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Flat 3-brane with Tension in Cascading Gravity

Abstract
In the cascading gravity brane-world scenario, our 3-brane lies within a succession of lower codimension
branes, each with their own induced gravity term, embedded into each other in a higher dimensional space-
time. In the (6 + 1)-dimensional version of this scenario, we show that a 3-brane with tension remains flat, at
least for sufficiently small tension that the weak-field approximation is valid. The bulk solution is singular
nowhere and remains in the perturbative regime everywhere.
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In the cascading gravity brane-world scenario, our 3-brane lies within a succession of lower-

codimension branes, each with their own induced gravity term, embedded into each other in a higher-

dimensional space-time. In the ð6þ 1Þ-dimensional version of this scenario, we show that a 3-brane with

tension remains flat, at least for sufficiently small tension that the weak-field approximation is valid. The

bulk solution is singular nowhere and remains in the perturbative regime everywhere.

DOI: 10.1103/PhysRevLett.103.161601 PACS numbers: 11.25.Wx, 95.36.+x, 98.80.Cq

An old idea to address the vexing problem of the cos-
mological constant is to confine the visible Universe on a
3-brane in a higher-dimensional space-time: vacuum en-
ergy on the brane curves the extra dimensions, but leaves
the 4d geometry flat [1]. While tantalizing, this proposal
fails as soon as the extra dimensions are compactified;
since 4d general relativity is recovered below the compac-
tification scale, the theory unavoidably succumbs to
Weinberg’s no-go theorem [2]. (An alternative strategy is
to use compact extra dimensions to suppress radiative
corrections to the cosmological constant [3].)

The situation is drastically different, and far more prom-
ising, if the extra dimensions have infinite volume [4]. In
this case, gravity is approximately 4d only at short dis-
tances, thanks to an Einstein-Hilbert term on the brane, but
becomes higher dimensional in the infrared. In the Dvali-
Gabadadze-Porrati (DGP) scenario [5] with one extra di-
mension, the gravitational force law on the brane scales as
the usual 1=r2 at short distances, but the asymptotes scales
as 1=r3 at large distances. Gravity therefore behaves as a
high-pass filter [6]. This weakening of gravity suggests that
vacuum energy, by virtue of being the longest-wavelength
source, only appears small because it is degravitated [6,7].

The degravitation phenomenon is not realized in the
original DGP model because the weakening of the force
law is too shallow in the infrared [7]. This motivates
exploring higher-codimension branes, i.e., a higher-
dimensional bulk. Realizing these higher-codimension sce-
narios has proven difficult. To begin with, the simplest
constructions are plagued by ghost instabilities [8,9].
Second, the 4d propagator is divergent and must be regu-
larized [10]. Furthermore, for a static bulk, the geometry
for codimension N > 2 has a naked singularity at finite
distance from the brane, for arbitrarily small tension [4].
(Allowing the brane to inflate gives a Hubble rate on the
brane inversely proportional to the brane tension for codi-
mension N > 2 [4].)

Recently, it was argued that these pathologies are re-
solved by embedding our 3-brane within a succession of

higher-dimensional branes, each with their own induced
gravity term [11–13]. We refer to this framework as cas-
cading gravity. The induced graviton kinetic term acts as a
regulator for the 3-brane propagator [11,12]. In the case
N ¼ 2 studied in [11], consisting of a 3-brane embedded in
a 4-brane within a ð5þ 1Þ-dimensional bulk, the ghost is
cured by including a sufficiently large tension on the (flat)
3-brane [11,14]. Alternatively, the ghost is also cured when
considering a higher-dimensional Einstein-Hilbert term
localized on the brane [9,12].
Already with N ¼ 2, the solution exhibits degravitation:

a 3-brane with tension creates a deficit angle in the bulk
while remaining flat [14]. We stress that this self-tuning
mechanism crucially relies on the extra dimensions having
infinite volume: if the dimensions were compact, the brane
tension would have to be tuned against other branes and/or
bulk fluxes [15].
Since the deficit angle must be less than 2�, the tension

