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Jamming Phase Diagram, Effective Temperature, and Heterogeneous
Dynamics of Model Glass-Forming Liquids

Abstract
We establish that the behavior of fluids consisting of repulsive spheres under the combined effects of pressure
p, temperature T, and applied shear stress s can be organized in a jamming phase diagram parameterized by
the dimensionless quantities T/pd^3, s/p, and pd^3/e, where d is the diameter of the spheres and e is the
interaction energy scale. The jamming phase diagram describes the three-dimensional parameter space as the
product of an equilibrium plane at s/p=0 and a hard sphere plane at pd^3/e=0. Near the hard sphere plane, the
jamming phase diagram is universal in the sense that material properties are insensitive to the details of the
interaction potential. We demonstrate that within the universal regime, the conventional approach to the
dynamic glass transition along a decreasing temperature trajectory is equivalent to the colloidal glass
transition approach along an increasing pressure trajectory. Defining the dynamic glass transition by where a
dimensionless relaxation time equals a large but arbitrary value, we measure a two-dimensional dynamic glass
transition surface whose precise location depends on the choice of time scale but which always encloses the
singular point at the origin, T/pd^3=s/p=pd^3/e=0. We show that at finite shear stress, the effective
temperature Teff fluidizes the system in a similar way as the environment temperature T fluidizes the system in
the absence of shear. We demonstrate that the dynamic glass transition surface is largely controlled a single
parameter, the dimensionless effective temperature Teff/pd^3, that describes the competition between low
frequency fluctuations and the confining pressure. Even well into the fluid portion of the jamming phase
diagram, we show that relaxation is largely controlled by this single parameter, regardless of whether the
fluctuations are created by temperature or shear. Finally, by investigating correlations in the dynamics as a
function of length scale a and time scale t, we identify two types of pairs (a, t) over which the dynamics are
maximally correlated, suggesting that kinetic heterogeneity is a general feature of dynamical crossovers and
not necessarily an indication of an impending thermodynamic transition.
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ABSTRACT

JAMMING PHASE DIAGRAM, EFFECTIVE TEMPERATURE, AND

HETEROGENEOUS DYNAMICS OF MODEL GLASS-FORMING LIQUIDS

Thomas K. Haxton

Andrea J. Liu

We establish that the behavior of fluids consisting of repulsive spheres under the

combined effects of pressure p, temperature T , and applied shear stress σ can

be organized in a jamming phase diagram parameterized by the dimensionless

quantities T/pd3, σ/p, and pd3/ǫ, where d is the diameter of the spheres and ǫ

is the interaction energy scale. The jamming phase diagram describes the three-

dimensional parameter space as the product of an equilibrium plane at σ/p = 0

and a hard sphere plane at pd3/ǫ = 0. Near the hard sphere plane, the jamming

phase diagram is universal in the sense that material properties are insensitive

to the details of the interaction potential. We demonstrate that within the uni-

versal regime, the conventional approach to the dynamic glass transition along

a decreasing temperature trajectory is equivalent to the colloidal glass transition

approach along an increasing pressure trajectory. Defining the dynamic glass

transition by where a dimensionless relaxation time equals a large but arbitrary

value, we measure a two-dimensional dynamic glass transition surface whose pre-

cise location depends on the choice of time scale but which always encloses the

singular point at the origin, T/pd3 = σ/p = pd3/ǫ = 0. We show that at finite

shear stress, the effective temperature Teff fluidizes the system in a similar way as

the environment temperature T fluidizes the system in the absence of shear. We
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demonstrate that the dynamic glass transition surface is largely controlled a sin-

gle parameter, the dimensionless effective temperature Teff/pd3, that describes the

competition between low frequency fluctuations and the confining pressure. Even

well into the fluid portion of the jamming phase diagram, we show that relaxation

is largely controlled by this single parameter, regardless of whether the fluctua-

tions are created by temperature or shear. Finally, by investigating correlations

in the dynamics as a function of length scale a and time scale t, we identify two

types of pairs (a, t) over which the dynamics are maximally correlated, suggesting

that kinetic heterogeneity is a general feature of dynamical crossovers and not

necessarily an indication of an impending thermodynamic transition.
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Chapter 1

Introduction

1.1 Glass transition

Although people have been making glass for millenia, we still lack a clear physical

understanding of how glass forms. Generally defined as any transition from a

fluid to a disordered solid state, the glass transition is a ubiquitous phenomenon

that remains one of the oldest and most difficult problems in condensed matter

physics [31].

One way to form glass is to quench a liquid from a high-temperature and typ-

ically equilibrium fluid state to a disordered solid state at lower temperature. As

the temperature lowers, the equilibrium state predicted by statistical mechanics

changes, but the constituent particles making up the liquid also become less mo-

bile, so it takes longer for the liquid to relax to an equilibrium configuration. If

the quench is fast enough, the dynamics slow down so dramatically that the liquid

becomes stuck out of equilibrium. Amazingly, the structural relaxation time of
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a good glass-forming liquid increases by a factor of 1014 when the temperature

drops only by a factor of 2. If the system has an equilibrium liquid-to-crystal

phase transition, the dynamic slowing down is often sufficient to suppress crys-

tallization. Below the melting temperature, the liquid is said to be supercooled.

At sufficiently low temperature, the structural relaxation time and shear viscosity

become large compared with the time and stress scales of typical mechanical tests;

that is, the system becomes a solid. The glass transition from a fluid to an amor-

phous solid is not a true phase transition because it occurs out of equilibrium;

rather, it is a dynamical transition that depends on how long one is willing to

wait in order to see if the glass-former will flow.

The glass transition is a widespread phenomenon in nature and human in-

dustry. Glass formed from a variety of liquids exhibit common phenomena in

both the supercooled and solid regimes. As supercooled liquids, they exhibit a

faster-than-exponential dependence of relaxation time on inverse temperature and

a broad relaxation spectrum characterized by stretched-exponential correlation

functions. As solids, they exhibit similar low-energy excitations characterized by

a “boson peak” of excess low-frequency vibrational modes [95] and an anomalous

temperature-dependence of the specific heat at low temperatures. Such similari-

ties suggest that universal physical mechanisms may control their behavior.

1.2 Jamming Phase Diagram

Not only do a wide variety of homogeneous liquids form glasses, but so do many

complex fluids such as colloids, foams, and emulsions, mixtures of one phase of
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matter in another [21]. Complex fluids have many useful applications because

their mechanical properties are sensitive to external stress. Tightly packed com-

plex fluids–dense colloidal suspensions and emulsions, dry foams, and granular

materials–behave like solids under small stresses but can be made to flow under

larger stresses. Both the linear and nonlinear mechanical response of a large class

of such “soft glassy materials” show many similarities: the linear response to

shear stress is viscoelastic, while the nonlinear response exhibits shear thinning, a

steady-state shear viscosity that decreases with increasing shear strain rate [96].

When the elements of the dispersed phase of a complex fluid are small enough,

they undergo Brownian motion. One example is a colloidal dispersion of micron-

sized or smaller solid particles in a fluid. Just as in homogenous liquids, the

mechanical properties of a colloidal dispersion depend on the mobility of their

constituent particles. Unlike homogeneous liquids, however, the mobility of a

colloidal dispersion is not typically controlled by temperature. Rather, it is con-

trolled by the packing fraction, the fraction of the total fluid volume filled by the

dispersed particles. As the packing fraction increases, the mobility decreases and

the shear viscosity increases until the colloidal dispersion behaves macroscopically

like a solid, at which point it is said to have undergone a colloidal glass transition.

Even complex fluids whose dispersed phase elements are too large to undergo

Brownian motion may form a glass. The bubbles in a typical foam or the grains in

a typical granular material, for instance, are much too large to undergo thermal

motion. A foam or granular material is therefore far from equilibrium, and its

state depends sensitively on how it is prepared. Under most preparations, such

a system is disordered. It is also a solid, because it can only flow if subjected to
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sufficient mechanical stress to overcome the surface tension or friction holding it in

its configuration. However, if such a mechanical stress is applied and maintained,

a foam or granular material typically settles into a nonequilibrium steady state.

Liu and Nagel proposed to organize such nonequilibrium steady states along-

side supercooled liquids and colloidal glass-formers in a “jamming phase diagram”

parameterized by temperature, packing fraction, and applied stress [70]. Many

systems can be perturbed along two or three of these axes. For instance, a glass-

forming liquid may be sheared as well as heated, while a sheared a granular

material may be vibrated to provide random energy similar to heat. Since most

glass-forming systems jam as packing fraction increases, temperature decreases,

and/or applied stress decreases, Liu and Nagel suggested that some universal fea-

tures of glass-forming systems may be understood in terms of a jamming phase

diagram that partitions the three-dimensional parameter space into two phases,

a glass, or jammed, phase and a fluid phase, separated by a dynamical glass

transition surface.

1.3 Model

In order to understand how the jamming phase diagram may explain some uni-

versal aspects of glass and the glass transition, it is valuable to investigate a the-

oretical model that isolates the minimal ingredients necessary to produce a glass.

In this work, we consider disordered collections of spheres in three dimensions or

disks in two dimensions. We promote disorder by using bidisperse spheres, half

with diameter d and half with diameter 1.4d. Both species have mass m. The

4



spheres interact through a finite-range pairwise additive interaction potential. We

consider both the hard-sphere potential

VHS(~rij) =











∞, rij < dij

0, rij ≥ dij

(1.1)

and a class of soft-sphere potentials

Vα(~rij) =











ǫ

α

(

1 − rij

dij

)α

, rij < dij

0, rij ≥ dij

(1.2)

where dij = (di + dj)/2 is the separation at contact, ǫ is an energy scale, and

α is the exponent parameterizing the shape of the interaction. Notice that the

hard-sphere potential may be thought of as the α = 0 limit of the soft-sphere

potential. Throughout the rest of this work, we will often present results in units

such that ǫ = d = m = 1, although we will sometime retain the model parameters

for clarity. We will always present temperatures in units with the Boltzmann

constant kB set equal to 1.

Such a simple model displays much of the rich behavior of various systems that

jam or undergo glass transitions. The model with α = 2 was original developed

as a “bubble model” to describe foams [29, 30]. Since thermal motion is irrelevant

for foams made up of macroscopic bubbles, the relevant control parameters are

packing fraction and applied stress. If the packing fraction φ of the spheres is set

greater than random close packing (φc ≈ 0.64 in three dimensions or φc ≈ 0.84

in two dimensions), it behaves like a solid foam, with a finite pressure and shear
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modulus. Like a foam, it can be made to flow by continuously shearing it. If some

mechanism for energy dissipation is provided, the sheared system will settle down

to a nonequilibrium steady state with a well-defined average shear stress σ. To

model foam bubbles with insignificant inertia, the bubble model uses overdamped

dynamics, but similar models include inertia to model granular materials. The

shear rheology–that is, the dependence of shear stress on strain rate–of the bubble

model agrees with that of a real foam: at low shear strain rates the shear stress is

roughly uniform, exhibiting a dynamic yield stress, while at higher strain rates the

shear stress increases. Since the relaxation time is controlled by the inverse strain

rate, we may think of this shear-rate-dependence as a dynamic glass transition

controlled by the applied stress rather than the temperature. If the applied stress

is less than the dynamic yield stress, the foam behaves like a solid. As the applied

stress increases beyond the dynamic yield stress, the foam behaves like a fluid

with a relaxation time that decreases with increasing applied stress.

Just like a real foam, the bubble model also loses its solid-like character as

the packing fraction decreases, that is, as the foam becomes increasingly wet:

both the shear modulus and dynamic yield stress vanish continuously as φ → φc

from above [29, 30, 80]. This loss of rigidity has been shown to have a universal

character in the sense that the exponents governing the vanishing of a number of

static quantities like the shear modulus, the pressure, the bulk modulus, and the

coordination number (the average number of contacts) can be written as simple

functions of the interaction exponent α [79]. Whether this holds for dynamic

quantities like the dynamic yield stress is still an active subject of research [80,

45, 83].
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By also varying the third parameter of the jamming phase diagram, tempera-

ture, the sphere model becomes a model for a colloidal or molecular glass-forming

liquid. At high packing fractions φ > φc and zero applied shear stress, the model

behaves like a fragile glass former: the relaxation time τ and shear viscosity η

increase faster than exponentially with inverse temperature as temperature de-

creases toward a dynamic glass transition temperature. Just as in experiments,

the dynamic glass transition of the model depends on how long of a simulation

we are willing to conduct in order to measure the relaxation time; we define the

dynamic glass transition as the temperature at which τ equals some large but

arbitrary value. If, instead, we fix the temperature and vary the packing fraction,

the model behaves like a colloidal glass-forming liquid: the relaxation time and

viscosity increase rapidly with packing fraction as the packing fraction increases

toward a colloidal glass transition packing fraction. By shearing the system while

holding the temperature constant, the model behaves like a soft glassy material

or a conventional glass-forming liquid near its glass transition: it flows with a

well-defined steady-state shear stress σ. Like for sheared glass, the flow is shear-

thinning: the shear viscosity η = σ/γ̇ decreases with increasing shear strain rate

γ̇.

1.4 Outline

In chapter 2 we will demonstrate that the jamming phase diagram is universal for

the class of sphere models in a particular limit. In particular, we will show that

the dynamics of the class of soft sphere models with various exponents α collapse

7



onto the dynamics of the hard sphere model [110, 49]. This result is nontrivial

because the definition of the glass transition for soft spheres relies on there being

an energy scale in the problem. The glass transition is the temperature at which

the relaxation time becomes too large to measure; for instance, the temperature

at which the shear stress correlation function no longer relaxes and the system

acquires a static shear modulus. Both the glass transition temperature and the

shear modulus acquire their energy scales from the interaction energy ǫ of Eq. 2.10.

For hard spheres, there is no interaction energy to set the glass transition temper-

ature or the shear modulus. However, we find that we can collapse the soft sphere

models onto the hard sphere model by considering energies and energy densities in

relation to the pressure rather than in absolute terms. Using the correct choice of

units [110], hard spheres become the low-pressure limit of soft spheres. Decreas-

ing pressure and increasing the hardness of spheres are mathematically equivalent:

both cause collisions to be faster and less penetrating. Remarkably, the crossover

from solid to liquid behavior as a function of temperature remains qualitatively

unchanged as we take this low-pressure limit. Even for hard spheres, the tem-

perature controls the glass transition, but only in relation to the pressure. In the

hard sphere limit, the entire phenomenology of the glass transition is mediated

by a single thermodynamic parameter, the ratio T/p of temperature to pressure.

This ratio determines how much volume thermal fluctuations open up by doing

work against the pressure. Extending the glass transition along the applied stress

axis of the jamming phase diagram, we find that the glass transition is controlled

by two ratios: T/p and the ratio σ/p of applied shear stress to pressure. The

data collapse in the low pressure limit suggests that the glass transition may be

8



controlled by these two geometric quantities for a wide range of systems without

regard to the details of their interactions.

