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Calculating Phase-Coherent Quantum Transport in Nanoelectronics with
ab initio Quasiatomic Orbital Basis Set

Abstract
We present an efficient and accurate computational approach to study phase-coherent quantum transport in
molecular and nanoscale electronics. We formulate a Green’s-function method in the recently developed ab
initio nonorthogonal quasiatomic orbital basis set within the Landauer-Büttiker formalism. These quasiatomic
orbitals are efficiently and robustly transformed from Kohn-Sham eigenwave functions subject to the maximal
atomic-orbital similarity measure. With this minimal basis set, we can easily calculate electrical conductance
using Green’s-function method while keeping accuracy at the level of plane-wave density-functional theory.
Our approach is validated in three studies of two-terminal electronic devices, in which projected density of
states and conductance eigenchannel are employed to help understand microscopic mechanism of quantum
transport. We first apply our approach to a seven-carbon atomic chain sandwiched between two finite
crosssectioned Al(001) surfaces. The emergence of gaps in the conductance curve originates from the
selection rule with vanishing overlap between symmetry-incompatible conductance eigenchannels in leads
and conductor. In the second application, a (4,4) single-wall carbon nanotube with a substitutional silicon
impurity is investigated. The complete suppression of transmission at 0.6 eV in one of the two conductance
eigenchannels is attributed to the Fano antiresonance when the localized silicon impurity state couples with
the continuum states of carbon nanotube. Finally, a benzene-1,4-dithiolate molecule attached to two Au(111)
surfaces is considered. Combining fragment molecular orbital analysis and conductance eigenchannel
analysis, we demonstrate that conductance peaks near the Fermi level result from resonant tunneling through
molecular orbitals of benzene- 1,4-dithiolate molecule. In general, our conductance curves agree very well
with previous results obtained using localized basis sets while slight difference is observed near the Fermi level
and conductance edges.
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We present an efficient and accurate computational approach to study phase-coherent quantum transport in
molecular and nanoscale electronics. We formulate a Green’s-function method in the recently developed ab
initio nonorthogonal quasiatomic orbital basis set within the Landauer-Büttiker formalism. These quasiatomic
orbitals are efficiently and robustly transformed from Kohn-Sham eigenwave functions subject to the maximal
atomic-orbital similarity measure. With this minimal basis set, we can easily calculate electrical conductance
using Green’s-function method while keeping accuracy at the level of plane-wave density-functional theory.
Our approach is validated in three studies of two-terminal electronic devices, in which projected density of
states and conductance eigenchannel are employed to help understand microscopic mechanism of quantum
transport. We first apply our approach to a seven-carbon atomic chain sandwiched between two finite cross-
sectioned Al�001� surfaces. The emergence of gaps in the conductance curve originates from the selection rule
with vanishing overlap between symmetry-incompatible conductance eigenchannels in leads and conductor. In
the second application, a �4,4� single-wall carbon nanotube with a substitutional silicon impurity is investi-
gated. The complete suppression of transmission at 0.6 eV in one of the two conductance eigenchannels is
attributed to the Fano antiresonance when the localized silicon impurity state couples with the continuum states
of carbon nanotube. Finally, a benzene-1,4-dithiolate molecule attached to two Au�111� surfaces is considered.
Combining fragment molecular orbital analysis and conductance eigenchannel analysis, we demonstrate that
conductance peaks near the Fermi level result from resonant tunneling through molecular orbitals of benzene-
1,4-dithiolate molecule. In general, our conductance curves agree very well with previous results obtained
using localized basis sets while slight difference is observed near the Fermi level and conductance edges.

DOI: 10.1103/PhysRevB.82.195442 PACS number�s�: 73.63.�b, 71.15.Ap, 73.22.�f

I. INTRODUCTION

The ongoing development of molecular and nanoscale
electronics1–8 is critical to the fabrication of solid-state de-
vices that has followed the Moore’s law for several decades.
Single-molecule-based field-effect transistors, rectifiers, in-
terconnects, and optical and mechanical switches may re-
place silicon in the post-complementary metal-oxide semi-
conductor �CMOS� devices and revolutionize information
technology if such devices can be massively and cheaply
fabricated and easily integrated. Molecular rectifier, known
as the first conceptual molecular electronics, was proposed
by Aviram and Ratner9 in the 1970s based on an organic
donor-bridge-acceptor architecture. However, for decades
such kind of molecular devices has not been synthesized,
controlled, or measured, simply because single molecule is
very sensitive to the chemical and dielectric environments,
hence extremely hard to manipulate. Thanks to the tremen-
dous success in experimental realizations and measurements
at nanoscale, reproducible results of electrical conductance in
molecular and nanoscale devices have finally been achieved
during the last decade by mechanically controllable break
junction,10–13 scanning tunneling microscope operated in the
break junction regime,14–18 and spontaneous formation of
molecular junctions,19,20 etc.

Elastic-scattering mean-free path of electrons in molecu-
lar and nanoscale devices is often larger than the size of
conductor itself, reaching the phase-coherent regime of elec-

tron transport, which is beyond the present CMOS technol-
ogy. A simple theoretical formula of electrical conductance
for phase-coherent transport was proposed by Landauer21

and Büttiker,22,23 G�E�=G0T�E�, which is the product of con-
ductance quantum G0=2e2 /h �“2” accounts for spin degen-
eracy� and electron transmission probability T�E� at energy
level E. Transmission probability T can be obtained from the
solution of single-particle quantum scattering problem and
the magnitude of T reflects scattering strength and interfer-
ence characteristics when electrons pass through two- or
multi-terminal devices. Clearly, the major assumption of the
Landauer-Büttiker formalism is phase coherence. Recently,
particular attention has also been devoted to inelastic-
scattering effect24–28 which, on one hand, may cause local
heating inside junctions and affect functionality and stability
of devices. On the other hand, it was argued29,30 that the
electron-phonon coupling could be one reason for negative
differential resistance observed in experiments, thus the as-
sumption of phase coherence has to be examined in the spe-
cific device that one is interested in. The Landauer-Büttiker
formalism also assumed the absence of electron correlation.
Meir and Wingreen31 extended the original formula in a
more general one which considers current passing through a
conductor containing interacting electrons instead of nonin-
teracting ones. The generalized Landauer-Büttiker formula
scales the original one by a self-energy correction due to
electron correlations in the conductor region. Such effect was
studied in the recent work by Ferretti et al.32,33 in one-
dimensional molecular junctions.
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During the past 20 years, computational approaches at the
ab initio level for phase-coherent quantum transport have
been extensively developed within the Landauer-Büttiker
formalism, including equilibrium and nonequilibrium
Green’s function �NEGF� methods,34–47 Lippmann-
Schwinger scattering-state approach,48–54 and layer
Korringa-Kohn-Rostoker approach.55 In practice NEGF
method is often constructed on top of single-particle theories
such as density-functional theory �DFT�,56,57 and Hartree-
Fock �HF� theory, neither of which include full quasiparticle
physics in electron transport. As a consequence, DFT usually
underestimates energy gap of semiconductors and insulators
while very often HF overestimates it due to the missing cor-
relation effect. It has been shown very recently that quasipar-
ticle self-energy correction from many-body perturbation
theory obtained using Hedin’s GW approximation58 greatly
improves the description of electronic gap between occupied
and unoccupied frontier adsorbate states, therefore drasti-
cally lowers theoretical electrical conductance toward experi-
mental results.59–61 An alternative approach, time-dependent
DFT,62 has also been proposed to include electron-electron
correlation into quantum transport.63–67

Practically speaking, DFT-NEGF and HF-NEGF calcula-
tions of electrical conductance in the full Hilbert space are
not only computationally very demanding, but also unneces-
sary in most cases, due to the fact that almost all molecules
and solids in nanoscale devices can be well described by
low-energy physics. In other words, electron wave functions
in molecules and solids do not deviate much from linear
combination of atomic orbitals �LCAO�.68 Therefore, in the
spirit of LCAO, localized basis sets are frequently adopted in
standard NEGF calculations, including Slater-type orbitals
�STO�, Gaussian-type orbitals �GTO�,69 and localized
pseudoatomic orbitals70,71 while STO and GTO have been
extensively used in quantum chemistry community for de-
cades. Consequently, Hamiltonian and overlap matrices are
also strictly localized in real space, which makes direct and
fast calculations of Green’s function and self-energy pos-
sible. Nonetheless, one question is often asked: are the lo-
calized basis sets used in NEGF calculations large enough to
represent the Hilbert subspace of those low-energy single-
particle states which are important for both ground-state
electronic structure and electron transport? The question can
only be addressed by directly comparing results from both
localized basis sets and plane-wave basis, the latter being
continuously tunable and spatially homogeneous. However,
the size of Hamiltonian in plane-wave basis is orders of mag-
nitude larger than the one in localized basis sets, which
makes direct inversion of Hamiltonian formidable. Fortu-
nately, maximally localized Wannier functions �MLWFs�
proposed by Marzari and Souza and Vanderbilt,72,73 adopting
the quadratic spread localization measure,74 paved a unique
and elegant way to provide an exact mapping of Hilbert
space spanned by Kohn-Sham wave functions inside particu-
lar energy window in a minimal basis. Green’s-function
method using the MLWF basis has become a rigorous
approach75–79 to calculate zero-bias electrical conductance at
the accuracy of plane-wave DFT. Recently Strange et al.80

carried out a detailed comparison of conductance in a couple
of nanoscale systems using both MLWFs from plane-wave

DFT calculations and numerical atomic orbitals from LCAO
calculations. It was shown that LCAO calculations using the
double-zeta polarized �DZP� basis agree very well with
MLWF calculations while the single-zeta �SZ� and SZ polar-
ized �SZP� basis sets give rise to large deviations. However,
from transmission curves it was also clearly observed that
even with DZP basis the energy positions of transmission
peaks in LCAO calculations deviate from the ones obtained
by MLWF calculations, especially the deep valence levels,
indicating the insufficiency of these numeric SZ, SZP, and
DZP basis sets. Despite tremendous success of MLWF ap-
proach, there is no closed-form solution for MLWFs, there-
fore iterative numerical procedures have to be adopted to
find the global minimum. Furthermore, the center and shape
of MLWFs are unknown until the iterative minimization of
quadratic spread is fully finished.

