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One-particle-thick, Solvent-free, Course-grained Model for Biological and
Biomimetic Fluid Membranes

Abstract
Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of
different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape
transformations. With extended length and time scales as compared to atomistic simulations, solvent-free
coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we
present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules.
The model features an anisotropic interparticle pair potential with the interaction strength weighed by the
relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid
membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is
highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and
spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can
naturally simulate dynamics of phase separation in multicomponent membranes and the topological change
of fluid vesicles.
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One-particle-thick, solvent-free, coarse-grained model for biological
and biomimetic fluid membranes
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Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of
different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transforma-
tions. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained
membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a
one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The
model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative
particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid mem-
branes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly
tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spon-
taneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally
simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid
vesicles.

DOI: 10.1103/PhysRevE.82.011905 PACS number�s�: 82.70.Uv, 87.17.Aa, 81.16.Dn

I. INTRODUCTION

Due to the hydrophobic interactions, amphiphilic mol-
ecules in aqueous solutions self-assemble into monolayer
�e.g., amphiphilic block copolymers �1�� or bilayer mem-
branes, where rodlike molecules align their longitudinal axes
parallel to each other and are able to diffuse laterally at
physiologically relevant temperatures. While atomistic simu-
lations �2� have been routinely performed to elucidate physi-
cal mechanisms involved in localized lipid organizations,
they are inaccessible to many intriguing membrane processes
�3,4� that occur on the length scale much larger than mem-
brane thickness. To overcome length and time scale limita-
tions of atomistic simulations, significant efforts have been
devoted to develop particle-based coarse-grained models,
where each lipid molecule is coarse-grained into several con-
nected beads. In general, particle-based models can simulate
membrane fluidity, hydrodynamic effect, and membrane to-
pological changes naturally.

In the explicit-solvent coarse-grained models �5–7�, sol-
vent molecules are also coarse grained, i.e., grouping several
water molecules into a coarse grain. Explicit-solvent coarse-
grained models stabilize membrane in fluid phase by explic-
itly accounting for the hydrophobic interactions between sol-
vent and lipid particles. While explicit-solvent strategy is
convenient and natural, yet it comes with a high computa-
tional cost. In coarse-grained simulation settings, membrane
particles spread on a two-dimensional �2D� surface, whereas
solvent particles occupy the bulk. The solvent degrees of
freedom thus vastly outnumber the lipid particles even for a
modest sized membrane, limiting the accessible length and
time scales of explicit-solvent coarse-grained models.

With the limitations of the explicit-solvent models in
mind solvent-free models are highly desired. For solvent-free
models in which water molecules are not explicitly modeled,
effective intermolecular attractive interactions need to be de-
vised to substitute for the hydrophobic interactions between
water molecules and hydrocarbon chains of amphiphilic mol-
ecules, which constitutes the major challenge in the develop-
ment of solvent-free membrane models. Such intermolecular
interactions have been successfully developed in chain-of-
bead models, where each amphiphilic molecule is coarse
grained into a chain of multiple connected beads �8–13�.
These chain-of-bead models, e.g., the three-bead model by
Cooke and Deserno �11,14,15�, have been exploited in me-
soscopic membrane simulations.

To push the length and time scales to the highest possible
level while retaining key membrane properties, particle-
based membrane models, where a single or a cluster of am-
phiphilic molecules are represented by only one particle, are
highly desired. However, attempts to develop such models
are often frustrated by the complexity of mimicking the hy-
drophobic effects in the absence of explicit solvents �4�. In
the pioneering model of Drouffe et al. �16�, particles are able
to self-assemble into one-particle-thick fluid phase. How-
ever, membrane bending rigidity of this model is signifi-
cantly lower than the experimental range. In addition, its use
of multibody potential complicates the model and increases
the computational cost. Along this direction, several other
models were proposed, aiming to avoid using multibody po-
tentials or to reproduce experimentally relevant membrane
properties �17–19�. In a recent model of such type, Kohyama
�19� extended the model of Drouffe et al. �16� to a pair
potential, where the bending rigidity is controlled by a time-
dependent variable. Despite varying degrees of success of
these models, it remains unclear whether an anisotropic pair
potential as simple as Lennard-Jones �LJ� potential for the*Corresponding author; suz10@psu.edu

PHYSICAL REVIEW E 82, 011905 �2010�

1539-3755/2010/82�1�/011905�8� ©2010 The American Physical Society011905-1

http://dx.doi.org/10.1103/PhysRevE.82.011905


isotropic case exists to mimic the hydrophobic effect while
yielding biologically relevant properties. In addition, for
large length scales, triangulated membrane models �20–23�
have been intensively used in simulating biological mem-
branes and protein networks �24–26�. The finite element
method �27�, the meshless method �28�, and the phase field
approach �29–31� have also been applied to study fluid mem-
branes.