In chapter 3 we will investigate to what extent the nonequilibrium axis of

the jamming phase diagram, applied stress, behaves like the equilibrium axes.

At finite shear stress, the system is out of equilibrium, so we may not neces-

sarily employ statistical mechanics to determine material properties in terms of

thermodynamic quantities like temperature and pressure. Indeed, such thermo-

dynamic quantities are not even well defined. Different expressions that equal

the temperature in equilibrium yield different values for steadily sheared spheres.

However, recent simulations of soft sphere glass have shown that many different

measurements of temperature fall into two classes [10, 11, 12, 27, 54, 72, 78, 81].

Measurements of the first class reflect high-frequency fluctuations and yield the

temperature of the thermal bath, while measurements of the second class reflect

low-frequency fluctuations and yield a different value that is consistent within the

class of measurements. This different–in general higher–temperature is termed

the effective temperature. We find that the effective temperature influences ma-

terial properties of the model in a similar way that the bath temperature controls

material properties in the absence of applied stress [48, 46]. The effective tem-

perature always stays above a glass transition effective temperature similar to the

glass transition temperature found without shear. This implies that in order for

the sphere model to flow, the low-frequency fluctuations must exceed a threshold

value, regardless of whether the flow is induced by thermal fluctuations or ap-

plied stress. By demonstrating the validity of the effective temperature concept

for hard spheres, we show that in the low-pressure limit, this threshold value is

9



simply set by the pressure. Moreover, we find that the dynamics of the fluid, even

well above threshold, are largely controlled by the effective temperature and are

not separately controlled by the kinetic temperature. This suggests that over a

wide range of parameter space, the mechanism for fluidization is similar regardless

of whether the low frequency fluctuations are caused by temperature or applied

stress.

Finally, in chapter 4 we will investigate in more microscopic detail why the

dynamics slow down so dramatically near the glass transition. Since the glass

transition is associated with few changes in static structure, we must look at dy-

namical quantities to find the correlations responsible for the slowing down. We

find these correlations using a dynamic susceptibility that measures fluctuations

in the number of mobile particles [5, 14, 15, 16, 26, 40, 88]. Since mobility is

defined in terms of a length scale and a time scale, the dynamic susceptibility

is a function of these two scales. By measuring the dynamic susceptibility as a

function of both parameters, we discover that large correlations in the dynamics

are a more general feature than previously appreciated [47]. In agreement with

previous work, we find a maximum in the dynamic susceptibility associated with

the onset of diffusive motion, a process that becomes increasingly slow and coop-

erative as the temperature decreases toward the glass transition temperature. In

addition, we find a secondary maximum at much earlier times associated with the

initial trapping of spheres in cages formed by their neighbors. Our results suggest

that such correlated, or heterogeneous, dynamics must in fact be general features

of crossovers in the dynamics from one type of motion to another type of mo-

tion. In order to understand the glass transition, we must focus on the crossover

10



associated with the dynamic transition from solid-like response at short times to

fluid-like response at long times, that is, the crossover from caged motion to dif-

fusive motion. By examining the temperature-dependence of this “cage-escaping”

maximum in the dynamic susceptibility, we find that slow dynamics appear to be

due to an exponential dependence of the relaxation time on the number of spheres

moving in a correlated manner. This exponential dependence lends credence to

theories of the glass transition involving cooperative-rearranging regions [102].
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Chapter 2

Jamming Phase Diagram

2.1 Introduction

A wide variety of fluids form glasses along a variety of routes. In all cases the re-

laxation time of the fluid increases as a control parameter is varied until it can no

longer be measured, at which point the system becomes a solid on the time scale

of the measurement. Homogeneous liquids form conventional glasses as temper-

ature decreases [31], while complex fluids such as colloids, foams, and emulsions

form “soft glasses” as the packing fraction of the dispersed phase increases [21].

Near the glass transition, both types of glasses can also be fluidized by applying

some external load such as shear stress. For this reason, Liu and Nagel proposed

to organize a variety of glass-forming fluids in a “jamming phase diagram” pa-

rameterized by temperature, packing fraction, and applied stress [70]. In this

diagram, glassy or jammed states at low temperature, high packing fraction, and

low applied stress are separated from fluid states at high temperature, low pack-

12



ing fraction, and/or high applied stress by a surface of dynamical glass transitions

defined by some large but arbitrary value of the relaxation time.

The utility of the jamming phase diagram lies in its ability to capture univer-

sal features of glassy dynamics independent of specific details of glassy systems.

We establish this utility by analyzing the dependence of relaxation time on the

three independent control parameters of the jamming phase diagram for a class of

model glass-forming liquids. In the limit of low pressure and temperature, we can

scale the relaxation time onto a function of just two parameters, the ratio T/p of

temperature to pressure and the ratio σ/p of shear stress to pressure, independent

of both the third independent control parameter and the model parameters.

In section 2.2, we focus on the jamming phase diagram restricted to the equi-

librium plane at zero applied stress. Along this plane, the temperature-driven

glass transition is equivalent to the density-driven colloidal glass transition in the

limit of low pressure [110]. In section 2.3, we consider nonzero applied stress to

establish a jamming phase diagram that is a universal function of just two control

parameters, T/p and σ/p, in the low-pressure limit [49].

2.2 Universal Glass Transition in the Hard-Sphere

Limit

The universality of the jamming phase diagram at zero applied stress and low

pressure was established by Ning Xu et al [110]. For completeness, we recap

these results before moving onto the jamming phase diagram at finite stress in

section 2.3.
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We consider the class of models introduced in section 1.3, a bidisperse col-

lection of spheres of mass m, half with diameter d and half with diameter 1.4d.

The spheres interact through pairwise additive interaction potentials V (rij). The

spheres do not interact at large separations: V (rij) = 0 for rij ≥ dij , where

dij = (di + dj)/2 is the separation at contact. If rij < dij, the spheres repel

each other through one of several central-force potentials. In addition to the hard

sphere potential

VHS(rij) = ∞ (2.1)

and the class of soft-sphere potentials

Vα(rij) =
ǫ

α

(

1 − rij

dij

)α

(2.2)

of section 1.3, we also consider the Weeks-Chandler-Anderson potential [106]

VWCA(rij) =
ǫ

72

(

(

dij

rij

)12

− 2

(

dij

rij

)6

+ 1

)

. (2.3)

We use units such that the energy scale ǫ, the sphere mass m, and the small

sphere diameter d are set equal to 1. Notice that the hard-sphere potential may

be thought of as the α = 0 limit of the soft-sphere potential. Among the class of

soft sphere models, we use a harmonic repulsion (α = 2) and a Hertzian repulsion

(α = 5/2).

We determine the relaxation time of the models as a function of temperature T

and pressure p by conducting molecular dynamics simulations of N = 1000 spheres

with periodic boundary conditions. For the hard sphere system, we use an event-
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driven simulation at fixed volume and energy. For the soft potential system, we

use a molecular dynamics simulation at constant temperature and pressure. We

define the relaxation time from the relaxation of density fluctuations. We calculate

the self-part of the intermediate structure factor: S(~k, t) = 2
N

∑

i exp(i~k · [~ri(t) −

~ri(0)]) [61], where the sum is over all large particles, ~ri(t) is the location of particle

i at time t, and ~k is chosen in the x−direction. The amplitude of ~k satisfies the

periodic boundary conditions and is approximately the value at the first peak of

the static structure factor. We define the relaxation time τ to be the time at

which S(~k, τ) = e−1S(~k, 0). We take data after a system has been equilibrated

for several τ .

Fig. 2.1(a) shows the relaxation time τ versus temperature T for a system

with harmonic repulsions (α = 2 in Eq. 2.10) that is cooled at different fixed

low pressures, p. This corresponds to the standard trajectory for experiments

on supercooled liquids undergoing the glass transition, a trajectory in which p

is typically fixed at atmospheric pressure. Fig. 2.1(b) shows τ versus 1/p at

different fixed T for the same system; in these trajectories, we raise p at fixed T

as is typically done in experiments on colloidal systems. As expected, τ increases

with decreasing T and increasing p.

Fig. 2.2(a) shows that we can collapse the data in Fig. 2.1 for all the trajecto-

ries, both at fixed pressure and fixed temperature, onto a single curve by scaling

the relaxation time by
√

m/pd and temperature by pd3, so that

τ
√

m/pd
= F

(

T

pd3

)

. (2.4)
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Figure 2.1: Relaxation time versus different control parameters for a system of
1000 particles with harmonic repulsions. (a) Relaxation time τ versus temperature
T at different fixed pressures, p : p = 2 × 10−7 (circles), p = 2 × 10−6 (squares),
p = 2×10−5 (diamonds), and p = 2×10−4 (upward triangles). (b) Relaxation time
τ versus inverse pressure 1/p at different fixed temperatures: T = 10−8 (downward
triangles), T = 10−7 (pluses), T = 10−6 (crosses), and T = 10−5 (stars).

This collapses data ranging over 4 decades of temperature and pressure by using

the time scale
√

m/pd and energy scale pd3 to make relaxation time and tem-

perature dimensionless [25]. The characteristic time
√

m/pd is proportional to

the time for a particle starting at rest to move its diameter d due to a pressure

p and is the duration of a pressure-driven particle rearrangement. The depen-

16



0 0.1 0.2 0.3 0.4 0.5 0.6

T/pσ3

10
0

10
1

10
2

10
3

τ(
pσ

/m
)1/

2

p=2x10
-7

p=2x10
-6

p=2x10
-5

p=2x10
-4

T=10
-8

T=10
-7

T=10
-6

T=10
-5

10
-5

10
-4

10
-3

10
-2

10
-1

pσ3
/ε

1

10

100

τ(
pσ

/m
)1/

2 (b)

(a)

Figure 2.2: Collapse of all the relaxation time data shown in Fig. 2.1. (a) Scaled
relaxation time, τ/

√

m/pd, versus scaled temperature T/pd3. (b) Scaled relax-

ation time τ/
√

m/pd versus scaled pressure pd3/ǫ, for T/pd3 = 0.08 (circles),
T/pd3 = 0.1 (squares) and T/pd3 = 0.2 (diamonds). Horizontal lines show the
limiting values of τ

√

pd/m as pd3/ǫ → 0.

dence on T/pd3 implies that both T and p are equally important in controlling

the dimensionless relaxation time.

Dimensional analysis provides a starting point for understanding the implica-

tions of the data collapse of Eq. 2.4. The dimensionless time τ/
√

m/pd can be

written as a function of the dimensionless variables of the system. In addition to

T/pd3, another dimensionless ratio is pd3/ǫ, where ǫ sets the scale of the interac-

tion energy in Eq. 2.10. There are no other independent dimensionless variables

17



for the system with harmonic repulsions. The dimensionless relaxation time must

therefore satisfy

τ

√

pd

m
= f

(

T

pd3
,
pd3

ǫ

)

. (2.5)

The data shown in Fig. 2.2(a) all lie at low pressures, where the second argu-

ment in Eq. 2.5, pd3/ǫ, is small. In Fig. 2.2(b), we show the scaled relaxation time

versus pd3/ǫ at three values of T/pd3. In all cases, the data approach an asymp-

totic value at low pd3/ǫ. Thus, in the low-pd3/ǫ limit, τ
√

pd/m is a function of

T/pd3 only, consistent with the collapse of Fig. 2.2(a).

The limit pd3/ǫ → 0 is always satisfied in the hard-sphere limit, ǫ → ∞.

Thus, the relaxation time for hard spheres should collapse onto the same scaling

form as in Fig. 2.2. Moreover, all potentials that behave as hard spheres in the

low-pressure limit by preventing overlap between particles—namely, all potentials

with finite-ranged repulsions–should also collapse onto the same form at low pd3/ǫ.

This is not what we would expect from dimensional analysis alone, since different

potentials can contain additional dimensionless parameters, such as the exponent

α in Eq. 2.10. However, the physics of the pd3/ǫ → 0, hard-sphere limit suggests

that collapse should occur, irrespective of the value of α, as long as α ≥ 0 so that

the potential is repulsive.

This is corroborated in Fig. 2.3, where we show the data of Figs. 2.1 and 2.2

for harmonic repulsions (α = 2 in Eq. 2.10) together with data for three other

potentials: Hertzian repulsions (α = 5/2 in Eq. 2.10), the hard-sphere potential

(Eq. 2.9), and the Weeks-Chandler-Andersen potential (Eq. 2.3). Indeed, all of

these systems collapse onto the same scaling form. Thus, for the low-pressure (low
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Figure 2.3: Scaled relaxation time, τ/
√

m/pd, versus scaled temperature T/pd3

for all the data for the harmonic potential (black) in Fig. 2.1 as well as for
the Hertzian potential, α = 5/2 (red), the hard-sphere potential (magenta),
and the Weeks-Chandler-Andersen potential (blue). Black solid curve is the
Vogel-Fulcher fit: y = 0.59 exp(0.18/(x − 0.045)), where y = τ/

√

m/pd and
x = T/pd3. Blue-dashed curve is a fit to the Elmatad-Chandler-Garrahan form:
y = 3.1 exp[0.064(x−1 − 4.72)2].

pd3/ǫ) data considered here, τ
√

pd/m is a function of T/pd3 only and does not

depend separately on the interaction potential - either on its form (i.e., whether

it is given by Eq. 2.9, Eq. 2.10 with different exponents α, or Eq. 2.3) or on its

overall magnitude, ǫ. This represents a major simplification of the relaxation-time

data.

While the scaled dynamics are independent of dimensionless parameters char-

acterizing the inter-particle potential, they may be affected by other dimensionless

numbers characterizing the system. For example, relaxation time data for hard-

sphere systems with different polydispersities or diameter ratios will not necessar-

ily collapse.

The data collapse suggests a way of looking at the glass transition in this limit
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where the relaxation time is only a function of T/pd3. The ratio of T/p corresponds

to an effective volume created by using thermal energy to do work against the

pressure: p∆V ∼ T . In the hard-sphere glass transition, the system relaxes via

free volume. Likewise, soft-sphere liquids can create free volume by using thermal

energy. At high temperatures, where there is plenty of this “thermal” free volume,

the system relaxes rapidly; at low temperatures, where there is less thermal free

volume, the system relaxes more slowly.

The form of the scaling function, F (x), shown in Fig. 2.3, should tell us whether

the system has a thermodynamic glass transition. If such a transition exists, as

has been suggested theoretically for hard spheres [84], then F (x) should diverge

at a nonzero value of T/pd3, i.e., at nonzero T for soft-sphere liquids or at finite p

for hard spheres. Fig. 2.3 shows that over the dynamic range of our simulations,

the Vogel-Fulcher form,

τ

√

pd

m
= C exp

(

A

x − x0

)

(2.6)

with x = T/pd3, provides a reasonable fit (solid line) with x0 = 0.045, A = 0.18

and C = 0.59. The scaling collapse and Eq. 2.6 imply that T0/pd
3 = x0 so

that T0 = pd3x0. In other words, T0 increases with pressure. These results are

consistent with recent numerical studies on spheres with harmonic repulsions [17],

which show that T0 increases with packing fraction above some critical value. The

fit in Eq. 2.6 corresponds to a strength index A/x0 = 4.0, indicative of a fragile

glass-former [18, 6].