Alternatively, we have recently developed an efficient
and robust method81 to transform Bloch wave functions ob-
tained from DFT calculations into a set of highly localized
nonorthogonal quasiatomic orbitals �QOs�, which are maxi-
mally similar to the Bloch subspace spanned by pseudo-
atomic orbitals. Compared to the original quasiatomic-
minimal-basis-orbital �QUAMBO� method by Lu et al.,82 the
current method not only arrives at the maximally similar
orbitals, but also avoids the problem of bad condition num-
ber due to the unoccupied Bloch subspace truncation error.
QOs and the associated ab initio tight-binding �TB� Hamil-
tonian and overlap matrices can accurately reproduce all the
electronic structure information up to a few electron volts
above the Fermi level. More importantly, explicit calculation
of unoccupied states is avoided by resorting to resolution-of-
the-identity property of Bloch space, hence dramatically re-
duces both computational effort and storage requirement.
Taking advantages of the corresponding TB Hamiltonian and
overlap matrices, efficient and accurate calculations of band
structure, Fermi surface, and Mülliken charge and bond order
have been carried out for isolated molecules, semiconduc-
tors, and metals. Therefore, similar to MLWFs, QOs can
naturally serve as a minimal basis set for Green’s-function
method to study electron transport. In this work, we describe
an efficient and accurate computational approach83 to study
phase-coherent quantum transport in molecular and nano-
scale electronics within the Landauer-Büttiker formalism
which retains the accuracy at the plane-wave DFT level.

This paper is organized as follows: in Sec. II Green’s-
function method with nonorthogonal localized basis for
phase-coherent quantum transport is briefly introduced. In
Sec. III we summarize our previous work on constructing
nonorthogonal QOs from plane-wave DFT calculations. In
Sec. IV Green’s-function method in the QO basis set is ap-
plied to three cases: �a� a seven-carbon atomic chain sand-
wiched between two Al�001� surfaces with finite cross sec-
tion, �b� a �4,4� single-wall carbon nanotube �CNT� with
substitutional silicon impurity, and �c� benzene-1,4-dithiolate
�BDT� molecule attached to two Au�111� surfaces. Calcu-
lated conductance is in very good agreement with other
NEGF results obtained using localized basis sets while slight
difference is found near the Fermi level and conductance
edges. In addition, conductance eigenchannel analysis is per-
formed to help understand microscopic mechanism of elec-
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tron transport in both devices. Finally, we summarize our
work in Sec. V. Relevant information of the program and
calculations is placed at a publicly accessible website.83

II. GREEN’S-FUNCTION METHOD FOR PHASE-
COHERENT QUANTUM TRANSPORT

A. Two-terminal quantum transport device

Two-terminal quantum transport device is represented by
standard structure:35,40 left electron reservoir ��L�—left lead
�L�—conductor �C�—right lead �R�—right electron reservoir
��R�, as shown in Fig. 1. Hamiltonian of the whole device
without reservoirs is simply written as

H = HL + HCL + HC + HCR + HR. �1�

HC, HL, and HR are Hamiltonians for conductor and left and
right semi-infinite leads, and HCL �HCR� is coupling matrix
between conductor and left �right� lead. Although the dimen-
sion of both leads is semi-infinite, Hamiltonians in nonor-
thogonal localized basis set for leads and conductor are lo-
calized sparse matrices. More explicitly, nonvanishing off-
diagonal terms of Hamiltonian H in Eq. �1� are very close to
the diagonal terms owing to finite spatial range of localized-
orbital basis. This localization feature allows fast matrix in-
version and thus efficient self-energy and conductance calcu-
lations, which will be explained below. First, the conductor
region should be large enough to make sure no interaction
between left and right leads. Second, the semi-infinite leads
are further divided into periodic principal layers84 along
transport direction. Here Hamiltonian for principal layers in
the left �right� lead is denoted by HL

i �HR
i �, where

i=0,1 ,2 , . . . ,�. Principal layer is chosen to be as small as
possible while ensuring the interaction between the ith prin-
cipal and the �i�n�th principal layer, HR

i,i�n, is negligible for
n�2. Thus, only HL

i,i�1�HR
i,i�1� needs to be considered. Fur-

thermore, due to the periodic structure of principal layers in
the left and right leads, Hamiltonian for each principal layer

and coupling matrix between any two adjacent principal lay-
ers are also periodic. That means HL

i,i−1=HL
10= �HL

01�†

= �HL
i−1,i�†, and HR

i,i−1=HR
10= �HR

01�†= �HR
i−1,i�†. Finally, a simi-

lar requirement applies to the interaction between the con-
ductor and its adjacent principal layers so that HCL

i and HCR
i

will be nonzero for i=0 only. In the nonorthogonal basis, one
also needs to make sure the same conditions are satisfied for
overlap matrix S.

B. Conductance within the Landauer-Büttiker formalism

To calculate conductance in phase-coherent transport we
apply Green’s-function method31,34 within the Landauer-
Büttiker formalism,21–23 given in the following equation:

G�E� = G0T�E� =
2e2

h
Tr��LGC

a �RGC
r � . �2�

Here G0 stands for conductance quantum and G0=2e2 /h �2
accounts for spin degeneracy�. “Tr��” is the trace of matrix in
the bracket and GC

r and GC
a are the retarded and advanced

Green’s functions of conductor at energy E. ��L,R� represents
the coupling between conductor and leads,

��L,R� � i���L,R�
r − ��L,R�

a � , �3�

where ��L,R�
r and ��L,R�

a are retarded and advanced self-
energy corrections to conductor Hamiltonian due to its cou-
pling with left and right semi-infinite leads. A simple rela-
tionship exists for retarded and advanced Green’s function
and self-energy, that is,

GC
r = �GC

a �†, ��L,R�
r = ���L,R�

a �†. �4�

Correspondingly, total current passing through the leads is
the integration of conductance over energy,

I =
2e

h
� dE�f�E − �L� − f�E − �R��T�E� , �5�

where f is Fermi distribution of electrons. As seen from the
above equations, two key quantities, GC

r and ��L,R�
r , are re-

quired for conductance calculations.
Following the schematic setup shown in Fig. 1 we can

simplify infinite full Hamiltonian H and its Green’s function.
Explicit forms of full Hamiltonian H and overlap matrix S in
terms of conductor and leads are

H = 	 HL HCL
† 0

HCL HC HCR

0 HCR
† HR


, S = 	 SL SCL
† 0

SCL SC SCR

0 SCR
† SR


 .

Retarded Green’s function Gr of Hamiltonian is defined as
�zS−H�Gr=I with z=E+ i� and � is an infinitesimal posi-
tive number. Its expanded form is written as

�zS − H�	 GL
r GLC

r GLR
r

GCL
r GC

r GCR
r

GRL
r GRC

r GR
r 
 = 	IL 0 0

0 IC 0

0 0 IR

 . �6�

Due to the short-ranged Hamiltonian and overlap matrices,
GLR

r and GRL
r of direct couplings are negligible. We then

FIG. 1. �Color online� Schematic representation of two-terminal
quantum transport device: two semi-infinite leads �light blue� con-
nect the conductor �red� to the reservoirs �blue� characterized by
electronic chemical potential �L and �R, respectively, in the semi-
infinite limit. For the sake of efficient surface Green’s function cal-
culation, semi-infinite leads are further divided into periodic princi-
pal layers �L0,L1, ¯ ,Ln;R0,R1, ¯ ,Rn� as small as possible
while ensuring negligible interaction between the principal layer
and its second nearest principal layers under localized basis set. The
conductor region has to also be chosen large enough to ensure van-
ishing coupling between left and right leads. For nonorthogonal
localized basis set, there exists a similar schematic plot for overlap
matrix S.
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have the following solution for retarded Green’s function GC
r

of conductor:

GC
r = �zSC − HC − �L

r − �R
r �−1, �7�

where

�L
r = �zSCL − HCL�GL

r �zSCL − HCL�†, �8�

�R
r = �zSCR − HCR�GR

r �zSCR − HCR�†, �9�

GL
r = �zSL − HL�−1, �10�

GR
r = �zSR − HR�−1. �11�

As we have mentioned before, ��L,R�
r is the self-energy due

to the coupling between conductor and leads, and they have
the same dimension as HC and SC. Semi-infinite G�L,R�

r is
retarded Green’s function of left and right leads. Notice that
in the device setup HC�L,R�

i =0 and SC�L,R�
i =0 for i�1 and

this allows us to reduce ��L,R�
r into a more compact form.

