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Stable Levitation and Alignment of Compact Objects by Casimir Spring
Forces

Abstract
We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or
spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the
cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls
are computed. We find that the stability of the force equilibrium—unlike the direction of the torque—can be
predicted based on the sign of the force between two slabs of the same material.
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We investigate a stable Casimir force configuration consisting of an object contained inside a spherical

or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center

of the cavity and the dependence of the energy on the relative orientations of the inner object and the

cavity walls are computed. We find that the stability of the force equilibrium—unlike the direction of the

torque—can be predicted based on the sign of the force between two slabs of the same material.

DOI: 10.1103/PhysRevLett.104.070405 PACS numbers: 12.20.�m, 03.70.+k, 42.25.Fx

The Casimir force between atoms or macroscopic ob-
jects arises from quantum fluctuations of the electrody-
namic field [1]. Typically, it is found that the force is
attractive, as long as the space between the objects is
empty, and the magnetic susceptibility of the objects is
negligible compared to their electric susceptibilities. But
when space is filled with a medium with electric permit-
tivity �M intermediate between that of two objects, �1 <
�M < �2, the force between the two becomes repulsive [2].
This effect has recently been verified experimentally in the
large separation (retarded) regime [3]. But while repulsive
forces are nothing new, they become interesting for appli-
cations when they produce stable equilibria, which, for
example, the Coulomb force cannot.

For an infinite cylinder enclosed in another, the Casimir
force has recently been shown to have a stable equilibrium
in the two directions perpendicular to the cylinder axes,
when the material properties are chosen so that the force
between two slabs of the same materials would be repul-
sive [4]. On the other hand, for a metal sphere or an
electrically polarizable atom inside an otherwise empty
spherical cavity there is no point of stable equilibrium [5].

In this Letter we investigate the first configuration,
depicted in Fig. 1, in which a compact object levitates
stably due to the Casimir force alone. We consider the
following cases: a finite sphere or a small spheroid inside a
spherical cavity, and a small spheroid inside a slightly
deformed spherical cavity. The Casimir energy

E ¼ E0 þ 1

2
k
a2

R2
þ 1

3!
k3

a3

R3
þ 1

4!
k4

a4

R4
þ � � � (1)

is characterized by the spring constant k and the coeffi-
cients kn in a series expansion in a=R, where a is the
magnitude of the displacement from the center of the
cavity and R the radius of the (undeformed) spherical
cavity. (k has units of energy here.) Unlike the case of
infinite cylinders, our case exhibits, for appropriately
chosen materials, true stability in all directions and applies
to realistic situations. For example, we compute the force
on a metal sphere in a spherical drop of liquid surrounded
by air. By determining the mean square deviation from the

center, ha2i ¼ 3kBTR
2=k, the spring constant k can be

measured experimentally. We can estimate that the size

of the droplet R has to be smaller than�3 �m r3

R3 , where r

is the typical dimension of the inner object, for the thermal
motion to be confined near the center of the cavity. (This
length scale is obtained by balancing 3kBT for room tem-

perature with a rough estimate of the spring constant, k�
@c
R

r3

R3 .) To keep the two objects nearly concentric against

the gravitational force, R has to be smaller than�1 �m for
the typical metal or liquid densities considered here. Our
calculations show that, for example, a sphere of gold of
radius r ¼ 3