We also find that a fitting form proposed by Elmatad, et al. [32], for which
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τ/
√

m/pd diverges only at T/pd3 = 0, provides an equally good fit in the regime

of interest at small T/pd3. For this fitting form,

τ

√

pd

m
= C1 exp

[

A2
1

(

1

x
− 1

x1

)2
]

, (2.7)

where x = T/pd3. We find x1 = 0.21, A1 = 0.25 and C1 = 3.1. Thus, we cannot

distinguish whether the scaling function diverges at nonzero or zero T/pd3. This

is not surprising, since even experiments with 17 decades of dynamic range cannot

tell whether there is a thermodynamic glass transition. However, we note that

if there is no thermodynamic glass transition, the scaling function diverges at

T/pd3 = 0, so that the relaxation time diverges in the double limit T/pd3 →

0, pd3/ǫ → 0. This double limit corresponds to the zero-temperature jamming

transition of frictionless spheres with finite-ranged repulsions, also known as Point

J [79]. This implies that the glass transition is controlled by Point J if there is no

intervening thermodynamic glass transition.

The relaxation time is not the only quantity to exhibit data collapse in the low

pd3/ǫ limit. Other quantities, including those such as the packing fraction, φ, that

are independent of the dynamics, should also exhibit collapse in that limit. The

packing fraction is the number density made dimensionless by the average particle

volume. For a fixed potential, φ must be expressible as a function of T/pd3 and

pd3/ǫ. In the low-pressure, hard-sphere limit where pd3/ǫ ≪ 1, it should satisfy

φ = H̃
(

T/pd3
)

with the same scaling function H̃(x) for all finite-ranged repulsive
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Figure 2.4: Equation of state at low pd3/ǫ for hard sphere systems (solid magenta
circles) and systems with harmonic repulsions measured along both constant tem-
perature and constant pressure trajectories. The dashed line is a fit to free-volume
theory, pd3/T = 0.98φ/(1 − (φ/φc)

1/3), with φc = 0.66. The solid line is an em-
pirical fit given by pd3/T = φ/(1 − (φ/1.13))4.35.

potentials. This function can be inverted to yield the equation of state

pd3

T
= H(φ). (2.8)

Fig. 2.4 shows the data collapse for the equation of state along different trajectories

and for different potentials for our bi-disperse systems in three dimensions. We

have shown two fits to the data. The dashed line is a fit to free volume theory

for φ near the fitting parameter φc = 0.66. This form fits experimental data for

colloidal hard spheres and numerical data for hard spheres reasonably well [57],

but is clearly unsatisfactory here. The solid line is an empirical fit to the data

(see caption).

Our results show that the data for the relaxation time in many different sys-

tems collapse onto a single curve of τ
√

pd/m versus T/pd3. This collapse, how-
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ever, is confined to p ≪ ǫ/d3. We find that upon increasing the pressure, there

are deviations from the scaling collapse (see Fig. 2.2(b)). This implies that there

are additional contributions to relaxation near the glass transition, beyond the

particle rearrangements facilitated by the thermal free volume. At large pd3/ǫ,

relaxation also occurs because thermal fluctuations drive the system across en-

ergy barriers. This contribution can be accounted for by introducing an effective

hard-sphere radius following a modified Barker-Henderson procedure [9] that uses

the pair distribution function [90].

The relative effects of T and p on τ in glass-forming liquids have been studied

experimentally, with differing conclusions [2, 100, 107]. In order to understand the

consequences for molecular liquids, we must first understand the corrections to

the leading hard-sphere behavior when pd3/ǫ is no longer small. Molecular liquids

typically lie at densities above the jamming transition. They also have long-ranged

attractions as well as the short-ranged repulsions considered here. For these glass-

forming liquids, hard spheres may still be a useful starting point, but at least one

other distinct contribution to the relaxation must also be considered.

2.3 Universal Jamming Phase Diagram in the

Hard-Sphere Limit

Many disordered solids can be made to flow by some combination of increas-

ing temperature, decreasing density, and applying a mechanical load [70]. The

most apparent examples are complex fluids, heterogeneous two-component mix-

tures such as foams [52], emulsions [75], colloidal dispersions [22, 85], and granular
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materials [38]. Even though one or both of the constituent phases are fluids, com-

plex fluids behave macroscopically like solids when the packing fraction of the

dispersed phase is large enough. However, they are “soft glasses” because they

can be fluidized by applying a sufficiently large mechanical load such as a shear

stress. Complex fluids are influenced by thermal fluctuations to a greater or lesser

degree depending on the size of the bubbles, droplets, or grains comprising the dis-

persed phase. While the glass transition for homogeneous liquids is most typically

controlled by temperature, many conventional glass-forming liquids show strong

sensitivity to pressure, shear stress, or both. The glass transition temperature of

molecular glass-forming liquids tend to increase with pressure [89, 107]. While

conventional glasses tend to be more brittle than their soft counterparts, at tem-

peratures near the glass transition, “hard” glasses also become soft: their shear

viscosities may be reduced by applying large shear stresses. Such shear thinning

appears to be a general feature of molecular and atomic glass-formers near their

glass transitions, having been observed in oxide [105, 104], molecular [112], and

metallic [71] glasses.

Given the ubiquity of such soft, glassy response among both “soft” and “hard”

glasses, we may ask whether universal mechanisms account for the similar response

among glassy systems to changes in density, temperature, and shear stress. In

particular, can we organize glassy materials in a “jamming phase diagram” pa-

rameterized by temperature, packing fraction, and shear stress, as proposed by

Liu and Nagel [70]? In this section, we address this question for a particular

class of glassy materials, models consisting of spheres with purely repulsive inter-

actions. We show that we can orient this class of models on a three-dimesional
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phase diagram parameterized by three dimensionless quantities related to density,

temperature, and shear stress. Our representation is particularly useful because it

defines the three-dimensional state space as the product of two orthogonal planes:

an equilibrium plane spanned by temperature and packing fraction, and a hard

sphere plane approached in the limit of vanishing temperature and pressure. Near

the latter plane, the jamming phase diagram becomes universal, insensitive to the

details of the interactions. The state point at zero temperature, zero shear stress,

and vanishing particle overlap that controls the singular behavior of static sphere

packings [79] lies at the origin of our new jamming phase diagram. We show that

Point J is hidden behind a two-dimensional dynamic glass transition surface and

explore the shape of this surface.

Our class of models are frictionless spheres with finite-range, repulsive inter-

actions. In particular, as in section 2.2, we consider bidisperse spheres of mass m,

half with diameter d and half with diameter 1.4d. The spheres interact through

pairwise additive interaction potentials V (rij). The spheres do not interact at

large separations: V (rij) = 0 for rij ≥ dij, where dij = (di + dj)/2 is the separa-

tion at contact. If rij < dij, the spheres repel each other through either the hard

sphere potential

VHS(rij) = ∞ (2.9)

or one of a class of soft-sphere potentials

Vα(rij) =
ǫ

α

(

1 − rij

dij

)α

. (2.10)

Notice that the hard-sphere potential may be thought of as the α = 0 limit of the
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soft-sphere potential.

We determine the steady-state rheology and the relaxation time of the models

by conducting molecular dynamics simulations at fixed temperature T and shear

strain rate γ̇. We define the temperature by the velocity fluctuations relative to

an imposed uniform shear gradient. The shear strain rate is imposed using Lees-

Edwards boundary conditions. We use simple periodic boundary conditions in the

other dimension. For the hard spheres, we use an event-driven algorithm [55, 74]

at fixed packing fraction φ. We periodically rescale the velocities in order to keep

the temperature within 1% of the desired value. For the soft spheres, we use a

conventional molecular dynamics algorithm that numerically integrates classical

equations of motion. We employ Gaussian constraints [33, 34, 53] to fix the

instantaneous temperature T and pressure p. Details of our algorithms may be

found in appendix A. We characterize the rheology in terms of the steady-state

shear stress σ. We define the relaxation time τ as the time for spheres to diffuse

on average a distance of one small diameter. To exclude the direct effect of the

uniform shear, we define τ in terms of the root mean square displacement in the

vorticity direction, ∆rz(t) =
√

〈(rz(t) − rz(0))2〉, as ∆rz(τ) = 1/
√

3.

As we showed in section 2.2, it is useful to analyze the relaxational dynamics in

terms of dimensionless quantities [110]. In section 2.2, we found that the dynamic

glass transition of soft spheres is controlled only by the ratio of temperature to

pressure, T/pd3, in the hard sphere limit of T → 0, p → 0. In order to collapse

the relaxation time data as a function of T/pd3 over a range of temperatures

and pressures, we scale the relaxation time by the time scale,
√

m/pd, which is

proportional to the time for a sphere to move a distance equal to its diameter when
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accelerated by a typical compressive force at pressure p. We found that corrections

to the hard sphere limit are controlled by a second dimensionless group, pd3/ǫ,

which parameterizes the amount of overlap.

In order to extend this scaling to the shear stress axes, we must non-dimensionalize

the shear stress σ and the strain rate γ̇. As for the equilibrium relaxational dy-

namics, there is more than one way to do this. We choose to scale both quantities

by powers of the pressure. This keeps the dependence on the interaction energy

only in the dimensionless pressure, pd3/ǫ, and results in a dimensionless shear

stress σ/p and a dimensionless strain rate γ̇
√

m/pd familiar to the granular ma-

terials community [25, 38, 86]. The dimensionless shear stress is a macroscopic

dynamic friction coefficient, while the strain rate is made dimensionless using the

same time scale
√

m/pd we used to scale the relaxation time. As the system is

sheared at constant pressure, it repeatedly dilates and contracts. The dimension-

less strain rate describes how fast the system is sheared relative to the time it takes

for pressure to drive a dilated configuration into a close-packed configuration; it

is the ratio of the contraction time to the shear time.

In Fig. 2.5, we demonstrate that the rheology for spheres with harmonic

(α = 2) interactions collapses in the low-pressure limit onto the rheology for hard

spheres. In Fig. 2.5 (a), we show the unscaled rheology, shear stress vs strain rate.

In the figures, we present data in units defined by setting the model parameters

m = d = ǫ = 1. We show data for harmonic spheres at four different pressures,

p = 10−4, p = 10−3.5, p = 10−3, and p = 10−2.5, and two different dimensionless

temperatures, T/p = 0.03 and T/p = 0.1. In Fig. 2.5 (b), we show that for each

value of T/p we can collapse the data from the four different pressures onto the
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Figure 2.5: (a) Shear stress σ vs. strain rate γ̇ for α = 2, two different values
of T/p, and four different values of p. The filled symbols represent T/p = 0.03,
while the open symbols represent T/p = 0.1. Filled pink diamonds are p =
10−2.5, T/p = 0.03; filled blue triangles are p = 10−3, T/p = 0.03; filled red squares
are p = 10−3.5, T/p = 0.03; filled orange pentagons are p = 10−4, T/p = 0.03; open
pink diamonds are p = 10−2.5, T/p = 0.1; open blue triangles are p = 10−3, T/p =
0.1; open red squares are p = 10−3.5, T/p = 0.1; open orange pentagons are
p = 10−4, T/p = 0.1. (b) Same data, made dimensionless by the pressure to
collapse onto the hard sphere rheology. For comparison, the dimensionless shear
stress vs dimensionless strain rate for hard spheres is also plotted. Black filled
circles are T/p = 0.03, while black open circles are T/p = 0.1.
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hard sphere curve by dividing the shear stress by the pressure and multiplying

the strain rate by the time scale
√

m/pd. All the data at the lower dimensionless

temperature, T/p = 0.03, collapse onto a hard sphere curve with an apparent

dynamic yield stress at low strain rates, while all the data at the higher dimen-

sionless temperature, T/p = 0.1, collapse onto a hard sphere curve with a linear

viscous response, σ/p ∝ γ̇/
√

p, at low strain rates. At higher strain rates, the

system shear thins: the dimensionless shear stress grows slower than linearly with

increasing dimensionless strain rate.

For a given potential, we can understand the data collapse from dimensional

analysis. If we keep all model parameters such as α = 2 fixed, we may write the

dependence of the shear stress on the three control parameters, T , p, and γ̇, as a

dimensionless function g of three independent dimensionless control parameters.

One choice of such parameters results in the expression

σ

p
= g

(

T

pd3
, γ̇

√

m

pd
,
pd3

ǫ

)

. (2.11)

In the limit p → 0, we expect a collapse of the form shown in Fig. 2.6,

σ

p
= G

(

T

pd3
, γ̇

√

m

pd

)

. (2.12)

As shown in Fig. 2.6 (a), the limit described by Eq. 2.12 does correspond to low

pressures. At fixed T/p and γ̇/
√

p, σ/p approaches a limiting value as p → 0.

While dimensional analysis does not require that this limit should be the same

for spheres with different potentials or should equal the value for hard spheres,

Fig. 2.6 shows that σ/p approaches the hard sphere value for several different
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Figure 2.6: Approach to the hard sphere limit. (a) Dimensionless shear stress
σ/p vs pressure p at fixed dimensionless temperature T/p = 0.1 and dimension-
less strain rate γ̇/

√
p = 0.1 for three different exponents α. (b) Dimensionless

relaxation time τ
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p vs pressure p at fixed dimensionless temperature T/p = 0.1
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p = 0.1 for three different exponents α. In each

plot, the horizontal line represents the value for hard spheres.
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exponents α as p → 0. This suggests that the rheology of soft spheres with any

finite-range, repulsive interactions collapses onto the rheology of hard spheres at

low pressure. The data collapse is not limited to the rheology but should apply

to any observable quantity as long as we non-dimensionalize it by the pressure.

For instance, as we show in Fig. 2.6 (b), the dimensionless relaxation time also

approaches the hard sphere value as p → 0.

The data collapse of Eq. 2.12 calls for recasting the jamming phase diagram

in terms of the dimensionless control parameters. Choosing a stress-controlled

rather than a strain-rate-controlled parameter space, the dimensionless control

parameters are T/pd3, pd3/ǫ, and σ/p. These parameters span the same space

as T , φ, and σ of the original jamming phase diagram [70], but they have two

advantages. First, the plane at pd3/ǫ = 0 spanned by T/pd3 and σ/p defines

the hard sphere limit. Near this plane, we have shown that the jamming phase

diagram is universal for repulsive spheres in the sense that observable quantities

are independent of the details of the interaction potential. The hard sphere plane

is complementary to the equilibrium plane spanned by T/pd3 and pd3/ǫ; the full

parameter space is the product of these two planes. The second advantage of the

dimensionless control parameters is that Point J [79], the point at zero tempera-

ture, zero shear stress, and vanishing pressure, lies at the origin. Many elastic and

structural properties of soft sphere packings approach a singular limit as Point J is

approached along the pd3/ǫ axis at T/pd3 = σ/p = 0 [29, 30, 79, 93, 94, 108, 109].