Here we take �L
r as an example.

�L
r = �¯ 0 0 zSCL

0 − HCL
0 �

�	
� ] ] ]

¯ zSL
0 − HL

0 zSL
10 − HL

10 0

¯ zSL
01 − HL

01 zSL
0 − HL

0 zSL
10 − HL

10

¯ 0 zSL
01 − HL

01 zSL
0 − HL

0



−1

�	
]

0

0

�zSCL
0 − HCL

0 �†



= �zSCL
0 − HCL

0 �gL
0�zSCL

0 − HCL
0 �†. �12�

Surface Green’s function gL
0 of the principal layer L0 is ex-

tracted from semi-infinite retarded Green’s function gL
r of the

entire left lead. A similar expression for �R
r can be directly

obtained by changing “L” to “R” in the above formula.
Moreover, surface Green’s function gL

0 and gR
0 are calculated

using an efficient iterative method proposed by Sancho
et al.,85–87 in which 2i principal layers are taken into account
after the ith iteration.

C. Density of states

Density of states �DOS�, �C�E�, in the conductor region is
closely related to the retarded Green’s function GC

r �E�

�C�E� = −
1

	
Im�Tr�GC

r �E�SC�� . �13�

Im refers to the imaginary part of the value. The position-
dependent DOS, �C�x ,E�, is also easy to compute in any
localized nonorthogonal basis set �em�,

�C�x,E� = −
1

	
�
mn

Im�GC
r �E��mnen

��x�em�x� . �14�

However we emphasize that DOS and local DOS �LDOS�
from the above equations simply reflect the total number and

the detailed distribution of single-particle states at specific
energy and position, respectively, and there is no exact one-
to-one mapping between DOS/LDOS and electrical conduc-
tance. Localized standing waves, for example, do not con-
tribute to conductance at all.

D. Conductance eigenchannels

Conductance calculated from Eq. �2� does not provide
information of current distribution. It is thus unable to tell us
deeper physics behind transport phenomena. For instance,
how do vacancy and impurity in carbon nanotubes and
graphene nanoribbons affect conductance? Why isomeriza-
tion in molecular switches will lead to different conduc-
tances? What is the intrinsic reason for negative differential
resistance �NDR�? Some of these questions can be answered
roughly by chemical intuitions but not quantitatively and
conclusively. Looking into the molecular and nanoscale elec-
tronics carefully, we can see that conductors and even leads
are very often made of low-dimensional materials subject to
quantum confinement. Low dimensionality and quantum
confinement directly limit the number of molecular orbitals
in conductors available near the Fermi level, hence limit the
number of conductance channels. Conductance channels es-
sentially come from the hybridization between molecular or-
bitals in conductors and delocalized Bloch states in leads.
The above conceptual conductance eigenchannels have al-
ready been theoretically formulated and practically
utilized.34,88 Presently it is one of the most powerful tools for
understanding the role of chemical bonding and antibonding
characteristics and determining microscopic transport
mechanism with the help of modern visualization
techniques.89

One simple way to define conductance eigenchannels is to
perform a singular value decomposition of the transmission
matrix t,

ULtUR
† = 	
1 0 ¯

0 
2 ¯

] ] �


 , �15�

where t���R�1/2GC
r ��L�1/2 and UL and UR are unitary trans-

formation matrices. As a result, total transmission is,
T�E�=�i
i

�
i, using the cyclic invariance of trace

T�E� = Tr��LGC
a �RGC

r � = Tr�t†t� . �16�

However eigenchannels from the above approach are nor-
malized in both flux and energy. Paulsson and Brandbyge
proposed a different approach88 which directly embed the
information of transmission coefficient into its corresponding
eigenchannel wave function. Such energy-normalized eigen-
channels provide local DOS coming from conductance chan-
nels and can be directly compared with other eigenchannels.
Here we briefly describe basic procedures proposed by
Paulsson and Brandbyge88 which is applied in our work un-
der the QO basis set.

Spectral function A of the conductor is defined by,
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AC�E� = i�GC
r − GC

a � = GC
r ��L + �R�GC

a , �17�

which is generated by incoming electron wave functions
from both left and right leads. We focus on spectral function
due to incoming electrons from the left lead, that is,
AL=GC

r �LGC
a . Under the Löwdin orthogonalization, the

corresponding spectral function is transformed into

ĀL=S1/2ALS1/2. Similarly, �̄R=S−1/2�RS−1/2. Eigenvalues

and eigenvectors of ĀL represent orthogonal scattering chan-
nels and the corresponding transmission coefficients in the
conductor when electron propagates from left to right, that is,

�
n

�ĀL�mn�U�nl = 
l�U�ml. �18�

The eigenvector contained in the unitary transformation ma-
trix U is then scaled by the corresponding transmission co-
efficient 
 as follows:

�Ũ�ml =� 
l

2	
�U�ml. �19�

Transmission matrix under the above orthogonal scattering
channels reads

Tl�l = 2	�Ũ†�̄RŨ�l�l, �20�

which is further diagonalized

�
n

Tmn�C�n� = T��C�m�. �21�

Here T� is transmission probability for eigenchannel � while
�C�m� is the coefficient of Löwdin-orthogonalized orbital m
in eigenchannel �. The corresponding eigenchannel in the
conductor can be explicitly expressed in nonorthogonal basis
set �ei��,

��� = �
i

ei��S−1/2ŨC�i�. �22�

��� essentially represents eigenchannels with conductance
amplitude embedded inside ��� itself. Probability current
density J��x� carried by eigenchannel ��� is simply

J��x� =
e

2m
���

���p − eA���� + ����p − eA������ .

�23�

In the absence of external vector potential A, we have

J��x� =
e

m
Im���

��x� � ���x�� . �24�

Since complex wave function ���x� can be written as a
product of its amplitude and phase, ���x�
= ���x�exp�i���x��, probability current density can be re-
written as

J��x� =
e

m
���x� � ���x� , �25�

where ���x�= ���x�2. Therefore, electron density ���x� and
phase-gradient field ����x� are clearly two important com-
ponents.

E. k-point sampling in the transverse Brillouin zone

In order to treat bulk electrodes, we need to take into
account the periodic boundary condition �PBC� along two
transverse directions. This can be achieved by forming Bloch
functions ei,k�

of nonorthogonal basis set �ei�� at particular
k� of the transverse Brillouin zone,

ei,k�
�x� =

1

�NL�

�
L�

ei�x − XL�eik�·XL�, �26�

where L� runs through all unit cells on the transverse plane
in the Born-von Kármán boundary condition and NL�

is the
total number of unit cells on the plane. The corresponding
Hamiltonian and overlap matrices can be reformulated in the
above Bloch functions,

Hi,j�k�� � �ei,k�
Ĥej,k�

� = �
L�

Hij�L��eik�·XL� �27�

and

Si,j�k�� � �ei,k�
Ŝej,k�

� = �
L�

Sij�L��eik�·XL�, �28�

where Hij�L�� corresponds to Hamiltonian matrix element
between basis ei at unit cell 0 and basis ej at unit cell L�. The
size of Hamiltonian matrix H�k�� and overlap matrix S�k��
obtained from the Bloch transform is much smaller than the
original matrices in the Born-von Kármán boundary condi-
tion. Conductance can be calculated at each k�-point using
H�k�� and S�k��,

G�E,k�� = G0 Tr��L�k��GC
a �k���R�k��GC

r �k��� .

�29�

Finally, the total conductance is the sum of weighted conduc-
tance at all k� points,

G�E� = �
k�

w�k��G�E,k�� , �30�

where w�k�� is the weighting factor of k� in the transverse
Brillouin zone.

