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Joint Metering and Conflict Resolution
in Air Traffic Control
Jerome Le Ny1 and George J. Pappas2

University of Pennsylvania, Philadelphia, PA 19104, USA

This paper describes a novel optimization-based approach to conflict resolution in air
traffic control, based on geometric programming. The main advantage of the approach
is that Geometric Programs (GPs) can also capture various metering directives issued
by the traffic flow management level, in contrast to most recent methods focusing
purely on aircraft separation issues. GPs can also account for some of the nonlinearities
present in the formulations of conflict resolution problems, while incurring only a small
penalty in computation time with respect to the fastest linear programming based
approaches. Additional integer variables can be introduced to improve the quality of
the obtained solutions and handle combinatorial choices, resulting in Mixed-Integer
Geometric Programs (MIGPs). We present GPs and MIGPs to solve a variety of joint
metering and separation scenarios, e.g. including miles-in-trail and minutes-in-trail
restrictions through airspace fixes and boundaries. Simulation results demonstrate the
efficiency of the approach.

I. Introduction
Growing airspace congestion has spurred significant research activity in the past decade to

develop automated support for air traffic conflict detection and resolution. Conflict resolution
consists in the local modification of aircraft trajectories in order to maintain a mandatory minimum
distance between any pair of aircraft, typically five nautical miles of horizontal separation and a
thousand feet of vertical separation. Besides ensuring separation between aircraft however, Air
Traffic Controllers (ATCs) often need to enforce traffic flow management directives in the form of
restricted flow rates through various airspace boundaries and fixes [1, 2]. For example, handoffs
between sectors [3] and traffic flows entering a terminal area or a flow constrained area during an
airspace flow program [4] can all be limited. A typical way of enforcing such rate limitations is
by using miles-in-trail or minutes-in-trail restrictions at certain airspace fixes [2, 5]. The resulting
path-planning problems then lie at the interface between traffic flow management and separation
assurance [6]. With the exception of the Stream-Option-Manager of Niedringhaus [7] however, there
is little research that integrates in the same framework aircraft separation and metering constraints
in order to support the ATCs’ task. Hence in this paper we consider the problem of resolving
conflicts and maintaining separation between airborne aircraft, in the presence of additional metering
constraints. We assume that the configurations and velocities of all aircraft involved in a particular
conflict are known at a central computation facility, where the resulting path-planning problem is
solved. The environment is two-dimensional, as in most of the existing literature [7–10]. In fact,
altitude changes are typically avoided for conflict resolution (except for imminent conflicts), in order
to minimize passenger discomfort and maintain compatibility with the vertically layered structure
of the airspace [2].

Numerous conflict resolution methods have been previously proposed, and many of them are
discussed in the survey of Kuchar and Yang [11]. These methods can roughly be divided into rule-
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based approaches [12–14], force field methods [15], and optimization-based approaches [7, 8, 10, 16].
This paper concentrates on the last approach, and adopts many of the simplifying assumptions made
in previous research. In particular, our aircraft models are kinematic models (see Section IIA), and
we focus on simple ATC directives involving speed and heading changes that are assumed to occur
instantaneously. Some previous work uses more detailed dynamic models, at the expense of more
complex computations [17, 18]. Our method is limited to small heading changes (with the allowed
interval of heading changes a chosen parameter, e.g. ±15◦), which is also the case in some previous
references [7, 8], and can be reasonably expected in usual conditions. The simulations in Pallottino et
al. [10] for example all result in such small heading changes, even though no constraint is imposed a
priori. Under assumptions similar to ours, Niedringhaus [7] proposes a general modeling framework
for conflict resolution based on linear programming. Subsequent studies include optimization over
possible crossing patterns, using genetic algorithms [16], semidefinite-programming based relaxations
[8], or mixed-integer linear programming [10]. Bilimoria [19] describes a geometric optimization
method that resolves conflicts between pairs of aircraft in real-time but cannot guarantee safety for
multiple-aircraft conflicts. Hu et al. [20] consider the problem of designing three-dimensional conflict
free maneuvers minimizing a certain energy cost function, and allow for a richer set of trajectories
than the previously mentioned work, in particular optimization over two-legged trajectories. Hwang
et al. [14] propose a protocol based conflict resolution scheme where conflict resolution maneuvers
consist of two straight paths of equal length.

The research efforts described in the previous paragraph are only concerned with the aircraft
separation and conflict resolution problem. As we noted previously, aircraft trajectories are also
often constrained by traffic flow management directives [2], a problem that has received much less
attention. Niedringhaus [7] includes a scenario involving merging aircraft into a metered stream,
similar to the problem described in Section IV. Bilimoria and Lee [21] and Mueller et al. [6] extend
the previously mentioned two-aircraft conflict resolution algorithm [19] to include arrival time and
metering constraints. Dugail et al. [22] control aircraft velocities and path lengths to accommodate
an output flow rate restriction in an en-route sector, in order to describe the dynamics of upstream
propagation of sector flow constraints. In this paper, we show that geometric programming [23] is an
efficient optimization framework to handle similar problems involving both separation and metering
constraints for scenarios with multiple aircraft. Specifically, we show how these often nonlinear
constraints can be expressed or conservatively approximated by posynomial constraints [23] in the
control variables (velocity and heading). A cost function also expressed in the form of a posynomial
can then be minimized subject to these constraints by using a Geometric Program (GP) solver.
GPs can be solved by specialized interior-point methods almost as efficiently as linear programs
[24, 25]. As in some previous work [10], we can also model combinatorial choices, for example to
optimize over the set of crossing patterns [8, 10] or arrival orderings at a fix, by including integer
variables and solving a Mixed-Integer Geometric Program (MIGP). MIGP solvers are less mature
than Mixed-Integer Linear Program (MILP) solvers however, and so one cannot currently obtain
the same short computational times for MIGP as those obtained using MILP [10]. On the other
hand, even for standard conflict resolution problems, the nonlinearities allowed in a GP let us jointly
optimize over headings and velocities, whereas the linear programming approach in Pallottino et al.
[10] is restricted to optimizing over either velocities or headings, and in the latter case requires that
all aircraft fly at the same speed.

The rest of the paper is organized as follows. Section II presents the problem formulation, and
describes the constraints of the optimization problem that result from the safety conditions (aircraft
separation) and metering specifications. In Section III we provide some background material on
posynomials and geometric programming, and we explain how to reformulate or approximate the
constraints as posynomial constraints. Section IV discusses a specific scenario involving merging
aircraft at a metered intersection, and the use of mixed-integer geometric programming to optimize
over the aircraft ordering at the fix as well. In Section V, we present a fast but local optimization
heuristic based on geometric programming. Simulation results show that complex problem instances
involving many aircraft and metered boundaries can be solved very efficiently. Finally, we conclude
in Section VI.
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Fig. 1 Geometric representation of the forbidden cone of velocities.