We choose the dimensionless relaxation time τ
√

pd/m as the order parameter

of our jamming phase diagram. Before constructing the jamming phase diagram,

we investigate how the relaxation time relates to the rheology. Figure 2.7 shows
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Figure 2.7: Hard sphere results interpolated at prescribed values of the dimen-
sionless temperature T/p. (a) Dimensionless relaxation time τ

√
p vs dimensionless

shear stress σ/p. (b) Dimensionless shear viscosity η/
√

p vs σ/p. (c) Ratio of di-
mensionless shear viscosity to dimensionless relaxation time vs σ/p. (d) Packing
fraction φ vs σ/p. Each connected line is a different value of T/p: 0.02 (blue
down triangles), 0.03 (red down triangles), 0.04 (black circles), 0.05 (blue circles),
0.06 (red circles), 0.07 (black squares), 0.08 (blue squares), 0.09 (red squares), 0.1
(black up triangles), 0.15 (blue up triangles), 0.2 (red up triangles), 0.25 (black
pentagons), and 0.3 (blue pentagons).
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the rheology, the relaxation time, and the packing fraction for hard spheres as a

function of the two dimensionless control parameters spanning the hard sphere

plane, T/pd3 and σ/p. To the best of our knowledge, no previous simulation has

investigated the nonlinear rheology of hard spheres close to the glass transition.

In each plot, connected lines represent fixed values of T/pd3, while the x-axis rep-

resents σ/p. We interpolate the data at fixed T/pd3 from simulations conducted

at fixed packing fraction. In Figs. 2.7 (a) and 2.7 (b), we plot the dimensionless

shear viscosity, defined as the ratio of the dimensionless shear stress to the di-

mensionless strain rate, and the dimensionless relaxation time. The two plots are

very similar: for high temperatures, both the viscosity and the relaxation time

approach limiting values at low shear stress, while for low temperatures, the vis-

cosity and relaxation time increase without bound on the time scales available to

our simulations. Indeed, the ratio of the dimensionless viscosity to the dimension-

less relaxation time, plotted in fig 2.7, is insensitive to shear stress until very large

shear stresses and only weakly depends on the temperature. At low or moderate

shear stress, the hard sphere fluid behaves like a Maxwell fluid with a viscosity

that decreases with shear stress but a modulus η/τ that remains independent of

shear stress and proportional to the pressure. A shear modulus proportional to

pressure has also been observed in emulsions [75] and pastes [91].

At a dimensionless shear stress of approximately 0.5, there is a dramatic change

in behavior: the dimensionless relaxation time increases, and both the dimension-

less shear viscosity and the packing fraction decrease more sharply than at lower

shear stress. These changes are associated with the spheres layering in the plane

perpendicular to the shear gradient, as indicated by long-range order in the pair
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distribution function (not shown). This layering facilitates the shearing of layers

relative to each other but impedes the mobility of spheres within a layer, causing

the decoupling of shear viscosity and relaxation time. Such layering has been

demonstrated to be an artifact of thermostats like ours that assume a linear shear

profile [28, 35]. Thermostats that do not assume a linear profile yield similar re-

sults below the layering transition but do not form layers at high stresses; instead,

they exhibit shear thickening, where viscosity increases with shear stress. Even

with layering, our system shear thickens at fixed packing fraction, though not at

fixed T/p. Since the layering is an artifact of the thermostat, we focus on the

isotropic phase below σ/p = 0.5.

In Fig. 2.8, we construct the jamming phase diagram for harmonic (α = 2)

spheres. We restrict ourselves to values T/pd3 < 0.2, σ/p < 0.15, and pd3/ǫ <

0.2, well separated from the layering at very high σ/p. We parameterize the

jamming phase diagram by surfaces of equal dimensionless relaxation time. Since

we must interpolate to find the level sets of the dimensionless relaxation time, it

would be computationally expensive to construct the entire surfaces. Instead, we

draw contours where the surfaces intersect four planes: the equilibrium plane at

σ/p = 0, the hard sphere plane at pd3/ǫ, a plane at pd3/ǫ = 0.1, and a plane at

pd3/ǫ = 0.2. In Fig. 2.8 (a), we show sets of contours for three logarithmically

spaced relaxation times, each separated by a decade. In 2.8 (b) and (c), we show

contours separated by half decades for the equilibrium and hard sphere planes,

respectively. The dimensionless relaxation time increases monotonically as any

combination of the dimensionless control parameters are reduced, so that the

contours corresponding to large dimensionless relaxation time are closest to the
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Figure 2.8: (a) Jamming phase diagram for α = 2. Lines represent logarithmically
spaced contours of equal dimensionless relaxation time (top to bottom): τ

√
p = 10

(red), 102 (blue), and 103 (black). We show contour lines along four planes cut
through the diagram: the equilibrium plane at σ/p = 0, the hard sphere plane
at p = 0, a plane at p = 0.1, and a plane at p = 0.2. In (b) and (c), we show
two-dimensional cuts of (b) the equilibrium plane at σ/p = 0 and (c) the hard
sphere plane at p = 0. In (b) and (c), we show contours of equal dimensionless
relaxation time spaced by half decades: τ

√
p = 100.5 (yellow up triangles), 10

(red diamonds), 101.5 (pink pentagons), 102 (blue squares), 102.5 (orange down
triangles), and 103 (black circles). The contours are constructed by interpolation.
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origin. Notice that the contours become more closely spaced as T/p, σ/p, or p

decrease. As a consequence, the relaxation time becomes too large to measure well

before the system reaches Point J at T/p = p/σ = p = 0; the system undergoes a

dynamic glass transition along any path approaching Point J. The dynamic glass

transition forms a surface enclosing the origin.

At a given pressure, for instance p = 0 shown in Fig. 2.8 (c) or the constant-

pressure cuts shown in Fig. 2.8 (a), the dynamic glass transition is a contour

intersecting the equilibrium axis at the dynamic glass transition temperature.

Below the dynamic glass transition temperature, the contour describes what may

be considered either a stress-dependent dynamic glass transition temperature or

a temperature-dependent dynamic yield stress. While the shape of this dynamic

glass transition depends on the potential at high pressures, at sufficiently low

pressures, near the hard sphere plane, the shape follows the universal form shown

in Fig. 2.8 (c). At all pressures, the contours are quadratic in σ/p at small

σ/p. This is expected from the symmetry of σ → −σ. A similar shape has

been observed for contours of equal viscosity for a model metallic glass-forming

liquid [43].

We may use the jamming phase diagram to parameterize the dependence of

other dimensionless observable quantities besides the relaxation time on the di-

mensionless control parameters. The dimensionless shear viscosity follows a simi-

lar form as the dimensionless relaxation time. The packing fraction φ becomes a

dependent quantity in our new formulation of the jamming phase diagram. The

relationship between φ and p at T/p = σ/p = 0 has been well studied; near

Point J, the pressure is proportional to (φ − φc)
α−1, where φc ≈ 0.64 is the pack-
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ing fraction at which most static sphere packings lose mechanical stability [79].

We find that the packing fraction grows roughly linearly with (pd3/ǫ)1/(α−1) away

from T/p = σ/p = 0 as well. The packing fraction decreases roughly linearly

with T/pd3, consistent with the idea that T/p controls the amount of free volume.

It also decreases roughly linearly with σ/p, but with a smaller coefficient, until

dropping more precipitously above the layering transition near σ/p = 0.5. We em-

phasize that the packing fraction is a smooth function of the dimensionless control

parameters everywhere in the jamming phase diagram; observed singularities in

the pressure, relaxation time, and viscosity at φc [29, 30, 45, 79, 80, 83] are due to

the fact that φ takes the value φc at the origin of our reformulated jamming phase

diagram, where p, T/p, and σ/p go to zero and the relaxation time and viscosity

are too large to measure.

The universality of the jamming phase diagram at low pressures allows us to

understand one of the two exponents describing apparent critical scaling for soft

spheres at zero temperature with damped interactions [45, 80]. References [80]

and [45] examine the same class of repulsive spheres with interaction potential

exponents α, but they do not couple the system to a thermal bath; instead,

energy dissipates through frictional interactions. Under steady shear, the rheology

of these models can be collapsed onto two branches of a master function,

σ = |φ − φc|βS±

(

γ̇

|φ − φc|βδ

)

, (2.13)

where φc is a critical packing fraction. In analogy with a critical point, Eq. 2.13

suggest that the model acquires a yield stress σyield for φ > φc with σyield ∝
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|φ − φc|β. While simulations show that the exponent δ depends on the precise

mechanism for dissipation (overdamped vs underdamped dissipation), the expo-

nent β appears to be insensitive to the dissipation mechanism but dependent on

the interaction exponent α: β = 1.2 ± 0.1 for α = 2, while β = 1.8 ± 0.1 for

α = 2.5 [45].

Shearing soft spheres with damped interactions induces velocity fluctuations

that may be characterized by a granular temperature. Assuming that dissipative

spheres at a strain rate γ̇ and a granular temperature T behave similarly to purely

elastic spheres strained at a rate γ̇ and connected to a thermostat at tempera-

ture T , we can use the jamming phase diagram to understand the behavior of

the dissipative models. Since temperature is not independently controlled, these

models exist only on a two-dimensional surface of the jamming phase diagram.

The low-γ̇ limit corresponding to an apparent dynamic yield stress defines a one-

dimensional curve. Such a curve must correspond to low T/p, since the granular

temperature strongly depends on γ̇ but the pressure does not [45]. Moreover, it

must correspond to high τ
√

p, since the relaxation time is proportional to γ̇−1

at low γ̇. Combining these two observations, it is clear that the dynamic yield

stress scaling corresponds to a trajectory on the jamming phase diagram near

where the dynamic glass transition surface intersects the T/p = 0 plane. As the

packing fraction is reduce toward φc, the pressure approaches 0 and the trajectory

approaches the hard sphere plane. Since this trajectory is roughly perpendicular

to the hard sphere plane, σ/p is constant, so σyield ∝ p, consistent with Ref. [45].

Applying our observation that, to a good approximation, pd3/ǫ ∝ (φ − φc)
α−1 at

low T/p and moderate σ/p, we find expect σyield ∝ (φ − φc)
α−1, in reasonable
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agreement with the observed exponents β = 1.2± 0.1 for α = 2 and β = 1.8± 0.1

for α = 2.5 [45].

Our reformulation of the jamming phase diagram leads to several questions,

among them the following three. First, can we understand the behavior of soft

spheres in terms of hard sphere behavior for values of pd3/ǫ beyond the universal

region of the jamming phase diagram? At zero shear stress, the relaxation times of

soft spheres can be collapsed onto the universal function for hard sphere using only

structural information; the dimensionless relaxation time of soft spheres equals

the dimensionless relaxation time of hard spheres at the same volume if their

diameters are reduced following a modified Barker-Henderson procedure [9] that

uses the pair distribution function [90]. Future work must determine whether such

a procedure can map behavior of soft spheres at nonzero shear stress onto hard

sphere behavior as well. Second, can systems with attractions be understood in

terms of the jamming phase diagram? Can the axes of the jamming phase diagram

be modified to take into account, for instance, the work that thermal fluctuations

must do against attractions as well as external pressure? Third, how does the

nonequilibrium axis, σ/p, compare or contrast with the equilibrium axes? This

question will be addressed in chapter 3, where we investigate to what extent the

dynamics at nonzero stress are controlled by an effective temperature.
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Chapter 3

Effective Temperature

3.1 Introduction

The dynamic glass transition results when thermal fluctuations are no longer large

enough to induce particle rearrangements on observable time scales. We have

shown that repulsive spheres only flow when thermal fluctuations do enough work

against the pressure to open up sufficient free volume. Our measurements of the

jamming phase diagram for repulsive spheres reveals that another way to do work

against the pressure is to apply an external shear stress. Doing so fluidizes the

spheres even at temperatures well below the dynamic glass transition temperature.

Shearing drives a system far from equilibrium: energy is continually supplied on

long time and length scales via the boundaries and is removed on short scales

by the thermal reservoir. Nonetheless, simulations show that fluctuations in such

systems are well described by an effective temperature Teff that is higher than

the bath temperature [10, 11, 12, 54, 78], as predicted theoretically [24]. Nine
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different definitions yield a common value of Teff [10, 11, 12, 27, 54, 72, 78, 81],

providing strong numerical evidence for the utility of the concept.

In section 3.2 we show that Teff plays a critical role in fluidizing a glass [48]. We

find that the shear stress collapses onto a single curve depending only on Teff when-

ever the shear rate is high enough to dominate over thermal effects. The average

inherent structure energy collapses in similar fashion. These findings suggest that

Teff activates particle rearrangements necessary for flow, much as thermal fluctu-

ations do in an equilibrium liquid, supporting the idea that a common framework

might describe unjamming by mechanical forcing and by temperature [70].

In section 3.3 we show how the effective temperature relates to the dimen-

sionless jamming phase diagram we established for repulsive spheres [46]. By

measuring for the first time the effective temperature for hard spheres, we fo-

cus on the portion of the jamming phase diagram spanned by the dimensionless

temperature, T/pd3, and the dimensionless shear stress, σ/p. This allows us to

uncover a common mechanism for the dynamic glass transition along any path in

this plane; along any trajectory, fluidization occurs on accessible time scales only if

low-frequency fluctuations exceed a threshold value set by the pressure. These low

frequency fluctuations are controlled by the temperature in the absence of shear

but are well described by the effective temperature even far from equilibrium.

Interest in the idea of effective temperature for glass-forming liquids originated

in the discovery by Cugliandolo, Kurchan, and Peliti that low-frequency fluctu-

ations in mean-field spin glass models are described by an effective temperature

different from the temperature of the environment [24]. In the low-temperature,

spin-glass phase these models are out of equilibrium: while the spin correlation
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function eventually decay to zero, the time scale for the decay depends on the age

of the system. Time-translational invariance can be restored by steadily driving

the system with an external force [13, 24] that plays a similar role as shear stress

in a fluid [13]. Cugliandolo et al found that while the high-frequency fluctua-

tions of such driven systems behave as if in equilibrium with the environment at

temperature T , low-frequency fluctuations behave as in an equilibrium system at

Teff > T , even in the limit of vanishing drive. Specifically, a thermometer consist-

ing of a harmonic oscillator coupled to the system reads a temperature T if the

frequency of the oscillator is large but Teff if the frequency is small. Moreover,

the time-dependent fluctuation-dissipation relation between spin fluctuations and

linear response falls into two distinct time regimes: at short times, the fluctuation

dissipation theorem holds as in equilibrium, while at long times, it holds but with

T replaced by Teff .