III. QUASIATOMIC ORBITALS

Here we briefly summarize the procedures of QO con-
struction while more details can be found in our previous
work.81 Our goal is to construct a set of localized QOs �QIi�
to reproduce all DFT Kohn-Sham eigenvalues and eigen-
states below an energy threshold Eth while these QOs are
maximally similar to their corresponding AOs �AIi�. QIi re-
fers to the ith QO on atom I, where i contains principal �n�,
azimuthal �l�, magnetic �m�, and spin ��� quantum numbers
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of atomic orbitals. Since accurate description of electronic
structure near the Fermi level is essential for transport calcu-
lations, this energy threshold Eth is often set to be a few
electron volts above the Fermi level. These to-be-reproduced
eigenstates satisfy the following Kohn-Sham equation:

Ĥ�nk� = �nkŜ�nk�, n = 1, . . . ,Rk �31�

forming a finite-dimensional subspace R�k�, where n and k
refer to Kohn-Sham states and the k-point sampling in the
first Brillouin zone, respectively. The positive definite Her-

mitian operator Ŝ accounts for pseudowave-function aug-
mentations in Vanderbilt’s ultrasoft pseudopotentials. In the
case of norm-conserving pseudopotentials it is simply the
identity operator. The rest Bloch eigenstates that belong to

infinite-dimensional subspace R̄�k�,

Ĥ�n̄k� = �n̄kŜ�n̄k� . �32�

Different Bloch states are orthogonal to each other and Rk
can vary with k. The full Bloch space B�k� at k point is the

union of two subspaces: B�k��R�k��R̄�k�.
To-be-reproduced Bloch states ��nk� in R�k� themselves

are not sufficient to construct QOs since the dimension of
R�k� is usually smaller than the dimension of QOs. We,
therefore, have to seek an optimized combination subspace

C�k��R̄�k�, consisting of mutually orthonormal states
�cmk�, m=1, . . . ,Ck, to maximize the “sum-over-square”
similarity measure L, or the total sum of of AO projection
squares onto the subspace defined by ��nk� and �cmk�,

L � �
Ii
���

nk
P̂�nk

+ �
mk

P̂cmk�AIi��2
,

=�
Ii

�P̂��nk�AIi��2 + �P̂�cmk�AIi��2. �33�

P̂ is projection operator, defined by

P̂��� �
��,��
��,��

�� =
��Ŝ��

��Ŝ��
�� , �34�

and P̂��nk�=�nkP̂�nk
. Optimized states �cmk� are linear

combinations of ��n̄k�. Ck=qN−Rk, where q is the
averaged number of AOs per atom and N is total number of
atoms in the unit cell. The first part in Eq. �33� is the total
sum-over-square projection of all AOs onto R�k�, which is
constant. Consequently we only need to focus on the second
part Eq. �33� and optimize C�k� to maximize L. Furthermore,

L does not depend on some part of R̄�k� which has no
overlap with Bloch subspace A�k� spanned by AOs.
In another word, C�k� is a subset of the complement
of R�k� within the union of R�k� and A�k�, that is,

C�k��Ā�k����R�k��A�k�� \R�k��. The important conse-
quence is that one can find C�k� from the finite complemen-

tary subspace Ā�k� instead of constructing C�k� from the

infinite R̄�k� as proposed in the original QUAMBO method,
while the final C�k� is exactly the same in both approaches as
proved in our previous work.81

Bloch form of AO AIi� at k consists of a component that

belongs to R�k�, and a component that belongs to R̄�k�,

AIi,k� = AIi,k
� � + AIi,k

� � , �35�

where

AIi,k
� � � �

n

P̂�nk
AIi,k� �36�

and

AIi,k
� � = AIi,k� − �

n

P̂�nk
AIi,k� . �37�

AIi,k
� � and AIi,k

� � can be calculated straightforwardly in
plane-wave basis without knowing ��n̄k�’s explicitly. We de-
note overlap matrix between �AIi,k

� � as Wk,

�Wk�Ii,Jj = �AIi,k
� ŜAJj,k

� � . �38�

Wk is a positive-semidefinite Gramian matrix. It can be di-
agonalized by a unitary matrix Vk such that Wk=VkYkVk

†,
where VkVk

† =IqN�qN. The diagonal matrix Yk contains non-
negative real eigenvalues. All the possible orthonormal states
�cmk� of combination subspace C�k� can be constructed using
eigenvalues and eigenvectors of Wk matrix,

cmk� = �
Ii

�V̄k�Ii,mAIi,k
� � , �39�

where �V̄k�Ii,m= �Vk�Ii,m�Yk�mm
−1/2. As a result, the sum-over-

square measure L defined in Eq. �33� can be rewritten in the
following simple form:

L = �
Ii

��
k

AIi,k
� ��2

+ �
k

Tr�WkV̄kV̄k
†Wk�

= �
Ii

��
k

AIi,k
� ��2

+ �
mk

�Yk�mm. �40�

�m�Yk�mm basically sums all Ck eigenvalues arbitrarily cho-
sen from total qN non-negative real eigenvalues of Wk ma-
trix. Therefore, Eq. �40� suggests that we can maximize L by
choosing the largest Ck eigenvalues and their corresponding
eigenvectors.

Once �cmk� is chosen, we can merge basis functions in
R�k� and C�k� together,

��nk� = ��nk� � �cmk� . �41�

More specifically, they are

�nk = ��nk, n = 1, . . . ,Rk

cnk. n = Rk + �1, . . . ,Ck� .
�

Thus, ��nk� consists of a qN-dimensional orthonormal basis
for Q�k�=R�k��C�k�, We, therefore, can build up the full
Hamiltonian matrix �k between any two functions in ��nk�,
that is, ��k�n,n����nkĤ�n�k�. Due to the fact that �a� ��nk�
are eigenfunctions of Kohn-Sham Hamiltonian, �b� �cmk� are
not eigenfunctions, and �c� ��nk� and �cmk� belong to differ-
ent Bloch subspaces, we then have the following expression
for �k:
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��k�n,n� = ��nk�nn�, n,n� = 1, . . . ,Rk

��nkĤ�n�k� , n,n� = Rk + �1, . . . ,Ck�

0. otherwise.
�

It is worth noting that in the above equation Kohn-Sham

Hamiltonian Ĥ has to be applied explicitly to obtain the ma-
trix elements of �k between two different cmk’s at the same k.
Finally, nonorthogonal QO is formed by

QIi� = �
nk

P̂�nk
AIi� = �

nk
��k�n,Ii�nk� , �42�

where n=1, . . . ,qN, k runs over 1 , . . . ,L1L2L3 Monkhorst-
Pack grid, and

��k�n,Ii � ��nkŜAIi� �43�

is a qN�qN matrix.
Under QO basis, real-space ab initio TB Hamiltonian

HIi,Jj�XL� between QIi
0 and QJj

L in two unit cells can be easily
calculated as the following:

HIi,Jj�XL� � �QIi
0 ĤQJj

L � = �
k

e−ik·XL��k
†�k�k�Ii,Jj ,

�44�

where XL= l1a1+ l2a2+ l3a3 is an integer combination of unit-
cell edge vectors. Similarly, real-space overlap matrix
OIi,Jj�XL� can be obtained as

OIi,Jj�XL� � �QIi
0 ŜQJj

L � = �
k

e−ik·XL��k
†�k�Ii,Jj . �45�

Clearly HIi,Jj�XL� and OIi,Jj�XL� have the similar localization
property as QOs and should decay to zero as XL goes to
infinity. With ab initio TB Hamiltonian and overlap matrices,
we can efficiently compute eigenvalues at an arbitrary k
point �not necessarily one of L1L2L3 k points in DFT calcu-
lations�, by forming

HIi,Jj�k� = �
XL�Rcut

eik·XLHIi,Jj�XL� , �46�

and

OIi,Jj�k� = �
XL�Rcut

eik·XLOIi,Jj�XL� , �47�

where XL runs over shells of neighboring unit cells with
significant HIi,Jj�XL� and OIi,Jj�XL�. Typically we determine a
radial cut-off distance Rcut and sum only those elements sat-
isfying XL�Rcut in Eq. �46� and Eq. �47�. Then, by solving
the following generalized eigenvalue matrix problem,

H�k���k� = O�k���k�E�k� , �48�

we obtain total qN eigenvalues in the diagonal matrix E�k�
at each k point. It is expected that, if HIi,Jj�XL� and OIi,Jj�XL�
are strictly zero outside Rcut, all the Rk eigenvalues lower
than energy threshold Eth are exactly the same as the
eigenenergies obtained from DFT calculations. Therefore in
practice, before building up lead and conductor Hamiltonian
and overlap matrices for transport calculation, Rcut has to be

benchmarked by comparing TB and DFT band structures us-
ing the coarse k sampling. On the other hand, this cutoff will
be unnecessary if one is simply interested in a dense inter-
polation of electronic structure such as band structure, Fermi
surface, and Fermi velocity. Consequently, the interpolated
electronic structure will be very accurate and the original
DFT eigenvalues �nk from the coarse k sampling will be
exactly reproduced.

IV. APPLICATION

In the above section, we introduce an efficient method to
construct localized QOs and their corresponding ab initio TB
Hamiltonian and overlap matrices. With this localized basis
set, Green’s-function method based on the Landauer-Büttiker
formalism can be applied to calculate electrical conductance
of phase-coherent transport in molecular and nanoscale ma-
terials. We have implemented both QO method and equilib-
rium Green’s-function method, as well as the interfaces to
plane-wave DFT codes such as VASP,90 DACAPO,91 and
QUANTUM-ESPRESSO.92 Here we present three applications of
our approach: �a� a seven-carbon atomic chain sandwiched
between two Al�001� surfaces with finite cross-section:
Al�001�-C7-Al�001�, �b� �4,4� CNT with substitutional sili-
con impurity, and �c� BDT molecule attached to two Au�111�
surfaces: Au�111�-BDT-Au�111�. Our result is shown to be
consistent with other NEGF calculations. In addition, con-
ductance eigenchannel analysis is performed to understand
microscopic transport mechanism.