II. Problem Formulation
A. Air Traffic Model

We consider N aircraft, initially in configurations (xi,0, yi,0, ψi,0) ∈ R2 × S1 with speeds vi,0 ∈
R>0, i = 1, . . . , N , where ψi,0 denotes the initial heading of aircraft i and p̂i = (xi,0, yi,0) its initial
position. We adopt a kinematic aircraft model, as in much of the previous work on conflict resolution
[7, 8, 10, 20]. Hence aircraft can change their heading and speeds instantaneously. The mandatory
separation distance to maintain between any two aircraft at all times is denoted d (currently d is set
to 5 nmi for en-route traffic). We consider the problem of specifying new headings and speeds ψi
and vi so that no conflict, i.e. loss of separation, occurs if all aircraft follow the resulting straight line
trajectories. Hence a single maneuver is executed at time t = 0 by all aircraft in order to enforce
separation, as in e.g. references [8, 10]. If the computation of these maneuvers is fast enough
however, it can be executed at regular intervals to obtain a closed-loop control policy [8, 10] and the
resulting trajectories are then piecewise linear, see Section VC. We modify the decision variables
from (ψi,0, vi,0) to (ψi, vi) ∈ S1×R>0 in order to minimize a given objective function. For example,
we might want to minimize deviations with respect to the initial aircraft trajectories. In addition
to enforcing separation between aircraft, the ATC might also need to impose additional metering
constraints on the trajectories crossing certain boundaries and waypoints, as discussed in section
IIC.

B. Separation Constraints
1. Infinite-Horizon Separation Constraints
The fact that any two aircraft must be separated by the distance d at all times translates into

constraints imposed on the allowed velocities. Consider two aircraft i, j with initial positions p̂i, p̂j ,
current positions pi,pj , and velocity vectors set to vi,vj , see Fig. 1. Note that throughout the
paper, we denote vector quantities in boldface. We study the problem in the mobile frame centered
at pi. In this frame, aircraft j has relative velocity vij = vj − vi and aircraft i is immobile. We
first impose a safety condition considered in previous work [8, 10], which guarantees that aircraft
will never be in conflict assuming no future change of speeds or headings. Note that this approach
is conservative since in practice we have the option of modifying these parameters again at a later
time.

No conflict arises if the distance from p̂i to the half-line p̂j + R+vij describing the trajectory
of j in the moving frame is at least d. Geometrically, this sufficient conditon for safety means that
the velocity vector vij lies outside of a “forbidden convex cone” with apex at p̂j and tangent to the
disc centered at p̂i and of radius d, see Fig. 1. This constraint has been handled in previous work
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in at least two ways. Frazzoli et al. [8] represent it by a non-convex quadratic inequality on ‖vij‖.
This non-convex constraint is then relaxed to obtain a semidefinite program, the solution of which
serves to design a feasible solution using randomized rounding. We follow an alternative approach,
as in e.g. Pallottino et al. [10], which consists in representing the forbidden cone as the union of two
half-spaces defined by two normal vectors n1

ij and n2
ij such that the admissible relative velocities

satisfy [
〈vij ,n1

ij〉 ≥ 0
]
∨

[
〈vij ,n2

ij〉 ≥ 0
]
, (1)

where ∨ denotes a disjunction (logical “or”). We now write these separation constraints (1) in
coordinates. Let αij = arcsin(d/‖p̂ij‖) (then αij ∈ (0, π/2]), and define with respect to a global
coordinate system ωij = arg(p̂ij), βij = ωij + αij and γij = ωij − αij , see Fig. 1. Then we have

n1
ij = [cos(βij − π/2), sin(βij − π/2)]T = [sinβij ,− cosβij ]

T ,

and similarly n2
ij = [− sin γij , cos γij ]

T . Hence the first constraint in the disjunction becomes

(vj cosψj − vi cosψi) sinβij − (vj sinψj − vi sinψi) cosβij ≥ 0

vi(sinψi cosβij − cosψi sinβij) + vj(cosψj sinβij − sinψj cosβij) ≥ 0

i.e., vi sin(ψi − βij)− vj sin(ψj − βij) ≥ 0. (2)

For the second constraint in (1), we get similarly

− (vj cosψj − vi cosψi) sin γij + (vj sinψj − vi sinψi) cos γij ≥ 0

vi(cosψi sin γij − sinψi cos γij) + vj(sinψj cos γij − cosψj sin γij) ≥ 0

i.e., − vi sin(ψi − γij) + vj sin(ψj − γij) ≥ 0. (3)

After choosing a coordinate system (Oxy) on the plane, we order the aircraft by increasing x
coordinate. Then for any two aircraft i and j with i < j, i is the leftmost aircraft (i.e., the one with
the smallest x coordinate), resulting in one of the two situations shown on Fig. 2. For simplicity,
we now adopt the following notation. We let sβij

i = sin(ψi − βij), s
βij

i,0 = sin(ψi,0 − βij), and define
similarly sγiji , s

γij
i,0 , s

βij

j , s
βij

j,0 , s
γij
j , s

γij
j,0 . If either of the constraints (2) or (3) is satisfied , aircraft i

and j are not in conflict. For aircraft that are in conflict, we have the following proposition.

Proposition 1 Suppose that aircraft i and j are initially in conflict. Then the following facts must
all be true:

1. If sβij

i,0 ≥ 0, then sβij

j,0 > 0. Otherwise (2) holds for all vi, vj.

2. If sβij

j,0 ≤ 0, then sβij

i,0 < 0. Otherwise (2) holds for all vi, vj.

3. If sγiji,0 ≤ 0, then sγijj,0 < 0. Otherwise (3) holds for all vi, vj.

4. If sγijj,0 ≥ 0, then sγiji,0 > 0. Otherwise (3) holds for all vi, vj.

For reference, we also record the initial heading values for which we cannot enforce (2) or (3) by
changing vi, vj only, i.e. for which both constraints remain infeasible for all positive values of vi, vj .
Define

C0ij =
{
(ψi,0, ψj,0)

∣∣∣ [
(s
βij

i,0 < 0 ∧ sβij

j,0 ≥ 0) ∨ (s
βij

i,0 = 0 ∧ sβij

j,0 > 0)
]

(4)

∧
[
(s
γij
j,0 < 0 ∧ sγiji,0 ≥ 0) ∨ (s

γij
j,0 = 0 ∧ sγiji,0 > 0)

]}
.

Then if the initial headings of aircraft i, j belong to C0ij , a heading change is necessary for one or
both aircraft to resolve the conflict. The region C0ij corresponds to head-on conflicts, where the two
aircraft are initially moving directly toward each other, see Fig. 2.
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Fig. 2 Geometry of the constraints (2), (3). The circles around each aircraft position have
radius d equal to the mandatory separation distance. The definition of the set C0ij is illustrated
on the left figure for vi = vi,1 and vj = vj,1.

2. Finite-Horizon Separation Constraints
Condition (1) guarantees safety over an infinite horizon in the case where the velocity vectors are

never changed after t = 0. In particular, it does not allow an aircraft following another aircraft and
moving in the same direction to catch up with the preceding aircraft, because eventually a conflict
would arise. This condition is too conservative for certain finite-horizon problems considered in
this paper. In the merging and metering scenario discussed in Section IV, separation between two
aircraft must be ensured only until one them reaches an airspace fix, since we assume that safety
is guaranteed beyond it, typically by a new ATC command. In this case, we wish to allow for two
aircraft following each other to reduce their separation, potentially up to the minimum imposed by
the metering restriction. Hence we consider now safety constraints that guarantee separation until
one of the aircraft reaches a specific waypoint.

