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Social Science Methods for Twins Data: Integrating Causality,
Endowments and Heritability

Abstract
Twins have been extensively used in both economic and behavioral genetics to investigate the role of genetic
endowments on a broad range of social, demographic and economic outcomes. However, the focus in these
two literatures has been distinct: the economic literature has been primarily concerned with the need to
control for unobserved endowments—including as an im¬portant subset, genetic endowments—in analyses
that attempt to establish the impact of one vari¬able, often schooling, on a variety of economic, demographic
and health outcomes. Behavioral genetic analyses have mostly been concerned with decomposing the
variation in the outcomes of interest into genetic, shared environmental and non-shared environmental
components, with recent multivariate analyses investigating the contributions of genes and the environment
to the correlation and causation between variables. Despite the fact that twins studies and the recogni¬tion of
the role of endowments are central to both of these literatures, they have mostly evolved independently. In this
paper we develop formally the relationship between the economic and behavioral genetic approaches to the
analyses of twins, and we develop an integrative approach that combines the identification of causal effects,
which dominates the economic literature, with the decomposition of variances and covariances into genetic
and environmental factors that is the primary goal of behavioral genetic approaches. We apply this new
integrative approach to an illustrative investigation of the impact of schooling on several demographic
outcomes such as fertility and nuptiality and health.

Keywords
Causality, Danish Twin Registry, Genetic endowments, Heritability, Methods, Minnesota Twins Registry,
Twins

Disciplines
Demography, Population, and Ecology | Social and Behavioral Sciences | Sociology

Comments
Kohler, Hans-Peter, Jere R. Behrman and Jason Schnittker. 2010. "Social Science Methods for Twins Data:
Integrating Causality, Endowments and Heritability." PSC Working Paper Series, PSC 10-06.

This working paper is available at ScholarlyCommons: https://repository.upenn.edu/psc_working_papers/21

https://repository.upenn.edu/psc_working_papers/21?utm_source=repository.upenn.edu%2Fpsc_working_papers%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages


Social Science Methods for Twins Data: Integrating

Causality, Endowments and Heritability

Hans-Peter Kohler Jere R. Behrman Jason Schnittker∗

August 20, 2010

Abstract
Twins have been extensively used in both economic and behavioral genetics to investigate the
role of genetic endowments on a broad range of social, demographic and economic outcomes.
However, the focus in these two literatures has been distinct: the economic literature has been
primarily concerned with the need to control for unobserved endowments—including as an im-
portant subset, genetic endowments—in analyses that attempt to establish the impact of one vari-
able, often schooling, on a variety of economic, demographic and health outcomes. Behavioral
genetic analyses have mostly been concerned with decomposing the variation in the outcomes
of interest into genetic, shared environmental and non-shared environmental components, with
recent multivariate analyses investigating the contributions of genes and the environment to the
correlation and causation between variables. Despite the fact that twins studies and the recogni-
tion of the role of endowments are central to both of these literatures, they have mostly evolved
independently. In this paper we develop formally the relationship between the economic and
behavioral genetic approaches to the analyses of twins, and we develop an integrative approach
that combines the identification of causal effects, which dominates the economic literature, with
the decomposition of variances and covariances into genetic and environmental factors that is
the primary goal of behavioral genetic approaches. We apply this new integrative approach to
an illustrative investigation of the impact of schooling on several demographic outcomes such as
fertility and nuptiality and health.

1 Introduction

Twins studies have been extensively undertaken in both economic and behavioral genetics to in-
corporate the role of genetic endowments on a broad range of social, demographic and economic
outcomes. However, the focus in these two literatures has been distinct: the economic literature
has been primarily concerned with the need to control for unobserved endowments—including
as a possibly important subset, genetic endowments—in analyses that attempt to establish the im-
pact of one variable, often schooling, on a variety of economic, demographic and health outcomes
(Behrman et al. 1994, 1996). Behavioral genetics analyses have mostly been concerned with decom-
posing the variation in the outcomes of interest into genetic, shared environmental and non-shared
environmental components, with recent multivariate analyses investigating the contributions of
genes and the environment to the correlation and causation between variables (Plomin et al. 2005).
Despite the fact that data on twins and the recognition of the role of endowments are central to both
of these literatures, they have mostly evolved independently. Both of these approaches are increas-
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jschnitt@soc.upenn.edu. All three authors are Research Associates of the Population Studies Center at the University of
Pennsylvania. An earlier version of this paper was presented at the conference on “Integrating Genetics and the Social
Sciences” in Boulder, CO, June 2–3, 2010.
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ingly valued within sociology and related social science fields as important tools to investigate the
interaction of social processes and social structures with genetic and related biological processes
(e.g., Bearman 2008; Conley et al. 2003; Freese 2008; Guo et al. 2008; Schnittker 2008).

This paper formally develops the relationship between the economic and behavioral genetics
approaches to the analyses of twins, and discusses both the economic within-MZ and the behav-
ioral genetics ACE model within a unified conceptual framework that highlights the similarities
and differences between these models.1 It also reviews some of the approaches that are available
to test and/or relax some of the key assumptions underlying these methods. For example, we
discuss how under the assumption that unique environmental factors affecting schooling affect
outcomes such fertility or health only through schooling (rather than directly), the within-MZ ap-
proach can provide an accurate estimate of the causal effect of schooling on fertility or health, while
the behavioral genetics ACE model can decomposes the unobserved determinants of schooling and
fertility/health into a genetic component (A), a shared environmental component (C) and unique
environmental components (E).

This paper also develops an extended ACE model that bridges between the economic within-
MZ approach and the behavioral genetics approach. The new features of this model include that it
allows the joint estimation causal relationships between, say, schooling and fertility or health, and
the contributions of genetic and social endowments to the variation and covariation of outcomes
within and across individuals. This model also provides a definition of heritability h2 that appro-
priately captures the different pathways through which genetic endowments affect both schooling
x and fertility (health) y in an extended ACE framework where schooling has a direct effect on
fertility (health). In addition, extensions of our extended ACE model can identify the extent to
which social interactions between twins affect schooling or fertility/health, or the extent to which
schooling is affected by measurement error. In the instrumental variable version, the extended ACE
model can also provide estimates of all model parameters—including the casual effect of schooling
on fertility and the extent of heritability of the different outcomes—even if unique environmental
factors affecting schooling affect fertility (health) not only through schooling but also directly. The
extended ACE model therefore enriches both the economic within-MZ approach by providing a
more finely grained picture about the influence of unobserved endowments on schooling and fer-
tility (health), and it extends the ACE model, which has been one of the cornerstones of research in
behavioral genetics, by integrating causal pathways between schooling and fertility (health). The
“cost” of the additional analytic leverage of the extended ACE model, which extends both beyond
the within-MZ model in economics and the ACE model in behavioral genetics, is that the model
is subject to more restrictive assumptions than the within-MZ approach in economics. In partic-
ular, the model is subject to the same assumptions as the behavioral genetics ACE model. The
most relevant restrictions of the ACE model, beyond what is already required in the within-MZ
model, pertain to the underlying genetic model and other assumptions required for decompos-
ing the sources of variation into social and genetic endowments and individual-specific factors.
Specifically, the extended ACE model—just like the ACE model in behavioral genetics assumes:

1While not the focus of our discussion here, it is important to point out that there have been many other uses of twins data
in the social sciences. Historically, for example, the predominant use probably has been for univariate heritability estimates
of the ratio of genetic variance to phenotypic variance in a linear model. Also in economics the combination of identical
and fraternal twins has been used to investigate how intrafamilial allocations (say, of schooling among children) respond to
individual-specific endowments (e.g., Behrman et al. 1994). The birth of twins has also been used to represent unexpected
increases in fertility and to estimate quantity-quality fertility models and to study the consequences of fertility on other
life-course outcomes (Rosenzweig and Wolpin 1980a,b). Behrman, Kohler and Schnittker (2010) provide a comprehensive
treatment of twins methods for social scientists that includes both conceptual and methodological discussions that are
beyond the scope of this paper.
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(i) an additive genetic model with no assortative mating (albeit both can be relaxed with suitable
data), which establishes the correlation of genetic endowments between DZ twins, and (ii) the ab-
sence of gene-environment interactions, which implies that the latent endowments (genetic factors
A, shared environments C, and individual-specific factors E) are independent of each other and
additively affect the outcomes.2

2 Use of Twins in Economics: The Fixed-Effects Approach

To help set the stage for what follows, there are two kinds of twins: monozygotic (MZ) or “iden-
tical” twins and dizygotic (DZ) or “fraternal” twins. Except for being born at the same time, DZ
twins are ordinary siblings in the sense that they are the product of two different eggs and two dif-
ferent sperm. MZ twins are genetically identical at conception, emerging from a single sperm and
egg, from which two separate eggs later emerge. Whereas the rate of DZ twinning is affected by
several factors, including maternal age and fertility drugs, and is therefore subject to change over
time, across women, and among countries, MZ twinning occurs at a relatively constant rate among
contexts (Kiely and Kiely 2001). Irrespective of context, MZ twins are rarer than DZ twins. In most
pre-fertility drug populations, about 1 in 85 births are twins (Plomin et al. 2005), of which about
a third are MZ, a third same-sex DZ, and a third opposite-sex DZ (Keith et al. 1995). While some
prominent datasets of twins raised apart exist (e.g., the Minnesota Study of Twins Raised Apart
(Bouchard et al. 1990) or the Swedish Adoption/Twin Study on Aging (SATSA) (Björklund et al.
2005)), most twins data include twins that were raised together. Important U.S. twins datasets, for
example, include the National Longitudinal Study of Adolescent Health (Add Health) Twin Data
(Harris et al. 2006), the Midlife Development in the United States (MIDUS) Study (Brim et al. 1996)
and the National Academy of Science-National Research Council (NAS-NRC) Twin Registry of
World War II Veterans (Page 2002), with extensive register-based twins data existing in Denmark,
Sweden, Norway and Australia (Harris et al. 2002; Lichtenstein et al. 2002; Miller et al. 1997; Skyt-
the et al. 2002). Because twins raised together share both genetic factors—with the genetic overlap
being about 50% for DZ and 100% for MZ twins—and important social and economic contexts
during childhood and adolescence, they provide a unique opportunity to better understand how
genetic and social endowments affect a variety of behaviors and outcomes that are of key interest
to social scientists.

In the economic “fixed-effects” approach to twins data, twins have been extensively used to
control for genetic and other background unobserved confounding factors. Social scientists long
have used sibling comparisons for this purpose, reasoning that if brothers/sisters are similar with
respect to family background and other characteristics, using differences between them in, for ex-
ample, levels of schooling controls a great many relevant confounding factors (Behrman and Wolfe
1987; Chamberlain and Griliches 1977; Griliches and Mason 1972; Hauser and Wong 1989; Warren
et al. 2002). Twins are even more attractive than other siblings insofar as they share a birth and,
therefore, differences between them are not confounded by parental family life-cycle differences
and, in the case of MZ twins, genes at conception, both of which can have substantial confounding
effects (see Behrman and Taubman (1976) and Behrman et al. (1980) for early work). For exam-
ple, twins fixed-effects studies have been interested in estimating the causal effect of one (or more)

2An extensive literature exists that discusses these assumptions and the potential implications of violations of these
assumptions (e..g., Behrman et al. 2010; Derks et al. 2006; Guo 2005; Hobcraft 2003; Plomin et al. 2005). There also exist
several ways to test or relax these assumptions if additional data are available (e..g., Behrman et al. 2010; Neale and Maes
2004; Plomin et al. 2005), including for example the incorporation of assortative mating if data on spouses is available, or
the consideration of dominance genetic effects if additional sibling categories (half siblings, adopted children) are available.
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variable (e.g., schooling, birth weight) that may be partly determined directly by unobserved en-
dowments on other variables (e.g., fertility, marital status, health-related behaviors and outcomes,
social interactions, wages) that are themselves partly determined directly by endowments. The
analyses acknowledge that both schooling and outcomes such as fertility, nuptiality or health are
possibly determined by unobserved genetic or social endowments, where examples of the latter
include as an important dimension socioeconomic and psychological characteristics of the twins’
parents.

The general framework of our discussion in this paper is a context where a researcher would
like to infer the causal effect of some variable x, which in our running example will be schooling, on
a second variable y. For our methodological discussions in Sections 2–6, we will use (completed)
fertility as the running example for y, and in the empirical examples (Section 7) we will obtain es-
timates for the effect of schooling on health, spouse’s schooling (which is an important indicator
of marriage market outcomes) and fertility. The notion of causality that underlies our discussions
in this paper of the relationship of schooling with outcomes such as health and fertility is thereby
closely related to the recent discussion of causality in the social sciences (Heckman 2008; Moffitt
2005, 2009; Rosenzweig and Wolpin 2000; Winship and Sobel 2000). A basic point in this literature,
emphasized by Moffitt (2005) among others, is that the causal effect of, say, schooling x on fertility
y, cannot be estimated without some type of assumption or restriction, even in principle, because
of the inherent unobservability of the counterfactual.3 A cross-sectional regression coefficient on x
is necessarily estimated by comparing the values of y for different individuals who have different
values of x, not by comparing different values of y for a single person observed at different levels
of schooling x. Because individuals with different values of schooling x are likely to differ in un-
observable ways, the differences in their fertility y may not accurately reflect the extent to which
a specific person’s fertility would vary if this individual could be observed at different levels of
schooling. In light of this inherent identification problem of the causal influence of, say, school-
ing x on fertility y, the literature on causal modeling emphasizes that the estimation of a causal
effect always requires a minimal set of identifying assumptions, and moreover, that social science
theory needs to guide these assumptions because the minimal set of identifying assumptions for
causal inference cannot be empirically tested. Outside evidence, intuition, theory, or some other
means outside the specific empirical model and the specific data, are required to justify any empir-
ical approach to causal modeling. Using the words of Moffitt (2005), “while the necessity to make
these types of arguments may at first seem dismaying, it can also be argued that they are what
social science is all about: using one’s comprehensive knowledge of society to formulate theories
of how social forces work, making informed judgments about these theories, and debating with
other social scientists what the most supportable assumptions are.”

We will argue in this paper that social science methods for twins data provide one promising
approach to the identification of causal effects that relies on transparent assumptions that are con-
sistent with the contemporary understanding about the underlying social and biological processes
that determine social, demographic and economic outcomes such as schooling, nuptiality, fertility,
wages and related aspects. By integrating the economic and behavioral genetics approaches to the
analyses of twins, we develop an approach that combines the identification of causal effects, which
dominates the economic literature, with the decomposition of variances and covariances into ge-
netic and environmental factors, which is the primary goal of behavioral genetics approaches.