4R inside a spherical drop of ethanol of radius

R ¼ 0:1 �m has an rms deviation
ffiffiffiffiffiffiffiffiffiha2ip ¼ 0:04R from the

center due to thermal motion and a displacement from the
center by a � 10�6R due to gravity. A variety of technol-
ogies may benefit from our analysis, e.g., nanocarriers
(R � 0:1 �m) for drug particles [6] or molecular cages
for explosive molecules [7].
Whether the center of the cavity is a point of stable or

unstable equilibrium turns out to be correlated with

FIG. 1 (color online). Summary of the configurations we con-
sider and of the results. We have assumed that the small
spheroid’s zero frequency permittivity satisfies �I;0 > �M;0 and

that it is larger in the body-fixed ẑ direction, so �E
zz > �E

??.
Furthermore, the magnetic permeabilities are all set to one.
(a) Direction of the force F on such a spheroid in a spherical
cavity if �M;0 > �O;0, and the direction of the torque � when

either �M;0 > �O;0 or �M;0 � �O;0. (b) A finite size sphere

experiences a restoring force F for the various combinations of
materials listed in Table I. (c) Direction of the torque � in the
center of a slightly spheroidal cavity if either �M;0 < �O;0 or

�M;0 � �O;0.
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whether the Casimir force is repulsive or attractive for two
parallel plates under those conditions. The direction of the
torque, on the other hand, depends on the dielectric prop-
erties of the medium and the cavity walls in an unintuitive
way, which cannot be predicted by the pairwise summation
or proximity force approximations (PSA or PFA), see
Fig. 1. In particular, this behavior is not due to dispersion
effects, which explain similar phenomena reported in
Ref. [4]. We calculate the torque on a small spheroid that
is displaced from the center of a spherical cavity [Fig. 1(a)]
or concentric with a slightly spheroidal cavity [Fig. 1(c)].
In the former case, the orientation dependence manifests
itself in k, which captures both the torque and the orienta-
tion dependence of the total force. In the latter case, E0

depends on the relative orientation of the spheroid inside
the deformed cavity. (If the cavity is spherical, E0 is a finite
constant that can be ignored.) By choosing appropriate
materials, the inside object, e.g., a nanorod, can be made
to align in different ways with the cavity shape, a situation
which is reminiscent of a compass needle aligning with the
magnetic field of the earth.

The starting point of the analysis is the scattering theory
approach. The method is explained and derived in detail
in Ref. [8], where a partial overview over its precursors,
e.g., [9], is provided. The Casimir energy E ¼
@c
2�

R1
0 d� ln detðI �F ii

OW
ioF ee

I V ioÞ is expressed in

terms of the inner object’s exterior T matrix, F ee
I , and

the outer object’s interior T matrix, F ii
O. The exterior

T matrix describes the scattering of regular wave functions
to outgoing waves when the source lies at infinity. The
interior T matrix expresses the opposite, the amplitudes of
the regular wave functions, which result from scattering
outgoing waves from a source inside the object. The trans-
lation matrices W io and V io convert regular wave func-
tions between the origins of the outer and the inner objects;
they are related by complex transpose up to multiplication
by (�1) of some matrix elements.

With uniform, isotropic, and frequency-dependent per-
mittivity �xðic�Þ and permeability �xðic�Þ functions (x ¼
I: inner object; x ¼ O: outer object; x ¼ M: medium) the
T matrix of the sphere is diagonal. It is given by

F ee
I;lmE;lmEðic�Þ¼F ee

I;lEð�Þ

¼� ilð�Þ@rðrilðzI�ÞÞ� �I
�M
ilðzI�Þ@rðrilð�ÞÞ

klð�Þ@rðrilðzI�ÞÞ� �I
�M
ilðzI�Þ@rðrklð�ÞÞ

for E (electric) polarization and by the same expression
with �I

�M
replaced by �I

�M
for M (magnetic) polarization (not

to be confused with subscript M indicating the medium’s
response functions). In the above equation the frequency
dependence of the response functions has been suppressed.