Assume that aircraft i travels with fixed heading ψi = ψi,0 toward a waypoint at distance di
from the initial position p̂i. Moreover, suppose that for some aircraft j 6= i, the relative velocity
vector vij belongs to the forbidden cone, i.e., condition (1) does not hold. We describe a sufficient
condition ensuring that separation is maintained until aircraft i reaches its waypoint. The time ti
it takes for aircraft i to reach the waypoint is ti = di/vi. Referring to Fig. 1, safety is maintained
if aircraft i reaches the waypoint before j enters the circle of radius d around i. Note on Fig. 1
the dashed line D perpendicular to p̂ij = p̂j − p̂i tangent to the circle around aircraft i, which
separates the plane into two half-planes, each containing one aircraft. The sufficient condition that
we consider consists in allowing cases where vij belongs to the forbidden cone, as long as aircraft
j remains on the side of the line that does not contain i until time ti. It is only a sufficient safety
guarantee because it ignores the fact that safety could also be maintained even if j were going past
this line into the side regions of the forbidden cone around the circle. Since p̂ij is perpendicular to
the line D and this line goes through the point (d p̂ij)/‖p̂ij‖, the safety condition can be written〈

p̂ij +
di
vi
vij ,

p̂ij
‖p̂ij‖

〉
≥ d.

Let us define the unit vector n3
ij = −

p̂ij

‖p̂ij‖ = [− cosωij ,− sinωij ]
T (see Fig. 1). This expression can

then be rewritten

di
vi

〈
vij ,n

3
ij

〉
≤ ‖p̂ij‖ − d. (5)
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This constraint can be again transformed into a linear constraint on the variables vi, vj , which
in coordinates yields

di
vi
[−(vj cosψj − vi cosψi,0) cosωij − (vj sinψj − vi sinψi,0) sinωij ] ≤ ‖p̂ij‖ − d

vi(‖p̂ij‖ − d− di cosψi,0 cosωij − di sinψi,0 sinωij) + vjdi(cosψj cosωij + sinψj sinωij) ≥ 0

i.e.,
vi(‖p̂ij‖ − d− di cos(ψi,0 − ωij)) + vjdi cos(ψj − ωij) ≥ 0. (6)

If instead we were considering safety until j reaches a waypoint at distance dj in direction ψj = ψj,0,
then the constraint would be

dj
vj

[−(vj cosψj,0 − vi cosψi) cosωij − (vj sinψj,0 − vi sinψi) sinωij ] ≤ ‖p̂ij‖ − d

− vidj(cosψi cosωij + sinψi sinωij) + vj(‖p̂ij‖ − d+ dj cosψj,0 cosωij + dj sinψj,0 sinωij) ≥ 0

i.e.,
− vidj cos(ψi − ωij) + vj(‖p̂ij‖ − d+ dj cos(ψj,0 − ωij)) ≥ 0. (7)

C. Metering Constraints
Besides the separation constraints, constraints on aircraft trajectories often arise from metering

at certain points (airspace fixes) or boundaries of the airspace. We cal these constraints metering
constraints.

1. Distance Metering
Miles-in-trail restrictions are a commonly enforced metering constraint, where the ATC must

maintain a specified distance, denoted hereafter MIT, between aircraft in a single stream. Consider
the situation depicted on Fig. 3, with several aircraft converging towards a metering fix where a
miles-in-trail restriction MIT must be enforced in the downstream flow. Suppose aircraft j is to be
inserted after aircraft i in the downstream flow. The speeds of aircraft i and j before reaching the
fix are vi and vj respectively, and the common speed of the aircraft in the downstream flow is set to
v0. Then if at t = 0 aircraft i and j are at distance di and dj away from the fix and heading toward
it, the miles-in-trail restriction imposes the constraint

di
vi

+
MIT

v0
≤ dj
vj
. (8)

If vi = v0 or vj = v0 then this constraint can be rewritten as a linear constraint in the variables
vi, vj , but in general it is nonlinear.

2. Time Metering
Instead of specifying a separation between successive aircraft in a stream by a distance MIT, we

can alternatively enforce a minutes-in-trail restriction, specifying a minimum time MINIT separating
successive aircraft. Such constraints constitute a particularly natural interface with the traffic
flow management level, which can restrict traffic flow rates through certain airspace boundaries or
resources. For example, flow rate constraints can be imposed at the boundaries of flow constrained
areas during airspace flow programs or at arrival fixes in the vicinity of airports. A rate of at most
x aircraft per hour through an air traffic control resource can be enforced using a minutes-in-trail
restriction MINIT = 60/x. In the following we use the notation MINIT to specify separation times
between two successive aircraft through any airspace resource, e.g. a boundary, not necessarily at
a fix nor for aircraft forming a one-dimensional stream. For two successive aircraft i and j initially
at distances di, dj of their respective waypoints and subject to a minutes-in-trail restriction on the
times at which they reach these waypoints, we must have

di
vi

+MINIT ≤ dj
vj
. (9)
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Fix

vi ψi

≥ MIT ≥ MIT

Fig. 3 Merging and metered traffic flows.

This constraint is again nonlinear in the decision variables vi, vj .
For the case of a flow constrained boundary, we can modify the heading of an aircraft passing

through that boundary. Let us assume that the boundary is a line segment with orientation δ ∈ [0, π)
with respect to the fixed coordinate system, see Fig. 4. Aircraft i is at distance Di from this
line. Then if aircraft i is to cross this boundary, we must have δ < ψi < δ + π[mod 2π] or
δ + π < ψi < δ + 2π[mod 2π]. In the first case, we have sin(ψi − δ) > 0 and

di =
Di

sin(ψi − δ)
, (10)

whereas in the second case, we have sin(ψi − δ) < 0 and

di =
Di

sin(ψi − (δ + π))
=

Di

sin(δ − ψi)
. (11)

Suppose that aircraft i and j, initially on the same side of a boundary so that equation (10) holds
say, are to cross the boundary in this order. Then (9) gives the constraint

Di

vi sin(ψi − δ)
+MINIT ≤ Dj

vj sin(ψj − δ)
,

or

Divj sin(ψj − δ)
Djvi sin(ψi − δ)

+MINIT
vj sin(ψj − δ)

Dj
≤ 1. (12)

If equation (11) holds instead for both aircraft, we get similarly the constraint

Divj sin(ψj − (δ + π))

Djvi sin(ψi − (δ + π))
+MINIT

vj sin(ψj − (δ + π))

Dj
≤ 1. (13)

Note that the requirement that both aircraft pass through the boundary imposes additional bounds
on ψi, ψj , defined by the angles to the endpoints of the line segment representing the boundary.