The present work highlights a one-particle-thick fluid
membrane model. The interparticle interaction is described
by a soft-core pairwise potential, where the interaction
strength is dependent on the relative orientations. The pair-
wise interparticle interaction potential is very simple in its
mathematical form but highly tunable, able to robustly self-
assemble into fluid membranes with biophysically relevant
properties. From length and time scale mappings, each par-
ticle in our model represents a few lipid molecules in the
lateral direction. Due to its high computational efficiency,
our model enables simulations of large-scale membrane to-
pological changes and phase-separation dynamics, as demon-
strated by the selected examples.

II. COARSE-GRAINED MODEL

The coarse-grained particles in our model are axisymmet-
ric, with their axes of symmetry representing the longitudinal
direction of lipid molecules. The model features a soft-core
pairwise interparticle potential with the interaction strength
weighed by the relative orientations of the particle pair. Cor-
respondingly, the interparticle potential is constituted of two
functions, u�r� and ��r̂ij ,ni ,n j�, which, respectively, de-
scribe the distance and orientation dependences. Figure 1
depicts a generic relative position and orientation of such a
particle pair, where the two halves of each particle are col-
ored distinctly to indicate its orientation. This coloring

scheme facilitates visualization �32� in simulations presented
later. We denote ri and r j the center position vectors of par-
ticles i and j, respectively. The interparticle distance vector is
then rij =ri−r j. We also denote r= �rij� and r̂ij =rij /r. The unit
vectors ni and n j represent the axes of symmetry of particles
i and j, respectively. For simplicity, the rotational degree of
freedom about the axis of symmetry of each particle is ne-
glected. Therefore, each particle carries five degrees of free-
dom, i.e., three translational and two rotational degrees of
freedom �noting the constraint n ·n=1�.

In searching for the functional form of the distance-
dependent function u�r�, we found that the classical 12–6 LJ
potential only leads to solid membranes at low temperatures
and gas phase at high temperatures. Missing of a fluid phase
in between is due to the steep energy landscape of the 12–6
LJ potential: the interparticle interaction forces are either too
strong �near the equilibrium distance� to permit particle dif-
fusion or too weak �once escaped from the equilibrium dis-
tance� to hold particles together. In order to be able to tune
the restoring force, we adopt the following two-branch func-
tion u�r�:

u�r� = �uR�r� = ��� rmin

r
	4

− 2� rmin

r
	2
 , r � rmin

uA�r� = − � cos2���

2

�r − rmin�
�rc − rmin�


 , rmin � r � rc
� ,

�1�

where � and � are the energy and length units, respectively.
The repulsive branch uR�r� adopts the 4–2 LJ type potential
that has a much lower restoring force than the 12–6 LJ po-
tential at the equilibrium distance. The attractive branch
uA�r� is of a cosine function that smoothly decays to zero at
the cutoff radius rc. The exponent � tunes the slope of the
attractive branch �see Fig. 2�a�� and hence the diffusivity of
the particles. The two branches smoothly meet at r=rmin with
C1 continuity. We set the distance at the minimum of the
potential rmin=�62�, the same as that in the 12–6 LJ poten-
tial, and rc=2.6� to include second-neighbor interactions.

Following the treatment in anisotropic potentials for liq-
uid crystal or colloids �33,34�, we use � to weigh the inter-
action strength for different relative orientations, leading to
the final form of the anisotropic pair potential:

U�rij,ni,n j� = uR�r� + �1 − ��r̂ij,ni,n j��� , r � rmin

uA�r���r̂ij,ni,n j� , rmin � r � rc
� .