A. Al(001)-C7-Al(001) with finite cross section

Atomic structure of Al�001�-C7-Al�001� with finite cross
section is illustrated in Fig. 2, which is the same structure as
that used by others.41,46,53 The conductor is put inside a rect-
angular box of 14.0�14.0�34.238 Å3 and electrons trans-
port along the +z direction. The Al�001� lead is cut from fcc
aluminum with lattice constant of 4.05 Å and it consists of
four atomic layers with 4-5-4-5 aluminum atoms from left to
right. The distance between the edge carbon atom and the
nearest 4-Al atomic plane is 1.0 Å and the C-C bond length
is 1.323 Å. Both ends of carbon atomic chain are connected
to 4-Al atomic planes. Under PBC, the above specific inter-
face gives rise to different numbers of aluminum atomic lay-
ers in the left and right parts of the conductor. DFT calcula-
tions are performed in the QUANTUM-ESPRESSO package
using the Perdew-Burke-Ernzerhof generalized-gradient ap-
proximation �PBE-GGA� of exchange-correlation
functional,93 a plane-wave basis with a cutoff of 400.0 eV,
and ultrasoft pseudopotentials94 for both aluminum and car-
bon atoms. Energy threshold Eth is set to 5.0 eV above the

FIG. 2. �Color online� Atomic structure of Al�001�-C7-Al�001�
with finite cross section. L: principal layer in the left lead; C: con-
ductor; R: principal layer in the right lead.
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Fermi level for QO construction. Although valence electrons
in single aluminum atom only occupy s and p AOs, s, p, and
d AOs are strongly hybridized with each other near the Fermi
level of metallic aluminum leads. Thus, we construct nine
QOs �one s, three p, and five d-like QOs� for each aluminum
atom and four QOs �one s and three p-like QOs� for each
carbon atom. QO-projected DOS is shown in Fig. 3, which
clearly demonstrates that five d-like QOs �indicated by the
blue area in the uper part of QO-projected DOS curve� do
not contribute much in the deep valence levels, however they
have non-negligible contributions close to the Fermi level
and as energy level further increases they become dominant
beyond 10 eV above the Fermi level.

Band structure of Al�001� leads is shown in Fig. 4�a�.
Here four atomic layers are contained in a unit cell. Ab initio
TB band structure �black-solid lines� using Rcut=10 Å
agrees excellently with Kohn-Sham eigenvalues obtained
from DFT calculation �red-filled dots� below E=3.0 eV. The
slight deviation between 3.0 and 5.0 eV mainly comes from
the diffusive nature of QOs in metallic aluminum leads. DOS
and electrical conductance of Al�001� leads are shown in Fig.
4�b�. We observe step-like conductance curve and sharp DOS
peaks and they are the signature of perfect conductance
channels in pristine conductors. The conductance steps indi-
cate the maximum number of perfect conductance channels
in the leads, which can also be obtained by counting number
of bands crossing constant energy levels in the band structure
plot.

Electrical conductance and DOS of Al�001�-C7-Al�001�
are presented in Figs. 5�a� and 5�b�, respectively. We found
very good agreement between our conductance curve and the
ones calculated by Brandbyge et al. using TRANSIESTA

package,41 Ke et al. using SIESTA,46 and Smogunov et al.
using scattering state approach.53 However, a noticeable dif-
ference is observed in the conductance curves from localized
basis set and plane-wave basis calculations.53 Specifically,
the localized basis-set calculations provide larger conduc-
tance near the Fermi level. Furthermore, the positions of con-
ductance curve edges are slightly shifted. Our results, hence,
demonstrate that in general NEGF using localized basis sets
can offer accurate conductance curves, however, more atten-
tion has to be paid to choosing appropriate localized basis
sets in order to achieve both accuracy and efficiency.80

Furthermore, it is observed that total conductance is al-
ways no larger than 2 G0. From chemical intuition, perfect
carbon atomic chain usually has two 	 orbitals near the

Fermi level formed by px and py orbitals perpendicular to the
chain. Thus, it is likely that the maximum conductance of 2
G0 comes from two perfect conducting channels formed by
these 	 orbitals. To examine this speculation, we perform
conductance eigenchannel analysis at different energy levels
which are listed in Table I. In this case, the incoming elec-
trons propagate from left to right �along the +ẑ direction�. It
is found that indeed the major channels are all doubly degen-
erate and each of them is either smaller than G0 or close to
G0 depending on the energy. However, having conductance
values of eigenchannels will not help us decode microscopic
mechanism of transport phenomena. Actually all the detailed
information is carried by eigenchannel itself. Therefore, we
plot the corresponding eigenchannels in Fig. 6, whose phase
amplitude is indicated by color using the color map shown in
Fig. 7. In particular, red and cyan stand for the phase angle of
�	 and 0, respectively, representing real wave functions.

Several features are immediately revealed from Fig. 6.
First, it is clearly seen that electrons propagate through px-
and py-like eigenchannels of carbon atomic chain, which
confirms our previous speculation. Second, conductance
channels at lower energy contain less nodes than those at
higher energy. This is closely correlated with the distribution
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of nodes in Kohn-Sham eigenstates since the linear but com-
plex combination of the latter ones forms the former conduc-
tance eigenchannel. Third, perfect phase oscillation on top of
large ���x� lobes only happens near conductance maximum
of 2 G0 such as Figs. 6�a� and 6�b�. Away from conductance
maximum the eigenchannels, such as Figs. 6�c�–6�f�, imme-
diately exhibit more and more red and cyan isosurfaces at the
left part of the conductor, suggesting that the incoming elec-
tron from the left lead is strongly scattered by the interface
between Al�001� lead and carbon atomic chain. The reflected
electrons cancel part of the forwarding phase oscillation at
these energy levels. As a result, the right part of the conduc-
tor contains small portion of transmitted electrons which still
display nontrivial phase gradient. These facts demonstrate
the importance of both amplitude ���x� and phase gradient
����x� of probability current density.

If we read the conductance curve in Fig. 5�a� more care-
fully, there are gaps in the conductance curve, for example,
E� �−1.8,−1.5� eV and E� �0.7,1.2� eV. Such gaps are

absent in pristine leads as shown in Fig. 4 and these small
gaps are also absent in an infinite carbon chain. To under-
stand the nature of these gaps, we focus on the first conduc-
tance gap at �−1.8,−1.5� eV and plot the band structure of
Al�001� lead in Fig. 8�a� as well as three conductance eigen-
channels �Al1, Al2, and Al3� at E=−1.6 eV in Fig. 8�b�.
Al1, Al2, and Al3 clearly exhibit pz, pz, and dxy characters,
respectively. However, we have to emphasize that the dxy
character in the eigenchannel Al3 is not directly from atomic
d orbitals but from the linear combination of atomic s and p
orbitals on each aluminum atom. Moreover, two px- and
py -	 conductance eigenchannels are found in infinite carbon
atomic chain within the above energy region, so the transport
gap is not due to nominal lack of states on the carbon. How-
ever, these two px and py	 channels in the carbon chain have
zero overlap with the above three eigenchannels �Al1, Al2,
and Al3� in the Al�001� lead due to difference symmetries.
Therefore, the corresponding matrix element in the self-
energy �L,R

r �Eqs. �8� and �9�� is zero, which leads to zero
conductance. In another word, the above conductance gaps
are demonstrations of a selection rule in phase-coherent
quantum transport, that is, G�E�=0 when

TABLE I. Conductance eigenchannel decomposition of
Al�001�-C7-Al�001�.

Label Energy �eV� Conductance �G0� Degeneracy

�a� −4.27 0.984 2

�b� −2.05 0.982 2

�c� 0.00 0.413 2

�d� 1.27 0.447 2

�e� 1.60 0.184 2

�f� 2.07 0.637 2

�g� −1.71 0.003 2

�h� 0.77 0.003 2
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FIG. 5. �Color online� Electrical conductance �a� and DOS �b�
of Al�001�-C7-Al�001�.
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FIG. 6. �Color online� Phase-encoded conductance eigenchan-
nels of Al�001�-C7-Al�001� at different energy levels.
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FIG. 7. �Color online� Colormap for quantum phase of conduc-
tance eigenchannels.
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��L,R�E�Ĥ�C�E�� = 0 �49�

at energy level E, where �L,R�E� and �C�E� are eigenchan-
nels of the leads and the conductor.