D. Optimization-Based Conflict Resolution
In the previous sections, we have described separation and metering constraints that restrict

the set of allowed velocities and headings of the aircraft. In the rest of the paper, we adopt an
optimization-based approach to aircraft trajectory planning, where we wish to minimize a cost
function depending on the 2N variables vi, ψi, i = 1, . . . , N , subject to the separation and metering
constraints. See (25)-(28) below for an example of such an optimization problem for metering aircraft

7



vi ψiδ
Di

di

Fig. 4 Flow constrained boundary. Case δ < ψ < δ + π.

at a fix. The cost function is introduced to try to keep the trajectories close to the preferred ones
while satisfying the various constraints, for example to minimize deviation with respect to the initial
trajectories. We need however an efficient optimization framework to handle the nonlinearities in
the constraint. One potential approach is to use standard nonlinear programming tools, but this
results in long computation times that are not compatible with the real-time aspect of the conflict
resolution problem. Instead, we show in the following section that the constraints can be handled
directly or approximately by fast geometric programming solvers.

III. Geometric Programming
In this section we first provide some background material on geometric programming, a class of

efficiently solvable optimization problems that we rely on to design conflict-free trajectories. Then,
we develop in Subsection III B certain posynomial approximations for the nonlinearities appearing
in the separation and metering constraints of Section II. We provide conservative approximations
in order to guarantee safety.

A. Background Material
The separation constraints (2), (3), (6), (7) are linear in the speed variables but nonlinear in

the heading variables, and the metering constraints (8), (9), (12), (13) are nonlinear in both the
speed and heading variables. The ability to solve optimization problems subject to these constraints
is very limited if standard nonlinear programming solvers are used. Moreover if additional integer
variables are introduced, e.g. to optimize over the aircraft ordering as in the scheduling scenario of
Section IV, it is important to be able to solve the continuous optimization problems efficiently in
order to implement a reasonably fast branch-and-bound method. In this paper, we use geometric
programming [23] to capture exactly the nonlinearities in the speed variables, and approximately
the nonlinearities in the heading variables. First, we review the basic terminology of geometric
programming [23, 25].

A monomial is a function f : Rn>0 → R of the form

f(x) = c xa11 x
a2
2 · · ·xann ,

where c > 0 and ai ∈ R, for 1 ≤ i ≤ n. A function f which is the sum of one or more monomials

f(x) =

K∑
k=1

ckx
a1k
1 xa2k2 · · ·xank

n ,

is called a posynomial. Optimization problems involving the minimization of a posynomial function
subject to constraints of the form g(x) ≤ 1 with g a posynomial, as well as h(x) = 1 with h a

8



monomial, are called geometric programs (GP), and can be solved almost as efficiently as linear
programs by interior-point methods [24, 25]. Indeed the change of variable

xi = eyi , (14)

which is valid since we require that the variables xi be positive, converts the geometric program to
a convex optimization problem in the new variables yi. Next, a generalized posynomial is a function
that can be formed from posynomials by addition, multiplication, taking the maximum of several
posynomials and taking a positive power of a posynomial [25]. Replacing posynomials by generalized
posynomials in the definition of a geometric program, we obtain a generalized geometric program,
which can be solved efficiently as well by converting it to a GP.

In the rest of this subsection, we assume that the headings of the aircraft are fixed and consider
only the speeds as decision variables. These variables are positive, as requested by the form of
geometric programs. Note that the metering constraint (9) can be rewritten

MINIT

dj
vj +

di
dj
vj v
−1
i ≤ 1 (15)

hence is of the form g(vi, vj) ≤ 1, where g is a posynomial. Similarly, for fixed headings, the metering
constraints (8), (12), (13) are posynomial constraints in the speed variables. This is true for (12),
(13) by noting that for the range of relevant headings the coefficients involving sine functions are
positive, see (10), (11). In order to rewrite the separation constraints (2), (3), (6), (7) as posynomial
constraints, we use the following lemma.

Lemma 2 Any linear constraint in the decision variables x > 0, y > 0, of the form

αx+ βy ≥ 0 (16)

is either trivial (if α, β ≥ 0), infeasible (if α, β ≤ 0 and α+β 6= 0), or can be rewritten as g(x, y) ≤ 1,
where g is a monomial.

Proof The last case is when α and β have opposite signs and are both non-zero. If α > 0, β < 0,
then we can rewrite the inequality as |β|α

y
x ≤ 1. If α < 0, β > 0, we rewrite the constraint as

|α|
β
x
y ≤ 1.

Hence we see that by a simple preprocessing of the linear inequalities of the form (16), we can handle
such inequalities by geometric programming. With the headings fixed, all separation constraints
(2), (3), (6), (7) are constraint on the speed variables of the form (16).

GP modeling also allows us to work directly with time to arrivals (or delays) in the objective
function, which are important metrics for ATCs [2]. For example, suppose aircraft i is cleared from
the considered airspace when it reaches a waypoint at distance di. We might want to optimize,
subject to the separation and metering constraints, the total clearing time for all aircraft

min
v1,...,vN

N∑
i=1

di
vi
, or min

v1,...,vN
max

i=1,...,N

{
di
vi

}
, (17)

a posynomial and generalized posynomial respectively. These cost functions increase in priority the
velocity of slower aircraft that are farther from their destination. If instead of clearing the airspace
in minimum time we would like to minimize the deviation with respect to the initial speeds, then
an objective function such as the following can be used

min
v1,...,vN

N∑
i=1

max

{
vi,0
vi
,
vi
vi,0

}
, (18)

which is a generalized posynomial in the decision variables v1, . . . vN , with minimum in the absence
of constraints at vi = vi,0, i = 1, . . . , N .

9
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Fig. 5 Local monomial overapproximations (in red) of ψ 7→ sin(ψ−π/4), for π/4 < ψ < π/4+π (in
blue). For ψ0 = π/4+10◦, π/4+20◦, . . ., the approximation (19) is ploted for ψ ∈ [ψ0−10◦, ψ0+10◦].
Clearly, the quality of the approximation is worst for ψ0 close to the boundaries.

B. Posynomial Approximations
When the aircraft headings are included as decision variables, the resulting optimization prob-

lems become complex nonlinear programs, with possibly many local minima. Instead of solving
such nonlinear programs directly, we develop conservative approximations of the problems using
local posynomial approximations of the nonlinearities. These approximate problem formulations
can then be very efficiently and reliably solved by a GP solver using interior-point methods, and
the obtained solutions are always guaranteed to satisfy the original nonlinear constraints. However
the approximations are developed in the neighborhood of a given heading for each aircraft, e.g.
±15◦ around the initial heading ψi,0 if the objective is to minimize trajectory deviations. Although
one can choose the amplitude of the allowed heading deviations, the approximations become overly
conservative for large intervals.

Approximating the separation constraints (2), (3) and metering constraints (12), (13) requires
that we develop posynomial approximations of the functions ψ → sin(ψ−β) and ψ → 1/ sin(ψ−β)
for ψ ∈ (β, β + π). In order to work with positive variables, which is required in GPs, we express
all angles as positive values, shifting them by a multiple of 2π if necessary. Hence an interval
such as −π3 ≤ ψ ≤ 2π

3 , is expressed instead as 5π
3 ≤ ψ ≤ 8π

3 . A given heading is involved in
several constraints and the 2π-shifts have to be chosen appropriately so that the resulting bounds
remain compatible. Note that we do not present approximations of the finite-horizon separation
constraints (6), (7) in this paper, although a similar approach could be used in this case as well.
These constraints (6), (7) are only used in the merging and metering scenario described in section
IV, where we optimize over the speed variables only.