3This point holds even if some random assignment (e.g., of incentives for attending school) is used as an instrument to
attempt to identify the impact of schooling x on fertility y. Such identification occurs only under the assumption that the
random assignment does not affect the outcome y through other channels (e.g., financial wealth accumulation) than through

4



Ax
ij Cx

j Ay
ij Cy

j

xij yij

Ex
ij Ey

ij

axx ayx
cxx

cyx

exx

ayy cyy

eyy

β

Figure 1: Path-diagram for the economics fixed-effects model for twins

Figure 1 illustrates one possible conceptual framework about how unobserved genetic and so-
cial endowments affect both schooling x and fertility y. While the economic fixed-effects approach
is usually presented somewhat differently, the representation in Figure 1 is observationally equiv-
alent and facilitates our subsequent comparison with the behavioral genetics models and the in-
tegration of both approaches.4 Specifically, the conceptual framework in Figure 1 assumes that
schooling xij of twin i in pair j has a direct and causal influence on the fertility yij of twin i in pair
j that is represented by the coefficient β. In addition, each of the phenotypic variables, xij and yij,
is potentially subject to influences from the three latent sources: genetic endowments (Ax

ij and Ay
ij),

common environmental influences (Cx
j and Cy

j ), which we refer to as social endowments, that are
shared by twins reared together in the same family j, and unique or individual-specific environmental
influences Ex

ij and Ey
ij that in the economic literature are sometimes referred to as shocks to either

schooling xij or fertility yij. In this path diagram in Figure 1, the paths axx and cxx indicate, re-
spectively, the effects of the latent genetic component Ax

ij and shared environmental component
Cx

ij on schooling xij, while the paths ayx and cyx reflect the effect of these latent genetic and shared
environmental factors on fertility yij. The path exx measures the effect of the unique environmental
factors Ex

ij on schooling xij, and eyy measures the effect of the unique environmental component Ey
ij

on fertility yij.
As we will argue in more detail below and as noted by Griliches (1979) and Bound and Solon

(1999), a required assumption of the standard economic fixed-effects approach to twins data is that

x.
4We use this presentation because this paper is concerned with integrating the economic and behavioral genetics ap-

proaches to twins data. The more conventional way of presenting the economic fixed-effects model is as follows, where the
fertility yij of twin i in pair j is related to schooling xij as

yij = βxij + f j + aij + vij

xij = α f f j + αaaij + uij

where β = the effect of schooling on fertility (to be estimated), f j = family endowments common to both twins in pair j,
aij = endowments specific to twin i in pair j, vij = random fertility shocks specific to twin i in pair j, α f = effect of family
endowments f j on schooling xij, αa = effect of individual-specific endowments aij on schooling xij, and uij = disturbance
affecting xij but not yij except indirectly through xij. The model can also be extended to allow for sibling endowment effects
on schooling by specifying xij = α f f j + αaaij + αsakj + uij, where αsakj is the effect of twin i’s co-twin k’s endowment on i’s
schooling xij.
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the unique environmental influences affecting schooling xij and the outcome yij, say fertility, are
independent. It is therefore important to observe that, consistent with this assumption, we have
drawn the path-diagram in Figure 1 without a path eyx that would connect the unique environmen-
tal factor Ex

ij to fertility yij.
The economic “fixed-effects” approach to twins data rests on the insight that, if unobserved

genetic and social endowments affect the variables x and y together with individual-specific envi-
ronmental factors as outlined in Figure 1, MZ twins data—but not other siblings data—can be used
to estimate the causal effect of schooling x on fertility y. This causal effect, which we have denoted
with β in Figure 1, is often a primary focus of analyses in the social sciences. For example, MZ
twins fixed-effects studies have been used to estimate the causal effect of one (or more) variable
(e.g., schooling, birth weight) that may be partly determined directly by unobserved endowments
on other variables (e.g., fertility, marital status, health-related behaviors and outcomes, social in-
teractions, wages) that are themselves partly determined directly by endowments. Cross-sectional
estimates or inferences based on sibling data (within-siblings analyses) are not able to correctly
infer these causal pathways.

To illustrate this within-MZ twins approach and its underlying assumption in more detail, con-
sider the following formal statement of the model in Figure 1 that is based on a linear representation
of a reduced-form equation relating fertility yij of twin i in pair j to his or her schooling xij and to
three sets of unobserved variables representing (i) social endowments Cx

j and Cy
j affecting schooling

xij and fertility yij that are common among both members of twins pair j (e.g., exogenous features
of the parental family environment in childhood, including family income, parents’ human capital,
average genetic endowments among siblings, local schooling and health-related options), (ii) ge-
netic endowments Ax

ij and Ay
ij that additively affect both xij and yij and that are correlated among

the members of each twins pair, and (iii) unique individual environmental influences Ex
ij and Ey

ij
that capture random “shocks” to the schooling attainment and fertility outcomes of twin i in pair j.
For schooling, the path diagram in Figure 1 then implies the specification

xij = axx Ax
ij + cxxCx

j + exxEx
ij (1)

where Ax
ij, Cx

j and Ex
ij are independently distributed and standardized to mean of zero and a vari-

ance of one.
Schooling xij is assumed to have a direct causal effect, denoted by β, on fertility yij for twin

i in pair j. In addition, we assume that yij is also influenced by unobserved endowments. On
the one hand, yij is assumed to possibly depend on the shared environmental factors Cx

j and the
genetic endowments Ax

ij that also affect schooling of the twin i in pair j. In addition, fertility yij is
potentially affected by unobserved endowments and shocks that are specific to fertility y: (i) social
endowments Cy

j that are common for both twins in pair j, (ii) genetic endowments Ay
ij, which are

correlated within a twins pair, and (iii) a random individual-specific shock Ey
ij that also includes

measurement error. Assuming a linear relationship, we thus obtain:

yij = βxij + ayx Ax
ij + cyxCx

j + ayy Ay
ij + cyyCy

j + eyyEy
ij, (2)

where Ay
ij, Cy

j and Ey
ij are independently distributed and standardized to mean of zero and a vari-

ance of one. In addition, the model in Eqs. (1–2) and Figure 1 also assumes, as we have mentioned
earlier, that the random shocks Ex

ij affecting schooling xij of twin i in pair j have no direct effect on
the fertility yij, and that these random shocks affect the fertility yij of twin i in pair j only through
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their effect on schooling (in the path diagram in Figure 1 this assumption is equivalent to specifying
eyx = 0.). The coefficients ayx and cyx in Eq. (2), which reflect the importance of the “cross-paths”
in Figure 1 from the endowments Ax

ij and Cx
j to the fertility yij, indicate the extent to which the

endowments affecting schooling xij and fertility yij are interrelated. For example, when studying
the effect of schooling attainment on labor market outcomes or fertility, this interrelation is conceiv-
ably strong—and the path coefficients ayx and cyx are correspondingly large—because unobserved
differences in abilities and preferences tend to affect both decisions about schooling and fertility
and other outcomes of interest such as wage rates.

As is well known, the parameter β in Eq. (2) is not identified in standard cross-sectional re-
gression analyses if at least one of the coefficients ayx or cyx is not zero, that is, if the unobserved
endowments Cx

j and Ax
ij affecting schooling xij have also a direct effect on fertility yij. In this case,

β is estimated with bias if equation (2) is estimated across individuals with different values of Cx
j

and Ay
ij. The extent of bias in these cross-sectional analyses depends on the covariance between the

unobserved determinants of xij and yij in Eqs. (1–2). It can be shown that the cross-sectional OLS
regression coefficient β̂ for schooling in (2) is equal to

β̂ =
Cov(yij, xij)

σ2(xij)
=

βσ2(xij) + axxayx + cxxcyx

σ2(xij)
,

where β is the “true” effect of schooling x on fertility y from Eq. (2). The cross-sectional OLS
estimate of β is therefore biased unless both ayx and cyx equal zero, that is, unless the genetic
and social endowments affecting schooling have no effect on yij except through their effect on
xij. This assumption, however, is not plausible in many empirical applications. Thus, generally, the
cross-sectional estimate of the association between schooling and fertility is a biased estimate of the
causal impact of schooling on fertility because schooling is partially proxying for genetic, family
background, and other endowments.

It is important to emphasize that, in situations where the paths ayx and cyx in Figure 1 cannot
be assumed to be both equal to zero, using sibling rather than standard cross-sectional data for the
estimation does not provide a remedy. While siblings from the same family j have the same shared
environments Cx

j in common, siblings (other than MZ twins) do not share all genetic endowments
and therefore Ax

1j 6= Ax
2j.

5 Sibling data thus do not (fully) control for unobserved genetic endow-
ments, and if ayx 6= 0 in Eq. (2), the estimate of β is biased also in sibling analyses. With no further
assumptions, it is therefore clear that β is not identified even if sibling-pair data are used in the es-
timation of β. This is because of the individual-specific genetic endowments Ax

ij that are not equal
for siblings, expect for MZ twins. As long as families or individuals respond to individual-specific
differences in endowments, and such differences are important, then sibling estimators do not pro-
vide unbiased estimates (Behrman et al. 1994, 1996). In recognition of this problem, researchers
have employed samples of monozygotic (MZ) twins, between whom there are as minimal as pos-
sible endowment differences at conception, to identify β in estimates of models such as relations
(1–2).

In particular, a solution to the dilemma of identifying the effect β of schooling x on fertility y is

5In addition, since siblings other than twins are of differential ages, the argument of sibling models that within-sibling
estimates control for all relevant social endowments so that the path eyx in Figure 1 can reasonably be assumed to be zero is
weaker than in the case of twins who are born at the same time and thus share factors such as parents’ ages, socioeconomic
conditions, etc., all at the same age.
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potentially provided by using MZ twins because Eqs. (1–2) can be rewritten for MZ twins as:

xMZ
ij = axx Ax

j + cxxCx
j + exxEx

ij (3)

yMZ
ij = βxMZ

ij + ayx Ax
j + cyxCx

j + ayy Ay
j + cyyCy

j + eyyEy
ij, (4)

where for MZ twins we can assume that Ax
1j = Ax

2j = Ax
j (and, by definition, for shared environ-

ments, Cy
1j = Cy

2j = Cy
j ). Relations parallel to Eqs. (3) and (4) can be written for the other member k

of twins pair j.
The fixed-effects MZ twins estimation, or a within-MZ twins estimation, of Eqs. (3) and (4) then

controls for all right-side variables in these relations that are common to both members of a MZ
twinship: the genetic endowments Ax

j and Ay
j , and the social endowments Cx

j and Cy
j . In particular,

the within-MZ-twins estimator for the effect β of schooling x on fertility y is obtained by subtracting
relations (3) and (4) for twin 1 and 2 in each twins pair j. With such a within-MZ-twins estimator, all
of the unobserved endowment components in (3) and (4) are swept out so that consistent estimates
of β can be obtained from within-MZ estimation under the maintained assumption that eyx = 0
(i.e., the assumption that the individual-specific shocks to schooling Ex

ij of twin i in pair j are not
correlated with the unobserved shocks to fertility yij):

xMZ
1j − xMZ

2j = exx(Ex
1j − Ex

2j)

yMZ
1j − yMZ

2j = β(xMZ
1j − xMZ

2j ) + eyy(Ey
1j − (Ey

2j)

In summary, under the assumption noted above, MZ fixed-effects estimators can be used to
identify the true reduced-form impact β of schooling x on fertility y. In addition, comparisons can
be made with estimates of relation (2) for the same fertility outcomes to learn to what extent the
estimates of the impact of schooling on fertility β are biased in cross-sectional estimates that fail
to control for unobserved endowments Cx

j and Ax
ij. Comparisons also can be made between the

within-MZ estimates for females and males, between racial and ethnic groups, across birth cohorts,
across levels of SES, over time, and across countries. Comparisons can also be made between MZ
fixed-effects and DZ fixed-effects estimators to see if the unobserved individual specific genetic
endowments Ax

ij are important so that within-sibling estimates that control only for common family
endowments Cx

j are misleading. Finally, comparisons can be made between DZ fixed-effects and
ordinary sibling fixed-effects estimators controlling for birth spacing to investigate the impact of
changes in the timing of births and birth order on the estimated impacts.

Although the MZ fixed-effects literature emphasizes the value of controlling for endowments
in the context of twins, there are other potential estimation strategies to break the correlation be-
tween the disturbance term and the right-side schooling variable in relation (2). Although these
approaches are popular, data on twins may be preferable. Continuing with the schooling exam-
ple, the dominant alternative has been to use instrumental variables (IV) or two-stage least squares
(2SLS) in which actual schooling in relation (2) is replaced by the estimated value of schooling based
on first-stage instruments that predict schooling but are not correlated with the disturbance term
in relation (2). These approaches are discussed in more detail in Section 3 below. Perhaps the most
widespread example is the use of changes in compulsory schooling regulations as a first-stage in-
strument to predict schooling (Angrist and Krueger 1991; Lleras-Muney 2005). However, as noted
by several (Amin et al. 2010; Behrman et al. forthcoming; Lundborg 2008) these IV estimates tend to
be local average treatment effects (LATE) that are relevant for individuals who are at the margin to
be affected by the instruments used (e.g., at the margin of completing only compulsory schooling
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levels); however, IV estimates are not average treatment effects (ATE) for the broader population
beyond this margin (Angrist and Krueger 1991; Moffitt 2009). Because within-MZ schooling dif-
ferences exist over most schooling levels, the MZ fixed-effects estimate are likely to be closer to
average treatment effects (ATE) rather than local average treatment effects (LATE).

3 Extensions of the Fixed-Effects Approach

Several extensions of the fixed-effects approach to twins data have been developed to address the
concern that, at least in some applications, the assumptions required for the within-MZ estimator
to identify the causal effect β of schooling on, say, fertility may not hold. In our discussion below
we address some of the concerns that have received the most emphasis in the literature, and we
present some of the approaches that have been developed to address or remedy these concerns.

3.1 Gene-Environment Correlations

The model in Eqs. (1–2) and Figure 1 has been presented under an assumption that there are no
gene-environment correlations. One aspect of this assumption is that the genetic endowments (Ax

and Ay) are independent of the social endowments (Cx and Cy) and the unique environmental ef-
fects (Ex and Ey). While this is a necessary assumption for the behavioral genetics models discussed
below, this assumption is overly restrictive for the economic fixed-effects models. In order for the
within-MZ estimator in Eqs. (3–4) to give an unbiased estimator of β it is sufficient that, within
monozygotic twins, the individual-specific influences (“shocks”) Ex

ij and Ey
ij that affect schooling

xij and fertility yij are independent of the endowments Ax
j , Ay

j , Cx
j and Cy

j that are common to both
members of a MZ twins pair. It is not necessary that the genetic and social endowments (Ax

j and
Ay

j ) and (Cx
j and Cy

j ) are independent of each other, as will be assumed later on when we discuss
the behavioral genetics analyses of twins data. Moreover, the independence of the individual-
specific influences of the social and genetic endowments in the within-MZ analyses, is a relatively
innocuous assumption because the variance of the variables xij and yij in MZ twins can always be
decomposed into within-MZ twins pair variation resulting from the individual-specific influences
and between-twins pair variation that results from social and genetic endowments. It is therefore
important to point out that the ability of the within-MZ model to correctly estimate β is not af-
fected if there is a gene-environment correlation between the genetic endowments (Ax or Ay) and
the corresponding social endowments (Cx and Cy). For example, if children with a higher-than-
average genetic ability, which is reflected in the genetic endowments Ax, also grow up in families
that foster intellectual development more than the average family, then the genetic endowment Ax

is positively correlated with the social endowment Cx. While a gene-environment correlation of
this sort is potentially problematic for a behavioral genetics model and can result in biased esti-
mates of heritability and related parameters, the within-MZ model provides an unbiased estimate
of β in the presence of gene-environment endowment correlations.

There is an another form of gene-environment interaction that merits consideration if “envi-
ronment” is interpreted to include observed right-side variables such as schooling xij. Eq. (2) is
written in a linear form, which means that the marginal impact of schooling xij on fertility yij

of twin i in pair j is assumed to be a constant β independent of the genetic—and social, for that
matter—endowments. While this linear form is widely used, the approach above can be modi-
fied to accommodate some alternative functional forms with different implications. For example,
if log-linear functions are used by defining the variables to be all in logarithmic form, the marginal
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impact of schooling xij on fertility yij no longer is, by assumption, the constant β independent of the
genetic and social endowments. Instead this marginal effect is β multiplied by yij/xij. In this spec-
ification, thus, this marginal effect depends on both genetic and social endowments because yij/xij

depends on both genetic and social endowments. This particular specification is restrictive to be
sure regarding the possible interactions between endowments and schooling. And given that the
endowments are unobserved latent variables, more flexible specifications are not easily tractable.
But it does permit at least some exploration of schooling–endowment interactions.

3.2 Correlated cross-equation shocks

Perhaps the most emphasized criticism of the economic fixed-effects approach to the analyses of
twins data (as opposed to more general criticisms that also apply to other uses, such as that twins
are basically different from singletons), pertains to the assumption noted above that the path eyx

in Figure 1 and Eq. 2 is assumed to be zero. As mentioned earlier, this assumption implies that
the individual-specific shock Ex

ij to schooling x does not have a direct effect on the fertility yij. If
this assumption holds, the individual-specific factors affecting schooling are not correlated with
the individual-specific factors affecting fertility y. On the other hand, if between-twins differences
in schooling reflect unobserved factors that also directly determine fertility (or whatever is the de-
pendent variable in Eq. 2), the estimated schooling-fertility association is still biased in the within-
twins estimator (Bound and Solon 1999; Griliches 1979). Somewhat more formally, suppose that
there exists a path eyx in Eq. (4) such that the unobserved individual shocks Ex

ij have a direct effect
on fertility y as in

yij = βxij + ayx Ax
ij + cyxCx

j + eyxEx
ij + ayy Ay

ij + cyyCy
j + eyyEy

ij. (5)

In this case, the individual-specific influences affecting schooling xij and fertility yij are correlated
because some of the unobserved individual twin-specific factors contained in Ex

ij affect directly
both the schooling and fertility of twin i in pair j. Hence, if eyx 6= 0, some of the shocks affecting
schooling are “persistent” and also affect later-life outcomes such as fertility; if eyx > 0, then the
impact of the persistent shock on schooling is in the same direction as the impact on fertility, and
schooling and fertility are affected in opposite directions if eyx is negative. An example for the
latter case, for instance, is an unintended teenage pregnancy that disrupts schooling and increases
completed fertility.