�2�

The orientation-dependent function scales the attractive
branch of the distance-dependent potential, while shifts up-
ward the repulsive branch �shown in Fig. 2�b��. The separate
operations ensure a fixed distance of minimum energy for
different relative orientations between two particles. The
orientation-dependent function substitutes for the hydropho-
bic effects and takes the following form:

� = 1 + ��a�r̂ij,ni,n j� − 1� , �3�

where

FIG. 1. �Color online� Schematics of the orientation-dependent
interparticle interaction. Kinetically, each particle is axisymmetric
with a particle-fixed unit vector n representing the axis of symme-
try, and with mass of m. The interparticle interaction is both dis-
tance and orientation dependent. The angle �0 is a model parameter
charactering the spontaneous curvature. The configuration corre-
sponding to �i=� j =�0 is made to be the most energetically favor-
able relative orientation between two particles. The two halves of
each particle are colored distinctly to indicate the orientation of the
particle. The spontaneous curvature c0 is related to �0 via c0

�2 sin �0 /d0, where d0 is the average interparticle distance.
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a = �ni 	 r̂ij� · �n j 	 r̂ij� + sin �0�n j − ni� · r̂ij − sin2 �0.

�4�

The function a �hence �� reaches its maximum of 1 when
�i=� j =�0 �see Fig. 1 for �i, � j, and �0�, and is less than 1
otherwise. Hence, the relative orientation �i=� j =�0 is most
energetically favored. Since �0 specifies the favorable inter-
particle orientations, it directly links to the spontaneous cur-
vature of the model membrane. The parameter � weighs the
energy penalty when the particles are disoriented from �0,
and is thus related to the bending rigidity of the model mem-
brane.

Corresponding to the two sets of degrees of freedom, par-
ticle center positions and orientations, there are two sets of
the equations of motion for the coarse-grained model. The
first set governs the time evolution of the particle center po-
sitions,

mir̈i = −
�Ui

�ri
, �5�

where mi is the mass of particle i, Ui=� jU�rij ,ni ,n j�, and j
runs over all the neighbors of i. The second set of equations
governs the time evolution of the particle orientation, which
can be derived from Euler’s rigid body dynamics equations.
However, considering that there are only five degrees of free-
dom, the equations of motion governing particle orientations
can be derived in a more efficient manner. We treat ni of
particle i as three generalized coordinates with a geometric

constraint ni ·ni=1, the governing equations for ni can be
derived using the Lagrange equations with constraint forces,

Iin̈i = −
�Ui

�ni
+ 
ini, �6�

where Ii is the moment of inertia �Ii is fixed to 1 ·mi�
2 in this

work�, 
i is the Lagrange multiplier and has the following
relation with ni and ṅi,


i =
�Ui

�ni
· ni − Iiṅi · ṅi. �7�

Our coarse-grained molecular dynamics �CGMD� simula-
tions presented below for planar membranes are performed
in the N�T ensemble, where � is the membrane tension.
Simulations for vesicles are performed in the NVT ensemble.
We adopt the Nose-Hoover thermostat �35,36� to maintain
the system at desired temperatures. Since our model is
solvent-free, the rigid-body translational and rotational mo-
tions are removed at each time step in our simulations, which
may otherwise cause significant numerical errors. For a pla-
nar membrane with periodic boundary conditions, the Ber-
endsen pressure coupling algorithm �37� is modified to a 2D
case to maintain a desired tension �0 in the membrane by
rescaling the particle coordinates and box size at each time
step. The scaling factor � is

FIG. 2. �Color online� �a� The slope of the attractive branch of the distance-dependent function varies with the exponent �. The solid
black curve represents the repulsive branch of the function. �b� The interparticle potential U as a function of r for three different �i �� j

=�i� with �=4, �=3, and �0=0. The double arrows denote the orientations of a particle pair.

FIG. 3. �Color online� Snapshots from CGMD simulations demonstrating self-assembly of randomly distributed particles into vesicles.
The parameters used in the simulations are �=4, �=3, �0=0, and kBT=0.17�.
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� = 1 +
t

3�pKA
��0 − ��t�� , �8�

where �p is the relaxation time, KA is membrane area com-
pression modulus, t is the time step.

III. MEMBRANE PROPERTIES

We next demonstrate that our interparticle potential cap-
tures well the hydrophobic interactions and can lead to ro-
bust self-assembly of particles into fluid membranes. Starting
with a random distribution of 5882 particles enclosed in a
cubic box with periodic boundary conditions, CGMD simu-
lations were performed. The particle system is thermostated
at a constant temperature of kBT=0.17�, with kB the Boltz-
mann constant and T the temperature. Figure 3 depicts four
simulation snapshots. At intermediate stages �t=2000�,
where �=��m /� is the time scale�, membrane flakes are
formed. The membrane flakes then coalesce into large planar
membranes �t=5000��, and finally close to form vesicles due
to the edge effect �t=12000��. In our simulations, the soft-
core interaction potential allows us to adopt a relatively large
time step �t=0.02��.