The most difficult of the two functions sin and 1/ sin to approximate is the sine function. We
use the following simple monomial approximation [25] around ψ = ψ0, which turns out to an upper
bound due to the concavity property of sin over the relevant interval:

for ψ,ψ0 ∈ (β, β + π), sin(ψ − β) ≤ c
(
ψ

ψ0

)a
, with c = sin(ψ0 − β), a = ψ0 cot(ψ0 − β). (19)

We refer the reader to Boyd et al. [25] for techniques for developing such monomial approximations.
Fig. 5 shows the behavior of the approximation, for angular deviations of ±10◦ around the value
ψ0. The approximation is the poorest for ψ0 close to β or β + π, which results in missing feasible
solutions in the approximation of the nonlinear program.
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We now turn our attention to the function 1 7→ 1/ sin(ψ − β), for β < ψ < β + π. For ψ0

away from the boundaries, say ψ0 − β > G and β + π − ψ0 > G for some G > 0, we use again a
simple local monomial approximation [25], shifted upwards in order to obtain an upper bound on
an interval [ψ0 − l, ψ0 + r] ⊂ (β, β + π)

1

sin(ψ − β)
≤ c0 + c1

(
ψ

ψ0

)a
, with c1 =

1

sin(ψ0 − β)
, a = −ψ0 cot(ψ0 − β), (20)

c0 = max

{
1

sin(ψ0 − l − β)
− c1

(
ψ0 − l
ψ0

)a
,

1

sin(ψ0 + r − β)
− c1

(
ψ0 + r

ψ0

)a}
.

The monomial approximation alone under-approximates the function, but with the addition of the
constant c0 we obtain an upper bound. For the remaining cases, first when β < ψ0 ≤ β+G, we use
the following upper bound on (β, ψ0 + r]

1

sin(ψ − β)
≤ c′0 +

1

(ψ − β)a
, with a =

log(sin(0.4))

log(0.4)
≈ 1.029, (21)

c′0 = max

{
1

sin(ψ0 + r − β)
− 1

(ψ0 + r − β)a
, 0

}
.

When β + π −G ≤ ψ0 < β + π, we take symmetrically on [ψ0 − l, β + π)

1

sin(ψ − β)
≤ c′′0 +

1

(β + π − ψ)a
, with a =

log(sin(0.4))

log(0.4)
≈ 1.029, (22)

c′′0 = max

{
1

sin(ψ0 − l − β)
− 1

(β + π − ψ0 + l)a
, 0

}
.

The constants c′0, c′′0 are again chosen in order to obtain an upper bound. The constant a is chosen
here to get an upper bound even without the constant term c′0 for (21) on ψ ∈ (β, β + 0.4] and
without c′′0 for (22) on ψ ∈ [β + π− 0.4, β + π). This can be seen by noting that a is solution to the
equation

sin(0.4) = 0.4a,

from which it follows that sin(x) ≥ xa on [0, 0.4], resulting in an upper bound for the inverses.
The value 0.4 is chosen somewhat arbitrarily. Fig. 6 shows the behavior of the approximation with
G = 0.6, which is quite good.

Note however that the bounds on the right-hand side of (21), (22) are not a posynomials!
Nonetheless, these expressions can be handled using geometric programming, as we discuss now.
When using say approximation (21), we replace the separation and metering constraints by stronger
constraints of the form

p(v, ψ)

(ψi − β)a
+ q(v, ψ) ≤ 1, (23)

where p, q are posynomials in the speed and heading variables and a > 0. We can then rewrite such
a constraint as the pair of constraints

t+ q(v, ψ) ≤ 1,
p(v, ψ)

(ψi − β)a
≤ t, (24)

where t > 0 is a new variable, and rewrite the second constraint in (24) as the generalized posynomial
constraint

p(v, ψ)1/a

ψi t1/a
+

β

ψi
≤ 1.

The fact that (23) is equivalent to (24) can be seen as follows. If (23) is satisfed, then so is (24)
with the choice t = p(v, ψ)/(ψi−β)a. Conversely if (24) is satisfed for some t, then we can decrease
t until the second inequality in (24) becomes tight, i.e., (23) is satisfied. Expressions involving (22)
are handled in a similar way.
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Fig. 6 Local overapproximations (in red) of ψ 7→ 1/ sin(ψ− π/4) (in blue), for π/4 < ψ < π/4+ π.
For ψ0 = π/4 + 10◦, π/4 + 20◦, . . ., the approximations (19) or (21), (22) are plotted for ψ ∈
[ψ0 − 10◦, ψ0 + 10◦]. We chose a value G = 0.6 here.

IV. Metering and Scheduling using Mixed-Integer Geometric Programming
In the rest of the paper, we present specific scenarios involving conflict resolution and metering,

and illustrate the application of the previously developed optimization framework based on geometric
programming. In addition, in this section we discuss how disjunctions of separation and metering
constraints can be modeled using mixed-integer geometric programming, to also optimize over the
combinatorial space of possible crossing patterns and orderings of aircraft. As an illustration of the
method, we solve here a problem involving the determination of the optimal aircraft ordering at a
metered fix.

A. Handling Disjunctions in Geometric Programs
We discussed safety and metering constraints in Section II, and (17), (18) are some examples

of posynomial cost functions we could optimize subject to these constraints being satisfied. Now
consider the following joint scheduling and path planning scenario at an airspace fix subject to a
minutes-in-trail restriction MINIT. The goal is to merge a number of planes heading toward the
airspace fix in a single stream down the fix, while satisfying the metering constraint specifying that
two successive aircraft reaching the fix must be separated by at least MINIT minutes. This scenario
is represented on Fig. 3, for the similar problem involving a miles-in-trail restriction MIT. The
optimal ordering of the aircraft at the fix is to be determined as well. The only continuous decision
variables available here are the speeds vi, i = 1, . . . , N . The headings are fixed to their initial values
ψi,0, with the aircraft directed toward the fix, so that each aircraft can reach the metering fix using
a straight line trajectory. The optimization problem we want to solve is then

min f(v1, . . . , vN ) (25)
subject to vi,min ≤ vi ≤ vi,max, i = 1, . . . , N (26)

(2) ∨ (3) ∨ (6) ∨ (7), 1 ≤ i ≤ N − 1, i+ 1 ≤ j ≤ N (27)[
divj
djvi

+MINIT
vj
dj
≤ 1

]
∨
[
djvi
divj

+MINIT
vi
di
≤ 1

]
, 1 ≤ i ≤ N − 1, i+ 1 ≤ j ≤ N.

(28)

In (25), the objective function f is chosen to be a generalized posynomial. The disjunction (27) for a
pair (i, j) represents the fact that satisfying one of these constraints is sufficient to ensure separation
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of the aircraft until one of them reaches the fix. The metering constraints (28) (see subsection IIC 2)
also involve a disjunction, where the first (resp. second) literal is selected if i (resp. j) reaches the
fix first. Note that by solving this program we determine the best ordering of aircraft at the fix,
rather than fixing this ordering a priori.