allowed by the solutions considered in [11,14] is bounded
by M4

6, where the 6d Planck mass M6 is itself constrained

to be at most �meV. Given its geometrical nature, this
bound is most likely an artifact of the codimension-2 case
and is expected to be absent in the higher codimension.
Motivated by these considerations, in this Letter we

explore cascading gravity with N ¼ 3, consisting of a
3-brane living on a 4-brane, itself embedded in a 5-brane,
together in a ð6þ 1Þ-dimensional bulk, as sketched in
Fig. 1. Including tension on the 3-brane, we derive a
solution for which (i) the bulk metric is nonsingular every-
where (except, of course, for a delta-function in curvature
at the 3-brane location) and asymptotically flat, and (ii) the
induced 3-brane geometry is exactly flat.
Since the metric depends on 3 spatial coordinates, to

proceed analytically we restrict ourselves to the weak-field
approximation, corresponding to sufficiently small tension.
For consistency, we check that our solution remains per-
turbative everywhere. We are currently working on nu-
merically extending these solutions to the nonlinear
regime of large tension.
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Unlike the case of a pure codimension-3 DGP brane in
ð6þ 1Þ dimensions, where the static bulk geometry has a
naked singularity for arbitrarily small tension [4], here the
bulk metric is completely smooth. This traces back to the
cascading mechanism of regulating the propagator: the
presence of parent branes removes the power-law diver-
gence in the 4d propagator.

As illustrated in Fig. 1, the 3 extra spatial dimensions are
denoted by y, z, and w, with the codimension-1 brane
located at w ¼ 0, the codimension-2 brane at z ¼ w ¼ 0,
and the codimension-3 brane at y ¼ z ¼ w ¼ 0. Indices in
7d are denoted by A; B; . . . , indices in 6d by a; b; . . . ,
indices in 5d by �;�; . . . , and finally indices in 4d by �,
�, . . .

I. Scalar Green’s Functions.—In solving for the metric
perturbations, it is useful to first consider the scalar Green’s
functions, determined from the action

S ¼ 1

2

Z
d7x�½M5

7h7 þ �ðwÞM4
6h6 þ �2ðz; wÞM3

5h5

þ �3ðy; z; wÞM2
4h4��;

(1)

whereMd denotes the ‘‘Planck’’ mass in d dimensions. The
model has three cross-over scales:

m5 ¼ M3
5

M2
4

; m6 ¼ M4
6

M3
5

; and m7 ¼ M5
7

M4
6

; (2)

marking, respectively, the transition scale from 4d to 5d,
from 5d to 6d, and finally from 6d to 7d.

In the absence of the 5d and 4d kinetic terms, the
propagator on the codimension-1 brane is of the DGP
form [5]

Gð0Þ
6 ðz� z0Þ ¼ 1

M4
6

Z d!

2�

ei!ðz�z0Þ

!2 þ q2 þm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ!2

p ; (3)

where q� is the 5d momentum, and ! is the momentum
associated with the z coordinate. The exact 6d propagator
is then obtained by treating the 5d kinetic term as a

perturbation localized at z ¼ 0:

G6ðz; z0Þ ¼ Gð0Þ
6 ðz� z0Þ �M3

5G
ð0Þ
6 ðzÞq2Gð0Þ

6 ð�z0Þ
þM6

5G
ð0Þ
6 ðzÞq4G0Þ

6 ð0ÞGð0Þ
6 ð�z0Þ þ . . .

¼ Gð0Þ
6 ðz� z0Þ �Gð0Þ

6 ðzÞM3
5q

2Gð0Þ
6 ð�z0Þ

1þM3
5q

2Gð0Þ
6 ð0Þ : (4)

In particular the induced propagator on the codimension-2
brane is determined in terms of the integral of the higher-
dimensional Green’s function:

Gð0Þ
5 ðq2Þ ¼ G6ð0; 0Þ ¼ 1

M3
5

1

q2 þ gðq2Þ ; (5)

gðq2Þ � 1

M3
5G

ð0Þ
6 ð0Þ ¼

�m6

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

7 � q2
q

tanh�1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
m7�jqj
m7þjqj

q
Þ
: (6)

(For jqj>m7, we assume analytic continuation from the
hyperbolic tangent to its trigonometric counterpart.)
Remarkably, the codimension-1 kinetic term makes the

5d propagator finite, thereby regulating the logarithmic
divergence characteristic of pure codimension-2 branes.