A corresponding signature is also observed in the atomic-
resolved projected DOS, shown in Fig. 9. Within the gap
�except at E=−1.71 eV� the projected DOS on the carbon
chain vanishes while the aluminum leads have non-
negligible projected DOS of atomic s and p characters which
can be seen from Fig. 3. We note that in addition to resonant
transport, the incoming Al�001� band states could generally
speaking induce two kinds of evanescent waves: one decay-
ing rapidly through vacuum, and one decaying slowly in the
carbon chain. Both kinds of evanescent waves could make
the conductance in the gap not mathematically zero. Here,
however, the second kind of evanescent waves is nonexistent
because the pz and dxy eigenchannels in the Al�001� leads do
not couple to the carbon chain’s px and py	 orbitals at this
energy region, and the carbon chain’s spz� and �� states lie
at energies far away, resulting in the vanishing coupling with
the Al�001� pz and dxy state. The first kind of evanescent
waves, which though exists mathematically, decay too rap-
idly in the vacuum region between two interfaces to have an
actual effect on conductance. Therefore, the gap conductance
can be taken to be literally zero.

Strikingly, in Fig. 5�b� we also found within conductance
gaps, there are sharp peaks in the DOS at E=−1.71 and
0.77 eV. We take the first peak at E=−1.71 eV as an ex-
ample again. The sharp peak in the total DOS exactly corre-
sponds to the narrow straight line in the atom-resolved pro-
jected DOS in Fig. 9, extending through both carbon chain
and Al�001� leads. Conductance eigenchannel analysis fur-
ther reveals that there exist two degenerate channels at
E=−1.71 eV, however each of them contributes a very small
conductance value of 0.003G0. The corresponding conduc-
tance eigenchannel, shown in Fig. 6�g�, is a bound state,
which is localized near the carbon atomic chain. It is very
important to notice that the symmetry of this localized chan-
nel is also incompatible with the symmetry of Al1, Al2, and
Al3 channels in Al�001� lead, therefore this localized channel
should not carry any current according to the selection rule
discussion above. It is in fact also an evanescent wave, start-
ing from a discrete px and py	 state in the finite carbon chain
and decaying exponentially into the semi-infinite Al�001�
leads, since its eigenenergy falls into an energy gap in the
subset of Al�001� band states which can couple to carbon’s
px and py 	 state by symmetry. Because of the lack of cou-
pling to Al�001� band states, this localized state �similar to
donor level in semiconductors� is infinitely sharp in energy,
and not smeared. The small numerical conductance comes
from the numerical error due to the short leads used in the
conductor, where the bound state formed between two inter-
faces does not completely vanish near the left and right
boundaries of the conductor. We, therefore, did a separate
calculation by adding four additional aluminum atomic lay-
ers to both sides of the present conductor, and the conduc-
tance indeed vanishes. This reminds us that in general un-
physical conductance peaks may appear in conductance
curves when the far end of the leads used in the setup of
conductors is not long enough to resemble the true pristine
lead. Furthermore, since electron density ���x� �Eq. �25�� of
this bound state is large, the small conductance values can be
only manifested in the small phase-gradient field ����x�,
leading to almost negligible phase-oscillation in the conduc-
tance eigenchannel shown in Fig. 6�g�. Although ����x� is
infinite in the transition zone between cyan �positive real�
and red �negative real� lobes, ���x� is zero there. So it does
not contribute to the current.

In addition, we would like to point out that the above
bound state may become very important when finite bias
voltage is applied. Electronic structure of the left and right
leads will change with the bias voltage and symmetry-
compatible conductance eigenchannels in the leads could be
aligned close to the energy level of the bound state and have
strong coupling with this state, forming a resonant tunneling
channel. In this case, a Breit-Wigner conductance peak95

with Lorentzian line shape is expected to appear in the con-
ductance curve and contribute significantly to the total con-
ductance. When the bias voltage further increases,
symmetry-compatible conductance eigenchannels will be
shifted away from the energy level of the bound state and the
Breit-Wigner conductance peak will disappear. Correspond-
ingly, the total conductance may drop substantially. Thus, in
the current-voltage �I−V� curve one will observe a NDR
region near the energy level of the bound state. The above
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FIG. 8. �Color online� �a� Band structure of Al�001� lead and �b�
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NDR characteristic shares exactly the same origin as the one
found in resonant tunneling diodes96–98 in double barrier
structures which were proposed and demonstrated in the
early 1970s.

Finally, the detailed orbital hybridization between mo-
lecular orbitals of carbon atomic chain and surface states of
two Al�001� leads can be directly identified from Fig. 6.
Since under small bias the total current is determined by the
conductance around the Fermi level, we take the eigenchan-
nels in Fig. 6�c� at E=0 eV �or, the Fermi level� as an ex-
ample. On the left surface layer, two pp� bonding orbitals
are formed on two pairs of Al-Al bonds, which are further
antibonded with each other, finally forming a surface state.
This surface state is then antibonded with antibonding 	�

state of carbon atomic chain. However, on the right end of
carbon chain the antibonding 	� state forms a group of pp�
bonding orbital with the p orbitals of four surface atoms on
the right lead.

B. (4,4) CNT with substitutional silicon impurity

Atomic structure of �4,4� CNT with substitutional silicon
impurity is presented in Fig. 10. The conductor is put inside
a rectangular box of 13.512�13.512�19.607 Å3 and elec-
trons transport along the +z direction. The left and right leads
are formed by pristine �4,4� CNT with C-C bond length of
1.414 Å along the tube direction and C-C bond length of
1.399 Å perpendicular to the tube direction. Five atomic lay-
ers close to the silicon impurity are fully relaxed, resulting in
two Si-C bonds along the tube direction with bond length of
1.780 Å and one Si-C bond perpendicular to the tube direc-
tion with bond length of 1.864 Å. DFT calculations are per-
formed in the QUANTUM-ESPRESSO package using the PBE-
GGA of exchange-correlation functional, a plane-wave basis
with a cutoff of 340.0 eV, and ultrasoft pseudopotentials for
both carbon and silicon atoms. Energy threshold Eth is set to
7.0 eV above the Fermi level for QO construction. Four QOs
including one s and three p-like QOs are constructed for
each silicon and carbon atom, shown in Fig. 11. The original
AO characteristics are well preserved in QOs, meanwhile
chemical environment due to the surrounding atoms clearly
affects the detailed shapes.

Band structure, DOS, and electrical conductance of pris-
tine �4,4� CNT are shown in Figs. 12�a� and 12�b�. Two
atomic layers are contained in a unit cell for both band struc-
ture and conductance calculations in the pristine �4,4� CNT,
as indicated by dash lines in Fig. 10. Ab initio TB band
structure �black-solid lines� using Rcut=8 Å is in a nice
agreement with Kohn-Sham eigenvalues obtained from DFT
calculation �red-filled dots� below E=7.0 eV. The black-
open dots below E=7.0 eV are unbound states which exhibit
little atomic characters, thus they are not used in the con-
struction of QOs, hence are not meant to be reproduced by
TB Hamiltonian. In the band structure plot two bands cross
the Fermi level. This is reflected in the conductance curve of
2 G0 around the Fermi level in Fig. 12�b�. Both steplike
conductance curve and sharp DOS peaks near the edge of
conductance steps are again found in pristine CNT�4,4�.

Electrical conductance of �4,4� CNT with substitutional
silicon impurity is shown in Fig. 13. First, conductance of

the defect conductor is always lower than that of pristine
CNT, demonstrating that maximum of conductance is con-
trolled by the pristine CNT itself. Second, conductance of the
original pristine CNT is affected considerably, but not com-
pletely destroyed. This is due to the fact that silicon and
carbon share the same valence electronic structure, thus simi-
lar sp2 bonds of Si-C and C-C are formed on the nanotube.
Interestingly, a conductance dip is found near E=0.6 eV,
indicating that silicon impurity atom and its induced struc-
tural relaxation indeed introduce some important difference
from carbon atoms in CNT. To understand microscopic
mechanism of this conductance dip, we carry out conduc-
tance eigenchannel analysis at five different energy levels,
ranging from −1.0 to 1.1 eV. The corresponding conductance
is listed in Table II. Two major eigenchannels are found for
each energy levels. Conductance of channel 1, G1, is always

FIG. 10. �Color online� Atomic structure of �4,4� CNT with
substitutional Si impurity. L: principal layer in the left lead; C:
conductor; R: principal layer in the right lead. C: gray atoms; Si:
green atom. Dashed lines in the left and right leads indicate the unit
cell adopted for band structure and conductance calculations in the
pristine �4,4� CNT.

FIG. 11. �Color online� Quasiatomic orbitals in �4,4� CNT with
substitutional Si impurity. Left �Right� column: s-, px-, py-, and
pz-like QOs on carbon �silicon� atom.
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close to one quantum of conductance, thus is not influenced
by the silicon impurity at all in the �−1.0, 1.1� eV energy
range. On the other hand, conductance of channel 2, G2,
changes dramatically. It varies from one quantum of conduc-
tance at E=−1.0 eV to almost zero at E=0.6 eV, then to
0.77 G0 at E=1.1 eV. To understand the mechanism, we plot
the phase-encoded conductance eigenchannel in Fig. 14. It is
clearly shown that channel 1 on the left column exhibits
perfect phase oscillation from the left to the right of the
conductor, suggesting almost negligible back-scattering in
the presence of silicon impurity. However, channel 2 on the
right column shows strong scattering near the silicon impu-
rity when E is increased to 0.6 eV, displaying more red and
cyan isosurfaces. At E=0.6 eV, the incoming electron is
completely reflected back, and forming evanescent wave,
which carries vanishing current. When energy further in-
creases away from 0.6 eV, the eigenchannel in Fig. 14�e�
transmits nontrivial current again, showing clear phase oscil-
lations in both ends of the conductor.