While the existence of an effective temperature has been established for sheared

granular matter [23, 97, 103], the establishment of the effective temperature as

an observable-independent quantity characterizing the state of sheared fluids has

mostly been established by simulations of simple glass-forming fluids like ours.

Taken together, these simulations indicate that the low-frequency fluctuations of

fluids under shear are characterized by an effective temperature whose value is con-

sistent for several types of measurements involving several different observables.

Many of the measurements derive from the fluctuation-dissipation theorem, which

states that the time correlation function CAB(τ) of observables A and B is related
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to the associated linear response function RAB(τ) = ∂〈A(t + τ)〉hB
/∂hB(t) via

RAB(τ) = − 1

T

∂CAB(τ)

∂τ
. (3.1)

The average 〈·〉hB
is taken over a linearly perturbed state governed by a perturbed

Hamiltonian HhB
(t) = H0 − hB(t)A. Integrating over time, Eq. 3.1 may be

rewritten in terms of the integrated response MAB(τ) =
∫ τ

0
RAB(τ ′)dτ ′ as

MAB(τ) =
1

T
(CAB(0) − CAB(τ)) . (3.2)

For out-of-equilibrium systems like sheared model glass-formers, the fluctuation-

dissipation relation need not hold. However, for many observables, including

displacement and Fourier components of the density, the relationship between

MAB(τ) and CAB(τ) shows two linear regimes, one at short times with a slope

1/T and another at long times with a slope 1/Teff [10, 11, 12, 78], in analogy with

the observed behavior for mean-field spin glass models [24, 13]. Surprisingly, the

relationship between the fluctuations and the static (infinite-time) response for

a separate class of observables, including the pressure, the shear stress, and the

energy, yield a consistent value of Teff [81, 78], despite the fact that an effective

temperature from static linear response should not agree with an effective tem-

perature for time-dependent linear response. An effective temperature from static

linear response implies that MAB(∞) = CAB(0)/Teff in Eq. 3.2, which is incon-

sistent with Eq. 3.2 showing two distinct regimes with slope 1/T and 1/Teff [78].

Meanwhile, there are some observables for which neither time-dependent nor static

linear response yield a consistent value of Teff , including the deviatoric pressure
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and the vorticity component of the pressure [78]. Nevertheless, the effective tem-

perature concept has proven to be robust for sheared model glass-formers, with

consistent values also measured from the derivative of entropy with respect to en-

ergy [72, 81, 87] and the fluctuations of a low-frequency harmonic oscillator [27].

Most recently, Ilg and Barrat [54] showed that Teff controls activated transition

rates of a test probe consisting of a dimer connected by a double-well potential

and embedded in a sheared model glass. The rate of crossing the energy bar-

rier separating the two wells has an Arrhenius form exp(−∆E/Teff), where Teff is

consistent with previous definitions.

3.2 Effective Temperature Controls Material Prop-

erties

In this section, we shift the focus from testing the validity of the effective tem-

perature to examining its importance for material properties. We will focus on

the role of effective temperature in the jamming phase diagram parameterized by

T/p, σ/p, and p in section 3.3. First, we establish the relationship between Teff

and material properties such as the shear stress.

In this section, we study the two-dimensional analog of the system from chap-

ter 2, 50:50 mixtures of disks of diameter ratio 1 : 1.4 and equal mass. The

disks interact via a purely repulsive harmonic potential (α = 2). We fix the area

fraction at φ = 0.9. Most of the results are based on simulations of 400 disks,

but we carried out simulations of up to 6400 disks to confirm that none of these

results have any appreciable system size dependence. Units in this section are
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measured with the smaller particle diameter, the interaction spring constant, and

the particle mass set equal to 1. This yields a unit time period on the order of

a binary collision time. We uniformly and steadily shear the system at a strain

rate γ̇ and couple the system to a heat bath at temperature T by solving the

Sllod equations of motion with Lees-Edwards periodic boundary conditions and a

Gaussian thermostat [4]. We integrate these equations using a fourth-order Gear

corrector-predictor algorithm with a time step of 0.01. We obtain the same results

with a Nosé-Hoover thermostat. We use between five and twenty simulation runs

for each set of (T, γ̇). For each simulation, we collect data over at least nine strain

units after an equilibration period of several strain units.

We measure Teff from the relation between the static linear response and the

variance of the pressure [4, 81]. In equilibrium at fixed N, T , and A, this relation

is

A

T
〈(δp)2〉 = A

(

∂〈p〉
∂A

)

T

+ 〈p〉 +
〈x〉
A

, (3.3)

where p is the pressure, A is the area, and x is the hypervirial as defined in [4].

Teff is defined by replacing T with Teff in the left hand side of Eq. (3.3). We

measure ∂〈p〉/∂A by running simulations at φ = 0.897 and φ = 0.903, using

the same protocol and a similar quantity of simulations as for φ = 0.9. Mea-

surements from this definition have been compared to those from many other

definitions of Teff for a zero-temperature sheared foam [81]. We find that Teff is

consistent with less precise measurements of Teff defined by the Green-Kubo rela-

tion for shear viscosity [4, 81]. O’Hern et al. [78] showed that Teff from pressure

fluctuations agrees with that derived from the time-dependent linear response of
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density fluctuations [10] over a range of parameters for the system we use. We

also find consistency between these two definitions, except at very low strain rates

where the logarithmic time-dependence of the diffusivity, expected in two dimen-

sions [59], is apparent within the time scale of the density correlation function.

This long-time tail does not affect the viscosity because at the high area fraction

and low temperatures studied, the kinetic contribution to the viscosity is much

smaller than the potential contribution.

Figure 3.1 shows the measured quantities, stress σ and effective temperature

Teff , as functions of bath temperature T and strain rate γ̇. Figure 3.1(a) shows a

bifurcation of σ about a dynamic glass transition temperature T0 ≈ 0.0012 at low

γ̇, similar to the bifurcation at fixed pressure discussed in section 2.3. The two

sides of the bifurcation in Fig. 3.1(a) describe two different low-γ̇ limits. On the

T > T0 side, σ approaches σ ∼ γ̇ at low γ̇, suggesting that the shear viscosity η ≡

σ/γ̇ enters a Newtonian regime for T > T0 and sufficiently low γ̇. For T ≥ 0.0017,

we have reached strain rates low enough that η becomes independent of γ̇. We

define the equilibrium viscosity ηeq as the shear viscosity in this Newtonian regime.

For T0 < T < 0.0017, we do not reach the Newtonian regime at accessible time

scales/strain rates. However, we find that for all T ≥ 0.0015, η(γ̇) is well-described

by the phenomenological Ellis equation [111], 1/η(σ) = 1/η0 + m−1/nσ(1−n)/n,

which interpolates between Newtonian and power law rheology and allows us to

define ηeq down to T = 0.0015. In contrast, for T < T0 we observe apparent yield

stress rheology on the time scale of our simulations [96]. We find σ − σyield ∝ γ̇b

over the lowest two decades of γ̇ that our simulation can access, with the exponent

b ranging between 0.4 (T = 0.0012) and 0.6 (T = 0.0001), similar to that observed
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Figure 3.1: Shear stress σ (a) and effective temperature Teff (b) vs shear strain
rate γ̇ for several values of temperature T . In all figures, dashed lines and open
points indicate T > T0. Solid lines and solid points indicate T < T0. In (a), the
straight line indicates a slope of 1, expected for a Newtonian fluid. In (b), the
horizontal line indicates T0, while the isolated points near the left axis indicate
the values of T .
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in emulsions [75]. This implies that the viscosity diverges as η = σ/(σ − σyield)
1/b

as σ → σyield.

Figure 3.1(b) shows the dependence of Teff on T and γ̇. For all T , Teff ap-

proaches a limiting value in the quasistatic limit, γ̇ → 0. For T > T0, that

limiting value is simply T . However, for T < T0, Teff appears to saturate to a

value Teff,0 near T0 [81]. Such a saturation of Teff at low γ̇ has been observed in

experiments on sheared granular packings [97, 23, 103]. This apparent quasistatic

limit suggests that Teff,0 is a property of the unsheared glass at bath tempera-

ture T , describing the disorder associated with different minima in the energy

landscape [62].

In Fig. 3.2(a), we compare the approach to jamming as T → T0 with the

approach at fixed T < T0 and γ̇ → 0, parameterizing the latter approach by

Teff rather than γ̇. The dependence of η on 1/Teff is similar to that of ηeq on

1/T [66], but we find no collapse among the different approaches to jamming.

Along the equilibrium approach, η has the Arrhenius form η = η∞ exp(EA/T )

at high T . The non-equilibrium approaches exhibit no Arrhenius regime in η.

However, another reasonable measure of relaxation time, τshear ≡ γ̇−1 (not shown),

does vary in Arrhenius fashion with Teff at high Teff . Along all approaches, η is

super-Arrhenius for Teff near T0 or Teff,0.

Figure 3.2(b) demonstrates that the stress σ collapses as a function of Teff in the

shear-dominated regime. We find that σ varies between two limits, depending on

T and γ̇. For T > T0 and γ̇ → 0, the shear stress approaches the Newtonian limit,

σ = ηeqγ̇, while Teff approaches T . In this regime, thermal fluctuations T dominate

over shear-induced ones. However, for T ≪ T0 and any γ̇, or for T >∼T0 and high
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Figure 3.2: (a) Viscosity η vs 1/Teff for several values of T and γ̇. Asterisks
correspond to the Newtonian viscosities (γ̇ → 0, Teff = T ). (b) σ vs. 1/Teff .
The straight dotted line is a fit to the form σ = σ0 exp(−∆E/Teff) for the three
lowest bath temperatures. (c) 〈EIS〉 vs. 1/Teff . Asterisks indicate 〈EIS〉 for γ̇ = 0
(Teff = T ).

49



γ̇, the system crosses over to another regime, where shear-induced fluctuations

dominate over thermal ones. In this shear-driven regime, σ depends on T and γ̇

only through Teff . The dependence of σ on Teff follows the simple form

σ ≈ σ0exp

(

−∆E

Teff

)

, (3.4)

represented by a dotted line in Fig. 3.2(b). The collapse of the data from different

T and γ̇ onto this same curve indicates that the dynamics are most properly

described as being controlled by Teff , not γ̇ or T . In the shear-dominated regime,

the height of the energy scale, ∆E = 0.0028± 0.0001, is independent of T and γ̇.

Its value is comparable to the activation energy EA = 0.0023 ± 0.0002 extracted

from the high-T equilibrium Arrhenius relationship η = η∞ exp(EA/T ). The

correspondence between σ and Teff suggests that the existence of a finite yield

stress would imply a nonzero quasistatic value of Teff,0.

Equation (3.4) suggests a simple scenario. Suppose that the power per unit

area supplied globally by shearing, σγ̇, were used to overcome local energy barriers

of height ∆E at a rate of R transitions per unit area per unit time. Using σγ̇ =

R∆E and the observed Eq. (3.4), we find

R = R0γ̇exp

(

−∆E

Teff

)

, (3.5)

with R0 = σ0/∆E = 4 ± 1. This implies that the rate of barrier crossing is Ar-

rhenius in Teff with an attempt frequency proportional to the strain rate γ̇. Local

rearrangements whose rate scales with γ̇ are observed in foam experiments [42] and

simulations [101], as well as in athermal quasistatic simulations of soft disks [73].
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Although it was derived from a steady-state relationship, Eq. 3.5 motivates

a hypothesis for the time evolution of Teff . Such equations [63, 69] have been

used in the context of shear transformation zone (STZ) theory [36]. Following

previous work [69], we suppose that the equation should balance a heating rate

proportional to the work done on the system with a relaxation rate proportional

to exp(−E1/Teff). As in Eq. 3.5 and differing from [69], we suggest that the

relaxation rate should depend on a scalar rate at which the system explores new

configurations. These considerations yield

Ṫeff ∝ Q − ν exp

(

− E1

Teff

)

, (3.6)

where Q ∝ σγ̇ [65] and the attempt frequency ν ∝ γ̇ in the case of steady-state

shear. Equation 3.6 is consistent with Eq. 3.4 in the steady-state limit. For Teff

near its steady-state value Teff,SS, Eq. 3.6 reduces to Ṫeff ∝ σγ̇(Teff,SS − Teff), as

used in STZ theory [63].

The scenario suggested by Eqs. 3.5-3.6 is that Teff activates the system over

barriers whose height is independent of Teff . However, measurements of the av-

erage inherent structure energy 〈EIS〉 [98] of the system suggest that the height

of energy barriers does depend on Teff . We measure EIS of the sheared system

by taking configurations explored during steady-state shear and quenching them

to their local energy minima by the conjugate-gradient technique. For compari-

son, we also measure 〈EIS〉(Teff = T ) for the equilibrium system at γ̇ = 0 above

the glass transition temperature. Fig. 3.2(c) shows that 〈EIS〉(Teff = T ) is flat

at high T . For T < TMC , where TMC marks the onset of super-Arrhenius be-
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havior in Fig. 3.2(a), we find that 〈EIS〉(Teff = T ) decreases monotonically with

decreasing T , in agreement with [56]. At low T , the system visits deeper poten-

tial energy basins, presumably separated by higher barriers, consistent with the

super-Arrhenius viscosity η = η∞ exp(EA(T )/T ), where EA(T ) is the T -dependent

barrier height.

Figure 3.2(c) shows that 〈EIS〉(Teff) of the sheared system is distinct from

the equilibrium curve [62] but also decreases as Teff → Teff,0. Moreover, the data

appear to collapse in the shear-dominated regime, as in Fig. 3.2(b). At sufficiently

low T and/or high γ̇, the data collapse onto a single curve, but cross over to the

equilibrium curve at high T and low γ̇. For each T , the point at which 〈EIS〉(Teff)

begins to decrease corresponds to the upturn of viscosity, suggesting that energy

barriers increase with decreasing 〈EIS〉.

In summary, there are two possible explanations for the upturn of η as Teff →

Teff,0. The first explanation is that relaxation rates are controlled by Teff -activated

transitions over barriers whose heights increase with decreasing Teff . This view is

supported by an STZ analysis of our data [64]. The second explanation is that the

barrier heights overcome during the shearing process do not depend strongly on

Teff , even though the energy minima decrease with decreasing Teff . In that case,

the super-Arrhenius behavior is due to Eq. 3.4 and the divergence in η ≈ σyield/γ̇

as γ̇ → 0. Further study, particularly of transients, is needed to resolve this issue.

Finally, we revisit the issue of the validity of the effective temperature concept.