We now show how to model the disjunctions by introducing additional integer variables. Recall
[10, 26] the standard “big-M” formulation used to model a disjunction of linear constraints

aT1 x ≤ b1 ∨ aT2 x ≤ b2

using mixed-integer linear programming. Assuming that we have bounds on the variables x, we can
rewrite the disjunction above as the conjunction

aT1 x ≤ b1 + cM, aT2 x ≤ b2 + (1− c)M, c ∈ {0, 1},

for some sufficiently large M , where c is a new binary variable. A mixed-integer linear program
(MILP) solver implementing a branch-and-bound procedure for example obtains lower bounds by
relaxing the binary constraint to 0 ≤ c ≤ 1. This idea does not work directly with geometric
programs however. Indeed the equivalent of the first constraint would be g(x) ≤ 1 + cM , with
g a posynomial, which is not a posynomial constraint when c is relaxed to 0 ≤ c ≤ 1 (since
g̃(x, c) = g(x) − cM is not a posynomial). Hence we modify the method as follows. Consider the
disjunction of posynomial constraints

g(x) ≤ 1 ∨ h(x) ≤ 1, (29)

and the conjunction

g(x) + 2M/c ≤ 1 + 2M, h(x) + cM ≤ 1 + 2M, c ∈ {1, 2}, (30)

for M sufficiently large (assuming we have bounds 0 < b < x < b, which is the case for our decision
variables v1, . . . , vN ). Then for c = 1, the first constraint in (29) is enforced, and for c = 2, the
second constraint is enforced. When the constraint on c is relaxed to 1 ≤ c ≤ 2, (30) can be handled
by a geometric programming solver since the left-hand sides consist of posynomials.

More generally, for a disjunction of n posynomial constraints

g1(x) ≤ 1 ∨ . . . ∨ gn(x) ≤ 1

we can introduce n integer variables b1, . . . , bn ∈ {1, 2} and consider the conjunction of constraints

gi(x) + biM ≤ 1 + 2M,

and in addition the posynomial constraint

2/(b1 . . . bn) ≤ 1, (31)

which forces at least one of the bi variables to be 2, and the corresponding constraint in the disjunc-
tion to be enforced. Modeling the disjunctions in the separation and metering constraints (27), (28)
this way, we obtain a Mixed Integer Geometric Program (MIGP). In addition, to find the solution
of the minimization problem, it is sufficient to consider the situation where exactly one bi has value
2, enforcing just one constraint per clause, hence replacing (31) by

2/(b1 . . . bn) = 1. (32)

Constraint (32) is again a valid geometric programming constraint once the variables bi are relaxed
to 1 ≤ bi ≤ 2, since the left-hand side is a monomial. This constraint is preferable to (31) since it
reduces the search space, for example by eliminating variable bn.

Using the above big-M method to reformulate the program (25)-(28), with say f a posynomial,
we obtain an MIGP with N continuous variables v1, . . . , vN , and 2N(N − 1) binary variables. The
number of binary variables is particularly problematic, as the development of MIGP solvers is not
as advanced as for MILP solvers. With the currently available open-source solver Bonmin[27], we
could solve reliably problems with 5 aircraft in a few seconds, and problems with 6 aircraft in about
one minute, see Table 1.
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Table 1 Computation times for the MIGP solving the fix scheduling scenario. The problems
were solved using the branch-and-bound algorithm implemented in Bonmin [27], on a 3.06GHz
Intel Core 2 Duo processor with 4GB of RAM. For each line of the table, 100 simulations
were conducted with random initial positions for the aircraft. The number of binary variables
shown accounts for the trivial elimination of one of the variables for each constraint (32).

# aircraft # binary variables Median Comp. Time Std. dev. Max
2 4 0.12 s 0.14 s 1.44 s
3 12 0.44 s 0.29 s 1.8 s
4 24 1.33 s 1 s 4.4 s
5 40 8.5 s 10.7 s 51.1 s
6 60 61.4 s 44.3 s 208 s

B. Simulation Results
For the scenario described in the previous paragraph, we solve the resulting MIGP (25)-(28)

with the clearing time objective (17) by first rewriting the geometric programming part in convex
form via the change of variable (14), and then using the mixed-integer nonlinear programming
(MINLP) solver Bonmin [27]. A more satisfying solution would be to use a dedicated MIGP solver,
but currently such solvers do not seem to be easily available. Table 1 presents the computation
times for scenarios involving between 2 and 6 aircraft. The aircraft initial positions are generated
randomly in a 100×400 nmi rectangle, and the planes must all pass through an airspace fix situated
400 nmi away, see Fig. 7. A Minutes-In-Trail restriction of 10 minutes between successive aircraft
is enforced at the fix, and the separation distance between aircraft is fixed to 10 nmi. Among the
various algorithms implemented in Bonmin [27], the simple branch-and-bound algorithm was found
to be the most reliable, although not always the fastest, and the simulation results presented relate
to this algorithm. For such mixed-integer convex programs, Bonmin is an exact solver, that is, it
eventually returns the optimal solution if the problem is feasible.

MINLP and MIGP solvers are not as mature as MILP solvers, and progress in this area would
be very beneficial for our applications. The simulation results of Table 1 show that for 6 aircraft
involved simultaneously in a conflict, half of the generated cases required more than one minute of
computation time. Two effects contribute to make instances with more aircraft more difficult to
solve: the number of integer variables introduced, and the fact that with more aircraft it becomes
harder to find feasible solutions. Fig. 8 shows the distribution of the computation times for 100
simulations with 5 aircraft. Note the presence of a few outliers for which the computation time is
much larger than for the typical case.

V. An Optimization-Based Heuristic For Separation and Metering
The inclusion of integer variables in the optimization problem as in the previous section allows

us to optimize over the ordering of aircraft as well as the crossing patterns of the trajectories, i.e., to
decide for each pair of aircraft on which side of the forbidden cone the relative velocity vector should
lie. For complex problems involving many aircraft, MIGP solvers are not fast enough for real-time
applications, and thus in this section we present a fast heuristic based on geometric programming,
which essentially chooses a priori which constraints in the disjunctions to enforce. In contrast to
the scenario of Section IV, we consider here the situation where the ATC can modify both aircraft
velocities as well as headings within given bounds.

Our heuristic first resolves the head-on conflicts, i.e., those for which the initial aircraft headings
are within the set C0ij defined in (4), by a necessary heading change. It then locally optimizes the
velocities and headings while ensuring separation, assuming in this second step that only small
heading changes are allowed. The local optimization is based on posynomial approximations of
the nonlinearities present in the separation and metering constraints, using the results presented in
Section III B. This heuristic does not provide a global optimum in general, and in particular we
do not optimize over the crossing patterns. Because it only solves a convex optimization problem
however, it can be used in real-time and in a periodic re-optimization strategy (see Section VC).
Moreover, if it finds a feasible solution, this solution is guaranteed to be safe for our kinematic
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Fig. 7 Four snapshots with the positions of six aircraft approaching a merging point (at
coordinates (5, 2)), subject to a MINIT = 10 min restriction, and with mandatory separation
distance equal to 10 nmi (represented by the small circles). A unit on the figure corresponds
to 100 nmi. The velocities are constrained to be between 200 kn and 300 kn for three aircraft
and between 250 kn and 350 kn for the other three. Once an aircraft reaches the fix, a new
ATC command instructs it to follow the heading ψ = 0◦ at velocity 300 kn. The MIGP decides
the optimal ordering of the aircraft based on a given cost function (here simply the total
travel time), while maintaining separation at all times.

model. The two phases of the algorithm are described next in more details.