Within-MZ-twins estimators are obtained by subtracting relations (1) and (5) within twins pairs.
While the unobserved endowment components Ay

ij, Ax
ij, Cx

j and Cy
j are, again, swept out when us-

ing this within-MZ estimator, there remains the difference in the unobserved twin-specific persis-
tent shocks:

xMZ
1j − xMZ

2j = exx(Ex
1j − Ex

2j) (6)

yMZ
1j − yMZ

2j = β(xMZ
1j − xMZ

2j ) + eyy(Ey
1j − Ey

2j) + eyx(Ex
1j − Ex

2j) (7)

Because of the presence of eyx in Eq. (7), therefore, the unobserved determinants of schooling dif-
ferences within twins pairs are correlated with the unobserved residuals affecting differences in
fertility within twins pairs. The within-MZ estimator in equation (7) thus no longer gives an unbi-
ased estimate of the effect β of schooling on fertility. The sign of the bias is determined by the sign
of the correlation of the unobserved factors in Eqs. (7–7), which is equal to the sign of eyx. This sign
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is positive (negative) if the impact of the shock on schooling is in the same (opposite) direction as
the impact of the shock on fertility. The estimate of β from equation (7), then, is an overestimate (un-
derestimate) or upper (lower) bound of the true value of β. For example, if more favorable in utero
environments due to proximity to the placenta increase both schooling and fertility beyond any
effect through schooling, as might be suggested by the results in Behrman and Rosenzweig (2004),
then the estimate of β from equation (7) is an overestimate of the true value of β. Although in utero
influences receive considerable attention, this overestimate due to positively correlated shocks is
not limited to the early life course: the same holds if an accident or illness limits schooling and has
persistent effects on later fertility.

Empirical studies have examined some of the implications of these concerns. Some studies,
for example, have explored how sensitive the estimates of interest are to the exclusion of outliers
regarding schooling differences between twins based on the argument that large differences are
more likely to be based on persistent factors that directly affect both schooling and fertility in rela-
tion (2). In some cases, excluding such outliers does not change the estimates substantially (Amin
and Behrman 2010a,b; Amin et al. 2010), but in at least one case it does. Amin (2010) reports that the
Bonjour et al. (2003) estimates change a great deal if a single outlier is eliminated. Another possible
approach is to include additional variables that might have persistent effects on both schooling and
the outcome of interest, such as measures of cognitive ability (Behrman et al. 1980) or birth weight
(Amin et al. 2010). In these two cases, the estimates of interest are not changed much by including
these additional controls, but other applications could reveal different results.

In certain contexts, when the data include variables that satisfy the conditions for an instrumental
variable in the within-MZ model, a instrumental variable estimation of the within-MZ model—to
which we refer as within-MZ IV approach—can provide a direct test of the assumption that eyx = 0.
And if this assumption is rejected, the within-MZ IV model can provide an estimate for the effect
of schooling on fertility under the condition that eyx 6= 0. Finding a valid instrument that can be
used in combination with within-MZ analyses can sometimes be challenging, as these instruments
need to predict differences in schooling x within identical twins, but affect fertility y only through
the effect on schooling. On the one hand, one can envision for the estimation of the within-MZ
IV model an instrument z that is completely exogenous in the sense that it predicts x but is not
correlated with any of the unobserved endowments that affect the schooling x and fertility y. In
the context of twins reared together, instruments meeting these criteria are likely to be rare, though
random assignment to different teachers who inspire different degrees of schooling might provide
good instruments.

Within the within-MZ framework, however, an acceptable instrument can be found under much
weaker conditions. In particular, in observational studies, it is more likely that there exists a vari-
able z that is correlated with the genetic and social endowments that affect x and y, but is not
correlated with the individual-specific environmental effects that affect schooling x and/or fertility
y. An example that has been used in the context of the economic twins model is birth weight, where
the birth weight of each twin in a pair is likely to be affected by common endowments. But in the
case of the effect of studying the effect of schooling x on fertility y it might be reasonable to assume
that the effect—net of endowments—of birth weight on fertility works only through the effect of
birth weight on schooling. More formally, a suitable instrument z for the within-MZ IV approach is
provided by a variable z that depends on the social and genetic endowments that affect schooling x
and/or fertility y, and is additionally determined by its own set of social and genetic endowments
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and individual-specific influences in the form:

zij = azx Ax
ij + czxCx

j + azy Ay
ij + czyCy

j + azz Az
ij + czzCz

j + ezzEz
ij,

with schooling xij being determined by both zij and the endowments Ax
ij and Cx

ij as

xMZ
ij = δzij + axx Ax

j + cxxCx
j + exxEx

ij,

and fertility yij depending, as is given in Eq. (5), on the endowments (Ax
ij, Cx

j , Ay
ij and Cy

j ), the
individual-specific shocks to fertility Ey

ij, and additionally, also on the individual-specific shocks Ex
ij

to twin i’s schooling.
In this case, a valid instrument for the within-MZ IV approach can therefore depend on the

social and genetic endowments, as long as it affects schooling zij and is not correlated with the
individual-specific shocks Ex

ij and Ey
ij that affect schooling xij and fertility yij respectively. If such

an instrument exists, an unbiased estimate of the effect β of schooling on fertility can be obtained—
even if eyz 6= 0 in Eq. (5)—by regressing the within-MZ difference in fertility y,

yMZ
1j − yMZ

2j = β(xMZ
1j − xMZ

2j ) + eyy(Ey
1j − Ey

2j) + eyx(Ex
1j − Ex

2j) (8)

on the within-MZ difference in schooling x,

xMZ
1j − xMZ

2j = δ(zMZ
1j − zMZ

2j ) + exx(Ex
1j − Ex

2j), (9)

using the within-MZ difference in z, zMZ
1j − zMZ

2j = ezz(Ez
1j − Ez

2j), as an instrument for the within-
MZ difference in schooling xMZ

1j − xMZ
2j . Because these within-MZ IV analyses difference out all

endowments that are shared by twins within a twins pair, and only because this is the case, the
difference zMZ

1j − zMZ
2j is a valid instrument in that it is not correlated with the unobserved residuals

for the within-MZ schooling and fertility differences in Eqs. (8) and (9) .

3.3 Cross-twins endowment effects

In some applications of the within-MZ model in Figure 1 it might seem plausible that the value
of xij of twin i in pair j is affected by the endowments of i’s co-twin k. For example, in contexts
where x measures schooling attainment, it might be reasonable to assume that a particularly high
genetically-determined “ability” of i’s co-twin k has a positive spill-over effect on i, and that as a
result of k’s endowments and high ability, twin i attains a higher level of schooling than would
otherwise be the case. To capture this possibility, Eq. (1) can be modified as

xij = ao
xx Ax

ij + ac
xx Ax

kj + cxxCx
j + exxEx

ij, (10)

where ac
xx is the effect of a twin’s own genetic endowments on twin i’s schooling attainment xij,

and ac
xx is the effect of the co-twin’s genetic endowment on i’s schooling.6 Obtaining the within-

MZ estimator by differencing within monozygotic twins pairs the relations (10) and (2) then shows
that the cross-endowment effects as specified in Eq. (10) do not bias the within-MZ estimator, and
conditional on the other assumptions of the within-MZ approach being satisfied, analyses that
focus on the differences in schooling x and fertility y within MZ twins continue to provide an

6More generally, ac
kj can also represent the effect of any other sibling’s specific endowments on i’s schooling attainment.
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unbiased estimate of the causal effect β of schooling on fertility.

3.4 Social interactions: Twins reacting to each other

A somewhat related concern in twins studies pertains to the empirical implications of one twin’s
behavior occurring in reaction to the other. For example, twin i’s schooling attainment could be
affected—positively in the case of imitation, or negatively in the case of competition for scarce
resources such as money or parental time or by efforts of one twin to distinguish herself/himself
from her/his co-twin—by the co-twin k’s schooling attainment. The implications of such social
interactions for the fixed-effects approach, which are somewhat distinct from the case of cross-twins
endowments explored in Section 3.3 above—can be investigated by introducing a social interaction
parameter s into the framework in Figure 1. In particular, in the context of social interactions, a
shock to co-twin k’s schooling will have implications for i’s schooling attainment because of the
social interaction among twins, while in the case of cross-twins endowment effects discussed in
the previous section, twin i’s schooling responds only to the co-twin k’s endowment but not to
k’s specific schooling attainment that is a function of both k’s endowments and individual specific
shocks.

The implications of social interactions with respect to schooling can be investigated by aug-
menting our earlier framework in relations (1) and (2) with a cross-twins effects on schooling x,
where the cross effects are assumed to be less than the own effects (|s| < 1). Specifically, social
interactions on x among twins can be incorporated as

xij = axx Ax
ij + cxxCx

j + exxEx
ij + sxkj

= axx Ax
ij + cxxCx

j + exxEx
ij + s(axx Ax

kj + cxxCx
j + exxEx

kj + sxij),

where sxkj is the effect of co-twin k’s schooling, denoted xkj, on twin i’s schooling attainment xij.
The corresponding within-MZ expression can then be obtained as:

xMZ
ij − xMZ

kj =
exx(Ex

ij − Ex
kj)

1 + s
.

This relation suggests that: (i) the usual MZ fixed-effects estimator is unbiased even though the dis-
turbance term includes Ex

kj in addition to Ex
ij under the assumption that the maintained assumption

that Ex
ij does not enter the disturbance term in Eq. (2), which means that, as is intuitively appealing,

the schooling difference is less (more) than the difference in the random shocks that affect schooling
if there is imitation (reaction).

Instead of a social interaction processes that affects schooling x, we can assume a cross-twins
effect that affects y, say, because twins imitate each others’ fertility behavior, with the social inter-
action effect less than the own effect so that |s| < 1:

yij = βxij + ayx Ax
ij + cyxCx

j + ayy Ay
ij + cyyCy

j + eyyEy
ij + sykj

The manipulation of this relationship parallel to that for Eq. (11) leads to

yMZ
1j − yMZ

2j =
β(x1j − x2j) + eyy(Ey

ij − Ey
2j)

1 + s
.

In the case of social interactions regarding fertility y, and in contrast to our earlier discussion in this
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section of social interactions on schooling x, this relation suggests that the usual twins estimator of β

is biased downwards (if s > 0) or upwards (if s < 0) even if eyx = 0 because of the imitation/reaction
effects with respect to the fertility y.

In summary, if there are social interactions—either in the form of imitation or reaction—with
respect to the right-side determinant, such as schooling in relation (2), there is no bias in either
direction for the MZ fixed-effects twins estimator. But if there are social interactions with regard to
the dependent variable, such as fertility in relation (2), the estimated β is a lower bound if there is
positive imitation (if s > 0) and an upper bound if there is negative imitation (reaction) with s < 0.
If there is positive imitation on the outcome y, the maximum downward bias is 50%, but the actual
bias is likely to be considerably less because the maximum is for the unlikely situation in which the
twin’s fertility is weighted as much as the own direct determinants of one’s own fertility

3.5 Classical Measurement Error

Another critique of twins fixed-effects estimates—or, for that matter, of any fixed-effects estimates—
pertains to the consequences of classical random measurement error. Because much more of the
variation in schooling is across twins pairs rather than within twins pairs, the fixed-effects estima-
tor filters out much of the true signal of schooling without also reducing measurement error (Bishop
1977; Griliches 1979). Because of this larger noise-to-signal ratio, the fixed-effects twins estimator is
subject to more of the measurement error bias towards zero than is the cross-twins pairs or simple
cross-sectional estimator. If the coefficient estimate from the fixed-effects twins estimator is smaller,
it may be because it controls for the endogenously determined part of schooling or because of the
larger bias due to measurement error or due to some combination of these two factors.

To see the impact of measurement error, assume that measured schooling xij is linearly related
to true schooling x∗ij but is measured with random measurement error εij:

xij = x∗ij + εij

Bishop (1977) and Griliches (1979) show that if measurement error is not correlated across siblings,7

the bias towards zero in β̂w, the estimated within-sibling coefficient β, is:

plimβ̂w = β
1− σ2(εij)

σs(x∗ij)(1− ρx)
(11)

where ρx is the correlation in schooling between siblings (which is zero in standard individual
estimates). This bias towards zero due to measurement error is likely to be greater for within-DZ
estimates than for individual estimates and for within-MZ estimates than for within-DZ estimates
because ρx is likely to be positive and greater for MZ than DZ twins.

Table 1 gives some illustrations, with each row representing different noise-to-signal ratios
σ2(εij)/σs(x∗ij) as given in column 1; the percentage biases in individual, within-DZ and within-
MZ estimates due to measurement error in columns 2–4, and the ratios of the coefficients from DZ
estimates and MZ estimates to individual estimates due to measurement error in columns 5 and 6.

7If the correlation in measurement error between siblings (ρε) is nonzero, plimβ̂w = β[1− ϕσ2(εij)σ
s(x∗ij)], where ϕ =

(1− ρw)/(1− ρx). Note that the measurement error bias in the within-sibling estimate is decreasing in ρw and is less in
the within-sibling estimate than in the standard estimate if ρw > ρx . We are not aware of any estimates of ρw. But what
appears to be random noise in cross-sectional data may have a family component if the measurement error is due to such
unobserved factors as exaggeration or modesty or to failure to control for school quality, all of which may be shared by
siblings.
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Table 1: Implications of Random Measurement Error for Individual, Within-DZ, and Within-MZ
estimates

Noise-to- Biases towards zero in Ratio of estimated
signal estimated βs βs due to measurement
ratio (percentages) error biases alone

σ2(εij)

σ2(x∗ij)
Individual Within DZ Within MZ Within DZ/ Within MZ/

Individual Individual

(1) (2) (3) (4) (5) (6)

0.02 2% 4% 8% 0.98 0.94
0.04 4% 8% 16% 0.96 0.88
0.06 6% 12% 24% 0.94 0.81
0.08 8% 16% 32% 0.91 0.74
0.10 10% 20% 40% 0.89 0.67
0.12 12% 24% 48% 0.86 0.59
0.14 14% 28% 56% 0.84 0.51
0.16 16% 32% 64% 0.81 0.43
0.18 18% 36% 72% 0.78 0.34
0.20 20% 40% 80% 0.75 0.25
Note: Based on equation (11) in text with ρx = 0 for individuals, 0.50 for DZ twins and 0.75
for MZ twins.

Twins studies that have reports from other respondents (i.e., the other member of a twins pair,
the twins’ adult children), so that they can estimate measurement error models, report estimated
noise-to-signal ratios of 0.04–0.12 (Amin et al. 2010; Ashenfelter and Krueger 1994; Ashenfelter
and Rouse 1998; Behrman et al. 1994). Therefore a noise-to-signal ratio of about 0.08 is suggestive
of the extent of bias due to measurement error near the midpoint of the range of noise-to-signal
estimates from these studies and how these biases differ across the three types of estimates: 8% for
individual estimates, 16% for within-DZ estimates, and 32% for within-MZ estimates. Thus fairly
substantial drops in the coefficient estimates for the within-DZ and within-MZ estimates occur due
to measurement errors of this magnitude, even if in reality there are no biases due to unobserved
endowments. These measurement error biases result in the coefficient estimates for the within-
DZ estimates being 9% smaller and those for the within-MZ estimates 26% smaller in absolute
magnitude than those for the individual estimates. Behrman et al. (1980) observed that estimates
of noise-to-signal ratios from other studies could account for up to half of the difference between
their fixed-effects estimates and OLS estimates. Ashenfelter and Krueger (1994) and Behrman et al.
(1994) introduced the use of another report on the twin’s schooling to instrument schooling and
therefore eliminate the bias due to measurement error under the assumption that the measurement
error in the other report is independent of the measurement error of one’s own. Both studies find
that this method for controlling for measurement error increases the estimated returns to schooling
in comparison with estimates that do not correct for measurement error.8

8Ashenfelter and Krueger also find that correcting for measurement error leads to larger estimates than found by conven-
tional ordinary least squares models. Behrman, Rosenzweig and Taubman and subsequent studies using this method have
yielded measurement-error corrected estimates that are usually less than the OLS estimates, suggesting that conventional
cross-sectional estimates of the schooling-wage association are, in any case, too large.
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Figure 2: ACE model for the analyses of genetic, shared environmental and unique environmen-
tal components to variation in phenotype x

4 Behavioral Genetics Structural Equation Models for Twins Re-

semblance

In contrast to the economic approach that has been outlined above, the behavioral genetics ap-
proach to twins data has traditionally been concerned with identifying the contributions of genetic
and social endowments to variation in phenotypes, and to use this approach to measure aspects
such as the “heritability” of phenotypes that reflects the proportion of variance of a phenotype in
a given population that is attributable to genetic factors. We briefly discuss in this section the uni-
variate behavioral genetics model, but then focus on the bivariate behavioral genetics (ACE) model
that is more closely related to the economic approach discussed in the previous sections. The em-
phasis in interpreting the results, and the assumptions underlying the analyses, however differ in
important ways between the economic and behavioral genetics approaches to twins data, and these
differences will be highlighted in our discussion below.