The phase-encoded conductance eigenchannels clearly re-
veal that the complete suppression of one conductance chan-
nel arises from destructive interference �antiresonance� when
a discrete impurity state is coupled to the left and right con-
tinuum states, a particular scenario of the well-known Fano
resonance99–101 when the asymmetry parameter approaches
to zero. This phenomena has been observed in the previous
first-principles studies of electron transport in CNTs by Choi

et al.102 when �10,10� CNT contains boron and nitrogen im-
purities as well as carbon vacancies, Lee et al.77 when �5,5�
CNT is functionalized by small molecules through �2+1�
cycloadditions, García-Lastra et al.103 when single molecules
are chemisorbed on �6,6� CNT, and Fürst et al.104 when iron
and vanadium adsorbed on �10,10� CNT. In general, the
strength of effective scattering potential at the impurity has a
pole at the Fano antiresonance energy.101 At this energy, the
impurity becomes an infinite potential barrier to this channel
despite the small size of the impurity atom relative to the
eigenchannel wave function and completely reflects back the
incoming wave. As a result, a standing-wave-like state is
formed as the incoming wave is completely reflected back by
the localized impurity state. This is exactly what we have
observed at 0.6 eV in the second eigenchannel shown in Fig.
14�c�, which contributes a very small conductance value of
0.002 G0. In addition, we have done a separate calculation
near 0.6 eV using a finer energy grid and much smaller
broadening parameter �. We found the conductance of the
second channel indeed goes to zero at E=0.6096 eV, in
agreement with the Fano antiresonance model. Even though
near 0.6 eV the conductance drop only happens to the second
channel, it is expected that depending on the coupling
strength the silicon impurity will introduce Fano antireso-
nance to the other conducting channels at different energies.

Interestingly, close to 0.6 eV both s- and pz-like QOs of
silicon impurity has significant contributions to projected
DOS and eigenchannels while s-like QOs of carbon atoms
away from silicon impurity has negligible contributions. Al-
though silicon and carbon belong to the same group, the
large size of silicon impurity introduces a strong structural
deformation. Furthermore, carbon has higher electronegativ-

TABLE II. Conductance eigenchannel decomposition of �4,4�
CNT with substitutional Si impurity.

Label Energy �eV� G1 �G0� G2 �G0�

�a� −1.00 0.993 0.963

�b� 0.00 0.990 0.867

�c� 0.37 0.989 0.513

�d� 0.60 0.987 0.002

�e� 1.10 0.990 0.771
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ity than silicon and electron will be more attracted to carbon
atoms. Indeed QO-based Mulliken charge analysis indicates
in �4,4� CNT silicon impurity loses 0.9 electron in total,
which is equally distributed to its three nearest carbon neigh-
bors. Both structural effect and electron density redistribu-
tion mentioned above push s and pz states up to 0.6 eV above
the Fermi level, which eventually leads to resonant suppres-
sion of transmission.

C. Benzene-1,4-dithiolate molecule between Au(111)
metallic surfaces

Atomic structure of BDT molecule between Au�111� me-
tallic surfaces is presented in Fig. 15, which is similar to the
structure used by Strange et al.80 The left and right leads are
formed by perfect Au�111� surface with Au lattice constant
of 4.180 Å, corresponding to Au-Au bond length of
2.956 Å. The principal layer is the same as the unit cell used
in the ground-state DFT calculations, which contains 3�3
atoms in the surface plane and three layers of gold atoms
along the transport direction �+ẑ�. In the conductor, in order
to reduce the effect of surface layer on the bulk leads we use
six Au atomic layers in the left lead and seven Au atomic
layers in the right lead, which are slightly different from
those adopted by Strange et al. The distance between the
surfaces of the left and right leads is 9.680 Å. The
BDT molecule was initially placed at the hollow sites
of Au�111� surface and only the BDT molecule in the con-
ductor has been fully relaxed. As a result, dAu-S=2.436 Å,
dS-C=1.737 Å, dC-C=1.401 Å, and dC-H=1.089 Å. The
plane containing the BDT molecule is perpendicular to x̂
direction. Structural relaxation and ground-state DFT calcu-
lation are performed in the QUANTUM-ESPRESSO package us-
ing the PBE-GGA of exchange-correlation functional, ultra-

soft pseudopotentials, and a plane-wave basis with a cutoff
of 340.0 eV. We use 5�5 k-point sampling along the trans-
verse directions in the DFT calculation while nine irreducible
ones of the total 25 k points are adopted in the conductance
calculation. Energy threshold Eth is set to 5.0 eV above the
Fermi level for QO construction. Furthermore, one, four,
four, and nine QOs are constructed for each H, C, S, and Au
atom, respectively, corresponding to quasiatomic �s�, �s , p�,
�s , p�, and �d ,s , p� characters. The representative QOs are
shown in Fig. 16. It is again demonstrated that QOs gener-
ally inherit the original AO characters but the detail shapes
are affected by their surrounding chemical environment.

The total conductance shown in Fig. 17 agrees very well
with the conductance curve in Fig. 6 of Ref. 80. Particularly,
zero-bias conductance at the Fermi level is 0.278 G0, in ex-
cellent agreement with 0.28 G0 by Strange et al. using ML-
WFs. However such agreement does not imply that QO and
MLWF on top of ground-state DFT calculations can quanti-
tatively describe quasiparticle transport properties. On the
contrary, measured conductance in experiments is much
smaller than the calculated ones.10,105–107 Beside geometric
uncertainty and electron-phonon coupling effect in the ex-
perimental setup, this is largely due to the fact that quasipar-
ticle energies and wave functions cannot be appropriately
obtained from ground-state DFT. Therefore, it is very prom-
ising to use Hedin’s GW approximation of quasi-particle en-
ergies and wave functions as the input of NEGF calculations,
which can enlarge the energy gap between quasielectron and
quasihole states and localize their associated wave functions,
thus reducing the coupling strength, density of states, and
total conductance at the Fermi level. Compared to the con-
ductance curve using localized basis sets,80 small difference
is observed again including position and width of conduc-
tance peaks.

Electronic structure of the BDT molecule plays a critical
role by providing a bridge for electron transport through the
molecular junction. The BDT molecule embedded in the cen-
ter of the conductor is directly coupled to the Au�111� sur-
faces, thus the molecular orbital energy levels could be
strongly renormalized and orbital degeneracy may be lifted.
A convenient way to study the above effects of local chemi-
cal environment is to project the total DOS onto fragment
molecular orbital �FMO� which was proposed by
Hoffmann108 in the study of structural preferences of orga-
nometallic molecules. FMOs correspond to the eigenstates of
TB Hamiltonian in the subspace of the fragment molecule
M that one is interested in,

FMOm� = �
Ii�M

UIi,m
M QIi� , �50�

where UM is a square matrix diagonalizing the Hamiltonian
HM with overlap matrix OM,

FIG. 14. �Color online� Phase-encoded conductance eigenchan-
nels of �4,4� CNT with substitutional Si impurity at different energy
levels. Phase amplitude is indicated by color using the color map
shown in Fig. 7.

FIG. 15. �Color online� Atomic structure of Au�111�-BDT-
Au�111� molecular junction.
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HMUM = OMUM�M �51�

and it satisfies

�UM�†OMUM = I . �52�

�M is a diagonal matrix whose mth diagonal element �m
M is

the renormalized energy level of FMOm�. Their correspond-
ing projected DOS can be easily obtained by projecting the
eigenstates of the full Hamiltonian onto FMOs,

�m
M�E� = �

n

��nŜFMOm�2��E − �n� . �53�

Figure 18 shows six 	 and 	� FMOs which originate from
six px orbitals of the benzene molecule. The � and �� FMOs
are not shown here since we care more about the conduc-
tance close to the Fermi level where 	 and 	� FMOs are
dominant. Compared to benzene in gas phase, the corre-
sponding energy gap between FMO3 and FMO4 is reduced
by more than 0.5 eV. Moreover, due to two S-C valence
bonds the original doubly-degenerate HOMOs and LUMOs
are split by 0.4 eV and 0.5 eV, respectively. The projected
DOS of FMOs is presented in Fig. 19. We first notice that the
projected DOS of the first three FMOs is mostly located
below the Fermi level while the projected DOS of the other

three FMOs is mostly located above the Fermi level, mean-
ing that the fragment benzene molecule does not substan-
tially donate or withdraw electrons from the rest of the con-
ductor. Second, two sharp peaks are observed exactly at the
energy levels of FMO3 and FMO5, indicating the absence of
strong hybridization with sulfur atoms and Au�111� surfaces.
In contrast to FMO3 and FMO5, the other four FMOs exhibit
strong hybridization with sulfur atoms and Au�111� surfaces,
leading to multiple peaks for each FMO in a wide range of
energy centering around the energy level of the correspond-
ing FMO.