Nine independent definitions of temperature have been shown to yield consistent

values of Teff , within numerical error: the relation of density [10, 78] and pressure

fluctuations [78] at nonzero wavevectors to the associated response at long times;
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the relation of fluctuations in the total pressure, stress, and energy to static re-

sponse [78, 81]; the Einstein relation between diffusion and drag [10, 72, 81]; the

derivative of entropy with respect to energy [72, 81]; the fluctuations of a low-

frequency harmonic oscillator [27]; and the barrier crossing rate of a test two-level

system [54]. However, there are definitions that do not yield consistent values of

Teff : the relation of fluctuations in the total deviatoric pressure and in the vortic-

ity component of pressure to the response at long times [78]. Thus, the concept of

effective temperature, even when restricted to long-time-scale properties, is only

approximate [24, 92].

If the concept of effective temperature is not rigorously valid for sheared

glasses, why would it be of any interest for these systems? Our results provide an

answer: the effective temperature critically affects materials properties by setting

the energy scale for fluctuations that kick flowing glasses over energy barriers.

3.3 Effective Temperature in the Hard-Sphere

Limit

In order to understand how the effective temperature relates to the dimensionless

jamming phase diagram we established in chapter 2, in this section we measure

the effective temperature for sheared hard spheres. We find that there is a con-

sistent value of effective temperature Teff for different measurements. Moreover,

we find that in order for the hard sphere system to flow on accessible time scales,

the ratio of the effective temperature to the pressure must exceed a threshold

value, regardless of whether the system is fluidized primarily by temperature or
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by shear. This suggests that the dynamic glass transition in the plane spanned by

the dimensionless temperature and the dimensionless shear stress is controlled by

the same mechanism, the competition between low-frequency fluctuations and the

confining pressure. We also investigate the effective temperature at shear stresses

well above threshold. We find that the relaxation time decreases as a function

of increasing effective temperature in roughly the same manner as in equilibrium.

We find that within a shear-dominated regime, the shear stress collapses as a func-

tion of the effective temperature, following a roughly exponential form with an

activation energy proportional to the pressure. Following the results of chapter 2,

we expect our results to hold for soft spheres in the universal limit p → 0, and we

expect that the behavior of the effective temperature at higher pressures may be

understood in terms of corrections of order p.

We consider the same hard sphere model as in chapter 2, a collection of fric-

tionless hard spheres of mass m, half with diameter d and half with diameter

1.4d. We calculate the shear stress, the pressure, and the effective temperature

by conducting event-driven molecular dynamics simulations [55, 74] at fixed ki-

netic temperature T , packing fraction φ, and shear strain rate γ̇. We define the

kinetic temperature by the velocity fluctuations relative to a uniform shear gra-

dient imposed by Lees-Edwards boundary conditions. We periodically rescale the

velocities in order to keep the temperature within 1% of the desired value. Since

there is no energy scale in the model, the kinetic temperature serves only to set the

time scale for thermal fluctuations, so we may set T = 1 without loss of generality.

Results in this section are presented in units such that T = m = d = 1.

We find that two definitions of effective temperature yield consistent results:
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the compressibility temperature Tχ relating the measured isothermal compress-

ibility with that expected from the zero-wavevector limit of the structure fac-

tor [44, 82], and the viscosity temperature Tη relating the measured shear vis-

cosity with that expected from the Einstein-Helfand expression [3, 39, 50]. The

pressure temperature Tp relating the measured pressure with that expected from

the radial distribution function at contact [44] yields a value consistent with the

kinetic temperature T .

In chapter 2 we showed that the behavior of hard spheres, as well as soft spheres

at sufficiently low pressure, is controlled by the dimensionless numbers T/pd3 and

σ/p. In order for the spheres to flow on accessible time scales, the dimensionless

temperature T/pd3 and the dimensionless shear stress σ/p must fall within the

fluid portion of the diagram at large T/pd3 and/or large σ/p. In the absence

of shear, the dimensionless temperature must exceed a glass transition value of

T/pd3 ≈ 0.08. At lower dimensionless temperatures, the spheres can only flow if

the dimensionless shear stress σ/p exceeds a dynamic yield stress which increases

smoothly from zero as T/pd3 falls below the dynamic glass transition. Since

pressure controls both the dynamic glass transition temperature and the dynamic

yield stress for hard spheres, we expect that pressure will also set the scale for the

effective temperature. We will therefore present results for the temperatures Tp,

Tχ, and Tη in relation to the pressure.

We now state the definitions and outline the derivations of the temperatures

Tp, Tχ, and Tη. The pressure temperature Tp follows from the equilibrium expres-

sion [44] relating the pressure and the radial distribution function g(r) for homoge-

neous, isotropic fluids with only pairwise radially symmetric potentials V (r). For
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monodisperse hard spheres, using the fact that y(r) = g(r) exp(V (r)/T ) is con-

tinuous even at the hard sphere diameter r = d, the expression for the pressure

can be written in terms of the radial distribution function at contact [44],

p

ρT
= 1 − 2

3
πρd3g(d), (3.7)

where ρ = N/V is the number density. For mixtures of hard spheres, such as our

mixture of spheres of diameter d and 1.4d, the extression becomes

p

ρT
= 1 − 2

3
πρ
∑

α,β

cαcβd
3
αβgαβ(dαβ), (3.8)

where Vαβ(r) is the pair potential between spheres of species α and β, gαβ(~r) is

the partial pair distribution function (normalized to equal 1 at long distances),

cα = Nα/N is the fraction of particles of type α, and dαβ = (dα − dβ)/2 is the

separation at contact between species of type α and β. We therefore define the

pressure temperature as

Tp =
p

ρ

(

1 − 2

3
πρ
∑

α,β

cαcβd
3
αβgαβ(dαβ)

)−1

. (3.9)

The compressibility temperature Tχ follows from the equilibrium compressibil-

ity equation relating the k → 0 limit of the structure factor Sij(k) and the isother-

mal compressibility χT for homogeneous, isotropic fluids. For single-component

fluids the compressibility equation is [44, 82]

ρTχT = S(0). (3.10)
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For multiple-component fluids, the compressibility equation is

ρ2TχT = |B|/
∑

α,β

cαcβ|B|αβ, (3.11)

where Bαβ = cαδαβ+cαcβGαβ , Gαβ =
∫

d~r(gαβ(~r)−1), and |B|αβ denotes the cofac-

tor of Bαβ in the determinant |B| [60]. Since Gαβ are related to the zero-wavevector

values of the partial structure factors Sαβ(0) via Sαβ(0) = δαβ + ρ
√

cαcβGαβ for a

homogeneous, isotropic fluid, we can rewrite the compressibility equation in terms

of the partial structure factors. We define the partial structure factors as in [7] by

Sαβ(~k) = (NαNβ)−1/2

〈

∑

i,j

exp(i~k · (~rα,i − ~rβ,j))

〉

− (NαNβ)1/2δk,0, (3.12)

where the positions ~rα,i are indexed by their species α and the multiplicity of each

species i = 1, ..., Nα. For a two-component mixture, the compressibility equation

becomes [7]

ρTχT =
S11(0)S22(0) − (S12(0))2

x1S22(0) + x2S11(0) − 2
√

x1x2S12(0)
. (3.13)

We therefore define the compressibility temperature as

Tχ =
1

ρχT

S11(0)S22(0) − (S12(0))2

x1S22(0) + x2S11(0) − 2
√

x1x2S12(0)
. (3.14)

While the isothermal compressibility χT is unambiguously defined in equilibrium,

when measuring χT out of equilibrium, we must choose how to fix the nonequilib-

rium driving force. Since the dimensionless shear stress σ/p plays a similar role

as the dimensionless temperature T/p, we choose to fix the dimensionless shear
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stress σ/p. This choice makes a difference of up to order 10% relative to fixing the

shear strain rate γ̇/
√

T or the dimensionless shear strain rate γ̇/
√

p and improves

the agreement with the Tη.

The shear viscosity temperature follows from the equilibrium Einstein-Helfand

expression

Tη = lim
t→∞

dH(t)

dt
, (3.15)

where H(t) = (1/2V T )〈|Gη(t) − Gη(0)|2〉, Gη =
∑

i miẋiyi, and η is the shear

viscosity [3, 39, 50]. We define Tη as the slope of H(t)/η vs t at long times. Since

〈Gη〉 does not vanish under shear, we must amend amend the definition of H to

be

H(t) =
1

2V T

〈

|Gη(t) − Gη(0) − σV t|2
〉

, (3.16)

similar to how the equilibrium bulk viscosity is treated under the Einstein-Helfand

formulation [39]. We therefore define the shear viscosity temperature as the long-

time limit of

Tη =
1

η

dH(t)

dt
. (3.17)

While the shear viscosity η is unambiguously defined in equilibrium, out of equi-

librium, due to the shear thinning effect, we must choose between the differential

viscosity dσ/dγ̇ and the linear viscosity σ/γ̇. Following the definition of effec-

tive temperature for shear stress fluctuations that yields a consistent value for

soft spheres [81], we define the viscosity η as the linear viscosity. This choice

makes a difference of up to a factor of 2. Choosing the differential viscosity yields

a temperature that is inconsistent with the compressibility temperature in the
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Figure 3.3: Dimensionless pressure temperature Tp/p vs (a) dimensionless strain
rate γ̇/

√
p and (b) dimensionless shear stress σ/p. Each connected curve repre-

sents a different dimensionless temperature T/p indicated by the symbols on the
right side of the plot. The values are (top to bottom): T/p = 0.3 (blue hexagons),
0.25 (black hexagons), 0.2 (red up triangles), 0.15 (blue up triangles), 0.1 (black
up triangles), 0.09 (red squares), 0.08 (blue squares), 0.07 (black squares), 0.06
(red circles), 0.05 (blue circles), 0.04 (black circles), 0.03 (red down triangles), and
0.02 (blue down triangles).

shear-thinning regime.

We now show the results for the temperatures Tp, Tχ, and Tη. Following our

experience with soft spheres, we expect that the temperatures fall into two classes,

one agreeing with the environment temperature T and the other describing an

effective temperature. Throughout this section, we restrict our results to σ/p <

0.5, the range over which we observe no layering, as discussed in section 2.3.

Figure 3.3 shows the dimensionless pressure temperature Tp/p vs (a) the di-

mensionless strain rate γ̇/
√

p and (b) the dimensionless pressure σ/p. We interpo-

late our fixed-packing-fraction data to create curves of equal dimensionless tem-

perature T/p. For all temperatures, the pressure temperature equals the kinetic

temperature and is insensitive to shearing. This result is expected considering
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Figure 3.4: Dimensionless compressibility temperature Tχ/p vs (a) dimensionless
strain rate γ̇/

√
p and (b) dimensionless shear stress σ/p. Each connected curve

represents a different dimensionless temperature T/p indicated by the symbols
on the right side of the plot. The values are (top to bottom): T/p = 0.3 (blue
hexagons), 0.25 (black hexagons), 0.2 (red up triangles), 0.15 (blue up trian-
gles), 0.1 (black up triangles), 0.09 (red squares), 0.08 (blue squares), 0.07 (black
squares), 0.06 (red circles), 0.05 (blue circles), 0.04 (black circles), 0.03 (red down
triangles), and 0.02 (blue down triangles).

that the pressure is dominated by high-frequency fluctuations characterized by T .

Figure 3.3 shows the dimensionless compressibility temperature Tχ/p vs (a)

the dimensionless strain rate γ̇/
√

p and (b) the dimensionless pressure σ/p. The

results are reminiscent of the effective temperature for soft spheres discussed in

section 3.2 [48]. At high temperatures and low strain rates, the compressibility

temperature agrees with the kinetic temperature T . However, for temperatures

below the dynamic glass transition temperature Tg/p ≈ 0.08, the compressibil-

ity departs strongly from the kinetic temperature, even at low strain rates. The

dynamic glass transition temperature appears to control the compressibility tem-

perature at low temperatures and strain rates: on the time strain rates accessible

to our simulations, the compressibility temperature always stays at or above the
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Figure 3.5: H(t)/η vs t for packing fraction φ = 0.58 and two characteristic shear
strain rates (a) γ̇/

√
p = 2.65 × 10−3 and (b) γ̇/

√
p = 2.44 × 10−2. The black

curves are H(t)/η, whose derivative at long times equals T in equilibrium. For
comparison, the blue lines represent the function Tt, and the red curves represent
the function Tχt. The three state points correspond to dimensionless temperature
and dimensionless stress of T/p = 7.52 × 10−2 and σ/p = 1.46 × 10−2; T/p =
7.00×10−2 and σ/p = 5.01×10−2; and T/p = 5.95×10−2 and σ/p = 1.19×10−1;
respectively.

dynamic glass transition value, Tχ/p ≥ Tg/p ≈ 0.08. Notice that most of the

data at low kinetic temperature collapse onto a narrow band of compressibility

temperatures, except for the very lowest kinetic temperature, T/p = 0.02 (blue

down triangles), for which the compressibility temperature is significantly higher.

In order for the compressibility temperature to be a useful effective temper-

ature, it must at least agree with an independent measurement of temperature.

For comparison, we measure the viscosity temperature Tη defined by Eq. 3.17. In

order to measure Tη, we must access the long-time asymptotic regime of dH(t)/dt

in Eq. 3.17, which we find occurs for t on the order of 10τ , where τ is relaxation

time. We calculate H(t) by averaging over a long trajectory with overlapping in-

tervals of length t. In equilibrium, we find that we can only reliably reproduce the

equilibrium Einstein-Helfand expression if we average over a trajectory of length
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100t or more. We must therefore simulate trajectories of at least 1000τ in order

to calculate Tη. Considering this computational expense, we do not measure Tη

for the entire parameter space represented in Fig. 3.4; rather, we check that the

derivative of dH(t)/dt agrees with the compressibility temperature Tχ for sev-

eral representative sets of parameters. Fig. 3.5 shows two typical examples near

the dynamic glass transition, one at a low shear strain rate and one at a higher

shear strain rate. In both cases, as well as for the other cases examined, we find

that the derivative of H(t)/η, represented by black circles in Fig. 3.5, is closer

to Tχ, represented by a solid red line, than by T , represented by a solid blue

line. This indicates that the Einstein-Helfand expression, Eq. 3.16, holds with T

replaced by Tχ. In other words, both the compressibility temperature Tχ and the

viscosity temperature Tη yield consistent values, even in the region of parameter

space where they disagree with the kinetic temperature T . We therefore consider

Teff = Tχ = Tη to be the effective temperature of the hard sphere fluid.

We now investigate how the effective temperature controls the material proper-

ties of the hard sphere fluid. In Fig. 3.6 we show Arrhenius-type log-linear plots of

(a) the dimensionless relaxation time τ
√

p and (b) the dimensionless shear stress

σ/p vs the inverse dimensionless effective temperature p/Tχ. As in chapter 2, we

define the relaxation time as the time at which the root mean square displacement

equals 1.