4.1 Univariate ACE model

Resemblance between twins can be modeled using a two-group structural equation model fit to
variance-covariance matrices. Figure 2 presents the basic ACE model for a single phenotype xij

(say, schooling). Parallel to the discussion of the MZ fixed-effects twins model above, the three
latent components in the model refer to additive genetic influences (Aij), common environmental
influences (Cij), and unique environmental influences (Eij). These unobserved latent factors are
independently distributed and standardized to a mean of zero and a variance of one.9 The ACE
model is usually identified (as for heritability), by assuming different correlations between different
types of twins. The ACE model is often limited to MZ and same-sex DZ twins, although other
models, such as the sex-limitation model, consider cross-sex DZ pairs. The C factors are correlated
at 1, as they denote environments shared by twins, and therefore C1j = C2j = Cj. The Aij factors
are correlated at different levels depending on the type of twins. Because they represent unique
influences (including measurement error) affecting only twin i in pair j, the Eij factors are not

9For a detailed discussion of this ACE model and similar approaches for the study of twins and families, see for example
Neale and Maes (2004).
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correlated within twins pairs.10,11

Formally, the univariate behavioral genetics approach usually assumes an additive genetic
model with no assortative mating and with equal environmental influences across kinship cate-
gories.12 In this additive genetic models, multiple genes each have small effects on a particular
phenotype xij (e.g., schooling), and the overall influence of genetic factors on the phenotype xij can
then be represented as aAij, where Aij is the relevant genetic endowment that affects the phenotype
xij, and a measures the extent to which xij is affected by this genetic endowment. In order to estab-
lish the degree of genetic relatedness among DZ twins, an additional assumption about assortative
mating is required. Since traditional twins data often do not provide information that would allow
the identification of assortative mating, traditional behavioral genetics analyses assume that there
is no assortative mating.13 In this case, an immediate corollary of the additive genetic model is that
the correlation in genetic endowments between DZ (fraternal) twins is Cor(ADZ

1j , ADZ
2j ) = .5. This

correlation of .5 in DZ twins occurs because in the additive genetic model, DZ twins (like ordinary
siblings) share 50% of their genes on average. For MZ twins, who share all of their genes at concep-
tion, this correlation is equal to one at conception. In the path diagram in Figure 2 the paths linking
the genetic endowments of twins 1 and 2 therefore have a value of 1 for MZ and .5 for DZ twins.

Similar to the structure of the economic model that we outlined above, the behavioral genetics
model can then be presented (again, as deviations from the means) as

xij = aAx
ij + cCx

ij + eEx
ij (12)

where Aij, Cij and Eij are independently distributed latent factors, standardized to a variance of
one, that represent respectively the additive genetic, shared environmental and unique environ-
mental influences on the observed phenotype xij of twin i in pair j. This specification for the deter-
minants of the phenotype xij is analogous to the relation (1) that we specified for schooling in our
earlier discussion of the within-MZ model in Section 2.

Assuming an additive genetic model with no assortative mating, the correlations of the genetic
endowments within twins pairs is Cor(ADZ

1j , ADZ
2j ) = .5 for DZ twins and Cor(AMZ

1j , AMZ
2j ) = 1 for

MZ twins. Shared environmental factors, or social endowments, are assumed to be identical for
both members of a twins pair (Cor(C1j, C2j) = 1, independent of zygosity), and the individual-
specific influences are independent within twins pairs. Stacking the observed phenotype for both
twin 1 and twin 2 in a twins pair into a vector P, which in the case of the univariate ACE model
means that Pj = (xij, x2j)

′, then allows us to then obtain the variance and covariances of the ob-

10The ACE model can be fit using any structural equation program, but some programs are better for samples of relatives.
Mx (and more recently, its successor OpenMx) is perhaps the single most popular program for estimating behavioral ge-
netics models, but other programs have functions that are also well-suited (Neale et al. 2006; OpenMx Development Team
2010). On their webpage, for example, M-Plus provides example scripts for assorted models using twins, including those
discussed here. Likewise LISREL scripts are provided in Neale and Cardon (1992).

11The ACE model can easily be generalized to other relatives by focusing on the correlation among the A factors, as
for example, parents and offspring share 50% of genes, half siblings 25%, first-cousins 12.5%, and so on. Such models
also require making assumptions regarding C, which are less definitive than assumptions regarding A. Identifying genetic
influences also requires relatives who differ in their level of shared genetic variance, which means that surveys in which all
members of a household are interviewed are usually not sufficient for calculating heritability, as the expected child-parent
and child-child correlations are all 0.5.

12In addition to additive genetic factors, the model can easily be modified to include dominance effects; in standard twins
data, however, additive genetic contributions cannot be distinguished from dominance genetic effects, except under the
restrictive assumption of no shared environmental influences, and our discussion therefore focuses on the additive genetic
model; for a more extensive discussion of how additive and dominance genetic influences can be incorporated in twins and
sibling analyses, see Neale and Maes (2004).

13Twins data that include information about the characteristics of spouses can potentially identify the extent of assortative
mating and can include this aspect explicitly in the analyses (see Neale and Maes 2004). In addition, the assumption of no
assortative mating in behavioral genetics analyses tends to be “conservative” in the sense that estimates of heritability in
traditional behavioral genetics analyses will be biased towards zero if there is positive assortative mating.
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served phenotypes for MZ twins (denoted VMZ
P ) and DZ twins (denoted VDZ

P ) as

VMZ
P = EMZ[PP′] =

(
a2 + c2 + e2 a2 + c2

a2 + c2 a2 + c2 + e2

)

VDZ
P = EDZ[PP′] =

(
a2 + c2 + e2 .5a2 + c2

.5a2 + c2 a2 + c2 + e2

)
,

where the subscript j for twins pairs has been omitted for simplicity and EMZ and EDZ denote the
expectation operators taken for MZ and DZ twins respectively.

Heritability (usually denoted h2) in the behavioral genetics literature is defined as the ratio
of the variance of the genetic contributions to x, which are given by of aAij in Eq. (12), to the
variance in the phenotype x for a given population. In the univariate ACE model, heritability h2

is obtained as a2/(a2 + c2 + e2) = a2/σ2
x , where a2 is the total genetic variance in the phenotype x,

and σ2
x = a2 + c2 + e2 is the overall variance of x. In a similar fashion, the proportion of the variance

that can be attributed to social endowments (or shared environmental factors) in this model can be
obtained as c2/(a2 + c2 + e2) = c2/σ2

x .
An important advantage of the ACE model to obtain estimates of the heritability and the under-

lying parameter a, c and e, is the transparency of the approach and the flexibility of its assumptions.
As with other structural equation models, the assumptions of the ACE model can be relaxed di-
rectly based on theory and the relative fit of different models evaluated empirically using, in many
cases, tests for nested models. For example, if one assumes no genetic influence on a phenotype, a
model that freely estimates a can be compared with a model that constrains a to zero. Likewise, if
one knows that DZ twins share more than 50% of their genes owing to assortative mating, the corre-
lation between the A components can be increased (e.g., Neale and Maes 2004). More complicated
explorations are possible, but require additional information for identification.14

4.2 Bivariate ACE model

Of particular relevance to our previous discussion about the use of twins data in economics is the
extension of the ACE model to multivariate contexts. We focus here particularly on the bivariate
case where the observed phenotypes include xij (say schooling) and yij (say fertility) of twin i in
pair j. While several observationally-equivalent specifications for the bivariate behavioral genetics
model are possible, Figure 3 shows the most common specification that includes two latent additive
genetic components (Ax

ij and Ay
ij), two additive latent shared environmental components (Cx

ij and
Cx

ij), and two latent unique environmental components Ex
ij and Ey

ij.
15 As in the univariate model,

within a twins pair, the genetic and shared environmental components are correlated within twins
pairs. Assuming an additive genetic model with no assortative mating, as is done in most appli-
cations, the correlation for the genetic endowments Ax

ij and Ay
ij within-pairs is .5 for DZ and 1 for

MZ twins, the correlation for shared environmental factors is 1, and hence Cx
1j = Cx

2j = Cx
j and

Cy
1j = Cy

2j = Cy
j independent of zygosity. The unique environmental factors Ex

ij and Ey
ij are not

correlated within twins pairs.
14In addition to the structural equation (ACE) approach to estimating heritability, DeFries and Fulker (1985) propose

a method of estimating heritability (h2) and common environmental influences (c2) with twins data by a simple linear
regression of a twin’s trait on the co-twin’s trait and the degree of genetic relatedness (see also Kohler and Rodgers 2000).
In addition, several extensions of DeFries-Fulker (DF) analyses have been proposed that allow the consideration of genetic
non-additivity (Waller 1994), observed differences in non-shared environment (Rodgers et al. 1994), and binary or censored
observations (Kohler and Rodgers 1999).

15This specification is also sometimes referred to as the Cholesky decomposition because it is based on a decomposition
of the variance-covariance matrix into lower triagonal matrices that is known as “Cholesky decomposition”.
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Figure 3: Bivariate ACE model for schooling and fertility
Note: This graph shows the path-diagram for one twin, twin i in pair j only; an analogous diagram exists for twin k
in pair j, and the genetic and shared environmental components are correlated across twins within the same pairs as
Cor(Ax

1j
MZ, Ax

2j
MZ) = Cor(Ay

1j
MZ, Ay

2j
MZ) = 1 for MZ twins, Cor(Ax

1j
DZ, Ax

2j
DZ) = Cor(Ay

1j
DZ, Ay

2j
DZ) = .5 for DZ twins,

Cor(Cx
1j, Cx

2j) = Cor(Cy
1j, Cy

2j) = 1 independent of zygosity, and Cor(Ex
1j, Ex

2j) = Cor(Ey
1j, Ey

2j) = 0 also independent of
zygosity.

The bivariate ACE model is attractive because it allows for the possibility that schooling and
fertility are affected by common genetic factors, or are similarly affected by the same shared en-
vironmental influences. For example, the paths axx and cxx indicate, respectively, the effects of
the latent genetic component Ax and shared environmental component Cx

ij on schooling xij, while
the paths ayx and cyx reflect the effect of these latent genetic and shared environmental factors on
fertility yij.16 The path exx measures the possibly effect of the unique environmental factors Ex

on schooling x, and the path eyx measures the effect of the unique environmental component Ex

on fertility y. In addition, fertility y is affected by additional genetic, shared environmental and
unique environmental components Ay, Cy and Ey that contribute to variation in fertility, but not to
variation in schooling.

In a close resemblance to the economic twins model outlined earlier in this paper, the relation-
ship between the observed phenotypes, xij and yij to the latent genetic, share environmental and
unique environmental factors are specified as

xij = axx Ax
ij + cxxCx

ij + exxEx
ij (13)

yij = ayx Ax
ij + cyxCx

ij + eyxEx
ij + ayy Ay

ij + cyyCy
ij + eyyEy

ij, (14)

where in contrast to the economic model in Section 2 there is no direct effect β of schooling x on
fertility y and the model allows for a direct influence of the individual-specific factors affecting
schooling, Eij, on fertility y (i.e., the path eyx in relation 14 can be non-zero).

To derive the variance-covariance matrix in the bivariate ACE model of the observed pheno-
types, stacked again in a vector P = (x1j, y1j, x2j, y2j)

′, it is useful to arrange the coefficients of the

16The presentation of the bivariate ACE model uses the “Cholesky decomposition approach” of presenting this model;
while this is the most frequently used bivariate ACE specification, there are other specifications of the latent genetic and
social endowments that are observationally equivalent (Neale and Cardon 1992; Neale and Maes 2004).
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path diagram in Figure 3 (see also Eqs. 13–14) into lower triangular matrices as

La =

(
axx 0
ayx ayy

)
, Lc =

(
cxx 0
cyx cyy

)
, Le =

(
exx 0
eyx eyy

)
,

with their corresponding products being given by A = LaLa
′, C = LcLc

′, and E = LeLe
′. Main-

taining the assumption of an additive genetic model with no assortative mating, we then can obtain
the variance and covariances of the observed phenotypes P = (x1j, y1j, x2j, y2j)

′ for MZ twins (de-
noted VMZ

P ) and DZ twins (denoted VDZ
P ) as

VMZ
P = EMZ[PP′] =

(
A + C + E A + C

A + C A + C + E

)
(15)

VDZ
P = EDZ[PP′] =

(
A + C + E .5A + C

.5A + C A + C + E

)
, (16)

where EMZ and EDZ denote again the expectation operator taken for MZ and DZ twins respectively.
The expected variance of the phenotypes, σ2

x for x and σ2
y for y in the bivariate ACE model is

equal for MZ and DZ twins and can be obtained from Eqs. (15–16) as σ2
x = a2

xx + c2
xx + e2

xx and
σ2

y = a2
yx + a2

yy + c2
yx + c2

yy + e2
yx + e2

yy. In addition, Table 2 provides co-variances that are implied
by the bivariate ACE model in Eqs. (15–16) as a function of the path values in Figure 3. While there
are a total of 20 variances and covariances in the data they correspond to only nine unique moment
conditions when stated as functions of the coefficients axx, ayx, ayy, cxx, cyx, cyy exx, eyx and eyy. The
nine parameters of the bivariate ACE model in Figure 3 are therefore exactly identified with data
on twins reared together.

In most empirical applications, similar to the univariate behavioral genetics model, the bivari-
ate ACE model in Figure 3 and Eqs. (13–14) has primarily been used to decompose the variance
in the observed phenotypes x and y, say schooling and fertility, into the latent genetic, shared en-
vironmental and unique environmental components (Coolidge et al. 2004; Willcutt et al. 2007). In
addition, the bivariate ACE model in Figure 3 can reveal that a certain fraction of the variance in
fertility y is due to genetic factors that also contribute to variation in schooling x (path ayx), and
that another part of the variation in fertility is due to genetic factors that contribute to fertility but
not schooling (path ayy). For example, Table 3 shows the contributions of genetic endowments to
the variance and co-variance matrices implied by ACE model in Eqs. (15–16). The heritability of
schooling x, using the genetic contributions given in Table 3, is then obtained from the top panel
(VMZ

a for monozygotic twins) as h2
x = a2

xx/(a2
xx + c2

xx + e2
xx) = a2

xx/σ2
x , where the numerator is

the genetic variance and the denominator is the overall variance of x. Analogously, the heritabil-
ity of fertility y is given by h2

y = (a2
yx + a2

yy)/(a2
yx + a2

yy + c2
yx + c2

yy + e2
yx + e2

yy) = (a2
yx + a2

yy)/σ2
y ,

where a2
yx in the numerator and denominator reflects the contribution to the genetic variance in

fertility y that stems from genetic factors that also affect schooling. In a similar vein, the ratio
axxayx/(axxayx + cxxcyx + exxeyx) is the fraction of the covariance between schooling x and fer-
tility y within each individual that can be attributed to genetic factors that affect both schooling
and fertility, and axxayx/

√
a2

xx(a2
yx + a2

yy) is the correlation between the genetic endowments that
affect schooling x and the genetic endowments that affect fertility y. Similar calculations can be
conducted for social endowments (shared environments) and individual-specific factors.

For example, using data on Danish twins born between 1953 and 1970 and who participated in
a survey in 1994, Kohler and Rodgers (2003) conclude that a bivariate behavioral genetics analy-
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Table 3: Contribution of genetic endowments to the variance and co-variance matrices implied
by ACE model in Eqs. (15–16)

MZ Twins: VMZ
a

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j a2
xx

y1j axxayx a2
yx + a2

yy

x2j a2
xx axxayx a2

xx

y2j axxayx a2
yx + a2

yy axxayx a2
yx + a2

yy

DZ Twins: VDZ
a

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j a2
xx

y1j axxayx a2
yx + a2

yy

x2j .5a2
xx .5axxayx a2

xx

y2j .5axxayx .5(a2
yx + a2

yy) axxayx a2
yx + a2

yy

Note: One set of unique elements of the table are given in
black, while duplicate elements given in gray.

sis confirms earlier findings that fertility in low-fertility settings, such as contemporary Denmark,
is subject to important genetic influences, while at the same time, the bivariate model shows the
new and somewhat unexpected result that genetic variance in fertility is not necessarily shared
with genetic variance in completed schooling (measured in years of tertiary schooling). Instead,
Kohler and Rodgers’ results show that for both males and females most genetic variance in fertility
is residual variance that affects the number of children but not schooling attainment. Overlap-
ping influences mainly exist for shared environmental factors analyses of females, where all shared
environmental factors affecting fertility also affect schooling.