We first characterize the diffusion constant as a function
of the exponent � and temperature T. The preassembled
square membrane adopted for this study consists of 5822
particles with side length �70�. We maintain zero mem-
brane tension in our simulations and set �=3 and �0=0. The
in-plane diffusion constant D= �si

2� /4t is systematically cal-
culated at zero membrane tension, where si is the diffusion
distance of particle i over time period t. This allows us to
construct a phase diagram of the diffusion constant on the
�� ,T� plane, as shown in Fig. 4. The particle membrane is
considered in gel phase if D�0.01�2 /�, and in gas phase if
at least one particle flies away from the membrane during the
simulations. We identified a broad fluid phase region in
which the diffusion constant is on the order of 0.1�2 /�. The
computed diffusion constant is about one order of magnitude
higher than the three-bead-chain model �11�.

An interesting observation from the phase diagram is that
the gel phase occurs at both small and large �. We attribute
this phasic behavior to the variation of the equilibrium inter-
particle distance d with � due to the second-nearest-neighbor
effects. Figure 5�a� �double y-axis� shows that d monotoni-
cally increases with �, while a maximum of D exists at d
=dc�1�. When d�dc, the interparticle interaction is domi-
nated by the repulsive branch of the potential. In this regime,
increasing � leads to a decrease in the repulsive force be-
tween particles, giving rise to a higher diffusivity. On the
other hand, when d�dc, the inter-particle interaction is
dominated by the attractive branch of the potential. In this
regime, increasing � leads to an increase in the attractive
force, giving rise to a lower diffusivity. In Fig. 5�b�, both D
and d monotonically increase with temperature and exhibit a
sudden rise at kBT�0.14�, implying a gel-to-fluid phase
transition. The thermal expansion coefficient �T of the model
membrane is fitted at different regimes, as indicated in the
figure.

Membrane tension � can be calculated by applying the
virial formula to the one-particle-thick fluid membranes em-
bedded in three–dimensional �3D� space as,

FIG. 4. �Color online� Phase diagram in the �� ,T� plane at zero
tension. Three regions representing gel, fluid, and gas phases are
identified, separated by solid lines. A broad fluid phase region with
diffusion constant on the order of 0.1�2 /� exists.

FIG. 5. �Color online� Diffusion constant D and interparticle distance d as functions of the exponent ��kBT=0.2�� �a� and temperature �b�
for tensionless membranes. The thermal expansion coefficient �T of the membrane at different temperature ranges is fitted and indicated in
�b�.
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� = −
3NkBT

2A
−

1

2A
�

i,j�i

N

rij · Fij , �9�

where A is the membrane contour area, Fij is the force ex-
erted on particle i by j. The first term on the right-hand side
of Eq. �9�, denoted by �t, is the kinetic contribution, while
the second term, denoted by � f, is the potential contribution.
The correctness of Eq. �9� deserves some discussion here.
First, considering that a small one-particle-thick membrane
patch is locally flat, the out-of-plane stress components only
due to the interparticle forces are negligibly small because rij
and Fij are almost in-plane vectors. Therefore, the coefficient
of � f is set to 1/2. Second, for a fluid membrane in equilib-
rium, membrane tension is constant everywhere. Therefore,
the scalar tension calculated in Eq. �9� around each particle
can be summed and averaged over the whole membranes
even for curved shapes. Third, the coefficient of 3/2 of term
�t comes from the fact that velocity components in all direc-
tions contribute to expanding membrane area. Figure 6 plots
the kinetic and potential contributions and the total mem-
brane tension as a function of the imposed area strain �A

=A /L2. The simulations were based on a square membrane
of side length L�140�. At a critical area strain of �0.09,
membrane pore appears. This critical area strain agrees well
with experimental data �38�. The kinetic and potential con-
tributions to the membrane tension are on the same order of
magnitude, suggesting that neglecting the kinetic term would
lead to misinterpretation of membrane tension. The resulting
membrane tension is positive, and nearly linearly scales with
the imposed area strain. The slope of the tension-strain curve
in the large area strain regime corresponds to the area com-
pression modulus, KA=� /�A. A linear fitting of the curve
yields KA�18kBT /�2.