Indeed, Gð0Þ
5 ! M�5

7 logðm7qÞ as M6 ! 0, and thus M6

plays the role of a physical cutoff. As another check,
note that in the limit m7 ! 0 in which the bulk decouples,

we recover the usual DGP result: Gð0Þ
5 � 1=ðq2 þm6qÞ.

It is straightforward to repeat the same steps to derive the
induced 4d propagator on the codimension-3 brane.
II. Cascading Gravity.—We now proceed to the gravita-

tional case. The 7d Einstein equations are given by

M5
7G

ð7Þ
AB ¼ ��ðwÞf�a

A�
b
BM

4
6G

ð6Þ
ab þ �ðzÞ��

A�
�
BM

3
5G

ð5Þ
��

þ �ðzÞ�ðyÞ��
A�

�
B½M2

4G
ð4Þ
�� þ�g���g: (7)

The effective source therefore consists of induced gravity
terms on each of the branes, as well as tension � on the
codimension-3 brane.
In the weak-field approximation, the 7d line element can

be written as ds2 ¼ ð�AB þ hABÞdxAdxB. As shown in
Appendix A, there is enough symmetry and gauge freedom
to simplify the metric to the form

ds2 ¼ ½1þ�ðy; z; wÞ�ðdw2 þ dz2 þ dy2Þ

��ðwÞ
2m7

@��0ðy; zÞdx�dw

þ
�
1��ðy; z; wÞ

4

�
���dx

�dx�; (8)

where �0ðy; zÞ � �ðy; z; w ¼ 0Þ is the induced profile on
the codimension-1 brane. Here �ðwÞ is the theta function:
�ðwÞ ¼ þ1 for w> 0, and �1 for w< 0.
Substituting this ansatz into Einstein’s equations (7), we

find that � satisfies

w
y

z

4-brane

3-brane

5-brane

FIG. 1 (color online). Sketch of the codimension-3 cascading
gravity setup.
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�
h7 þ �ðwÞ

m7

h6 � 3

5

�2ðz; wÞ
m7m6

h5

�
� ¼ 8

5

�3ðy; z; wÞ
M5

7

�:

(9)

This equation is of the cascading form [12], as reviewed
above. The asymptotically flat bulk solution is given by

�ðy; z; wÞ ¼ e�jwj
ffiffiffiffiffiffiffiffi
�h6

p
�0ðy; zÞ; (10)

where the induced profile �0ðy; zÞ satisfies�
h6 �m7

ffiffiffiffiffiffiffiffiffiffiffi�h6

p � 3

5

�ðzÞ
m6

h5

�
�0 ¼ 8

5

�2ðy; zÞ
M4

6

�: (11)

To solve (11), we Fourier transform to momentum space
and use the 6d and 5d Green’s functions given, respec-
tively, by (3) and (5). The result is

�0ðy; zÞ ¼
Z dqyd!

ð2�Þ2
ei!zeiqyygðqyÞ�ðqyÞ

!2 þ q2y þm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ q2y

q ; (12)

where the Fourier transform of the codimension-2 profile,
�ðqyÞ ¼

R
dye�iqyy�0ðz ¼ 0; yÞ, satisfies�

3

5
q2y � gðq2yÞ

�
�ðqyÞ ¼ 8

5M3
5

�: (13)

The solution to (13) can be expressed as the sum of a
principal part P and two homogeneous modes:

�ðqyÞ ¼ 8�

5M3
5

P
�

1
3
5q

2
y � gðq2yÞ

�
þ X

	¼�
C	�ðqy � 	q0Þ;

where 3
5q

2
0 ¼ gðq20Þ. Requiring the field �0 to be real

imposes Cþ ¼ C� � C, while requiring �0 to fall as y !
0 sets C ¼ 0. Using the resulting expression for �ðqyÞ into
(12) and then into (10), we obtain the final expression for

the scalar potential �ðy; z; wÞ ¼ 8�
5M4

6

�̂ðy; z; wÞ:

�̂¼
Z d!dqy

ð2�Þ2
e�jwj

ffiffiffiffiffiffiffiffiffiffiffi
!2þq2y

p
ei!zeiqyy

!2þq2yþm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2þq2y

q P
�

gðqyÞ
3
5q

2
y�gðqyÞ

�
:

(14)

This is our main result. Thanks to the cascading mecha-
nism, which has regularized all potential divergences, this
solution is finite everywhere. Figure 2 shows that

�̂ðy; z; wÞ is smooth everywhere and decreases with w.
As it stands, however, our framework has a ghost [8,9],

as indicated by the poles at qy ¼ �q0. There are two ways

to resolve this issue. One can introduce sufficiently large
tension on both the codimension-2 and -3 branes [11]:
to remove the ghost, the codimension-2 tension should
be *M3

5m
2
7, whereas the corresponding bound on the

codimension-3 tension is yet to be determined.
Alternatively, one can regularize codimension-2 and -3

branes and include the 6d Einstein-Hilbert term localized
on these objects [9,12]. Following this route, we demon-

strate in Appendix B that the poles do disappear, and that
the profile for �ðy; z; wÞ is qualitatively unchanged.
III. Discussion.—In this Letter, we have shown that a

3-brane with tension remains flat in the ð6þ
1Þ-dimensional cascading gravity framework. In the
weak-field approximation, we have obtained a bulk solu-
tion which is nowhere singular and remains perturbative
everywhere.
These properties crucially depend on the existence of

parent branes with finite Planck masses. Indeed, our solu-
tion goes outside the perturbative regime and acquires
divergences in the limit M5, M6 ! 0, consistent with [4].
We are currently extending our solutions to the nonlinear

regime through numerical analysis. For now, we view the
present results as a tantalizing first step towards realizing
the idea of Rubakov and Shaposhnikov.
We thank G. Dvali and G. Gabadadze for helpful dis-

cussions. This work was supported in part by NSERC and
Ontario’s MRI.
Appendix A.—We show that the weak-field metric can be

brought to the form (10) by symmetry and gauge freedom.
In the de Donder gauge, @Ah

A
B ¼ 1

2@Bh
C
C, (7) reduces to

�M5
7

2
h7

�
hAB � 1

2
�ABh

C
C

�
¼ �ðwÞðTð6Þ

ab �M4
6G

ð6Þ
abÞ;

where the effective stress energy on the codimension-1

brane, Tð6Þ
ab , includes contributions from the 5d and 6d

induced gravity terms. Since there is no stress energy along
the (a, w) and (w, w) directions, the corresponding equa-
tions are consistently satisfied by setting haw ¼ 0 and
hww ¼ hcc, where hcc is the 6d trace. It follows that the
induced gauge choice in 6d is given by @ah

a
b ¼ @bh

c
c;

hence, the (a, b) components of (A1) reduce to

�M5
7

2
h7ðhab � �abh

c
cÞ ¼ �ðwÞM

4
6

2
ðh6hab � @a@bh

c
cÞ

þ �ðwÞTð6Þ
ab : (A1)

To proceed further, it is convenient to decompose hab
into its trace and transverse-traceless (TT) parts:
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FIG. 2 (color online). Plot of the solution for the metric
potential �̂ðy; z; wÞ for w ¼ 0 and w ¼ 2m�1

7 in the case where

m6 ¼ m7.
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hab ¼ h6dTTab þ @a@b
h6

hcc: (A2)