5 Introducing causal pathways between phenotypes: Extending

the ACE framework

While univariate, bi- and multivariate behavioral genetics models have been widely used in the be-
havioral genetics literature, and have received some interest from social scientists, their use within
the social sciences remains limited. One possible reason for this is that, from a social science per-
spective and in light of our earlier discussion of the economic approach to twins data, the behav-
ioral genetics model in Figure 3 is not fully satisfactory because it attributes the association between
schooling x and fertility y exclusively to the latent components in this model that reflect genetic,
shared environmental or unique environmental factors. Specifically, schooling and fertility within
each individual in this ACE model are correlated because at least one of the paths ayx, cyx or eyx is
non-zero. In addition, a non-zero pathway ayx or cyx implies that fertility and schooling are corre-
lated between twins within the same twins pair. The ACE model, however, does not allow for the
possibility that there is a direct effect of schooling x on fertility y, i.e., it explicitly ignores a direct
pathway from schooling and fertility, a pathway that has been subject of an extensive literature in
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Figure 4: Extended bivariate ACE model with direct effect of schooling on fertility

the social sciences and the identification of which is the primary goal of the economic model for
twins data discussed earlier.

Therefore, in order to allow for a direct effect of schooling on fertility, as is shown in Figure
4, it is desirable to introduce causal pathways between the variables x and y in the bivariate ACE
model. However, while conceptually appealing, the ACE model in Figure 4 is not empirically
identified in twins or other family data. If one allows for the direct pathway from schooling to
fertility, the data do not contain enough moment conditions to identify all pathways included in
the model. Moreover, this lack of identification cannot be overcome by using an extended twins
design that would include other siblings that have a different degree of genetic relatedness or that
include twins reared apart because identification of all pathways in Figure 4 would require more
moments between the observed variables for each twin within a twins pair (see also Table 4).

While there have been some models in the behavioral genetics tradition that include causal
pathways, such as for example directed causality models (e.g., Gillespie and Martin 2005; Gillespie
et al. 2003; Heath et al. 1993), these approaches are targeted for research questions that are differ-
ent from the ones emphasized in this paper. In particular, directed causality models are aimed at
identifying the direction of causality between two variables in cases where the genetic and social
endowments for these variables are distinct. These models therefore attempt to identify whether x
has a causal effect on y, or vice versa with y having a causal effect on x, in contexts where each of
these variables is affected by its own distinct set of latent influences (endowments and individual
specific factors).17 In the contexts that are of primary interest for our discussion in this paper, the
direction of causality is usually given from the context or the sequencing during the life-course—
e.g., as in studying the causal effect of schooling attainment on completed fertility later in life—and
it is the potential presence of correlated unobserved endowments between schooling x and fertility
y that is of primary concern.

Given our previous discussion, one might conclude that there is an inherent empirical incom-
patibility between, on the one hand, the behavioral genetics analyses of schooling x and fertility y

17In Figure 4, the condition of distinct latent influences (endowments and individual specific factors) for both x and y
implies that all of the coefficients ayx , cyx and eyx are equal to zero. A direction of causality model would then try separate
of whether the path between x and y is directed from x to y (x → y) or vice versa (y→ x).
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Figure 5: Extended bivariate ACE model with direct effect of schooling on fertility, including
identifying assumption e12 = 0

within a multivariate ACE model that focuses on identifying the contributions of genetic and so-
cial endowments on the variation and covariation of the phenotypes x and y (Figure 3), and on the
other hand, the conventional social science approaches that would generally emphasize the direct
effect of schooling x on fertility y as one of the primary parameters that need to be inferred from
data (Figure 1).

This incompatibility, however, can be resolved if one is willing to make identifying assumptions
that one of the diagonal paths within the extended ACE model in Figure 4 is known a priori. Of
particular interest in this context is the extended ACE model in Figure 5 that constrains the path
eyx to zero.

It is important to emphasize that the restriction eyx = 0 is a plausible—and probably the most
plausible—identifying assumption in the extended ACE model in Figure 5. This assumption is
equivalent to the assumption that underlies the identification of the parameter β in the economic
fixed-effects model for twins analyses, and similar to our earlier discussion, this assumption implies
that the unique environmental factors that affect schooling x are assumed to affect fertility y only
through its effect on schooling, but not directly.18

The extended ACE model in Figure 5 therefore blends the economic fixed-effects approach and
the behavioral genetics bivariate ACE model. As in the twins fixed-effects model, this model in-
cludes a direct effect β of schooling x on fertility y. In addition, the diagonal paths ayx and cyx in the
extended behavioral genetics ACE model in Figure 5 also reflect the contributions of unobserved
endowments—either genetic or shared environmental factors—to both fertility and schooling. As
our earlier analyses has shown, if one of these paths is non-zero, standard estimates of the effect
β of schooling on fertility are biased. To avoid this bias, both the economic fixed-effects model in
Eqs. (1–2) as well as the extended ACE model in Figure 5 explicitly allow for the possibility that
genetic and/or social endowments jointly affect schooling x and fertility y.19

18While eyx = 0 is a plausible assumption to achieve the identification of the model parameter in the extended ACE
model, it is not the only possible assumption. Alternative assumptions are cyx = 0 or ayx = 0.

19Unique environmental influences affecting schooling x, however, are assumed to have no direct effect on fertility y, and
in both approaches, unique environmental influences on schooling are assumed to affect fertility only through their effect
on schooling.
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The extended ACE model in Figure 5 has an important advantage over the within-MZ approach
discussed earlier in this paper in that it not only provides a consistent estimate of the direct effect β

of schooling x on fertility y, like the economic model in Eqs. (1–2), but it also differentiates between
the genetic and shared environmental components contributing to the (co-)variation in schooling
x and fertility y within a population. The model therefore integrates the economic approach that
has focused on identifying the causal effects of schooling on fertility and the behavioral genetics
approach that has focused on identifying the sources of variation and covariation in schooling
and schooling in term of genetic, shared environmental and unique environmental factors. The
extended ACE model in Figure 5 achieves both of these aims.

The ability of the extended ACE model to not only infer the causal effect β of schooling x on
fertility y, but also to distinguish between the genetic and social endowments that contribute to
the variation and covariation of x and y within individuals and within twins pairs, is attained at
the cost of somewhat more restrictive assumptions. In particular, for the extended ACE model
to accurately identify the model parameters (see Figure 5), one needs to accept the assumptions
of the bivariate behavioral genetics model that are more restrictive than those required for the
economic fixed-effects model to provide an unbiased estimate of β. In particular, in addition to the
assumption that the path eyx = 0 in Figure 5, which is common to both the economic fixed-effects
model and the extended ACE model proposed in this section, the extended ACE model requires
two assumptions underlying the bivariate ACE model in order to provide accurate estimates of the
model parameters: (i) an additive genetic model with no assortative mating, which establishes the
correlation of genetic endowments between DZ twins as Cor(ADZ

1j , ADZ
2j ) = .5, and (ii) the absence

of gene-environment interactions, which implies that Ax
ij and Ay

ij are independent of Cx
ij, Cy

ij, Ex
ij and

Ey
ij.

20 In comparison, the within-MZ approach only requires the assumption that MZ twins share
their genetic endowments, but not a specific genetic model, and in the economic model, gene-
environment latent variable interactions do not affect the unbiasedness of the within-MZ estimator
of β.

More formally, the extended ACE model in Figure 5 is obtained by introducing a direct effect of
x on y into the earlier relation (14) for the ACE model that specified fertility y in terms of the latent
genetic, shared environmental and unique environmental factors. The resulting specification then
is

yij = βxit + ayx Ax
ij + cyxCx

j + ayy Ay
ij + cyyCy

j + eyyEy
ij, (17)

which is merely a restatement of the corresponding equation (2) of the economic twins model. The
relation for schooling xij is as in the standard bivariate ACE model (13), which is equivalent to the
corresponding relation of the economic twins model (1).

Stacking the observed phenotype for each twins pair as Pj = (x1j, y1j, x2j, y2j)
′, we can restate

the extended ACE model in Eqs. (13) and (17) as Pj = BPj + (I2 ⊗ La)GA
j + (I2 ⊗ Lb)GB

j + (I2 ⊗
Lc)GC

j , or equivalently, as

P = (I4 − B)−1
(
(I2 ⊗ La)GA

j + (I2 ⊗ Lb)G
B
j + (I2 ⊗ Lc)GC

j

)
,

where B = I2 ⊗
(

0 0
β 0

)
, Im is the m × m identity matrix, and GA

j , GC
j , and GE

j are the stacked

latent genetic, shared environmental and unique environmental factors that for twins pair j are

20In some cases if the data include other sibling categories in addition to twins, dominance and additive genetic effects
can be estimated; also, when the data include information on spouses, aspects of assortative mating can be considered.
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given by GA
j = (Ax

1j, Ay
1j, Ax

2j, Ay
2j)
′, GC

j = (Cx
1j, Cy

1j, Cx
2j, Cy

2j)
′ and GE

j = (Ex
1j, Ey

1j, Ex
2j, Ey

2j)
′.

Similar to the bivariate behavioral genetics model discussed in the previous section, the variance
and covariances of the observed phenotypes P = (x1j, y1j, x2j, y2j)

′ for MZ twins (denoted VMZ
P )

and DZ twins (denoted VDZ
P ) can then be obtained as

VMZ
P = EMZ[PP′] = (I− B)−1VMZ

G (I− B)′−1 (18)

VDZ
P = EDZ[PP′] = (I− B)−1VDZ

G (I− B)′−1 (19)

where the inverse (I4 − B)−1 = I2 ⊗
(

1 0
β 1

)
, EMZ and EDZ denote again the expectation op-

erator taken for MZ and DZ twins respectively, and VMZ
G and VDZ

G denote respectively the vari-
ance/covariance matrix of the combined latent genetic, shared environmental and unique environ-
mental model that are given by

VMZ
G = EMZ[(GA + GC + GE)(GA + GC + GE)′] =

(
A + C + E A + C

A + C A + C + E

)
(20)

VDZ
G = EDZ[(GA + GC + GE)(GA + GC + GE)′] =

(
A + C + E .5A + C

.5A + C A + C + E

)
. (21)

To illustrate the moment conditions that are used in the estimation of the model parameters, Table
4 gives the variance and covariances of xij and yij that implied by the extended ACE model in
Eqs. (18–19) as a function of the coefficient β and V[l, k], which refers to row l and column k of the
variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) under the maintained assumption
that eyx = 0 (see also Table 2). Specifically, the expected variances of the phenotypes, σ2

x for x
and σ2

y for y, that are implied by Eqs. (18–19) are equal for MZ and DZ twins and are given by
σ2

x = a2
xx + c2

xx + e2
xx and σ2

y = β2(σ2
x)

2 + 2β(axxayx + cxxcyx) + (a2
yx + a2

yy + c2
yx + c2

yy + e2
yx + e2

yy).
While for schooling x, the components of the variance merely reflect the influence of the three latent
factors Ax, Cx and Ex, the terms in the relation for the variance of fertility y reflect respectively the
different pathways that determine variation in y: (i) variation in schooling x that results in variation
in y because of the direct effect β of schooling x on fertility y; (ii) variation in y that results from
the fact x has a direct effect on y and the genetic and social endowments affecting schooling x
and fertility y are correlated; and (iii) the direct influences on fertility y of the genetic and social
endowments (Ax, Ay, Cx and Cy) and the unique environmental factor Ey.

In addition, Table 4 shows that the observed covariance between schooling x and fertility y for
individuals, which is given in row 2 and column 1 of the table, is the result of a direct effect of
schooling on fertility, which is measured by β, and the fact that a part of the genetic and social
endowments affecting schooling also affect fertility, which is measured by V[2, 1]. Schooling is
correlated among members of the same twins pair because the genetic and social endowments are
correlated within twins pairs, which is reflected in row 3 and column 1 of Table 4 by V[3, 1]. And
schooling of twin 1 will be correlated with the fertility of twin 2 (see row 4 and column 1) because
(i) twin 1’s schooling is correlated with twin 2’s schooling, and twin 2’s schooling has a direct effect
on 2’s fertility through β, and (ii) because the genetic and social endowments that jointly affect
schooling and fertility are correlated within twins pairs.

The variances/covariances in Table 4 are also informative because they illustrate how the effect
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Table 4: Variance and co-variance implied by extended ACE model (Eqs. 18–19)

MZ Twins: VMZ
P

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j V[1, 1]
y1j βV[1, 1] + V[2, 1] β2V[1, 1] + 2βV[2, 1] + V[2, 2]
x2j V[3, 1] βV[3, 1] + V[4, 1] V[1, 1]
y2j βV[3, 1] + V[4, 1] β2V[3, 1] + 2βV[4, 1] + V[4, 2] βV[1, 1] + V[2, 1] β2V[1, 1] + 2βV[2, 1] + V[2, 2]

Note: V[l, k] refers to row l and column k of the variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) with eyx = 0
(see also Table 2). The expected variance of the phenotypes, σ2

x for x and σ2
y for y is equal for MZ and DZ twins and can be

obtained from the above table as σ2
x = a2

xx + c2
xx + e2

xx and σ2
y = β2(σ2

x )
2 + 2β(axxayx + cxxcyx) + (a2

yx + a2
yy + c2

yx + c2
yy +

e2
yx + e2

yy).

β of schooling x on fertility y can be obtained from MZ twins, and only from MZ twins, as

β =
EMZ[y1jx1j]− EMZ[y2jx1j]

EMZ[x1jx1j]− EMZ[x1jx2j]
,

which represents—in terms of the parameters of the extended ACE model—the moment condition
that is used by the economic within-MZ model for the estimation of the causal effect β of schooling
x on fertility y.21

Within the two-fold goals of the extended ACE model to identify both the effect β of school-
ing x on fertility y, as well as the contribution of genetic and social endowments to the varia-
tion/covariation of schooling and fertility within and across individuals, the definition of heri-
tability deserves some discussion. For schooling x, the definition is analogous to the bivariate ACE
model and can be obtained from the model parameters as h2

x = a2
xx/(a2

xx + c2
xx + e2

xx) = a2
xx/σ2

x . For
fertility however, one needs to consider the fact that the genetic variation in schooling is through
three distinct pathways: first, direct influences of the genetic factors Ay on fertility y (path ayy in
Figure 5); second, direct influences of the genetic factors Ax, which also affect schooling (path ayx);
and third, indirect influences of the genetic factors Ax that directly affect schooling x (via path axx)
and subsequently affect schooling y through the causal effect of schooling on fertility (path β in
Figure 5).

One could think of heritability as the contribution of the first two pathways to the total variation
y. In this case, heritability would be defined, like in the bivariate ACE model, as (a2

yx + a2
yy)/σ2

y .22

This definition of heritability, however, would ignore the third indirect pathway through which
genetics affect fertility, i.e., the extent to which the genetic factors Ax affect fertility y through their
effect on schooling x.

To avoid this limitation, we therefore propose as a measure of heritability of y, say fertility, in
the extended ACE model that is based on the expressions in Table 4. In particular, the genetic
contributions to all the variances and covariances in the extended ACE model can be obtained in

21In particular, this relationship follows from the variances/covariances in Table 4 because

EMZ[y1jx1j]− EMZ[y2jx1j]

EMZ[x1jx1j]− EMZ[x1jx2j]
=

VMZ[2, 1]−VMZ[4, 1] + β(VMZ[2, 1]−VMZ[3, 1])
(VMZ[2, 1]−VMZ[3, 1])

and the right-side term equals to β under the assumption of the extended ACE model that eyx = 0.
22While this definition of heritability would be identical between the extended ACE and the bivariate ACE model, the

estimated heritability would differ because both models would generally yield different parameter estimates.
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Table 4 by replacing V[l, k] with VMZ
a [l, k], where VMZ

a [l, k] refers to row l and column k of the top
panel of Table 3 (for monozygotic twins). An appropriate definition of heritability in the extended
ACE model then is obtained from Table 4 as

h2
y =

β2a2
xx + 2βaxxayx + a2

yx + a2
yy

σ2
y

, (22)

which expresses heritability of y, say fertility, as the overall contribution of genetic endowments—
including genetic factors that affect fertility y directly and genetic factors that affect y indirectly
through schooling x—to the variance of y. In particular, the three components in the numerator of
the heritability h2 in Eq. (22) reflect, respectively, the contributions to the variation in y of (i) genetic
factors that affect schooling x, and then fertility y through x; (ii) the genetic factors that are common
to both schooling x and fertility y and affect fertility y through x; (iii) the direct influences of the
genetic endowments Ax and Ay on fertility y.