The indices of refraction nxðic�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xðic�Þ�xðic�Þ

p
of

the sphere and the medium appear in the ratio zIðic�Þ ¼
nIðic�Þ=nMðic�Þ and the argument � ¼ nMðic�Þ�r. The
interior T matrix of the spherical cavity is obtained from
the exterior T matrix of the sphere by inserting the outside

object’s radius and response functions in place of those of
the inside object and exchanging the modified spherical
Bessel functions il and kl.
However, the scattering approach is not limited to sim-

ple geometries. An array of techniques is available for
calculating the scattering amplitudes of other shapes. We
employ the perturbation approach to find the T matrix of a
deformed spherical cavity [10,11] of radius Rþ �ð1�
3=2sin2�Þ. The deformation, indicated in Fig. 1(c), is
chosen so that the volume is unchanged to first order in

�. We find the Oð�Þ correction, F ð1Þ, to the T matrix in a

perturbation series expansion, F ¼ F ð0Þ þF ð1Þ þ � � � ,
by matching the regular and outgoing fields according to
the Maxwell boundary conditions along the deformed
object’s surface [12]. On the other hand, for a small object
(compared to the wavelength of the radiation), we can ap-
proximate the T matrix to lowest order in � using the static
polarizability tensor, F ee

I;1mP;1m0P ¼ 2=3ðnM;0�Þ3�P
mm0 þ

Oð�5Þ, where the subscript 0 indicates the static (ic� ¼
0) limit and P is the polarization label. The T-matrix
elements involving higher angular momenta l > 1 are
higher order in �. For a small ellipsoid, in particular, the
electric polarizability tensor �E is diagonal in a coordinate
system aligned with the ellipsoid’s body axes, �E

ii ¼ V
4� �

�I;0��M;0

�M;0þð�I;0��M;0Þni , where i 2 fx; y; zg [13]. The larger the

semiaxis in direction i, the smaller the depolarization
factor ni (not to be confused with the index of refraction).
The magnetic polarizability tensor �M is obtained by ex-
changing�x;0 for �x;0 in the expression for�

E. In the small

size limit the polarizability tensor of a perfect metal ellip-
soid is obtained by taking both �I;0 ! 1 and �I;0 ! 0.
For simplicity we specialize to a spheroid, which has

two equal semiaxes. We choose the semiaxes along x̂ and ŷ
to be equal; therefore, �P

xx ¼ �P
yy ¼ �P

??. We fix the ẑ axis

of the lab frame to be along the direction of displacement
of the spheroid from the center of the cavity. � denotes the
angle between the spheroid’s and the lab’s ẑ axes. For such
a small spheroid inside a spherical cavity of radius R
[Fig. 1(a)], the spring constant is obtained by expanding
the log determinant in the expression for E to first order,

kR!1 ¼ @c

R4nM;0

�
Tr�EfE1

þ ð�E
zz � �E

??Þ
3cos2�� 1

2
fE2 þ E ! M

�
; (2)

where the material dependent functions

fE1 ¼
Z 1

0

�5d�

9�
½F ii

O;1M � 2F ii
O;1E �F ii

O;2E�;

fE2 ¼
Z 1

0

�5d�

9�

�
4

5
F ii

O;1E � 1

5
F ii

O;2E �F ii
O;1M

� (3)

express the rotation invariant and the orientation dependent
parts of the energy, respectively. fM1 and fM2 are obtained
from fE1 and fE2 by exchanging E and M everywhere. This
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result is valid for asymptotically large R; it involves only
the zero frequency (ic� ¼ 0) response functions since R is
greater than anymaterial dependent length scales as well as
the size of the inner object. Notice that only the l ¼ 1, 2
scattering amplitudes of the cavity walls appear in Eqs. (2)
and (3).

The behavior of the functions fP1 , depicted in Fig. 2 for

�M;0 ¼ �O;0, is as expected: fE1 is monotonic, positive

when �M;0 > �O;0, negative when �M;0 < �O;0, and fM1 al-

ways has the opposite sign of fE1 . When fE1 is positive, a

small object with �I;0 > �M;0 is levitated stably, when f
E
1 is

negative, �M;0 > �I;0 has to hold. Thus, stability occurs

under the same conditions as repulsion for two half spaces.
The opposite sign of fM1 is expected from equivalent ex-
pressions for the two-infinite-slab geometry [14]. When the
dielectric contrast between the medium and the outer
sphere is taken to small or large limits, stability or insta-
bility is maximized.