Figure 3.6 (a) shows the dimensionless relaxation time τ
√

p vs inverse dimen-

sionless effective temperature p/Tχ. Each curve represents a different value of

the dimensionless kinetic temperature T/p over a range of strain rates. Except

for T/p ≤ 0.03 well below the dynamic glass transition Tg/p ≈ 0.08, the curves
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Figure 3.6: Log-linear plots of (a) dimensionless relaxation time τ
√

p and (b) di-
mensionless shear stress σ/p vs inverse dimensionless effective temperature p/Tχ.
Each connected curve represents a different dimensionless temperature T/p indi-
cated by the symbols on the right side of the plot. The values are (top to bot-
tom): T/p = 0.3 (blue hexagons), 0.25 (black hexagons), 0.2 (red up triangles),
0.15 (blue up triangles), 0.1 (black up triangles), 0.09 (red squares), 0.08 (blue
squares), 0.07 (black squares), 0.06 (red circles), 0.05 (blue circles), 0.04 (black
circles), 0.03 (red down triangles), and 0.02 (blue down triangles). In (a), the
black curve represents the equilibrium data under no shear. For the equilibrium
data, we use the kinetic temperature T instead of the compressibility tempera-
ture Tχ as the effective temperature. In (b), the straight line is a guide to the eye
following the equation σ/p = 0.8 exp(0.2Tχ/p).
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for various kinetic temperatures fall mostly onto a narrow band of values. This

indicates that the relaxation time depends mostly on the effective temperature

Tχ, which in general is not equal to the environment temperature T , and not

separately on the environment temperature T . Moreover, except at very high

effective temperatures, p/Tχ < 5, this band of values closely coincides with the

equilibrium curve. To construct the equilibrium curve, we use the kinetic tem-

perature T rather than the compressibility temperature Tχ because the signal is

better, but we obtain similar results using the compressibility temperature, be-

cause Tχ = T in equilibrium. Note by comparing to Fig. 3.6 (b) that high effective

temperatures p/Tχ < 5 correspond generally to high shear stresses σ/p > 0.3. At

such high shear stresses, where the interactions are highly anisotropic, we do not

expect that the mechanisms for relaxation should agree with the mechanisms in

equilibrium.

In figure 3.6 (b) we show the dimensionless shear stress σ/p vs the inverse

dimensionless effective temperature p/Tχ. We find results qualitatively similar to

those of Fig. 3.2 (b) in section 3.2 [48], due to the fact that the pressure does

not vary greatly with temperature or strain rate for the soft sphere system at the

packing fraction well above close packing used in section 3.2. However, now we

have a better understanding for the universal character of the functional relation-

ship between σ/p and p/Tχ. As in section 3.2, we find that parameter space can be

divided into two regimes, a temperature-dominated regime and a shear-dominated

regime. In the temperature-dominated regime, the effective temperature coincides

with the kinetic temperature over a range of applied shear stress. Data within this

regime fall along vertical connected curves in Fig. 3.6 (b). We find that this regime
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also coincides with where τ
√

p is insensitive to σ/p and the shear strain rate is

proportional to the shear stress by a Newtonian shear viscosity. The first effect is

apparent in Fig. 3.6 (a), where the data within the temperature-dominated regime

appear as groups of points clustered within a small range of p/Tχ and τ
√

p.

At high shear stress, the data cross over to a shear-dominated regime, where

the dimensionless shear stress σ/p depends roughly exponentially on the inverse

dimensionless effective temperature p/Tχ and does not separately depend on the

kinetic temperature. As discussed in section 3.2, the form of this dependence,

σ

p
≈ 0.8 exp

(

−0.2p

Tχ

)

, (3.18)

suggests a simple scenario. Balancing the power per unit volume supplied by

shearing, σγ̇, with the rate R of transitions costing energy ∆E, Eq. 3.18 implies

that the transition rate is given by

R = R0γ̇ exp

(

−∆E

Tχ

)

, (3.19)

where the energy cost ∆E is proportional to the pressure via ∆E ≈ 0.2pd3 and

R0 ≈ 4. Observing this relationship for hard spheres allows us to make a geometric

interpretation of the rate of rearrangements that relax the stress. Eq. 3.19 implies

that rearrangements are Arrhenius in the effective temperature with an attempt

frequency proportional to the strain rate and an activation energy equal to the

amount of work necessary to open up an amount of free volume ν against the

pressure, where ν ≈ 0.2d3.

In this section, we have shown that the low-frequency fluctuations of hard
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spheres under shear are characterized by an effective temperature consistently

defined either by the compressibility temperature Tχ or the viscosity temperature

Tη. At temperatures above the dynamic glass transition and low shear stresses,

the effective temperature agrees with the kinetic temperature. Below the dynamic

glass transition, the dimensionless effective temperature must exceed a threshold

value equal to the dimensionless glass transition temperature, indicating that the

mechanism for fluidization is similar along the dynamic glass transition curve in

the T/p − σ/p plane. Over a wide range of parameter space, the dimensionless

relaxation time depends mostly on the dimensionless effective temperature and

not on whether these low-frequency fluctuations are primarily due to temperature

or shear. This indicates that similarities in the mechanism of relaxation persist

well into the fluid portion of the jamming phase diagram. However, within this

regime but at sufficiently high shear stress, a crossover is apparent in the behavior

of the average shear stress. Our results suggest that at sufficiently high shear

stress, the power put into the system appears to be limited by the rate R at

which plastic rearrangements release energy ∆E, where ∆E is proportional to

the work necessary to open up a typical void and the rate R is Arrhenius in the

effective temperature.
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Chapter 4

Kinetic Heterogeneities at

Dynamical Crossovers

Having established the important role of fluctuations in fluidizing glass-forming

liquids throughout the jamming phase diagram, we now turn to developing a

microscopic understanding of these fluctuations. We focus on the temperature-

mediated dynamic glass transition, but following the results of section 2.3 and

chapter 3, we expect similar results under shear.

While fluctuations of static properties remain small as a fluid approaches its

dynamic glass transition, the dynamics become increasingly correlated in space

and heterogeneous in time. These correlations are most pronounced at time scales

on the order of the relaxation time of the system and are typically quantified

using a dynamic susceptibility that measures fluctuations in the number of mobile

particles [5, 14, 15, 16, 26, 40, 88]. A particle is deemed mobile if it has moved a

distance of at least a in a time interval t, so the dynamic susceptibility depends on
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the choice of a and t. For a fixed at a fraction of the particle diameter, the dynamic

susceptibility exhibits a maximum at times t on the order of the relaxation time.

This maximum increases in height as temperature is lowered towards the glass

transition and the relaxation time increases [15, 19, 20, 37, 41, 51, 61, 67, 77, 76,

99, 102]. Thus, the peak in the dynamic susceptibility is viewed as an important

signature of the glass transition.

In molecular dynamics simulations of glass-forming liquids, the dynamic sus-

ceptibility is typically measured as a function of t with the length scale a fixed.

Studies of the length-scale dependence have been more rare [1, 19, 20, 67]. How-

ever, recent experiments on granular systems [68] suggest that it is instructive to

study the dynamic susceptibility as a function of a as well as t. This approach

has the advantage of avoiding any arbitrariness in the choice of a or t.

In this chapter, we use the dynamic susceptibility to measure the spatial extent

of kinetic heterogeneities as a function of distance a and time t [47]. At tempera-

tures where there is a well-defined sub-diffusive plateau in the root mean square

displacement, we find that there are two distinct local maxima in the dynamic sus-

ceptibility χss(a, t) quantifying the spatial extent of kinetic heterogeneities. These

two maxima correspond to crossovers in the dynamics. The larger of the two

maxima, which has been observed in previous simulations, occurs at late times

at the crossover from sub-diffusive to diffusive motion. This maximum quantifies

the strong and well-studied correlations in the dynamics that arise at the scale of

the relaxation time. In addition, we find a secondary maximum at much earlier

times, corresponding to the crossover from ballistic to sub-diffusive motion. The

presence of this second maximum indicates that the dynamics also exhibit signifi-
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cant spatial correlations at time scales corresponding to the trapping of a particle

in the cage of its neighbors. The discovery of a second maximum implies that ki-

netic heterogeneities are not just associated with the onset of slow dynamics near

a glass or jamming transition, and that they should be regarded more generally

as symptoms of crossovers in the dynamics.

Our model consists of a two-dimensional 50:50 mixture of disks of diameters

d and 1.4d and equal mass m. The disks interact via a purely repulsive harmonic

potential (α = 2). We choose units such that d, the interaction energy scale ǫ, and

m are set equal to 1. This sets the time unit d
√

m/ǫ = 1. To solve the dynamics,

we perform molecular dynamics simulations at fixed temperature and pressure

in square periodic cells containing N = 100, 400, or 1600 disks. We employ

Gaussian constraints [33] to fix the instantaneous temperature T = |~pi|2/2(N −1)

and hydrostatic pressure p = (~ri · ~Fi/2 + NT )/L2, where ~Fi = −~∇
∑

j V (rij),

allowing the side length L of the periodic cell to vary. In our runs, we fix p = 10−2

and measure the dynamics at various temperatures T = 0.01p to T = 0.09p by

running 10 to 20 simulations for durations between ∆τ = 105 and ∆τ = 107

after equilibrating at the temperature for one fifth as long. We arrive at the

temperature by quenching at rates 10−9 or 10−8 starting from well-equilibrated

configurations at T = 0.1p. Results here are shown for a quench rate of 10−9.

Correlations in the dynamics are measured by using the standard time- and

distance-dependent order parameter

qs(a, t; i, τ) ≡ wa(~ri(τ) − ~ri(τ + t)), (4.1)
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where wa(~r) is an overlap function [41]. Here, wa(~r) = 1 if |~r| < a and 0 otherwise.

We denote the average over all particles i by Qs(a, t; τ) ≡ (1/N)
∑

i qs(a, t; i, τ)

and its time average by Q̄s(a, t) ≡ 〈Qs(a, t; τ)〉τ . At very short times, Q̄s(a, t) = 1

because no particles have moved a distance a. At very long times, positions at

time τ + t are uncorrelated with positions at time τ , so limt→∞ Q̄s(a, t) ≃ φa2/N ,

where φ is the packing fraction. Between these two extremes, Q̄s(a, t) decays

smoothly from 1 to φa2/N .

The spatial extent of fluctuations can be characterized by the variance of the

overlap function over different starting times [41]

χss(a, t) ≡ N
(

〈Qs(a, t; τ)2〉τ − Q̄s(a, t)2
)

. (4.2)

As shown by the counting argument of Ref. [1], χss(a, t) is roughly the number of

particles that move a distance a over a time t in a correlated manner.

Note that the spatially averaged overlap function Qs(a, t; τ) is the self part

of the order parameter Q(a, t; τ) ≡ (1/N)
∑

ij wa(~ri(τ) − ~rj(τ + t)), and χss(a, t)

is the self-self part of the dynamic susceptibility χ4(a, t) ≡ N(〈Q(a, t; τ)2〉τ −

(〈Q(a, t; τ)〉τ )2). Glotzer et al showed that the self-self part of the dynamic sus-

ceptibility dominates over the distinct-distinct and the self-distinct parts for a

model glass-forming liquid [41, 67].

The color plots of Fig. 4.1 display the spatial and temporal dependence of the

dynamic susceptibility χss(a, t). The three plots represent three temperatures: one

well above the dynamic glass transition Tg ≈ 0.05p, one slightly above it, and one

below Tg. In each plot, we also display the root-mean-square (rms) displacement,
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Figure 4.1: Color plots of the value of the dynamic susceptibility χss(a, t) as a
function of the lag time, t, and the overlap distance, a. Results are shown at a fixed
pressure, p = 10−2, and system size, N = 1600, at three different temperatures:
(a) T = 0.07p, (b) T = 0.055p, and (c) T = 0.02p. The dynamical glass transition
is at T ≈ 0.05p. For comparison, we plot the root-mean-square displacement ∆r(t)
(solid curves). The circles mark the locations, (a⋆, t⋆), of observed local maxima
of χss(a, t). Filled circles represent cage-escaping local maxima near the end of the
sub-diffusive plateau of ∆r(t). Such maxima are observed for T ≥ 0.05p. Open
circles represent cage-exploring local maxima near the beginning of the plateau.
Such maxima are observed for T ≤ 0.055p, so that there is a range of temperatures
over which both local maxima exist.
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∆r(t) ≡
√

〈|~ri(0) − ~ri(t)|2〉. Not surprisingly, for a given t we find that χss(a, t) is

largest for a near ∆r(t), the characteristic distance over which some, but not all,

particles have moved. This is consistent with granular experiments by Lechenault,

et al [68]. We place circles on the locations (t⋆, a⋆) of the local maxima of χss(a, t).

For the highest temperature (Fig. 4.1(a)), well above the glass transition, the

rms displacement ∆r(t) shows a ballistic regime at small t, the hint of a sub-

diffusive regime at intermediate times, and a diffusive regime at long times. We

observe one local maximum of χss(a, t), marked by a solid circle, at the onset of the

diffusive regime: the heterogeneities are largest when some particles have begun

to diffuse but others remain caged. Note also that the maximum at (t∗, a∗) lies

somewhat below the ∆r(t) curve, indicating that larger clusters of dynamically

correlated particles are formed by less mobile particles 1.

For the intermediate temperature (Fig. 4.1(b)), the sub-diffusive plateau of

∆r(t) is well established and spreads out over two decades. Again, we observe

a local maximum of χss(a, t) near the onset of the diffusive regime. However, in

addition to this “cage-escaping” maximum we also observe a secondary “cage-

exploring” maximum, marked by an open circle, near the onset of the plateau;

the dynamics are also heterogeneous on time scales when particles are becoming

constrained by their neighbors. Thus, in the regime where there are two distinct

crossovers in the dynamics–one from ballistic to sub-diffusive motion, and one from

sub-diffusive to diffusive motion–there are also two maxima in χss(a, t), located at

1In all cases, we also find that χss(a, t) increases along ∆r(t) with decreasing t for the shortest
times observed, well within the ballistic regime, reflecting correlations in the velocities. We
observe this behavior at all temperatures. This is an artifact of the barostat used; we do not
observe this increase when the system is held at fixed area.
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distances a and times t corresponding to the two crossovers.

For the lowest temperature shown (Fig. 4.1(c)), we do not reach a diffusive

regime on the time scale of our simulation, which means that this temperature

lies below the dynamic glass transition temperature Tg ≈ 0.05p. We therefore do

not observe the cage-escaping maximum associated with the onset of the diffusive

regime. However, the location of the cage-exploring maximum remains relatively

unchanged, as shown by the open circle. Although the system is out of equilibrium

for all T < Tg, we observe mild aging effects only for the highest of these tem-

peratures studied, T = 0.04p and T = 0.045p, where the equilibration times are

comparable to the quench times, waiting times, and run times of our simulations.