6 Variations of the extended ACE model

An attractive feature of the extended ACE model introduced in the previous section is that sev-
eral of the extensions of the economic within-MZ approach can be applied also to the extended
ACE model to investigate and/or ameliorate concerns about the validity of the estimates. We dis-
cuss some of the most important issues in this context below, and the formal presentation of the
corresponding models is provided in the Appendix.

6.1 Measurement error in x

Earlier in this paper (Section 3.5) we discussed the potential relevance of measurement error in xij

(schooling) for obtaining a correct estimate of the causal effect β of schooling x on fertility y. These
concerns about measurement error in x carry over analogously to the extended ACE framework,
and in particular, measurement error in schooling has received extensive attention in the economic
literature on twins. Measurement error in x (e.g., schooling) is known to bias the inferences of β

and other parameters of the ACE model. In contrast, random measurement error in y is usually
subsumed in the unique environmental influences Ey affecting y and it causes no biases in the
estimated impact β̂ of schooling x on fertility y.

To control for the measurement error in x, some twins datasets contain multiple measures of
x. For example, to control for measurement error in schooling, some twins data contain a twin’s
own report of schooling, denoted xo

ij and a co-twin’s report of the twin’s schooling, denoted xs
ij.

Figure 6 presents the corresponding path diagram where both a twin’s own and co-twin’s report on
schooling x are available, under the maintained assumption that the measurement error between
a twin’s own and co-twin’s report on schooling x are independent. Appendix A.1 provides the
corresponding formal representation. Using these dual reports about the schooling of each twin,
the extended ACE model can control for measurement error in both the estimation of the causal
effect β of schooling x on fertility y and the inference of heritabilities and the contributions of the
genetic and social endowments to the variation in schooling and fertility.
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Figure 6: Extended bivariate ACE model with measurement error in x: own and co-twin report
of schooling are indicators of the unobserved true schooling level S∗

6.2 Social interactions: twins react to each other

Social interactions among twins is a second frequently-raised criticism leveled against the use of
twins data in the social sciences. We have already discussed earlier that, within the economic twins
model, social interaction between twins with respect to x does not affect the estimate of β, while
social interactions with respect to y will bias the estimates.

The corresponding key questions in the extended ACE model are twofold: On the one hand,
does the fact that social interaction with respect to x does not bias the inferences, which was the
case in the within-MZ model (Section 3.4), also apply to the extended ACE model? And on the
other hand, given that additional data—DZ and MZ twins—are used for the analyses, is it possible
to empirically infer the extent of social interactions?

Social interaction with respect to schooling x can be included in the path-diagram for the ex-
tended ACE model by introducing paths s (with |s| < 1) from schooling of twin i, xij to the school-
ing of i’s co-twin k, xkj (see Figure 7). There will be positive (s > 0) social interaction if schooling of
twin i benefits from the schooling attainment of twin k, and there will be negative (s < 0) or com-
petitive social interaction if the twins compete for limited resources—such as money or parental
time—in order to increase their schooling attainment, or if twins attempt to distinguish themselves
from their co-twins through different behaviors.

It turns out that an attractive feature of the extended ACE model is the fact that not only can
β be estimated in the presence of social interactions on x, but the degrees of social interaction can
be estimated. In particular, solving for the variance/covariance matrix of the observed phenotypes
x and y (Appendix A.2) reveals that social interaction results in a different variance for x for DZ
and MZ twins. Table 5 shows that the variance of x depends on the social interaction parameter s
as well as V[3, 1], which is equal to a2

xx + c2
xx for MZ and .5a2

xx + c2
xx for DZ twins (Table 4). Using

this differential variance in x, the coefficient of social interaction can be identified in addition to the
other parameters of the extended ACE model (Plomin et al. 1997). An important advantage of the
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Figure 7: Extended bivariate ACE model with social interaction on schooling x (Note: The paths
connecting the endowments Ax
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ij between twin 1 and twin 2 in pair j have been

omitted for clarity of the diagram)
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Table 5: Variance of xij and yij implied by extended ACE model with social interaction on x
(Eqs. 18–19)

Variance xij ω((1 + s2)V[1, 1] + 2sV[[3, 1])

Variance yij ω(β2(1 + s2)V[1, 1] + 2β(1− s2)V[2, 1] + (1− 2s2)2V[2, 2]+

2β2sV[3, 1]− 2βs(1− s2)V[4, 1])

where ω = 1/[(1 + s)2(1 − s)2] and V[l, k] refers to row l and column k of the
variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) with eyx = 0 (see
also Table 2)

extended ACE model therefore is that, subject to the model assumptions, the analyses can jointly es-
timates (i) the causal effect β of schooling x on fertility y, (ii) the extent s to which social interactions
affect schooling within twins pairs, and (iii) the contributions of genetic and social endowments to
the variation and covariation of schooling x and fertility y within and across individuals.

In addition, despite the presence of social interaction on x, the coefficient β can be inferred from
the observed variances/covariances of MZ twins (and only those of MZ twins) as

β =
EMZ[y1jx1j]− EMZ[y2jx1j]

EMZ[x1jx1j]− EMZ[x1jx2j]

as long as the assumption eyx = 0 remains valid,23 which is congruent with the fact that the within-
MZ model continues to give an accurate estimate of β in the presence of social interactions on x.

Social interaction with respect to fertility y can also be incorporated in the extended ACE model,
and in contrast to the within-MZ approach, all parameters can be estimated because social inter-
actions with respect to fertility y imply a different variance of y for MZ and DZ twin, while the
variance of x remains equal for MZ and DZ twins.

Because of the effect of social interactions on the variance of schooling x and/or fertility y, and
the fact that in the presence of social interactions the variance of these outcomes will differ between
MZ and DZ twins, the possible presence of social interactions can be inferred from the pattern of
variances of x and y by zygosity (Table 6). For example, in a situation in which one expects β > 0,
a pattern where VarMZ(x) > VarDZ(x) and VarMZ(y) > VarDZ(y) is indicative of positive (s > 0)
or reinforcing social interaction with respect to schooling x; a pattern where VarMZ(x) = VarDZ(x)
and VarMZ(y) > VarDZ(y) possibly indicates positive (s > 0) or reinforcing social interaction with
respect to fertility y.

23This follows by solving for the variance/covariance matrix of the observed phenotype P in the extended ACE model as
given in Appendix A.2.

Table 6: Indications of social interactions in twins data (under assumption that β > 0)

Variance Social Interaction

VarMZ(x) > VarDZ(x) and VarMZ(y) >DZ (y) possible reinforcement interaction on x: s > 0
VarMZ(x) < VarDZ(x) and VarMZ(y) <DZ (y) possible competition on x: s < 0

VarMZ(x) = VarMZ(x) and VarMZ(y) > VarMZ(y) possible reinforcement interaction on y
VarMZ(x) = VarMZ(x) and VarMZ(y) < VarMZ(y) possible competition on y
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6.3 Correlated cross-equation shocks

A further assumption for the estimation of β in the extended ACE model is the assumption that
eyx = 0 that is, that any individual-specific shocks that affect x (say, schooling) have an effect on
fertility y only through x but not directly. In the first part of this paper in the context of the eco-
nomic twins model we discussed that, if this assumption is not satisfied, an instrumental variable
estimation can be used. The requirement for the instrument is that it predicts the within-MZ dif-
ference in schooling x and that it is not correlated with the unobserved determinants of fertility
y.

Figure 8 shows the corresponding integration of the instrumental variable estimation in the ex-
tended ACE model, to which we refer as the extended ACE IV model. In the top part of Figure 8 the
available instrument z is completely exogenous in the sense that it predicts x but is not correlated
with any of the unobserved endowments that affect schooling x and fertility y. The bottom part
of Figure 8 shows the more likely scenario for social-science applications of the extended ACE IV
model of an instrument that is correlated with the endowments affecting schooling x and fertility
y. The crucial advantage of the extended ACE IV approach in Figure 8, which is formally presented
in Appendix A.3, is the ability—conditional on a valid instrument being available—to test the as-
sumption that eyx = 0, and if is assumption is rejected, to estimate an extended ACE model that
allows for eyx 6= 0. That is, if a suitable instrument is available, the assumption that individual-
specific influences on schooling x affect fertility y only through schooling and not directly can be
relaxed. The extended ACE model in Figure 8 therefore allows the estimation of (i) the causal effect
β of schooling x on fertility y, (ii) the contributions of genetic and social endowments to the varia-
tion and covariation of schooling x and fertility y within and across individuals, and (iii) the extent
to which individual-specific factors that affect schooling Ex

ij affect fertility y through x as well as
directly along the path eyx.

7 Application to the Minnesota Twins Data

We illustrate the models discussed earlier in this paper using analyses of the effect of schooling on
three outcomes—self-reported health, schooling of the first spouse and fertility—for which the re-
lationship with schooling has received considerable attention in the literature (Wolfe and Haveman
2003). The data used for these analyses is provided by a subset of the Minnesota Twins Registry
(MTR) Data. The MTR is one of the largest birth-record based twins registries in the world; de-
tails of the sample and its characteristics are in Lykken et al. (1990). The specific data that we use
consists of a socioeconomic survey conducted in 1994 of about 3,600 twins born in 1936–1955. The
interesting features of these data include the availability of birth weight information that is ob-
tained through a link with the birth registry, and the inclusion of a co-twin’s report about a twin’s
schooling that will allow us to control for measurement error. These data have previously been
used by Behrman et al. (1994, 1996) and Behrman and Rosenzweig (1999, 2002, 2004). We focus
in our analyses on female twins only (same-sex MZ twins and same-sex DZ twins) with complete
information on own schooling and the co-twin’s report of schooling. Descriptive statistics of our
study population are provided in Table 7. Scripts and data for replicating the analyses presented in
this section will be made available online.

In our illustrations of the different methods for the analyses of twins data in this Section, we
do not present any analyses that allow for social interactions on schooling among twins because
the equal variance of schooling between DZ and MZ twins does not provide an indication that
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Figure 8: Extended ACE IV model: combining the extended ACE model with instrumental vari-
able estimation (Note: the coefficients for the paths between the latent variables and the phenotypes
have been omitted for clarity of the diagram)
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Table 7: Descriptive statistics for MTR study population

MZ twins DZ twins

Mean Std. Dev. N Mean Std. Dev. N

Birth yeara 1947 5.51 858 1946 5.82 682
Schooling (years)a 13.4 2.27 858 13.3 2.28 682
Co-twin report of schoolinga 13.4 2.20 858 13.1 2.08 682
Self-reported healtha,b 4.34 0.69 838 4.30 0.69 668
Schooling (years) of 1st spousea,c 13.4 2.30 484 13.2 2.25 406
Fertility (# of children)a,d 2.17 1.42 758 2.38 1.42 606

Subset for twin pairs for within-MZ IV analysese

Birth weight (kg) 2.51 0.47 672 2.65 0.49 516
Mother age at birth of twins 28.4 6.14 672 29.4 5.30 516
Mother died before twins were age 30 0.033 0.18 672 0.027 0.16 516
Schooling (years) 13.6 2.31 672 13.3 2.27 516
Fertility (# of children) 2.13 1.39 672 2.30 1.35 516
Notes: (a) includes twins in pairs for whom complete information on (own) schooling and co-twin report of school-
ing is available; (b) twins in pairs for whom information on subjective health is available for both twins; subjective
health is coded as 5 = excellent, 4 = good, 3 = fair, 2 = poor and 1 = bad; (c) twins in pairs in which both twins were
ever married and for whom information on schooling of the first spouse is available for both twins; (d) twins in
pairs for whom fertility is available for both twins; (e) twins in pairs for which data on schooling, co-twin report
of schooling, fertility, mother age at birth of twins, mother mortality and birthweight are complete.

social interaction among twins is an important determinant of the schooling outcome in the study
population. There is also no differential variation between MZ and DZ twins in health, fertility or
schooling of the first spouse, thereby providing no indication that social interaction processes of
the form outlined earlier in this paper (Section 6.2) are important for the outcomes considered in
this section.

7.1 Within-MZ analyses of the effect of schooling on health, spouse’s schooling
and fertility

Table 8 compares within-MZ analyses—with and without correction for measurement error—with
standard OLS analyses for the relationship between schooling on the one hand and self-reported
health, schooling of the first spouse and fertility, respectively. Because the twins were between
39–55 years old at the time of the survey, these outcomes reflect completed schooling and near-
completed fertility.

In all analyses that are shown in Table 8, the twin’s schooling, health, fertility and schooling
of the first spouse has been converted into z-scores with zero means and variances of one by first
regressing each variable, and then the residual of this regression, on a quadratic function of birth
year. Cohort-specific mean and standard deviations were then used to standardize each variable to
a mean of zero and a variance of one using the cohort-specific mean and variance. In addition to
removing secular cohort trends in schooling, health and fertility, this standardization of all variables
renders the coefficients comparable across models and outcomes. A coefficient of .11, as is shown
for the OLS analyses for health in Table 8, for example, suggests that a 1-standard deviation (SD)
increase in schooling is associated with a .11 SD increase in subjective health.

Several interesting substantive and methodological issues emerge from our analyses in Table 8.
First, in contrast to the extensive literature on health and schooling (Cutler et al. 2006; Cutler and
Lleras-Muney 2007) that have documented a strong association—that has often been interpreted as
a causal effect—between schooling and health (see also the OLS analyses for health in Table 8), the
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Table 8: The effect of schooling on health, spouse schooling and fertility: Comparison of OLS
and within-MZ analyses (female twins only)

MZ Twins

within-MZ within-MZ OLS
with

meas. error

Subjective Health (z-score)

Schooling (z-score) 0.007 0.014 0.110∗∗

(0.069) (0.103) (0.038)
Observations 838 838 838

Spouse Schooling (z-score)

Schooling (z-score) 0.259∗∗ 0.285∗ 0.510∗∗

(0.081) (0.118) (0.044)
Observations 484 484 484

Fertility (z-score)

Schooling (z-score) -0.239∗∗ -0.232∗ -0.220∗∗

(0.066) (0.092) (0.038)
Observations 758 758 758
p-values: ∗∗p < .01, ∗p < .05, +p < .1. The analyses are based on com-
plete MZ twin pairs (females only) with non-missing information on the
respondent’s schooling, the co-twin’s report of the respondent’s school-
ing, and the outcome variable (subjective health, spouse’s schooling and
fertility). For spouse’s schooling, only twin pairs where both twins have
been married are included. All variables have been converted into z-
scores with mean zero and a variance of one using cohort-specific esti-
mates of the mean and standard-deviation for each variable.

within-MZ analyses of schooling and subjective health in Table 8 show that the effect of schooling
on health is essentially zero. This finding is unchanged after controlling for measurement error
using a twin’s co-twin report of her schooling. Very similar results have also obtained by Behrman
et al. (forthcoming) using data on Danish twins. While the within-MZ regression that underlies
this result relies on an assumption that individual-specific “shocks” to schooling affect health only
through schooling (i.e., the assumption that eyx = 0), it seems unlikely that the near-zero coefficient
estimate in the within-MZ model is caused by a violation of this assumption. In particular, the
most plausible violation of this assumption are individual-specific “shocks” such as an accident
that affect schooling and health in the same direction (which would imply eyx > 0). Examples
of such shocks are accidents that disrupt schooling and have long-term health consequences. If
the true effect of schooling and health were positive, and in violation of the model assumptions
eyx were positive (instead of eyx = 0) because such shocks are important, the within-MZ estimate
would be biased upwards. This upward bias, however, is inconsistent with an within-MZ point
estimate of almost zero if the true effect of schooling on health were positive.