From (A1), the 6dTT components satisfy

�M5
7

2

�
h7 þ �ðwÞ

m7

h6

�
h6dTTab ¼ �ðwÞ

�
Tð6Þ
ab � 1

5
�abT

ð6Þ

þ 1

5

@a@b
h6

Tð6Þ
�
: (A3)

The symmetries of the problem allow a simple expres-
sion for the 5d components of the 6dTT part:

h6dTT�� ¼ � 1

4
���� �

�
h5

h6

� 5

4

�
@�@�
h5

�: (A4)

This follows from setting h5dTT�� ¼ 0, which is consistent

with the equations of motion for the case of interest. Sub-

stituting into (A3), and using Tð5Þ
�� ¼ ���

��
�
������ðyÞ,

the resulting equation of motion for � agrees with (9).
We can now be explicit about the form of the various

metric components. Combining (A2) and (A4), we get

h�� ¼ � 1

4
���� �

�
h5

h6

� 5

4

�
@�@�
h5

�þ @�@�
h6

hcc:

(A5)

And since everything is independent of x�, we get hy� ¼ 0

and h�� ¼ � 1
4����. Similarly, from (A2) we obtain

hyz ¼
@y@z
h6

ðhcc ��Þ; hzz ¼ @2z
h6

ðhcc ��Þ þ�;

hyy ¼
@2y
h6

ðhcc ��Þ þ�: (A6)

This is equivalent to (8) after a small diffeomorphism.
Appendix B.—One way to cure the ghost of higher-

codimension DGP models [8,9] is to consider a higher-
dimensional Einstein-Hilbert term localized on the regu-
larized brane [9,12]. Following this prescription, we will
show that the solution remains finite everywhere.

When adding a 6d Einstein-Hilbert term on the regular-
ized 4-brane, on the top of the usual 5d Einstein-Hilbert
term of the form ‘‘h5h��’’ we must consider excitations of

transverse modes along the extra dimensions as well as the
higher-dimensional mode hzz. In the thin-brane limit, how-
ever, the excitations along the extra dimension become
very massive, so that any term containing z derivatives
can be neglected. Meanwhile, hzz survives in the limit;
see [12] for details.

In the 7d de Donder gauge, the Einstein equations are
the same as in (A1). Setting haw ¼ 0 and hww ¼ hcc, we
have

�M5
7

2

�
h7 þ �ðwÞ

m7

h6

�
hab ¼ �ðwÞ

�
Tð6Þ
ab � 1

5
Tð6Þ�ab

�

(B1)

with Tð6Þ
z� ¼ 0, Tð6Þ

zz ¼ M3
5�ðzÞR5=2, and

Tð6Þ
�� ¼ �M3

5�ðzÞ½Gð5Þ
�� þ 1

2ðh5hzz��� � @�@�hzzÞ�
� �ðzÞ�ðyÞ�����

�
���

�: (B2)

Using this in the 6d part of the Einstein equations, we get
hzz ¼ �c , h5hyy ¼ �4h5c þ @2yh

�
�, h�y ¼ 0, and

h5h�� ¼ h5c��� þ @�@�h
�
�, with

�
h7 þ �ðwÞ

m7

h6 þ �ð2Þðw; zÞ
m7m6

h5

�
c ¼ 2

5

�ð3Þðw; z; yÞ
M5

7

�:

(B3)

We notice that the kinetic term for c is now everywhere
positive, signaling that the ghost has been cured. Equa-
tion (B3) is similar to (9) for�, except for a redefinition of

m6 and M7. The profile for c ðy; z; wÞ ¼ � 2�
5M4

6

�̂ðy; z; wÞ,

�̂ ¼
Z d!dqy

ð2�Þ2
e�jwj

ffiffiffiffiffiffiffiffiffiffiffi
!2þq2y

p
ei!zeiqyy

!2 þ q2y þm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ q2y

q gðqyÞ
q2y þ gðqyÞ

;

(B4)

is similar to that of �̂, and, in particular, is free of diver-
gences. The static solution for a codimension-3 brane with
tension remains therefore well defined, at least in the weak-
field approximation, in a ghost-free setup.
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