the cell thickness is below a few micrometers, then the
interference colors produced by reflections from the two in-
ner surfaces of the sample walls in white light illumination
can be observed by eye or in the reflection mode of the
microscope �see Figs. 2�b� and 2�c��. When the wall separa-
tion H=0, the effective light path difference is 
l=� /2 due
to the � phase shift of reflection at the lower surface. Thus
all wavelength components of the white light yield a dark
black color in interference at H=0. When H�0, the reflected
light in the normal direction is a mixture of light with various
wavelengths, and different wavelengths contribute with dif-
ferent weights to the observed color. White light interference
from a wedge, for example, will yield bands of colors as in
the Michel-Levy chart �17�. By comparing the experimen-
tally observed color to the Michel-Levy chart, one can effec-

1 2 3 4 5 6 7 8 9 10

φ = a / b

1

5

10

G

G
a

G
b

Gθ

FIG. 1. �Color online� The geometric factors G in Eq. �3� as a
function of aspect ratio �.
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tively read out a corresponding 
l and obtain H=
l / �2nw�,
where nw is the refractive index of water. In the Michel-Levy
chart, the color starts from black at 
l=0 and changes from
red to blue periodically with period 
l=625 nm. To avoid
misreading the color by one or more periods, we established
a reference thickness with either reference wedges or using
dilute spacer spheres with known diameter between the glass
slides. Color bands can shift slightly because the illumination
light is not an ideal white light source. This error, however,
should be less than 625/4 nm, so that the error of H is less
than H��625 nm /4� / �2nw�=60 nm. Furthermore, al-
though the absolute value of H may be subject to �60 nm
uncertainty as described above, the relative values of differ-
ent H in one cell are more accurately determined �
�30 nm� because we can easily distinguish more than eight
different colors in one band including deep red, light red,
orange, light orange, yellow, green, light green, blue, and
violet. Our sample thickness typically had less than 20 nm
variation in the central 1 mm2 area and only a 1–2 �m
variation over the whole 18	18 mm2 area. Thus, we could
study the diffusion of ellipsoids at different H in a single cell.

The interference between reflected light from the top in-
ner surface of the sample wall and the ellipsoid’s top surface
gives rise to different colors �see Fig. 2� compared to the
colors generated by interference of the top/bottom sample
cell walls. Color changes due to variation in the separation
between the top sample wall and the ellipsoid top surface are
shown in the Fig. 2 as a function of H. As is the case with
Newton’s rings, the interference colors due to the two ellip-
soid tips and the center of the ellipsoid were different. We
generally found that the color only fluctuated near the two
ellipsoid tips; the color was quite constant near the ellipsoid
center. Thus the height fluctuation of the ellipsoids was mea-
sured to be very small ��40 �m� and tumbling motions in
the vertical plane were not strong ��100 �m�.

Particle motions observed by microscopy were recorded
by a charge coupled device �CCD� camera to videotape at 30
frames/s. In the dilute suspension, only one ellipsoid was
visible in the 640	480 pixel2=51.2	38.4 �m2 field of
view under the 100	 objective during a half-hour experi-
ment. Typically, we defocus the objective slightly so that the

ellipsoid could be more accurately located along its long
axis. The built-in 2D Gaussian fit function in interactive data
language �IDL� was used to locate the center and orientation
of the ellipse in each video frame. In practice, a small per-
cent ��3%� of the frames failed to be correctly tracked.
Without these frames, however, the trajectory breaks into
short pieces and very long-time behavior becomes difficult to
measure. Thus it is critical to recapture the lost frames. To
capture these frames, we very slightly adjusted tracking
parameters or image contrast in the code and then
reanalyzed the images; after these corrections, roughly
3%	3%=0.09% of the frames remain incorrectly tracked.
We then repeated this procedure iteratively until all �50 000
frames in one data set were correctly tracked.