This finding of a close-to-zero coefficient in the within-MZ analyses of schooling and health
hence raises questions about the usual attribution to schooling of substantial positive effects on
health-related behaviors and outcomes and the existence of an important causal schooling–health
gradient. In terms of causal effects, despite the strong associations with schooling, the real strati-
fication appears to be with regard to social and genetic endowments. “Better” endowments, thus,
apparently tend to lead to more schooling and better self-reported health, and the resulting posi-
tive association between schooling and health does not appear to reflect causal effects of schooling
towards improved health in the population studied here.
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In contrast to the above findings for health, the within-MZ results in Table 8 suggest a signif-
icant effect of own schooling on schooling of a twin’s first spouse: a 1 SD increase in the twin’s
own schooling would on average imply a .26 SD increase in the schooling of the first spouse. The
presence of measurement error in schooling, which is exacerbated in within-MZ analyses, implies
that this estimate might be biased downwards. Consistent with this expectation, the within-MZ
analyses that control for measurement error find a somewhat stronger effect of .28 of own school-
ing on that of the first spouse. In both cases, however, the within-MZ analyses provide an estimate
of the effect of own schooling on spouse education that is substantially below the association of
.51 that is suggested by the OLS estimates. This finding therefore suggests that the cross-sectional
association between own and spouse’s schooling results to a substantial extent from assortative
mating on endowments: both own and spouse’s schooling are affected by unobserved social and
genetic endowments that tend to move own and spouse’s schooling in the same direction. For ex-
ample, if there is positive assortative mating in the marriage market on aspects such as “ability”
or “motivation”, or if sorting on unobserved dimensions such as parents’ socioeconomic status,
own and spouse’s schooling would tend to be correlated as a result of correlated endowments and
OLS analyses are biased upwards. Consistent with such assortative mating on schooling-related
endowments, the OLS estimate in Table 8 is between 80–95% above the estimated within-MZ effect
of own schooling on spouse’s schooling, and arguably, the within-MZ estimates provide a better
estimate of the causal effect of own on spouse’s schooling that suggests that a 1 SD increase in own
schooling implies a .26–.28 SD increase in spouse’s schooling. Behrman and Rosenzweig (2002)
report similar results.

The final set of our within-MZ analyses considers the relationship between schooling and fer-
tility, where the within-MZ analyses suggest that a 1 SD increase in own schooling for women
reduces fertility by about .24 SD. This estimate remains essentially unchanged if co-twin reports
are used to control for measurement error in schooling. Moreover, the reduction in fertility as a
result of schooling that is suggested by the within-MZ analyses is only marginally larger in magni-
tude than the association obtained from a OLS analyses of fertility and schooling, suggesting that
unobserved social and genetic endowments affecting schooling are only weakly associated with
the social/genetic endowments that affect (completed or near-completed) fertility.

In assessing this estimate of the negative effect of schooling on fertility that is revealed by the
within-MZ estimate in Table 8, the possible robustness—or not—of the results with respect to the
assumption eyx = 0 of the within-MZ model is an important consideration. In the context of fertil-
ity, individual-specific shocks that affect schooling and fertility in the opposite direction might be
expected, such as for example, an unintended pregnancy during high-school/college education or
an “unexpectedly” early marriage that disrupts schooling. In terms of our empirical model, if these
and similar shocks are important determinants of both schooling and fertility, the path coefficient
eyx would be negative in violation of the within-MZ model assumptions. As a result, the within-
MZ estimate of the reduction in fertility as a result of schooling would be biased towards zero, and
the true effect of schooling on fertility would be more negative than suggested by the within-MZ
analyses.

The combination of instrumental variable estimation with within-MZ analyses is one strategy
to explore the potential importance of a non-zero eyx path on the estimation results, provided that
there is an instrumental variable(s) that predicts schooling, but affects fertility only through its ef-
fect on schooling. In the Minnesota Twins Data that are used in this paper, one possible instrument
that predicts schooling and, arguably affects fertility only through schooling, is birth weight. Pre-
vious studies using within-MZ twins have found significantly effects of birth weight on schooling,
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Table 9: The effect of schooling on fertility: Within-MZ IV analyses

within-MZ + within-MZ
IV

Schooling (z-score) -0.846+ -0.259∗∗

(0.509) (0.070)
Observations 672 672
p-values: ∗∗p < .01, ∗p < .05, +p < .1. Notes: Instruments
for schooling include birth weight (z-score) and interactions
between birth weight and (a) mother’s age at birth of the
twins and (b) an indicator that the twins’ mother died be-
fore the twins reached age 20. The within-MZ model is re-
estimated for the same set of respondents for whom the in-
struments are available.

though they have not addressed the question of possible direct effects on fertility beyond any in-
direct effects through schooling (Almond et al. 2005; Behrman and Rosenzweig 2004; Conley et al.
2003). The impact of birth weight on schooling arguably differs depending on various parental
characteristics, such as mother’s age or whether mothers died before the child reached adulthood.
Therefore we also interact birth weight with mother’s age at birth of the twins and an indicator
variable for whether a twin’s mother died before the twins reached age 20. It is important to notice
that the instruments—birth weight and its interactions with mother’s age at the birth of the twins
and maternal mortality—are likely to be correlated with the social and genetic endowments of the
twins. The instruments would therefore be not acceptable in standard IV analyses that do not con-
trol for endowments, but they may constitute valid instruments in within-MZ IV analyses because
social and genetic endowments are controlled.

In our application using the Minnesota Twins Registry data, birth weight and its interactions
significantly predict the z-score of schooling (as well as schooling directly), with the F(3,333)-
statistic of the first-stage fixed-effect regression equal to 2.62 (p = .05) and the instruments explain-
ing 2.3% of the within-MZ variation in schooling. While the F-statistic is statistically significant, a
better predictive power of the instruments in the first-stage regression would clearly be desirable
and our analyses are potentially subject to concerns about weak instruments (Staiger and Stock
1997; Stock 2010; Stock and Yogo 2004). But since finding suitable instruments that predict school-
ing differences among MZ twins is often challenging, as is the case in our application using the
Minnesota Twins Registry data, we present our within-MZ IV analyses that allow an assessment
of the potential biases that are incurred if the assumption of eyx = 0 is violated with an important
cautionary note about potential concerns about weak instruments.

Table 9 presents the within-MZ IV regression results for the effect of schooling on fertility, using
birth weight and its interactions as instruments for schooling in the within-MZ analyses. Clearly,
the precision of the estimate for the effect of schooling substantially declines in the within-MZ IV
estimates, in part due to the weak first-stage instruments. At the same time, the within-MZ IV
estimate of the effect of schooling on fertility is about 0.84, suggesting that the reduction in fertility
as a result of increased schooling might be substantially larger than is suggested by the within-
MZ analyses (without IV). In particular, taking the within-MZ IV estimate in Table 9 at face value
suggests that a 1 SD increase in schooling for women in the study population reduces fertility
by about .84 standard deviation, about 3.5 times the effect indicated by the within-MZ analyses
without instrumenting. This substantial increase in the magnitude of the fertility-reducing effect
of schooling in the within-MZ IV estimates would be consistent with a considerable importance
of individual-specific shocks—such as unintended early pregnancies—that affect schooling and
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fertility in opposite directions.
In summary, the different within-MZ analyses in Tables 8 and 9 illustrate a broad spectrum of

results that are obtained from such analyses: For the relationship between schooling and health,
the analyses suggest that the true effect of schooling on health might be zero, and that the observed
strong association between schooling and health might the result of stratification on endowments
that jointly affect schooling and health. Neither measurement error in schooling nor the presence
of individual-specific shocks that jointly affect schooling and health are likely explanations for this
finding. For schooling of the first spouse, which is an important indicator of marriage market
outcomes, our within-MZ analyses show that more own schooling is likely to imply also substan-
tially more schooling of the spouse. With controls for measurement error, our analyses suggest
that a 1 SD increase in own schooling increases schooling of the spouse by about .28 SD. But our
analyses also point to the presence of assortative mating on social and genetic endowments. In
particular, these assortative mating processes imply that the cross-sectional association between
own and spouse’s schooling is substantially higher—nearly 80% higher in our analyses—than the
effect that is found in the within-MZ analyses. Finally, for fertility, both our OLS and within-MZ
analyses in Table 8 point to an important reduction of fertility as a result of increased schooling.
Because the within-MZ results might be an underestimate of the true reduction of fertility that is
implied by more schooling, we use within-MZ IV analyses to explore the potential importance of
individual-specific shocks that affect schooling and fertility in opposite directions. While we em-
phasize a cautionary note about possibly weak instruments in these analyses, the within-MZ IV
results suggest a substantially larger reduction in fertility as a result of increased schooling than do
the within-MZ analyses without instrumenting. This pattern suggests that, in the context of assess-
ing the relationship between schooling and fertility, potential individual-specific shocks—such as
unintended early pregnancies—that affecting schooling and fertility in opposite directions might
be an important aspect that cannot be ignored in within-MZ analyses.

7.2 ACE analyses for the relationship between schooling and health, spouse’s
schooling and fertility

A limitation of the above within-MZ analyses is that they are not very informative about the nature
of endowments, and the pathways of how genetic and social endowments affect the relationship
between a twin’s schooling and the outcomes health, spouse’s schooling and fertility. In Tables 10–
12 we therefore present univariate and multivariate ACE models for these phenotypes, including
extended ACE models that are closely related to the within-MZ analyses discussed above. For each
table, all analyses (with the exception of the instrumental variable model for fertility in Table 12)
are estimated on the same sample so that differences in the estimates across the models are not
the result of different samples. We also continue to use z-scores for all variables to remove secular
cohort/age trends in the outcomes and to make the estimated model coefficients more comparable
across different specifications and outcome variables.

The univariate ACE model (Model 1) for the z-score of schooling (coefficients axx, cxx, and exx)
in Table 10 indicates that schooling is strongly influenced by genetic endowments, resulting in a
heritability estimate for schooling of about 47% (h2

x = .465), with an important influence of social
endowments (shared environments) that are consistent with about 20% of the variation in schooling
in this study population (c2

x = .195). Self-reported health, on the other hand, is less affected by
social or genetic endowments. In particular, the univariate ACE model for health (coefficients ayy,
cyy, and eyy in Table 10) suggests that about 28% of the variation in self-reported health is related
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Table 10: Univariate, bivariate and extended ACE models for schooling and health (z-scores )

Univariate Bivariate Extended Extended
ACE ACE ACE ACE with

Meas. Err.

Model (1) (2) (3) (4)

axx 0.678∗∗ 0.681∗∗ 0.681∗∗ 0.603∗∗

(0.069) (0.067) (0.067) (0.064)
ayx — 0.044 0.031 0.055

(0.099) (0.127) (0.156)
ayy 0.537∗∗ 0.534∗∗ 0.534∗∗ 0.549∗∗

(0.127) (0.079) (0.079) (0.123)
cxx 0.439∗∗ 0.436∗∗ 0.436∗∗ 0.524∗∗

(0.098) (0.096) (0.096) (0.07)
cyx — 0.271∗ 0.263∗ 0.186

(0.131) (0.127) (0.118)
cyy 0.267 0.000 0.000 0.124

(0.213) (0.576) (0.58) (0.483)
exx 0.580∗∗ 0.579∗∗ 0.579∗∗ 0.466∗∗

(0.020) (0.020) (0.020) (0.020)
eyx — 0.011 — —

(0.039)
eyy 0.821∗∗ 0.820∗∗ 0.820∗∗ 0.819∗∗

(0.027) (0.026) (0.026) (0.027)

β — — 0.019 0.034
(0.067) (0.093)

γ — — — 0.982∗∗

(0.018)
σ2(xo) — — — 0.13∗∗

(0.013)
σ2(xs) — — — 0.075∗∗

(0.012)

h2
x 0.465 0.469 0.469 0.425

c2
x 0.195 0.192 0.192 0.321

h2
y 0.279 0.278 0.278 0.297

c2
y 0.069 0.071 0.071 0.055

N 1,506 1,506 1,506 1,506
p-values (for model coefficients only): ∗∗p < .01, ∗p < .05, +p <
.1. N refers to individuals. All variables have been converted to z-
scores with mean zero and a variance of one using cohort-specific
estimates of both mean and variance of each variable. The subscripts
x, y indicate the variables as: x = schooling; y = self-reported health.
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to genetic endowments (h2
y = .279), while 7% of the variation stems from social endowments such

as parental characteristics (c2
y = .069). Almost two thirds of the variation in self-reported health is

attributed in the univariate ACE model to individual-specific factors that are not shared by twins.
The bivariate ACE model for schooling and heath (Model 2 in Table 10) provides the same esti-

mates for the heritability (h2) and the variance contribution from social endowments (c2) for these
outcomes, but it points to more complex underlying processes that shape the observed relationship
between schooling and health. Most importantly, the bivariate ACE model suggests that an im-
portant source for the observed association between schooling and health stems from the fact that
social endowments—e.g., parental characteristics or socioeconomic status—that affect schooling in
early adulthood have long-term influences on self-reported heath. The coefficient of cyx = .27 in
this model, for example, implies that about 76% of the observed correlation between schooling and
health results from social endowments that are shared between twins, with genetic factors con-
tributing about 19% to the observed correlation. Moreover, after accounting for the extent to which
endowments jointly affect schooling and health, there are no unique contributions of social endow-
ments to subjective health and the coefficient cyy is estimated to be insignificantly different from
zero. The very small estimate for eyx suggests that individual factors affecting schooling are not
associated with health once the endowments are controlled.

The extended ACE model (Model 3 in Table 10), which includes the possibility of a direct of
effect β of schooling on health, confirms the findings of our earlier within-MZ analyses of the
schooling–health relationship and also does not suggest a relevant direct effect of schooling on
health after the influence of endowments is accounted for.

The extended ACE model with measurement error (Model 4) additionally identifies that school-
ing reports include some measurement error, with measurement error contributing 13% to the vari-
ance of own schooling and 8% to the variance in the co-twin’s report of schooling. Controlling for
measurement error in schooling reduces somewhat the estimate for heritability of the “true” un-
observed schooling of the twins, and it suggests social endowments contribute about 32%—about
50% more then the extended ACE model without measurement error—to the variation in school-
ing. But similar to our earlier within-MZ analyses, controlling for measurement error does not
affect the conclusion of our analyses that there does not seem to be a direct effect of schooling on
health in this study population.

Table 11 presents the different ACE analyses for the relationship between own schooling and
schooling of the first spouse. The univariate ACE results for the subset of ever-married twins
suggest a somewhat higher heritability and lower variance contribution of social endowments than
found in our earlier analyses. For the schooling of the first spouse, the univariate ACE model
(Model 1 in Table 11) suggests a “heritability” of 32%, implying that about a third of the variation
in spouse schooling is related to genetic endowments that are shared by the twins and indicating
a substantial extent of assortative mating on genetically determined traits (for related studies of
assortative mating, see Buss 1984, 1985; Eckman et al. 2002; Schwartz and Mare 2005).

The bivariate ACE model for spouse’s schooling (Model 2 in Table 11) indicates that there is a
substantial overlap in the latent social and genetic endowments affecting own and spouse’s school-
ing. For example, the coefficient estimates of ayx = .26 and cyx = .49 suggest that about 34% of
the observed correlation between own and spouse’s schooling is due to genetic endowments that
affect both own schooling and spouse’s schooling through assortative mating, and 52% of the cor-
relation is due to social endowments that affect both own and spouse’s schooling. After accounting
for overlapping influences of social and genetic endowments, the bivariate ACE model no longer
identifies social endowments that affect spouse’s schooling only, while there remain important ge-
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Table 11: Univariate, bivariate and extended ACE models for (own) schooling and schooling of
first spouse

Univariate Bivariate Extended Extended
ACE ACE ACE ACE with

Meas. Err.

Model (1) (2) (3) (4)

axx 0.678∗∗ 0.577∗∗ 0.577∗∗ 0.559∗∗

(0.084) (0.078) (0.078) (0.07)
ayx — 0.257∗ 0.156 0.087

(0.114) (0.135) (0.142)
ayy 0.547∗∗ 0.286∗ 0.286∗ 0.296∗

(0.133) (0.124) (0.124) (0.118)
cxx 0.31+ 0.456∗∗ 0.456∗∗ 0.485∗∗

(0.165) (0.088) (0.088) (0.076)
cyx — 0.491∗∗ 0.412∗∗ 0.376∗∗

(0.099) (0.093) (0.092)
cyy 0.337+ 0.000 0.000 0.000

(0.188) (0.162) (0.162) (0.163)
exx 0.56∗∗ 0.574∗∗ 0.574∗∗ 0.447∗∗

(0.025) (0.026) (0.026) (0.026)
eyx — 0.101∗ — —

(0.044)
eyy 0.708∗∗ 0.719∗∗ 0.719∗∗ 0.717∗∗

(0.031) (0.03) (0.03) (0.029)

β — — 0.175∗ 0.254∗

(0.076) (0.109)

γ — — — 0.996∗∗

(0.024)
σ2(xo) — — — 0.121∗∗

(0.014)
σ2(xs) — — — 0.072∗∗

(0.013)

h2
x 0.529 0.383 0.383 0.418

c2
x 0.111 0.239 0.239 0.315

h2
y 0.327 0.162 0.162 0.153

c2
y 0.124 0.264 0.264 0.272

N 890 890 890 890
p-values (for model coefficients only): ∗∗p < .01, ∗p < .05, +p <
.1. N refers to individuals. All variables have been converted to z-
scores with mean zero and a variance of one using cohort-specific
estimates of both mean and variance of each variable. The subscripts
x, y indicate the variables as: x = schooling; y = schooling of first
spouse. The analyses include only twin pairs in which both twins are
ever-married and data on schooling of the first spouse are available.
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netic endowments that affect spouse’s schooling but not own schooling. All in all, the bivariate
ACE model suggests somewhat lower heritabilities for both own and spouse’s schooling than the
univariate ACE model, while social endowments make a somewhat stronger contribution to the
variation in own and spouse’s schooling.