More interestingly, comparing the conductance curve of
Fig. 17 and projected DOS curve of Fig. 19, it seems there
exists a clear correspondence between the broad conductance
peaks and the projected DOS peaks, including �−6,−4.5�,
�−4,−2�, �−2,0�, and �2, 3� eV. To have an unambiguous
understanding of the role of FMO in the electron transport,
we have carried out the conductance eigenchannel analysis in
various peak regions, including five different energy levels,
−5.1, −3.0, −1.0, 0.0, and 2.7 eV, at the � point of the first
transverse Brillouin zone. We did not choose an energy level
near FMO6, simply because the energy threshold Eth
for QO construction is set to 5.0 eV beyond which
the electronic structure is not supposed to be accurately
reproduced. It turns out that there exists only one
dominating channel at the four higher energy levels, while at
the lowest −5.1 eV there are two major conductance
eigenchannels. Therefore, we plot in Fig. 20 the correspond-
ing six conductance eigenchannels. Their conductance values
are: G��−5.1 eV,1�=0.97 G0, G��−5.1 eV,2�=0.91 G0,
G��−3.0 eV�=0.52 G0, G��−1.0 eV�=0.91 G0, and
G��0.0 eV�=0.41 G0, G��2.7 eV�=0.16 G0. At −5.1 eV,
two eigenchannels are almost perfectly conducting. The first
one shown in Fig. 20�a� apparently exhibits � character due
to sp2 hybridization. Whereas, the other five eigenchannels

FIG. 16. �Color online� Quasiatomic orbitals in the Au�111�-
BDT-Au�111� molecular junction. s and dz2 for Au atom on the
surface; s and pz for S atom; and s and px for two C atoms.
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FIG. 17. Total electrical conductance of Au�111�-BDT-Au�111�
molecular junction.

(a)FMO1 (−5.45 eV) (b)FMO2 (−2.91 eV)

(c)FMO3 (−2.54 eV) (d)FMO4 (2.27 eV)

(e)FMO5 (2.77 eV) (f)FMO6 (7.72 eV)

FIG. 18. �Color online� Six FMOs of benzene molecule in the
Au�111�-BDT-Au�111� molecular junction at the � point of the first
transverse Brillouin zone.
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shown in Figs. 20�b�–20�f� clearly resemble the characteris-
tics of FMO1, FMO2, FMO4, FMO4, and FMO5 in Fig. 18,
respectively. The nearly perfect conductance eigenchannels
in Figs. 20�a�–20�d� and their associated strong phase oscil-
lations are the unambiguous evidence of resonant transport
in the molecular junction through the 	 FMOs of benzene
molecule. When energy moves away from the resonance,
more and more backward scattering is introduced. Thus, at
the Fermi level �EF=0.0 eV� we observe less phase-
oscillation in the left electrode and smaller transmitted elec-
tron probability density in the right electrode. In this case the
conductance through off-resonant tunneling is only 0.41 G0.

In addition, Fig. 20 directly presents detailed chemical
bonding information such as S-Au�111� and S-C6H4 in the
conductance eigenchannels. For example, at −3.0 eV, near
the left Au�111� surface px-QO on the sulfur atom and d-QOs
on its nearest gold atoms form bonding orbitals, which is
further antibonded with FMO2 of benzene molecule whereas
near the right surface FMO2 forms bonding orbital with the
sulfur atom’s px-QO which is antibonded with d-QOs on the
gold atoms. Such behavior changes when energy approaches
to −1.0 eV. On the left surface antibonding character be-
comes clear between d-QOs on the sulfur’s nearest gold at-
oms and px-QO on the sulfur atom while the latter one forms
bonding orbital with benzene’s FMO4 orbital. A similar situ-
ation is observed on the right-hand side.

In conclusion, the conductance eigenchannel analysis to-
gether with the FMO analysis evidently demonstrates that
single molecule can become perfectly conducting at appro-
priate energy levels via resonant tunneling through molecular
orbitals of single molecules.

V. SUMMARY

In summary, we have developed Green’s-function method
within the Landauer-Büttiker formalism for phase-coherent
quantum transport using recently developed ab initio QOs
and the corresponding ab initio TB Hamiltonian and overlap
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FIG. 19. �Color online� Projected DOS of benzene’s six FMOs
in the Au�111�-BDT-Au�111� molecular junction. The correspond-
ing energy levels of FMO1 to FMO6 are marked as vertical lines
from left to right below the projected DOS peaks.

(a)E = −5.1 eV, G = 0.97 G0

(b)E = −5.1 eV, G = 0.91 G0

(c)E = −3.0 eV, G = 0.52 G0

(d)E = −1.0 eV, G = 0.91 G0

(e)E = 0.0 eV, G = 0.41 G0

(f)E = 2.7 eV, G = 0.16 G0

FIG. 20. �Color online� Phase-encoded conductance eigenchan-
nels and their corresponding energy level and conductance in the
Au�111�-BDT-Au�111� molecular junction at the � point of the first
transverse Brillouin zone. Phase amplitude is indicated by color
using the color map shown in Fig. 7.
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matrices. QOs are efficiently and robustly constructed in the
spirit of LCAO by maximizing the total sum-of-square mea-
sure of pseudoatomic orbitals projected onto Kohn-Sham
eigenstates. Thanks to resolution of the identity, no explicit
high-lying eigenstates are required for QO construction,
which dramatically reduces computation load and memory
requirement. QOs, on one hand, preserve the original AO
characteristics and are highly localized around atoms, thus
can be easily identified and interpreted. On the other hand,
electronic structure, such as band structure, DOS, and Fermi
surface, can be accurately reproduced using the correspond-
ing TB Hamiltonian and overlap matrices. QOs, therefore,
can serve as ab initio minimal basis in Green’s-function
method for studying phase-coherent quantum transport,
which we have briefly formulated for two-terminal devices
within the Landauer-Büttiker formalism.

We have demonstrated both efficiency and robustness of
our approach by three studies of standard two-terminal de-
vices. In the case of Al�001�-C7-Al�001�, electrical conduc-
tance agrees very well with other calculations using localized
basis set while slight difference is observed near the Fermi
level and conductance edges. Our conductance eigenchannel
analysis has shown that the conductance near the Fermi level
is fully controlled by doubly-degenerate 	 channels through
carbon atomic chain, hybridized with surface states from the
left and right aluminum contacts. Perfect phase oscillation
was found at the conductance maximum of 2 G0 only, dis-
playing negligible back-scattering at the interface between
atomic chain and aluminum leads. Away from the energy
levels of conductance maximum, two gaps are found in the
conductance curves. We have shown that they arise from the
selection rule with the vanishing Hamiltonian and overlap
matrix elements between symmetry-incompatible eigenchan-
nels in the aluminum leads and carbon atomic chain and
quantum tunneling of the evanescent waves between two dis-
tant interfaces contribute negligible conductance. In the sec-
ond application, we studied phase-coherent transport in �4,4�
CNT with a substitutional silicon impurity. The conductance
close to the Fermi level is determined by two eigenchannels,
one of which is unaffected by the impurity, whereas in the
other one the incoming electrons are completely reflected at

E=0.6 eV. The complete suppression of transmission at 0.6
eV in one of the two conductance eigenchannels is attributed
to the destructive Fano antiresonance when the localized sili-
con impurity state couples with the continuum states of car-
bon nanotube. In the third application, we applied our ap-
proach to a more complicated system where a BDT molecule
is attached to the hollow sites of two Au�111� surfaces. In
this case, k-point sampling in the transverse Brillouin zone
was adopted. Combining fragment molecular orbital analysis
and conductance eigenchannel analysis, we have shown that
at certain energy levels the single-molecule BDT when at-
tached to Au�111� surfaces become perfectly conducting via
resonant tunneling transport through benzene’s � and 	 frag-
ment molecular orbitals. Our conductance curve is in excel-
lent agreement with the one obtained from Green’s-function
calculation in the MLWF basis.80 On the other hand, com-
pared to the conductance curve using localized basis sets,
slight difference is also observed including position and
width of conductance peaks. Therefore, although in general
NEGF in localized basis sets can provide accurate conduc-
tance curves, more attention has to be paid to choosing ap-
propriate localized basis sets in order to achieve both accu-
racy and efficiency. Relevant information of the program and
the above calculations is placed at a publicly accessible
website.83

Our studies demonstrate that conductance eigenchannel
analysis facilitates the understanding of microscopic trans-
port mechanism and could be important for designing future
molecular and nanoscale electronic devices. It is straightfor-
ward to extend the present approach to NEGF method in the
ab initio QO basis set in order to analyze devices in nonequi-
librium conditions and this work is currently under way.
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