In the continuum limit, the fluctuation spectrum of a
square planar membrane of side length L subjected to lateral
tension � takes the form �39�,

�hq
2� =

kBT

L2�Bq4 + �q2�
, �10�

where B is bending rigidity, q is wave number. The simulated
fluctuation spectra of a square membrane �consists of 23595
particles� of side length L�140� at zero and finite tensions
were given in Fig. 7�a�. The q−4 dependence of the fluctua-
tion spectrum under zero tension is well predicted. At a finite
membrane tension, there exists a critical wave number qc

=�� /B below which the fluctuation amplitude starts deviat-
ing from the zero-tension curve and exhibits a clear q−2 de-
pendence. Linear fitting of these two curves at zero and finite
membrane tensions yields the bending rigidity and mem-
brane tension, respectively. The fitted membrane tension is
�10% different from the imposed membrane tension. Corre-
sponding to the wavelength of �8�, there exists an upper
limit of q=qm beyond which Eq. �10� no longer holds. Both
qc and qm are marked in Fig. 7�a�.

The parametric dependence of bending rigidity on � is
shown in Fig. 7�b�, where the bending rigidity is fitted at
zero-tension simulations. The bending rigidity monotonically
increases with �. For � in the range of 2.4–6, the obtained
bending rigidity ranges from �12kBT to �40kBT, which
falls in the range of experimental data. There exists a thresh-

FIG. 6. �Color online� Membrane tension as a function of area
strain A /L2. Area compression modulus KA is fitted to be about
18kBT /�2. The parameters used in the simulations are �=4, �=3,
�0=0, and kBT=0.23�.

FIG. 7. �Color online� �a� Fluctuation spectra under zero and finite tensions for planar membranes. Both q−4 and q−2 dependences are well
predicted in simulations. The parameters used in the simulations are �=4, �=3, �0=0, and kBT=0.23�. �b� Membrane bending rigidity �in
zero-tension states� monotonically increases with �, while the order of alignment of the axis of symmetry of particles monotonically
decreases with �. The parameters used in the simulations are �=4, �0=0, and kBT=0.23�.
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old value of � below which the membrane loses its integrity
due to the weak orientation preference. The parameter � also
governs the order of alignment of particle-fixed vector n,
characterized by the average angle �=cos−1��ni ·ez��, where
ez is the normal direction of the reference plane. As shown in
Fig. 7�b�, � ranges from about 9° to 15°, and decreases with
increasing bending rigidity.

Due to the orientation dependence of the interparticle po-
tential, the inter-particle interaction depends on the direction
along which two particles approach each other, which indi-
cates that the particle is geometrically anisotropic. The as-
pect ratio can be deduced from the bending and area com-
pression moduli. For a thin structureless plate with vanishing
two-dimensional shear modulus, B=KAdth

2 /12 holds �40�,
where dth is the plate thickness. Taking KA�18kBT /�2 and
B�20kBT, the particle aspect ratio of this model is found to
be dth /��3.7. The thickness of bilayer membrane is dth
�5 nm, which specifies the length scale of our model �
�1.4 nm as far as a bilayer membrane is concerned. Given
that a single lipid molecule occupies an area of �0.5 nm2,
each particle in our membrane model represents a few lipids
in the lateral direction. A typical value for the diffusion con-
stant of lipids in real phospholipid membranes is about
1 �m2 /s �41�. The diffusion constant of our model is
�0.1�2 /�, which maps out the time scale of our model �
�0.1 �s. Both the length and time scales are about one
order of magnitude higher than the chain-of-bead coarse-
grained model �11�. Here, the length scale comparison is
based on the fact that each particle in our model represents a
few lipids in two leaflets of the bilayer. So the degrees of
freedom involved in the same membrane area are about one
order of magnitude fewer than the chain-of-bead models.