A. Phase I: Removing Configurations in C0ij.
As discussed in Section II B 1, for two aircraft i and j with headings in C0ij , a heading change for

at least one of the aircraft is necessary in order to avoid loss of separation. Moreover, this cannot
necessarily be accomplished with a small heading change if the two aircraft are close to each other.
In Phase I of our algorithm, we remove the occurrences of such configurations between any two
aircraft in the region under consideration, by modifying the headings only. More precisely if i < j
are two aircraft with ψi,0, ψj,0 in C0ij , we move the headings out of the region C0ij by using right turn
maneuvers as described on Fig. 9. We impose that all aircraft turn in the same direction in order to
resolve these head-on conflicts. Hence to resolve conflicts using right turns, we reset (ψi,0, ψj,0) ∈ C0ij
to the new values ψi,0 = γij − ε [mod 2π] and ψj,0 = γij + π− ε [mod 2π]. Here ε is a small positive
number used to simplify the analysis later on. Our strategy is clearly not optimal, but should be
satisfying in the usual situations where only a small number of such head-on conflicts are expected
to occur.

Resolving one head-on conflict can create new ones with other aircraft. These conflicts are
then resolved similarly, until a head-on conflict free configuration is found. We do not claim any
termination guarantee for this process. Indeed, some artificial examples lead to conflicts that cannot
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Fig. 8 Distribution of the computation times for the fix scheduling problem with 5 aircraft,
over 100 simulations.

headings 
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Fig. 9 Maneuver to remove configurations C0ij. The direction of rotation of the aircraft is fixed
and the same for all planes (here all planes turn right to resolve conflicts). As can be seen
on the figure even in the case of two planes, this rule is not necessarily optimal since turning
left would have resulted in a smaller heading change in this case, at least in the absence of
other conflicts.

be resolved by such an iterative scheme, whereas under our assumptions neglecting aircraft dynamics
conflicts can always be trivially resolved, e.g. by simply setting the headings of all aircraft to the
same value. However, with reasonably large initial separation between aircraft, this heuristic proved
to be sufficient in our simulations, see Section VC. Note that potentially much more computationally
intensive procedures could be used to handle conflicts in this phase more rigorously, e.g. using
mixed-integer linear programming [10].

In addition to removing head-on conflicts, in this first phase of the algorithm we also perturb
any initial heading ψi,0 that is exactly equal to βi,j , γi,j , βi,j + π or γi,j + π by some small positive
constant ε, in a direction avoiding the creation of a new configuration in C0ij , until all these limit
cases are removed. This simplifies the analysis of the second phase of the algorithm, presented next.

B. Phase II: Local Parameter Optimization via Geometric Programming
In Phase II of the algorithm, as a result of running Phase I above, we assume that no aircraft

has its heading ψi,0 exactly equal to βi,j , γi,j , βi,j + π or γi,j + π, and no pair of aircraft i < j has
its headings ψi,0, ψj,0 in the set C0ij . We then modify velocities and headings in order to resolve any
remaining conflict and optimize a cost objective. If conflicts are detected long enough in advance,
we can expect the necessary variations in headings (and velocities) to be small. For example, in all
simulation results reported in Pallottino et al. [10], heading changes were smaller than 12◦, even
though speed changes were not allowed. Clearly, allowing speed changes can only help decreasing
heading changes if the goal is to minimize deviations from the initial trajectory for example. In
our heuristic, we restrict the variations of headings, e.g. to ±15◦ from the values ψi,0, i = 1, . . . , N .
Note that similar restrictions are also included in other previous work [7, 8], although there the a
priori allowed heading variations are potentially larger.
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1. Heuristic Choice of Literal in the Separation Constraints
In order to simplify the computations and avoid the introduction of combinatorial choices, we

choose a priori for each pair i < j of aircraft one of the constraints (2) or (3) that we want to
enforce. The finite-horizon constraints (6), (7) are not used here, although they could be included
to reduce conservativeness. For each pair i < j, we distinguish between two cases

1. one of the implications 1-4 in Proposition 1 is not true, and thus one of the constraints (2) or
(3) holds trivially for all vi, vj . This means that the aircraft i, j are initially not in conflict,
and no conflict between them can arise by simply changing their speeds. We then choose
to enforce the trivial constraint (2) or (3), and impose bounds on ψi, ψj ensuring that this
constraint remains trivial, i.e., that the signs of the sine functions do not change. For example,
if sin(ψi,0 − βij) > 0 and sin(ψj,0 − βij) < 0, we add the constraints

βij < ψi < βij + π [mod 2π], βij + π < ψj < βij + 2π [mod 2π].

With these bounds added, we can then remove the separation constraint for the pair i, j, as
any feasible choice of vi, vj , ψi, ψj automatically guarantees separation.

2. all the implications 1-4 of Proposition 1 hold. In this case for certain values of vi, vj , a conflict
can arise even if i and j are initially not in conflict, and we can also modify vi, vj , ψi, ψj to
resolve an initial conflict between aircraft. We choose one of the constraints (2) or (3) that
we want to enforce, while respecting the following rule: it must be possible to satisfy the
constraint for some positive values of vi, vj without changing the signs of the trigonometric
terms in the constraint.

For an example illustrating case 2, if sin(ψi,0 − βij) < 0 and sin(ψj,0 − βij) > 0, then we cannot
choose constraint (2), because it cannot lead to a valid inequality without changing the sign of
sin(ψi − βij) or sin(ψj − βij). In this case however, because we assumed that the initial headings
are not in C0ij , we can choose constraint (3). This is a consequence of the definition (4), which leads
to the conclusion

(s
γij
j,0 ≥ 0 ∨ sγiji,0 < 0) ∧ (s

γij
j,0 6= 0 ∨ sγiji,0 ≤ 0).

It is not hard to verify that under this condition, inequality (3) is valid for some positive values of
vi, vj . It is always the case that either constraint (2) or (3) can be chosen, and in some cases, both
constraints could be chosen. The choice of which constraint to enforce in this last case can have an
important influence on the feasibility of the overall optimization problem. Note that the meaning of
constraint (2) is that we wish to push vij on Fig. 1 outside of the forbidden cone, in the direction
of n1

ij . Similarly, satisfying constraint (3) means that vij is pushed in the direction of n2
ij . Our

heuristic simply chooses constraint (2) if the initial relative velocity vector v̂ij is on the side of the
line (p̂i, p̂j) that is in the direction of n1

ij , and constraint (3) otherwise. In other words, we force
the algorithm to keep v̂ij and vij on the same side of the line (p̂i, p̂j).

Once a constraint to enforce has been chosen, we impose bounds on ψi, ψj that prevent the
trigonometric terms to change signs in the optimization procedure. For example, if constraint (3)
is chosen, with say sin(ψi,0 − γij) < 0 and sin(ψj,0 − γij) < 0, then we add the constraints

γij + π < ψi, ψj < γij + 2π [mod 2π].