While the extended ACE model (Model 3 in Table 11) provides similar estimates for heritability
h2 and the variance contribution of social endowments (c2) for both own and spouse’s schooling,
the extended ACE model that allows for a direct effect of own schooling on spouse’s schooling
suggests a different story regarding the underlying processes that lead to the observed association
between own and spouse’s schooling. Foremost, and similar to the within-MZ analyses earlier in
this paper, the extended ACE model (Model 3) suggests that an increase in own schooling has a
direct effect on the spouse’s schooling. This effect is sizable in that a 1 SD in own schooling implies
a .18 SD increase in spouse’s schooling in our analyses without controls for measurement error, and
a .25 SD increase in the spouse’s schooling once measurement error is controlled.

Once this direct effect of own on spouse’s schooling is allowed, the extended ACE models (Mod-
els 3 and 4 in Table 11) reveal a different explanation than the bivariate ACE model about the under-
lying processes that lead to the pronounced association between own and spouse’s schooling that is
well documented in many populations. Focusing on the extended ACE model with measurement
error (Model 4), where these changes in interpretation are most clearly expressed, the introduction
of a direct pathway β from own to spouse’s schooling leads to a substantial drop in the coefficient
ayx that measures the extent to which the genetic endowments Ax that a twins own schooling di-
rectly affect the schooling of the spouse. In contrast, the bivariate ACE model for the relationship
between own and spouse’s schooling (Model 2) suggested that this effect is sizable and impor-
tantly contributes the observed covariance between these outcomes. The results of the extended
ACE model (Model 4), however, imply that this pathway is relatively unimportant. In particular,
while the extended ACE model with measurement error suggests that about 30% of the correlation
between the unobserved “true” own schooling and spouse’s schooling is due to genetic factors, the
primary pathway operates through schooling: the genetic endowments Ax are an important source
of variation in a twin’s own schooling, and these genetic factors affect spouse’s schooling primarily
through the effect on twin’s own schooling. Specifically, in the extended ACE model with mea-
surement error, only 11% of the correlation between own and spouse’s schooling is attributed to a
direct effect of the genetic endowments for own schooling Ax on spouse’s schooling, while 19% are
due the indirect pathway in which Ax affects a twin’s own schooling, and spouse’s schooling only
through the effect on own schooling. Shared environmental factors that affect schooling account for
about 57% of the correlation between own and spouse’s schooling, and three quarters of this con-
tribution are accounted for by the direct effect cyx on spouse’s schooling of the social endowments
for own schooling Cy.

In terms of assortative mating in the marriage market, the bivariate and extended ACE model
present two different scenarios (see also Behrman et al. 1994). The bivariate ACE model (Model
2) suggests strong assortative mating on unobserved genetic and social endowments—including
for example aspects such as ability, personality characteristics, parental socioeconomic status—
that directly affect a twin’s own schooling, and via assortative mating on these characteristics, also
spouse’s schooling. In contrast, the extended ACE model (Models 3 and 4) emphasizes a direct effect
β of own schooling on spouse’s schooling that may arise due to social processes such as assorta-
tive mating on observed schooling (rather than the latent determinants of schooling), bargaining
in the marriage market where own schooling affects the ability to attract more-schooled spouses,
or a marriage search process where educational institutions are an important source of potential
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partners. The results of Model 4 that control for measurement error, for example, imply that a 1 SD
increase in own schooling increases spouse’s schooling by 1/4 SD. Once this direct effect of own
on spouses schooling is accounted for, the extended ACE model suggests a substantially reduced
extent of assortative mating on genetic endowments that affect a twin’s own schooling (such as
for example genetic factors underlying ability). The extended ACE model continues to attribute a
substantial fraction of the observed correlation between own and spouse’s schooling to social en-
dowments that affect a twin’s own schooling (e.g., parental socioeconomic status), but to a lesser
extent than is suggested in the bivariate ACE model because the bivariate ACE model does not
allow for the possibility that these social endowments affect the spouse’s schooling through the
twin’s own schooling.

Table 12 presents the results of our different ACE models for the relationship between schooling
and fertility. The negative relationship between schooling and fertility, especially for women, has
been widely documented across many populations (e.g., Kravdal and Rindfuss 2008) and the de-
terminants and changes of this negative schooling–fertility relation have been the topic of extensive
investigations (Kohler and Rodgers 2003).

The univariate ACE analyses of fertility (Model 1 in Table 12) yield an estimate of heritability
h2 for fertility of about 40%, with social endowments providing a negligible contribution to the
variation in (completed/near-completed) fertility. These conclusions from the Minnesota Twins
Registry data are similar to findings obtained from Danish twins data and NLSY data (Rodgers
and Doughty 2000; Rodgers et al. 2001a,b). In its univariate form, however, the ACE model is not
informative about the processes that contribute to the negative association between schooling and
fertility. To explain the observed negative association between schooling and fertility, the bivariate
ACE model (Model 2 in Table 12) points in particular to the genetic endowments of schooling that
exert a strong negative influence on fertility ayx = −.23. This model would therefore suggest
that genetic factors that tend to increase schooling—e.g., the genetic factors affecting ability—have
a direct negative effect on fertility through the path ayx. In addition, the bivariate ACE model
suggests that individual-specific shocks to schooling have a strong direct effect on schooling (eyx =

−.13), for instance, in the form of an unintended pregnancy that disrupts schooling and leads to an
overall increase in completed fertility.

The limitation of this model that there is no direct effect of schooling on fertility is avoided in
the extended ACE model (Model 3) that estimates a coefficient β suggesting that a 1 SD increase
in schooling reduces fertility by .23 SD, which is very similar to our earlier results obtained from
within-MZ analyses. Controlling for measurement error in schooling (Model 4) increases this neg-
ative effect of schooling on fertility to -0.27. Most importantly, and in contrast to the bivariate ACE
model, the coefficient ayx in the extended ACE model with measurement error has become insignif-
icant and small in magnitude, suggesting that the genetic factors affecting schooling (Ax) do not
affect fertility directly, but primarily indirectly through their effect on schooling.

The extended ACE IV model, which uses birth weight in interaction with mother’s age at the
birth of twins and maternal mortality as instruments for schooling, provides a test of the assump-
tion eyx = 0 that underlies the within-MZ and the extended ACE model. The extended ACE IV
model (Model 6 in Table 12) provides an estimate of β = −1.02 that is very similar to our earlier
within-MZ IV estimate in Table 9 and substantially larger than the effect of schooling on fertility
that is estimated by the extended ACE model (Models 4 and 5 in Table 12). While there are some
concerns about possibly weak instruments in these analyses that we recognize but cannot resolve
with the data used for the analyses in this paper, the extended ACE IV analyses (Model 5) show
that the null-hypothesis of eyx = 0 cannot be rejected. In the final column of Table 12 (Model 6) we
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Table 12: Univariate, bivariate and extended ACE models for schooling and fertility

Univariate Bivariate Extended Extended Extended Extended
ACE ACE ACE ACE with ACE ACE IV &

Meas. Err. with IV eyx := 0

Model (1) (2) (3) (4) (5) (6)

axx 0.68∗∗ 0.682∗∗ 0.682∗∗ 0.618∗∗ 0.721∗∗ 0.721∗∗

(0.072) (0.072) (0.072) (0.068) (0.076) (0.076)
ayx -0.231 -0.073 -0.071 0.517 -0.001

(0.115) (0.14) (0.15) (0.38) (0.143)
ayy 0.611∗∗ 0.565∗∗ 0.565∗∗ 0.559∗∗ 0.458∗∗ 0.481∗∗

(0.105) (0.108) (0.107) (0.111) (0.138) (0.126)
cxx 0.424∗∗ 0.421∗∗ 0.421∗∗ 0.501∗∗ 0.384∗∗ 0.384∗∗

(0.106) (0.107) (0.107) (0.079) (0.131) (0.131)
cyx — 0.094 0.192 0.196 0.459 0.155

(0.179) (0.162) (0.124) (0.284) (0.190)
cyy 0.114 -0.069 0.069 0.108 0.345+ 0.297

(0.474) (0.89) (0.873) (0.532) (0.184) (0.201)
exx 0.574∗∗ 0.574∗∗ 0.574∗∗ 0.471∗∗ 0.573∗∗ 0.573∗∗

(0.021) (0.021) (0.021) (0.021) (0.022) (0.022)
eyx — -0.133 — — 0.448 0†

(0.037) (0.298)
eyy 0.745∗∗ 0.733∗∗ 0.733∗∗ 0.734∗∗ 0.742∗∗ 0.742∗∗

(0.026) (0.026) (0.026) (0.026) (0.027) (0.027)

β — — -0.232∗∗ -0.275∗∗ -1.025∗ -0.265∗∗

(0.064) (0.088) (0.512) (0.068)

δ — — — — 0.126∗∗ 0.126∗∗

(0.045) (0.045)
γ — — — 0.972∗∗ — —

(0.019)
σ2(xo) — — — 0.114∗∗ — —

(0.013)
σ2(xs) — — — 0.08∗∗ — —

(0.012)

h2
x 0.476 0.478 0.478 0.446 0.515 0.515

c2
x 0.185 0.183 0.183 0.294 0.144 0.144

h2
y 0.397 0.395 0.395 0.393 0.280 0.292

c2
y 0.014 0.014 0.014 0.016 0.099 0.090

N 1,364 1,364 1,364 1,364 1,188 1,188
p-values (for model coefficients only): ∗∗p < .01, ∗p < .05, +p < .1. N refers to individuals. All
variables have been converted to z-scores with mean zero and a variance of one using cohort-specific
estimates of both mean and variance of each variable. The subscripts x, y indicate the variables as: x =
schooling; y = fertility. The instrument for schooling used in the extended ACE IV model is a linear
combination of a twin’s birth weight and the interaction of birth weight with the mother’s age at the
birth of the twins and an indicator of whether the twin’s mother died before the twins reached age
20. The weights for this linear combination were obtained from a within-MZ fixed-effect regression
of schooling on birth weight and its interactions (i.e., the first-stage regression of the within-MZ IV
approach). † The coefficient eyx in Model 6 is set to zero.
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therefore re-estimate the extended ACE IV model with the coefficient eyx constrained to zero. This
final model, which is our preferred specification for the extended ACE IV model for the schooling–
health relationship—suggests that a 1 SD increase in schooling reduces fertility by about .26 SD,
which is an effect that is about 15% larger in magnitude that suggested by the ACE model without
measurement error correction (Model 3). In addition, the final extended ACE IV estimates (Model
6) confirm our earlier conclusions that, once direct effects of schooling on fertility are allowed in
the model specification, there is no longer evidence that the genetic endowments for schooling (Ax)
have a direct effect on fertility, and instead, these endowments affect fertility primarily through
schooling, and through this pathway, account for about three-quarters of the negative association
between schooling and fertility in the data.
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Appendix

A.1 Measurement error model

To formally represent measurement error in the extended ACE model (Figure 6, we distinguish be-
tween the “true”—but unobserved—values of the phenotypes, which are denoted as P∗ = (x∗1j, y∗1j,
x∗2j, y∗2j)

′, and the observed phenotypes that are denoted as P. If the concern is particularly with
respect to measurement error in schooling x, and the data contain both a twin’s own report of
schooling, denoted xo

ij, and a twin’s sibling’s report of his/her schooling, denoted xs
ij, then the

observed data for each twins pair can be written as P = (xo
1j, xs

1j, y1j, xo
2j, xs

2j, y2j)
′. Moreover, the

observed data P is related to the latent phenotypes P∗ as

P = ΓP∗ + GME (23)

where

Γ = I2 ⊗

1 0
γ 0
0 1


and GME is a vector containing the random “measurement error component” in own and sibling’s
report of schooling that is given as GME = (eo

1j, es
1j, 0, eo

2j, es
2j, 0)′.

The variance/covariances among the observed phenotypes P = (xo
1j, xs

1j, y1j, xo
2j, xs

2j, y2j)
′ is then

given as

VMZ
P = EMZ[PP′] = Γ(I− B)−1VMZ

G (I− B)′−1Γ′ + Var(GME) (24)

VDZ
P = EDZ[PP′] = Γ(I− B)−1VDZ

G (I− B)′−1Γ′ + Var(GME) (25)

where Var(GME) is variance of the random measurement error in own and sibling’s report of x
that, due the assumption of independent measurement error across twins, is given by Var(GME) =

E [GMEGME ′] = Diag(Var(eo), Var(es), 0, Var(eo), Var(es), 0).
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A.2 Social interactions in the extended ACE model

Social interaction between twins within the same twins pair can be captured by modifying the
matrix B in the extended ACE model to reflect both the effect of schooling x on fertility y as well
as the interaction between the twins. We focus first on social interaction that affects the schooling
attainment x. Similarly to the economic fixed-effects model, where we discussed social interactions
in Section 3.4, interaction with respect to x between twins is represented by modifying the relation
for the first phenotype x in Eq. 13 as follows:

xij = sxkj + axx Ax
ij + cxxCx

j + exxEx
ij, (26)

where s (with |s| < 1) is the social interaction parameter. Stacking the observed phenotypes as
P = (x1j, y1j, x2j, y2j)

′, and redefining the matrix B to include the social interaction parameter s as

B =


0 0 s 0
β 0 0 0
s 0 0 0
0 0 β 0

 , (27)

the relationships (18–19) continue to hold. Social interaction in the extended ACE model is therefore
straight forward to implement, and the variance-covariance matrix of the observed phenotypes P
can be obtained from Eqs. (18–19), using the matrix B as specified in Eq. (27). Since the inverse of
I4 − B in this case is given by

(I4 − B)−1 =
1

1− s2


1− s2 0 0 0

b 1 bs s
0 0 1− s2 0
bs s b 1

 ,

which is no longer block-diagonal as in the extended ACE model without social interaction Eqs. (18),
(19)) and (27) imply that MZ and DZ twins will have a different variance of x whenever s 6= 0 (see
also Table 5). This fact allows the extended ACE model to not only estimate the causal effect β of
schooling x on fertility y, but also the extent s to which social interactions affect schooling.

Social interaction with respect to the primary outcome, fertility y, can be incorporated into the
extended ACE model by specifying the matrix B as

B =


0 0 0 0
β 0 0 s
0 0 0 0
0 s β 0

 (28)

Following similar steps as in the case of social interactions with respect to schooling x, the variance-
covariance matrix of the observed phenotypes P can be obtained from Eqs. (18–19), using the matrix
B as specified in Eq. (28). Because social interactions with respect to y imply a different variance of
y for MZ and DZ twins, the parameter s can be estimated along with the other model parameters.
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A.3 Instrumental variable estimation in the extended ACE model

The path-diagram for the instrumental variable estimation in the extended ACE model, which is
given in Figure 8(b) for the case where the instruments are possibly correlated with the genetic and
social endowments, can be obtained by stacking the observed phenotypes as P = (x1j, y1j, z1j, x2j,
y2j, z2j, )′. We can then represent the extended ACE model with instrumental variables as

P = BP + (I2 ⊗ La)GA + (I2 ⊗ Lb)GB + (I2 ⊗ Lc)GC,

where

B = I2 ⊗

0 0 δ

β 0 0
0 0 0


and

La =

axx 0 0
ayx ayy 0
azx azy azz

 , Lc =

cxx 0 0
cyx cyy 0
czx czy czz

 , Le =

exx 0 0
eyx eyy 0
0 0 ezz

 .

With the above notation, the variance/covariances among the observed phenotypes z, x and y can
be written—similar to the extended ACE model in Eqs. (18–19)—as

VMZ
P = EMZ[PP′] = (I− B)−1VMZ

G (I− B)′−1 (29)

VDZ
P = EDZ[PP′] = (I− B)−1VDZ

G (I− B)′−1 (30)

where A = LaLa
′, C = LcLc

′, and E = LeLe
′ and

VMZ
G =

(
A + C + E A + C

A + C A + C + E

)
(31)

VDZ
G =

(
A + C + E .5A + C

.5A + C A + C + E

)
. (32)
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