To verify whether stability is observable for realistic
materials and object sizes, we evaluate the energy E nu-
merically for a sphere of radius r inside a spherical cavity
of radius R filled with various liquids [Fig. 1(b)] [15]. The
coefficients k, k4, and k6 in the series expansion in Eq. (1)
are listed in Table I. For comparison, the asymptotic result
kR!1 is also included. If both inside and outside object are
spherically symmetric, the series in Eq. (1) does not con-
tain terms � an

Rn with n odd.

The three materials were chosen so that the sequence of
permittivities �I, �M, �O either increases or decreases for
the imaginary frequencies that contribute most to the en-
ergy. Contrary to the prediction of the PSA and PFA the
force is not symmetric with respect to exchange of the
inner and outer permittivities. In the same medium, a high
dielectric sphere is held more stably in the center of a
cavity with low dielectric walls than a low dielectric sphere
inside a cavity with high dielectric walls.

The asymptotic result kR!1 yields a good approxima-
tion of k for r

R ¼ 1
4 . But from Eq. (2) one would expect

kR!1 to grow linearly with the volume of the inner sphere,
since polarizability is proportional to the volume. In fact, k

for r
R ¼ 3

4 is about 1000 times larger than for r
R ¼ 1

4 , instead

of just 27 times. This means that for a gold sphere in a
liquid drop with r

R ¼ 3
4 and R ¼ 1 �m at room tempera-

ture, indeed, the Casimir spring holds the particle near the

center effectively,
ffiffiffiffiffiffiffiffiffiha2ip

=R < 0:1.
Although k, k4, and k6 increase by 3 orders of magnitude

in some cases, the prefactor 1
n! ensures that the coefficients

in the Taylor expansion in Eq. (1) increase only by 1 order
of magnitude. Thus, for small excursions from the center,
e.g., a=R < 0:1, the higher corrections n 	 4 can be
neglected.
Compared to the stability conditions studied thus far, the

orientation dependence of the energy is more varied. fE2
and fM2 , plotted in Fig. 3, have the same sign for most ratios

of medium to outside permittivities, unlike fE1 and fM1 ,
which always have opposite signs. In these ranges of
values, the contributions to the torque from electric and
magnetic polarizability are opposite for a small perfect
metal spheroid, for which �I;0 > �M;0 and �I;0 <�M;0.

Unlike fE1 and fM1 , also, f
E
2 and fM2 change sign again at

�O;0

�M;0
� 80 and at

�O;0

�M;0
� 2000, respectively. So, while the

0.2 0.4 0.6 0.8 1.

1

M,0

O,0
1

3
2
1

1
2
3
4

f1
M

f1
E

FIG. 2 (color online). fE1 and fM1 describe the part of the spring
constant kR!1, which is invariant under a rotation of the inside
object. The vertical lines indicate the values pertaining to the
configurations presented in Table I, ethanol-vacuum (0.16),
bromobenzene-vacuum (0.30), and gold cavity walls (1). In
this plot, �M;0 ¼ �O;0.

TABLE I. k, kR!1, k4, and k6 are listed for various combina-
tions of materials for the case of a spherical inner object inside a
spherical cavity, depicted in Fig. 1(b). The dimensionless num-
bers in the table have to be multiplied by @c

R . R is given in

microns [�m]. kR!1 depends on R only through the ratios @c
R and

r
R , so its numerical prefactor is the same for all R. The highest

cutoff used was lmax ¼ 30. (The asymptotic result kR!1 only
requires l ¼ 1, 2.)