The mean-square displacement �MSD� at time lag t=0
has a small nonzero intercept due to tracking errors. Thus we
can estimate the spatial and angular resolutions from inter-
cepts of their corresponding MSDs �18�. Using these proce-
dures, we assign an orientation resolution of 1° and spatial
resolutions of 0.5 pixel=40 nm along the particle’s short
axis and 0.8 pixel=64 nm along its long axis because of the
superimposed small tumbling motion �2�.

From the image analysis, we obtained the trajectory
of a particle’s center-of-mass positions x�tn�= �x�tn� ,y�tn�� in
the laboratory frame and its orientation angle ��tn� relative to
the x axis at times tn=n�1 /30� sec �see Fig. 1c of
Ref. �2��. We define each 1/30-s time interval as a step.
During the nth step, the particle’s position changes by
x�tn�=x�tn�−x�tn−1� and its angle by ��tn�=��tn�−��tn−1�.
To obtain the drag coefficients along long and short axes, we
need to convert the measured displacements from the fixed
laboratory frame to the local body frame. Step displacements
x̃n relative to the local body frame and step displacements
xn relative to the fixed laboratory frame are related via

�x̃n

ỹn
� = � cos �n sin �n

− sin �n cos �n
��xn

yn
� , �5�

where �n= ���tn−1�+��tn�� /2 �see Fig. 1c of Ref. �2��. In
practice, choosing �n=��tn−1� or �n=��tn� has little effect on
our results because � barely changes during 1/30 s.

IV. RESULTS AND DISCUSSION

In both the laboratory and the body frame, MSDs
are diffusive with 	�
x̃�t��2
=2Dat, 	�
ỹ�t��2
=2Dbt,

	�
x�t��2
= 	�
y�t��2
= �Da+Db�t�2D̄t, and 	�
��t��2

=2D�t �2�. Here the brackets, 	
, denote data averaged over
all possible time intervals in the whole trajectory of an ellip-
soid. For example, an N-step total time trajectory �with 30
steps per second due to our frame rate of 30 Hz� contains
N−30t mean-square displacement data points for a correla-
tion time interval of t seconds. Figure 3 shows MSDs of a
2.4	0.3	0.3 �m3 ellipsoid confined in an 846-nm-thick
cell. All curves exhibit diffusive behavior and the
diffusion coefficients, D=MSD / �2t�, shown in the figure are
derived from the best fit lines. The slopes show that
D�=0.161 s−1, Da=0.179 �m2 /s, Da=0.044 �m2 /s, and
Dx=Dy = �Da+Db� /2.

(B)

(C)

H
water

b
a

H

(A)

FIG. 2. �Color online� �a� Bright field ellipsoid image in the
transmission mode. �b� True interference color images of ellipsoid
in the reflection mode of the microscope. The sample cell thickness
increases from the left to the right. �c� Schematic of sample dimen-
sions and the interference observation mode.
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The error bars associated with each point in the figure,
i.e., the standard deviations of the MSDs, were measured to
be proportional to t3/2. This can be understood from the
probability theory. As an example, we derive the error of the
total MSD, �
r�2= �
a�2+ �
b�2= �
x�2+ �
y�2. 
a and

b are statistically independent since �a and �b are constant
independent of angle. Consequently, the variance
��
r�2

2 =��
a�2
2 +��
b�2

2 . In probability theory �19�, given two
probability distribution functions �PDFs�, f��x� and f��x� for
� and � statistically independent, the joint PDF of their
product is

f���x� = �
−�

�

f��x1�f��x − x1�dx1. �6�

Since 
a follows a Gaussian distribution �2� f
a�x�
= 1

�2��a
e−x2/2�a

2
, the probability density function of �
a�2 is

f �
a�2�x� =  1
�2�x�a

e−x/2�a
2

x � 0

0 x � 0

. �7�

This distribution of �
a�2 was confirmed in our data. Hence
the variance of �
a�2 is

��
a�2
2 = �

−�

�

f �
a�2�x�x2dx

= �
0

� 1
�2�x�a

e−x/2�a
2
x2dx = 3�a

4 = 12Da
2t2. �8�

Here, t is the step time. Thus the standard deviation of �
r�2

is

�

�M
=

�12Da
2t2 + 12Db

2t2

�ttot/t
� t3/2, �9�

where M is the number of independent steps during the
whole experimental time ttot. �Note that the error bars of the
figures in Ref. �2� were similarly calculated, albeit no theo-
retical explanation was given.�

We repeated the experiments described above for different
ellipsoids under different confinement conditions. From the
slopes of their MSDs, we obtain Da, Db, and D� of different
particles as a function of confinement condition as shown in
Figs. 4–6, respectively. Specifically, the normalized quanti-
ties, Di

3D /Di=�i /�i
3D, for i=a ,b ,�, are plotted as a function

of increasing confinement, 2b /H. Here the 3D normalization
constants, Di

3D �alternatively, �i
3D�, are calculated from Eqs.

�2� and �3�. �Note that these figures contain the same infor-

y
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b
a
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FIG. 3. �Color online� MSDs of a 2.4	0.3	0.3 �m3 ellipsoid
confined in an 846-nm-thick cell. The four lines arranged from top
to bottom, respectively, are MSDs along a, x, y, and b axes. Sym-
bols represent experimental data and lines represent linear fits to
these data. �Insets� Angular MSD �circles� and the best fit �line�.
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FIG. 4. �Color online� Ratio of theoretical 3D diffusion
coefficient �5� along the ellipsoid long axis, Da

3D, to the measured
diffusion coefficient, Da, for ellipsoids confined at 2b /H.
Diamonds: 2.4	0.3	0.3 �m3 ��=8� ellipsoids; circles:
3.3	0.635	0.635 �m3 ��=5.2� ellipsoids; solid circles: from
samples with no added salt; open circles: from samples with 2 mM
added salt; green solid circle: from sample with bovine serum albu-
min �BSA� covered glass surfaces; squares: all other samples—
lower aspect ratio spheroids with particle aspect ratios labeled be-
low each data point. The accuracy of 2b /H for these measurements
is similar to other samples. Dashed curves: guides for the eyes.
Solid curve ��=1�: replot of the numerical prediction in Fig. 1 of
Ref. �6� for a sphere strictly in the H /2 midplane.
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FIG. 5. �Color online� Ratio of theoretical 3D diffusion coeffi-
cient �5� along the ellipsoid short axis, Db

3D, to the measured diffu-
sion coefficient, Db, for ellipsoids confined at 2b /H. Symbols are
the same as those in Fig. 4. Solid curves from left to right: theoret-
ical weak confinement predictions �5� for aspect ratios a /b=3,2
and numerical result �6� for aspect ration a /b=1 ranging over both
weak and strong confinement regimes.
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mation as figures S3, S4, and S5 from the supplementary
online material of Ref. �2�.�

Notice that 2b /H=0 corresponds to the 3D limit wherein
D3D /D=1. As expected, hydrodynamic drag increased and
the diffusion coefficients correspondingly decreased as the
confinement became stronger. The larger positive slopes ex-
hibited by the more needlelike spheroids are indicative of
motions more sensitive to confinement. Furthermore, the
slopes of the same ellipsoids in Fig. 5 are larger than those in
Fig. 4, indicating that diffusion along the ellipsoid short axis
is more strongly affected by the confinement than diffusion
along the long axis. Limited comparisons to all available
analytical and numerical predictions �i.e., the solid curves in
Figs. 4 and 5� suggest that our data exhibit the generally
expected trends with increasing confinement. Note that the
solid curves of analytical and numerical predictions in Figs.
4 and 5 are for particles forced to sit in the z=H /2 midplane.
In real experiments, the measured drag is an average over
different z. In our experiments, there are no detectable inter-
ference color changes at the centers of ellipsoids. Conse-
quently z fluctuations are less than �50 nm, i.e., �H /20.
Numerical results in Ref. �6� indicate that the drag on a
sphere at H /3 is very close ��10%� to the drag at H /2. Thus
the z fluctuations of our ellipsoids should have only a very
small effect on the reported particle drag.

