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Enhanced High-Resolution Imaging through Multiple-Frequency Coarray
Augmentation

Abstract
In imaging, much attention is paid to increasing the resolution capabilities of a system. Increasing resolution
allows for high-accuracy source location and the ability to discriminate between two closely-spaced objects. In
conventional narrowband techniques, resolution is fundamentally limited by the size of the aperture. For
apertures consisting of individual elements, direction-of-arrival techniques allow for high-resolution images of
point sources. The main limiting factor on conventional high-resolution imaging is the number of elements in
the aperture. For both passive and active imaging, to resolve K point sources/targets, there must be at least
K+1 elements receiving radiation. In active imaging, when these targets reflect coherently - the more difficult
case in imaging - an additional constraint is that at least K of the elements must also be transmitting radiation
to illuminate the targets. For small arrays consisting of only a few elements, this constraint can be problematic.

In this dissertation, we focus on improving resolution by using multiple frequencies in both passive and active
imaging, especially for small arrays. Using multiple frequencies increases the size of the coarray, which is the
true limiting factor for resolution of an imaging system when virtual arrays are considered. For passive
imaging, we show that the number of sources that can be resolved is limited only by the bandwidth available
for certain types of sources. In active imaging, we develop a frequency-averaging method that permits
resolution of K coherent point targets with fewer than K transmitting and receiving elements. These methods
are investigated primarily for linear arrays, but planar arrays are also briefly examined.

Another resolution improvement method researched in this work is a retransmission scheme for active
imaging using classical beamforming techniques. In this method, the coarray is extended not by using multiple
frequencies, but by retransmitting the received data back into the scene as a second transmission and
processing the returns. It is known that when this method is used to image multiple targets, the resulting
image is contaminated by crossterms. We investigate methods to reduce the crossterms.
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ABSTRACT

ENHANCED HIGH-RESOLUTION IMAGING THROUGH

MULTIPLE-FREQUENCY COARRAY AUGMENTATION

Jeannie L. Moulton

Advisor: Saleem A. Kassam

In imaging, much attention is paid to increasing the resolution capabilities of

a system. Increasing resolution allows for high-accuracy source location and the

ability to discriminate between two closely-spaced objects. In conventional narrow-

band techniques, resolution is fundamentally limited by the size of the aperture. For

apertures consisting of individual elements, direction-of-arrival techniques allow for

high-resolution images of point sources. The main limiting factor on conventional

high-resolution imaging is the number of elements in the aperture. For both passive

and active imaging, to resolve K point sources/targets, there must be at least K + 1

elements receiving radiation. In active imaging, when these targets reflect coherently

- the more difficult case in imaging - an additional constraint is that at least K of

the elements must also be transmitting radiation to illuminate the targets. For small

arrays consisting of only a few elements, this constraint can be problematic.

In this dissertation, we focus on improving resolution by using multiple frequen-

cies in both passive and active imaging, especially for small arrays. Using multiple

frequencies increases the size of the coarray, which is the true limiting factor for reso-

lution of an imaging system when virtual arrays are considered. For passive imaging,

we show that the number of sources that can be resolved is limited only by the

bandwidth available for certain types of sources. In active imaging, we develop a

frequency-averaging method that permits resolution of K coherent point targets with

v



fewer than K transmitting and receiving elements. These methods are investigated

primarily for linear arrays, but planar arrays are also briefly examined.

Another resolution improvement method researched in this work is a retrans-

mission scheme for active imaging using classical beamforming techniques. In this

method, the coarray is extended not by using multiple frequencies, but by retrans-

mitting the received data back into the scene as a second transmission and processing

the returns. It is known that when this method is used to image multiple targets, the

resulting image is contaminated by crossterms. We investigate methods to reduce the

crossterms.

vi



Contents

Contents vii

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . 7

2 Passive Multi-frequency High-Resolution Techniques 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Incoherent Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Correlation, Beamforming and the Coarray . . . . . . . . . . . 15

2.2.3 The Narrowband Correlation Matrix and High Resolution Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The Virtual Array and Constructing the Virtual Correlation Matrix . 29

2.3.1 Coarray Support Matrix . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Virtual Correlation Matrix . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Condition for a Valid Virtual Correlation Matrix . . . . . . . 33

vii



2.4 Example Illustrating Virtual Correlation Matrix Construction and Per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Relevance of the Two Source Scenario . . . . . . . . . . . . . 43

2.5 Working with Non-Proportional Spectra . . . . . . . . . . . . . . . . 45

2.5.1 The Effect of Source Spacing and Non-proportionality on Esti-

mation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Forcing the Determinant of the Virtual Correlation Matrix to

Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.3 Using Array Interpolation to Average Source Powers at Differ-

ent Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.4 Weighting the Array Elements to Overcome the Effect of Non-

proportional Spectra . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Effect of Noise on the Virtual Correlation Matrix . . . . . . . . . . . 65

2.7 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.1 Example: Three-Element Uniform Linear Array . . . . . . . . 67