Moreover negative terms of the form sin(ψ − B) in the constraints (2) and (3), i.e., with B + π <
ψ < B + 2π, are rewritten − sin(ψ − A), with A = B + π and thus A < ψ < A + π. Thus, the
approximations discussed in section III B are sufficient. With these additional bounds on headings
included, we then rewrite the chosen constraint (2) or (3) in the form

vk
vl

sin(ψk −A)
sin(ψl −A)

≤ 1, (33)

where (k, l) = (i, j) or (j, i), and A = βij , γij , βij+π or γij+π [mod 2π]. The case where sin(ψl−A) =
0 in (33) need not be considered since preprocessing in phase I above eliminated the problematic
initial conditions using small perturbations.
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2. Optimization
At this point we have chosen a separation constraint to enforce for each pair of aircraft, set

bounds on the heading variables that allow us to use posynomial approximations of the trigonometric
terms, and expressed the selected separation constraints in the form (33). The next step is to perform
a posynomial approximation of these inequalities around the headings {ψi,0}1≤i≤N (obtained at the
end of phase I). For this purpose, we use the conservative approximations developed in Section
III B. The satisfaction of the posynomial inequalities presented next is sufficient to guarantee that
the separation constraints (33) are satisfied. In order to use the local approximations, we potentially
further restrict the variations of the heading variables ψi. The interval of heading variations cannot
be increased too much because the resulting posynomial constraints become overly conservative. In
the simulations presented in the next section, we chose to limit heading variations to ±15◦.

The upper bounds discussed in section III B lead to replacing (33) by a more conservative
constraint of the form

vk
vl
ck

(
ψk
ψk,0

)ak (
cl,0 + cl,1

(
ψl
ψl,0

)al)
≤ 1, (34)

by using (19), (20); or, if ψl,0 ∈ (A,A+G], of the form

vk
vl
ck

(
ψk
ψk,0

)ak (
cl,0 +

1

(ψl −A)al

)
≤ 1, (35)

by using (19), (21); or finally, if ψl,0 ∈ [A+ π −G,A+ π), of the form

vk
vl
ck

(
ψk
ψk,0

)ak (
cl,0 +

1

(A+ π − ψl)al

)
≤ 1, (36)

by using (19), (22). Constraint (34) is a posynomial constraint. It was also explained at the end
of subsection (III B) how to convert (35) and (36) to equivalent posynomial constraints. Finally,
metering constraints such as (12) can be similarly handled by geometric programming using again
the same approximations of the sine and inverse sine functions. With the cost function and all
constraints expressed in the form of posynomials, we can finally solve the geometric program.

C. Simulations
We now present some simulations illustrating the results obtained with the algorithm discussed

in the preceding subsections. In these simulations, we set the interval of allowed heading variations
to ±15◦ in order to develop the posynomial approximations of Subsection III B. Geometric programs
are solved in Matlab using the convex modeling package CVX [28, 29].

We first consider a pure conflict resolution problem, i.e., with no metering constraints, where
aircraft are initially randomly distributed in a 300 nmi ×300 nmi square, with random initial
headings. Fig. 10 shows two instances of the problem, involving 15 and 20 aircraft respectively.
Any two aircraft are initially separated by at least 30 nmi in the generated instances. The initial
speeds are uniformly and randomly distributed over the interval [180 kn, 300 kn], and these speeds
are also the minimum and maximum allowed speeds for all aircraft. The cost function optimized
penalizes deviations with respect to the initial speeds and headings

min
vi,ψi,i=1,...,N

N∑
i=1

max

{
vi,0
vi
,
vi
vi,0

}
+ ρmax

{
ψi,0
ψi

,
ψi
ψi,0

}
, (37)

where the parameter ρ controls the penalization of heading changes with respect to speed changes.
Initial and final trajectories (i.e., after conflict resolution) are represented on Fig. 10 for the two
instances of the problem. Recall that for such a conflict resolution problem, there is always at
least one feasible solution, e.g. the trivial one that simply aligns all the headings. However, our
heuristic does not guarantee that it will find a feasible solution, since it only locally optimizes the
headings and moreover does not optimize over the crossing patterns. The histogram on Fig. 11
shows empirically how the number of instances found to be infeasible in simulations grows with the
density of planes considered.
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Fig. 10 Conflict resolution with 15 (left) and 20 (right) aircraft in a 300 nmi ×300 nmi square.
Each aircraft initial position is represented together with a circle of diameter 5 nmi around it
(one unit on the figure represents 10 nmi). Dashed lines represent the initial trajectories, and
solid lines the adjusted trajectories after conflict resolution. The parameter ρ is set to 1 in
(37). In the 15 aircraft example, the maximum heading change resulting from the optimization
is 10.5◦ and maximum speed change 9 kn. In the 20 aircraft example on the left, the maximum
heading change is 9.5◦ and the maximum speed change is 12 kn.

Next we consider problems involving both conflict resolution and metering. On Fig. 12 we show
a scenario with 14 aircraft with crossing trajectories, initially involved in 7 conflicts. In addition,
half of the aircraft are heading toward a metered zone, with the constraint that two successive
aircraft entering the zone must be separated by at least 6 minutes. The cost function minimized is
again (37). The algorithm successfully determines how to slow down the aircraft of the metered flow
while removing the conflicts between aircraft. Note that the ordering of the aircraft crossing the
metered line is fixed a priori here. Optimizing over this ordering would require introducing integer
variables as in Section IV.

The simulations above only show the result of a single stage optimization. Note however that
solving the moderate size geometric programs arising in typical conflict resolution scenarios can
be done in real-time. Hence the optimization can be repeated at regular intervals to continuously
adjust the trajectories based on the current positions of the aircraft, resulting in piecewise linear
trajectories. This approach also guarantees that if we stop updating the speed and heading variables,
the aircraft fly straight trajectories that are conflict-free. Fig. 13 shows an example illustrating this
periodic optimization procedure. At each optimization step we use as initial headings for the local
optimization the desired headings starting from the current location. Comparing Fig. 12 and 13,
we see that this procedure significantly reduces the deviations necessary to resolve conflicts.

VI. Conclusion
We have presented in this paper a novel conflict resolution method based on geometric program-

ming. The method is able to handle many aircraft simultaneously and can be used to simultaneously
optimize over speeds and headings, assuming only small heading changes. A key feature of this ap-
proach is that we can incorporate metering constraints in the path planning problem. Hence we
believe that geometric programming is a useful tool to model and solve problems at the interface
between traffic flow management and separation assurance. Solving these problems will permit a
smoother integration of automated tools for decision support in air traffic control.
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Fig. 11 Percentage of infeasible instances for the fast heuristic in the conflict resolution sce-
nario of Fig. 10, as the number of aircraft increases. 100 instances were generated in each
case.
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Fig. 12 Crossing of 14 aircraft with metering. One unit represents 10 nmi. The initial speed
of all aircraft is the same, creating 7 conflicts. Moreover, we have the constraint that two
successive aircraft crossing the thick dashed line must be separated by at least six minutes.
We show the position of the aircraft at t = 0 and at the time where the first aircraft traveling
North crosses the metered boundary.
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