Another question that our data hold potential to explore
concerns the effect of electric double layers on ellipsoid dif-
fusion. The electric double layers around charged particles in
suspension increase their hydrodynamic diameter and slow
down diffusion, especially rotational diffusion because rota-
tional drag is proportional to the volume rather than the
length of the ellipsoid. This effect in rotational diffusion has
been observed with depolarized dynamic light scattering in
the regime where ionic concentration was low and spheroids
small �20�. In our systems, such effects might be expected to
be small due to the high ionic strength of the suspension. As
can be seen in Figs. 4–6, diffusion coefficients for the
samples with 2 mM added salt and no added salt are indis-
tinguishable. The analytical Eq. �3� shows that the 6.9 nm
screening layer of 2 mM solution will lower the 3D diffusion
coefficients by less than 2%.

Finally, Fig. 7 shows the impact of aspect ratio on the
translational diffusion anisotropy ratio Da /Db. Here, it is evi-
dent that diffusion in quasi-2D is quite different from diffu-
sion in 3D. For 3D, Da /Db asymptotes to 2 at large aspect
ratio, as shown by the solid theoretical curve. For quasi-2D,
on the other hand, Da /Db grows very rapidly with increasing
aspect ratio. Since we expect the stick boundary condition to
hold in this system, the observation that Da /Db=�b /�a�2 is
purely due to confinement.

A schematic to qualitatively capture this basic effect is
given in Fig. 8. Imagine fluid flowing past the ellipsoid. In
3D, the fluid flow pathways will be displaced by distances of
order 2b in order to “go around” the ellipsoid. This fluid flow
displacement is the approximately the same, whether the
spheroid is orientated either parallel or perpendicular to the
flow, and therefore �a and �b are thus comparable. In 2D,
however, the fluid flow displacement pathway is approxi-
mately 2b �or 2a� when the spheroid is oriented parallel �per-
pendicular� to the flow, so that �b /�a diverges with increas-
ing a /b. This very simple qualitative picture also explains
our observation that diffusion along the ellipsoid short axes
is more strongly affected by the confinement than diffusion
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FIG. 6. �Color online� Ratio of theoretical rotational diffusion
coefficient �3,12� D�

3D to the measured diffusion coefficient, D�, for
ellipsoids confined at 2b /H. Symbols are the same as those in Fig.
4.
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FIG. 7. �a� Ratio of diffusion coefficients Da /Db vs aspect ratio
�=a /b. Seven of eight data points were taken for 2b /H�0.8; the
data point at a /b=8 was taken with 2b /H�0.4. Solid curve: theo-
retical curve for 3D. �b� Microscope images of the corresponding
eight particles as a function of aspect ratio �increasing from
left to right�. The dimensions of each particle from left to
right: �2a ,2b�= �2.48,1.2�, �2.96,1.04�, �2.8,0.96�, �2.88,0.9�,
�2.64,0.8�, �3.12,0.88�, �3.3,0.635�, and �2.4,0.3� �m.
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FIG. 8. �Color online� Schematic of fluid flow around an ellip-
soid perpendicular to the flow. For the drag along short axes, fluid
can flow around 2b in 3D, but has to flow around long axis 2a in
2D.
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along the long axis. The rotational diffusion is also not so
strongly affected by the confinement �e.g., similar to Da�
because “easy” flow pathways exist to accommodate this el-
lipsoid motions. Finally, we note that in quasi-2D confine-
ment, Da /Db increases with increasing aspect ratio and
should eventually saturate according to numerical calcula-
tions �6� at a value much larger than 2 because some fluid
will always “leak” between the particle and walls.

In summary, we have found that the anisotropic drag co-
efficients for ellipsoid diffusion substantially increase when
the ellipsoids are strongly confined between parallel plates,
especially diffusion along their short axes. In the future,
many questions about these systems will be exciting to ex-
plore, including the effects of neighboring ellipsoids and the

effects of other confinement geometries. For example, quasi-
one-dimensional �1D� confinement of an ellipsoid will align
the ellipsoid along the diffusion direction. This effect may
compensate drag from the boundaries and lead to an optimal
diameter for ellipsoid diffusion speed in a quasi-1D cylinder.
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