To study the evolution of the maxima with temperature, in Fig. 4.2 we plot

χss(a, t) as a function of t for many different fixed values of a covering the same

range of a as in Fig. 4.1. The thick curve marks the maximum of χss with respect to

a at each t. Maxima of this curve (marked with circles) therefore represent maxima

of χss with respect to both a and t. Fig. 4.2 shows that at high temperatures, only

one local maximum of χss can be resolved. As T is lowered, however, a shoulder

becomes apparent at time scales corresponding to cage exploring. This shoulder

evolves into a maximum as T is lowered still further and the higher cage-escaping

maximum moves to later times. Thus, the reason why we only see two maxima

at temperatures fairly close to the glass transition is because the smaller cage-

exploring maximum is obscured by the higher cage-escaping maximum at higher

temperatures.

The two local maxima of χss depend very differently on temperature. In

Fig. 4.3, we plot the amplitude of the maxima χ⋆ and their associated locations in
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Figure 4.2: Dynamic susceptibility χss(a, t) vs lag time t for p = 10−2, N = 1600,
and four different temperatures above but near the glass transition: (a) T =
0.065p, (b) T = 0.06p, (c) T = 0.058p, and (d) T = 0.055p. Each curve represents
a different value of the overlap distance a. The range of overlap distances is the
same as in the color plots of Fig. 4.1. The maximum of χss with respect to a
at each value of t is represented by the heavy, red curve. Circles mark the lag
time t⋆ and amplitude χ⋆ of local maxima of χss(a, t). As in Fig. 4.1, filled circles
represent cage-breaking local maxima near the end of the sub-diffusive plateau of
∆r(t), and open circles represent cage-forming local maxima near the beginning
of the plateau.
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Figure 4.3: Local maxima of the dynamic susceptibility. We plot (a) the magni-
tudes of all observed local maxima of χss(a, t), χ⋆, (b) their lag times t⋆, and (c)
their overlap distances a⋆ as a function of temperature at fixed pressure p = 10−2

and system size N = 1600. As in Fig. 4.1, the filled circles represent cage-escaping
maxima, while the open circles represent cage-exploring maxima. The vertical
dashed lines denote the range over which we observe both types of maxima. Note
that (a) and (c) are presented on a linear scale, while (b) is presented on a log-
linear scale. Error bars represent the larger of (1) the standard deviation of the
mean calculated from simulations with different initial conditions and (2) the
uncertainty associated with the discrete sampling of a and t.
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time and space, t⋆, and a⋆, as functions of T at fixed pressure p = 10−2 and system

size N = 1600. The amplitude χ⋆ and lag time t⋆ of the primary, cage-escaping

maximum (solid symbols) both increase as T decreases until t⋆ passes beyond our

observable time window.

The overlap distance a⋆ of the cage-escaping maximum is on the order of half

a disk diameter for temperatures near the glass transition, a distance about two

times larger than the plateau of the rms displacement. This distance presumably

reflects the scale of the rearrangements necessary for diffusive motion to occur.

At high temperatures above T = 0.06p, the plateau in the rms displacement is

less well defined and the cage-escaping maximum lies at larger values of a⋆.

The temperature dependence of the cage-exploring, secondary maximum is

markedly different from that of the primary maximum. Figure 4.3 shows that χ⋆

and t⋆ remain roughly constant as temperature decreases from T = 0.055p, just

above Tg ≈ 0.05p, to T = 0.01p, which is well below it. This is consistent with

the behavior of the rms displacement; the time of the onset of the plateau does

not vary much with temperature as long as the temperature is low enough for the

plateau to exist. The cage-exploring overlap distance a⋆ decreases with decreasing

T , remaining near the plateau value in the rms displacement.

The amplitude χ⋆ of the cage-escaping maximum is a measure of the number

of disks whose dynamics are correlated at the crossover to diffusion, while t⋆ is a

measure of the timescale for this longest, or α-, relaxation process. In Fig. 4.4 we

plot χ⋆, the number of disks whose dynamics are correlated at the cage-escaping

maximum of χss, as a function of the time scale corresponding to the cage-escaping

maximum, t⋆. This time scale is a measure of the α-relaxation process. We have
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Figure 4.4: Dependence of the relaxation time t⋆ on the spatial extent of kinetic
heterogeneities, χ⋆. We plot the position of the cage-escaping maximum, t⋆ vs
the magnitude of that maximum, χ⋆ at fixed pressure p = 10−2. Each point
corresponds to a different temperature above Tg. Results are shown for three
different system sizes N , as labelled, on both (a) a log-linear scale and (b) a
log-log scale. The straight lines in (a) and (b) are exponential and power law
fits, respectively. Error bars represent the larger of (1) the standard deviation of
the mean calculated from simulations with different initial conditions and (2) the
uncertainty associated with the discrete sampling of a and t.

plotted χ⋆ vs. t⋆ for three different system sizes, N = 100, 400, and 1600. First,

notice the substantial system-size dependence in χ⋆ [58], even for temperatures

for which the size of correlated regions n⋆ ≈ 4χ⋆ is only on the order of 10. This

indicates that the finite size of the system affects the dynamics even when the

relative linear size of the correlated regions is as small as
√

n⋆/N ≈ 0.1. This

strong effect is likely due to a broad distribution of sizes of correlated regions.

We find that while the spatial correlation function of the overlap function has an

average correlation length consistent with the value
√

π〈σ2〉n⋆/φ expected from

a compact correlated region, it also has a long-ranged tail, decaying slower than
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exponentially with distance. This long range tail reflects intermittent periods

when the the clusters are extended. We find that t⋆ and a⋆ also depend on system

size. If a is held fixed, t⋆ decreases and χ⋆ increases with increasing system size N

at all temperatures studied, consistent with Ref. [58]. However, when we maximize

over a, we find that at sufficiently high T , t⋆ increases with N because a⋆ increases

with N there.

For each system size N , however, the dependence of χ⋆ on t⋆ is qualitatively

similar. Note that the log-linear plot (Fig. 4.4(a)) is straighter than the log-log

plot (Fig. 4.4(b)) for each system size, indicating that the dependence of t⋆ on χ⋆

is described better by an exponential than by a power law. Such an exponential

dependence of relaxation time on cluster size is expected in scenarios involving co-

operative rearrangements [102]. Previous numerical studies of model glass formers

fit χ⋆ and t⋆ to power laws in T −Tc, where Tc is a critical temperature [41, 67, 99],

implying that the relationship between χ⋆ and t⋆ is also a power law. However,

these studies determined χ⋆ as the maximum of χ4(a, t) with respect to t at fixed

a, instead of searching for a maximum with respect to both t and a. Also, the re-

lationship between χ⋆ and t⋆ was not shown directly. An analysis of a lower bound

of χ4 for several real glass-forming liquids found an exponential dependence near

the glass transition [26], consistent with our results.

In this chapter, we quantified the size of kinetic heterogeneities for a model

glass-forming liquid as a function of temperature by measuring fluctuations of a

dynamic order parameter. By measuring the dynamic susceptibility χss(a, t) as

a function of both lag time and overlap distance, we identified two distinct local

maxima. The primary, “cage-escaping” maximum, which has been found in pre-
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vious numerical and experimental studies, occurs at the end of the plateau in the

root-mean-square displacement, near the onset of diffusive transport. We also dis-

covered a secondary, “cage-exploring” maximum at the beginning of the plateau in

the mean-squared displacement, which corresponds to the ballistic to sub-diffusive

crossover. Thus, the dynamics are most heterogeneous at displacements and times

corresponding to crossovers in the dynamics.

The secondary, cage-exploring maximum at the crossover from ballistic to sub-

diffusive motion emerges from the shoulder of the primary cage-escaping maximum

when the temperature is low enough that there is a well-defined plateau in the

mean-squared displacement. We find that the plateau must extend over at least

two orders of magnitude in order for the cage-exploring maximum to appear.

We observe both maxima over the range of temperatures low enough that the

mean-squared displacement exhibits a broad plateau but high enough that the

eventual crossover to the diffusive regime is still observable. Note that although

both maxima emerge, grow, and shift continuously with temperature, there is an

apparent discontinuous drop in the largest observed maximum at the dynamical

glass transition. This occurs when the primary maximum passes out of observation

range, leaving only the secondary, cage-exploring maximum (see Fig. 4.3(b)).

While the crossover from sub-diffusive to diffusive motion measures the ap-

proach to the glass transition, the crossover from ballistic to sub-diffusive motion

is a general and relatively innocuous feature of dense fluids and solids. Our finding

that both crossovers exhibit maxima in the dynamic susceptibility suggests that

spatially heterogeneous dynamics are a general feature of dynamical crossovers

caused by interactions. Indeed, a crystalline system of monodisperse disks ex-
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hibits a cage-exploring maximum at the end of the ballistic regime that is similar

to the one shown here. We suspect that more exotic dynamical crossovers, like

those between two diffusive regimes with different diffusion coefficients, should

also exhibit kinetic heterogeneities. The existence of kinetic heterogeneities is

therefore a general feature of dynamical crossovers and should not necessarily be

taken as a sign of an impending glass transition.
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Chapter 5

Conclusion

By measuring relaxation times, rheology, and fluctuations for a class of model

glass-forming fluids, we have identified common mechanisms responsible for flu-

idization of finite-range, repulsive particles under the combined effects of pressure

p, temperature T , and applied shear stress σ. We have demonstrated that repul-

sive particles may be organized in a jamming phase diagram parameterized by

the dimensionless quantities T/pd3, σ/p, and pd3/ǫ, where d is the linear size of

the particles and ǫ is the interaction energy scale. The jamming phase diagram

describes the three-dimensional parameter space as the product of an equilibrium

plane at σ/p = 0 and a hard sphere plane at pd3/ǫ = 0. Near the hard sphere

plane, the jamming phase diagram is universal in the sense that material prop-

erties are insensitive to the details of the interaction potential. Using a dimen-

sionless relaxation time as the order parameter for the jamming phase diagram,

we constructed a two-dimensional dynamic glass transition surface whose precise

location depends on an arbitrary time scale but always encloses the singular point
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at the origin, T/pd3 = σ/p = pd3/ǫ = 0.

In order for the jamming phase diagram picture to be useful, it should reveal

common mechanisms for slow dynamics as the dynamic glass transition surface is

approached along various paths. The establishment of the dimensionless jamming

phase diagram already demonstrates that over a range of parameter space, the

approach to the dynamic glass transition is controlled by the same mechanism,

a competition between thermal fluctuations and the pressure, along paths of in-

creasing temperature and decreasing pressure. In order to extend this framework

away from the equilibrium plane, we investigated how the effective temperature

controls material properties of soft and hard spheres under a combination of tem-

perature and applied stress. We demonstrated that the dynamic glass transition

surface is largely controlled by the competition between low frequency fluctuations

and the confining pressure. Even well into the fluid portion of the jamming phase

diagram, we find that relaxation is largely controlled by a single measure of these

low frequency fluctuations, the effective temperature, regardless of whether the

fluctuations are created by temperature or shear.

Finally, by investigating correlations in the dynamics, we make some progress

in understanding why the dynamics slow down so dramatically as the strength

of fluctuations decreases. By measuring a dynamic susceptibility as a function of

both time and length scale, we obtain among other results an improved measure-

ment of the relation between relaxation time and the spatial extent of correlated

dynamics, indicating that the relaxation time depends exponentially on the num-

ber of particles that must move in a correlated manner.
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Appendix A

Simulation Methods

A.1 Hard Sphere Algorithm

To solve the dynamics of hard spheres, we use an event-driven algorithm following

Marin, Risso, and Cordero [74]. The algorithm determines each subsequent col-

lision by maintaining a future events list organized in a binary tree. At the base

(0th level) of the tree are N local minimum events corresponding to the N hard

spheres in the system. Each local minimum event consists of a time and a partner

for a future collision. These local minimum events in turn are the top entry of N

local lists, one for each sphere, which are ordered by time so that the top entry

is the one with the earliest future time. The future events list is organized like a

sports tournament into a binary tree where the ith level consists of N/2i entries,

each entry determined by whichever of its two downstream entries has an earlier

time. After each collision, necessary updates are performed, then the next event

is determined as the event at the top of the binary tree.
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New future collisions are determined only as often as necessary to maintain

the accuracy of the top of the binary tree, not so often as to maintain the accu-

racy of the entire binary tree and the local lists. The frequency of future collision

calculations is reduced by using the extended exclusive particle grid method de-

veloped by Isobe [55]. The simulation cube is divided into a grid of cells, each

cell sufficiently small that it can only contain at most one sphere center. At any

given time, each sphere is uniquely associated with one of the cells. Updating an

association means associating a sphere with the cell containing its center. The

grid facilitates the calculation of future collisions by directing the search to a

small number of neighboring cells called the mask. The size of the mask must

be optimized for speed. For instance, we found that for bidisperse disks in two

dimensions or monodisperse spheres in three dimensions, a mask of width 7 cells is

optimal, while for bidisperse spheres in three dimensions, a mask of width 9 cells

is optimal. Too small a mask reduces speed because the cell associations must be

re-calculated whenever a sphere moves a distance on the order of the mask width;

too large a mask reduces speed because too many future collisions are calculated.

A.2 Soft Sphere Algorithm

To determine the dynamics of soft spheres of dimensionality d at fixed temperature

T , pressure p, and shear strain rate γ̇, we conduct molecular dynamics simula-

tions solving the Sllod equations of motion with Lees-Edwards periodic boundary

conditions. We employ Gaussian constraints [33, 34, 53] to fix the instantaneous

temperature T = |~pi|2/d(N −1) and hydrostatic pressure p = (~ri · ~Fi/2+NT )/Ld,
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where ~Fi = −~∇
∑

j V (rij) and repeated indices are summed. In doing so we mea-

sure the particle momenta ~pi relative to an imposed uniform shear gradient and

allow the side length L of the periodic cell to vary. The equations of motion are:

~̇ri = ~pi + γ̇ryiêx + κ̇~ri,

~̇pi =
∑

j
~Fi − γ̇pyiêx − κ̇~pi − α~pi,

L̇ = κ̇L.

(A.1)

The Gaussian constraints satisfy the equations

α =
~pi · ~Fi − γ̇pixpiy

|~pi|2
− κ̇ − Ṫ

2T
,

κ̇ =
−
∑

i<j Φij(~rij · ~pij + γ̇rxijryij) − dLdṗ + dNṪ

d2pLd +
∑

i<j Φij |~rij|2
,

(A.2)

where Φij = V ′(rij)/rij +V ′′(rij) and ~pij = ~pi−~pj . The temperature and pressure

are invariants of these equations of motion when Ṫ = ṗ = 0, but because of the

stiffness of the equations of motion, the pressure would drift due to accumulated

numerical error unless corrected. We employ a proportional feedback mechanism

to cancel this effect [8], setting Ṫ = ωT (T0−T ) and ṗ = ωp(p0−p). We use ωT = 0.1

and ωp = 10, which are large enough to keep the variance in the pressure about

105 times smaller than its constant-volume value but small enough to allow us to

use a reasonably large time step of size 0.005.
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