We next demonstrate the applicability of our model by
selected examples. For bilayer membranes, “effective” spon-
taneous curvature may originate from molecule asymmetry
�42�, area mismatch between two leaflets �43� of the bilayer,
or protein-lipid hydrophobic mismatch, or protein-assisted
curvatures �14,44�. Spontaneous curvature plays a critical
role in determining shape transformations in vesicles and red

blood cells �45,46�, and is also thought to be related to lipid-
sorting in biological membranes �47�. Figure 8 demonstrates
phase separation in a binary lipid membrane. The number
ratio of the particle types A �red� and B �green� is 1:10. We
assign different �0 and � to the different combinations of
particle pairs, i.e., �0

AA=�0
AB=11.5°, �0

BB=0°, �AA=�AB=6,
and �BB=3. Other parameters used in the simulations are:
kBT=0.23�, �=4. It should be noted that different spontane-
ous curvatures of the two species result in a line tension that
induces the phase separation. Starting from random mixture
of the particle species, our CGMD simulations show that the
two lipid species demix rapidly, forming small domains �t
=800��. The small domains gradually grow into stable do-
mains of roughly the same size �t=4000��. Further coales-
cence of neighboring domains seems to be inhibited due to
the membrane-mediated elastic interaction �48�.

Figure 9 shows four snapshots of our simulations of
adhesion-driven endocytosis of nanoparticles �NP� �red�. The
interaction between the NP and the membrane particles is
nonspecific and described by the 4–2 LJ potential with a
cutoff of 3.0�. The parameters for membrane particles are:
kBT=0.23�, �=4, �=3.0, and �0=0°. The energy depth of
the 4–2 LJ potential is �, corresponding to �4.4kBT. The
total resulting adhesion energy �depending on the number of
membrane particles that adhere to the NP� is sufficient to
overcome the bending energy penalty �8�B� and drive NP
endocytosis �49–51�. The membrane particles in blue are
within the interaction range of the NP. For the clarity of
visualization, the front half of the membrane model is not
shown. The snapshots show the sequence of endocytosis of
the NP �from left to right�: docking, partial wrapping, pinch-
ing off. The NP is then internalized, while acquiring a layer
of membrane particles.

IV. CONCLUSION

In conclusion, we have developed a particle-based
solvent-free fluid membrane model. Several unique features
are attributed to the success of this model. First, the simple
mathematical form of the interparticle pair potential and the
one-particle-thick coarse-graining substantially improve the
accessible length and time scales. The great computational
efficiency enables the model to simulate a broad range of
membrane processes that occur at microscopic scale. Second,
the pair potential is highly tunable and faithfully reproduces
biologically relevant membrane properties. The three model
parameters independently and effectively control diffusion
constant, bending rigidity, and spontaneous curvature, re-
spectively. Due to the particle-based nature, our model simu-

FIG. 8. �Color online� Spontaneous curvature mediated phase
separation and subsequent budding.

FIG. 9. �Color online� Simulation snapshots of nanoparticle endocytosis.

YUAN et al. PHYSICAL REVIEW E 82, 011905 �2010�

011905-6



lates molecular diffusion, fluidity and topological changes of
membranes naturally.

Over past decades, considerable attention has been paid to
simulate vesicle-substrate interactions and interpret experi-
mentally measured membrane fluctuations of human red
blood cells �RBC� at normal or disease states �52–55�. The-
oretical analysis of membrane fluctuations has been mainly
limited to planar membranes �53� or quasispherical vesicles
�56�. Triangulated Monte Carlo membrane models have been
used to simulate fluid membrane fluctuations �23�, where
“fluidity” is realized by dynamic bond flipping. The chain-
of-bead models are typically inaccessible to long-wavelength
modes. As previously demonstrated, our model faithfully re-
produces fluctuation spectrum at zero and finite tension.
Therefore, it stands as an ideal model for studying fluctua-
tions of membranes in gel or fluid phase, or membrane fluc-
tuations constrained by substrate or coupled to protein net-
work �55�.

Presented elsewhere �57�, we have established an efficient
algorithm for controlling the volume of a vesicle constituted
by the particles. Reducing the vesicle volume using this al-
gorithm enables a series of vesicle shape transformations.

Combining our one-particle-thick membrane model with the
volume-control algorithm thus enables studies of fluctuation
of non-spherical vesicles.

It has been long unclear whether a one-particle-thick
membrane model with compatible membrane properties can
be established using a simple anisotropic pair potential. Be-
ing as simple as LJ potential, our model for the first time
provides a conclusive answer. We attribute the success of our
model to two aspects: soft-core repulsive and attractive in-
teractions and a strongly biased relative orientation between
a particle pair. The unique combination of the simple math-
ematical form and its comprehensive capabilities in simulat-
ing 2D fluid membrane physics can help understand funda-
mental aspects of soft condensed matter physics of fluid
membranes.
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