Inside-medium-outside R r=R k kR!1 k4 k6

Gold-bromobenzene-vacuum 0.1 1=4 0:040 0.054 1.2 8:2� 101

3=4 22 1.4 4200 1:8� 106

1.0 1=4 0:069 0.054 2.6 2:0� 102

3=4 7�0 1.4 18 000 1:0� 107

Gold-ethanol-vacuum 0.1 1=4 0:050 0.037 1.6 1:0� 102

3=4 27 0.99 5200 2:2� 106

1.0 1=4 0:045 0.037 1.7 1:4� 102

3=4 6�0 0.99 18 000 1:2� 107

Silica-ethanol-gold 0.1 1=4 0:015 0.012 0.46 3:1� 101

3=4 1�0 0.33 1900 8:4� 105

1.0 1=4 0:019 0.012 0.82 7:2� 101

3=4 41 0.33 12 000 7:6� 106

0.2 0.4 0.6 0.8 1.

1

M,0

O,0
1

0.1

0.1

0.2

0.3

f2
M

f2
E

FIG. 3 (color online). fE2 and fM2 describe the part of the spring
constant kR!1, which changes with the orientation of the inside
spheroid. In this plot, �M;0 ¼ �O;0.
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direction of the total force and the stability of the equilib-
rium can be determined based on the relative magnitudes
of the permittivities, the torque cannot be. The PSA and
PFA predict the orientation with the lowest energy in the

vicinity of
�O;0

�M;0
¼ 1 correctly but not when

�O;0

�M;0
� 1.

Furthermore, the second sign change of fE2 and fM2 raises
the question whether calculations of the Casimir torque for
infinite conductivity metals are ‘‘universal’’ in the sense
that they produce the correct qualitative results for real
materials.

The orientation dependent part of the energy for the
configurations discussed thus far vanishes, of course,
when the small spheroid is in the center of the spherical
cavity. If the cavity is slightly deformed, however, the
energy, E0, depends on the relative orientation of the
spheroid and the cavity [Fig. 1(c)]. We deform the spheri-
cal cavity as described earlier and obtain to first order in
�=R,

E 0 ¼ @ccos2�

R4nM;0

�

R
½ð�E

zz � �E
??ÞgE þ E ! M�; (4)

where the orientation-independent part of the energy has
been dropped. For �O;0 ¼ �M;0, g

E and gM are given by

gE ¼
Z 1

0

�4d�

10�

i1k0 þ i0k1

ð~k0i1 þ ~k1i0zO þ i1 ~k1=ðzO�Þð1� z2OÞÞ2
� ðz2O � 1Þ½4~k21=�2 � ð~k0 þ ~k1=ðzO�ÞÞ2�;

gM ¼
Z 1

0

�4d�

10�

i1k0 þ i0k1

ð~k1i0 þ ~k0i1zOÞ2
ðz2O � 1Þ~k21; (5)

where the arguments of the modified spherical Bessel
functions and of zOð0Þ are suppressed. il and kl are func-

tions of �, and ~kl stands for klðzOð0Þ�Þ, where zOðic�Þ ¼
nOðic�Þ=nMðic�Þ is the ratio of the permittivities of the
cavity walls and the medium. The material dependent
functions gE and gM are plotted in Fig. 4.

Again, gE has the same sign for
�O;0

�M;0
! 0 (left in Fig. 4)

and
�O;0

�M;0
! 1 (right). In addition to the root at

�O;0

�M;0
¼ 1, gE

also vanishes at
�O;0

�M;0
� 0:46.

The rich orientation dependence of the energy is ex-
pected to collapse as the size of the inside object grows to

fill the cavity and the PFA becomes applicable. Based on
the stability analysis for finite inside spheres, though, we
expect the asymptotic results, fP2 and gP, to predict the

orientation dependence for reasonably small inside sphe-
roids. For comparison with real experiments, of course,
various corrections to the idealized shapes considered here
have to be taken into account.
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FIG. 4 (color online). gE and gM describe the dependence of
the energy E0 on the relative orientation of the inside spheroid
and the deformed cavity walls.
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