2.7.2 Example: Five-Element Non-Uniform Linear Array . . . . . . 73

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 High-Resolution Active Imaging using Multiple Frequencies 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Active Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.2 Coarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.3 Active Imaging Techniques . . . . . . . . . . . . . . . . . . . . 92

viii



3.3 Constructing the Virtual Data and Correlation Matrices . . . . . . . 96

3.3.1 Virtual Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.2 Coarray Support Matrix . . . . . . . . . . . . . . . . . . . . . 98

3.3.3 Virtual Data and Virtual Correlation Matrices . . . . . . . . . 98

3.3.4 Averaged Virtual Correlation Matrix . . . . . . . . . . . . . . 100

3.4 Illustration of the Construction and Use of the Averaged Virtual Cor-

relation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.1 Noiseless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.2 Examining the Effect of Noise on the Averaged Virtual Corre-

lation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Averaging the Virtual Correlation Matrices in the Presence of Noise . 112

3.6 Out-of-Sector Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4 High-resolution Imaging with Multiple Frequencies using Planar Ar-

rays 122

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Imaging with a Planar Array . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Array Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.2 Target and Source Distributions . . . . . . . . . . . . . . . . . 124

4.2.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.5 MUSIC for Planar Arrays . . . . . . . . . . . . . . . . . . . . 132

4.2.6 Coarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Using a Virtual Array for Passive Imaging . . . . . . . . . . . . . . . 135

4.3.1 Generating Difference Coarray Points Using Multiple Frequencies135

ix



4.3.2 A Class of Arrays and Virtual Arrays for High-resolution Tech-

niques with Multiple Frequencies . . . . . . . . . . . . . . . . 138

4.4 Virtual Array for Active Imaging . . . . . . . . . . . . . . . . . . . . 146

4.4.1 Array Interpolation Matrices for Planar Arrays . . . . . . . . 148

4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Active Imaging using Retransmission 154

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Review of Active Imaging and the Coarray . . . . . . . . . . . . . . . 155

5.2.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.2 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . 158

5.2.3 Multi-Frequency Coarray . . . . . . . . . . . . . . . . . . . . . 160

5.3 Retransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.1 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . 163

5.3.2 Retransmission with Two Coherent Point Targets . . . . . . . 166

5.4 Resolution Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4.1 Analysis of Beamwidths . . . . . . . . . . . . . . . . . . . . . 171

5.4.2 Crossterm Mitigation Schemes . . . . . . . . . . . . . . . . . . 174

5.5 Retransmission with Incoherent Targets . . . . . . . . . . . . . . . . . 190

5.6 Retransmission with More than Two Targets . . . . . . . . . . . . . . 191

5.7 Multiple Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6 Conclusion 198

6.1 Possibilities for Future Research . . . . . . . . . . . . . . . . . . . . . 199

x



Bibliography 201

xi



List of Tables

2.1 Iteration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 3 dB Beamwidths for Transmit/Receive and Retransmit Imaging for

Various Array Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xii



List of Figures

2.1 Array Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Linear Beamforming Example with Two Incoherent Point Sources and

Five Array Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 MUSIC applied to the Narrowband Correlation Matrices . . . . . . . 41

2.4 High-resolution Techniques applied to the Virtual Correlation Matrix

- Proportional Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 High-resolution Techniques applied to the Virtual Correlation Matrix

- Non-Proportional Spectra . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Total Normalized Error for MUSIC applied to the Virtual Correlation

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 MUSIC applied to T (β0) for different ejx . . . . . . . . . . . . . . . . 52

2.8 Separation of Estimated Source Locations vs. x . . . . . . . . . . . . 53

2.9 Maximum Eigenvalue of T(β0) vs. x . . . . . . . . . . . . . . . . . . 53

2.10 MUSIC using Virtual Correlation Matrix constructed from Array-Interpolated

Correlation Matrices. Sector [0.1,0.4] . . . . . . . . . . . . . . . . . . 58

2.11 MUSIC using Virtual Correlation Matrix constructed from Array-Interpolated

Correlation Matrices. Sector [-0.4,0.9] . . . . . . . . . . . . . . . . . . 59

2.12 MUSIC using Virtual Correlation Matrix constructed from Original

Narrowband Correlation Matrices . . . . . . . . . . . . . . . . . . . . 59

xiii



2.13 MUSIC estimates for iterations . . . . . . . . . . . . . . . . . . . . . 64

2.14 Three-element Uniform Linear Array - Source locations u = [-0.6 0 0.6] 68

2.15 Three-element Uniform Linear Array - Source locations u = [-0.45 0

0.45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.16 Three-element Uniform Linear Array - Source locations u = [-0.3 0 0.3] 69

2.17 Three-element Uniform Linear Array - Source locations u = [-0.15 0

0.15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.18 Three-element Uniform Linear Array - Source locations u = [-0.1 0 0.1] 70

2.19 Three-element Uniform Linear Array - Source locations u = [-0.05 0

0.05] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.20 Three-element Uniform Linear Array - SNR(ω0) = 40dB, SNR(ω1) =

20dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.21 Three-element Uniform Linear Array - SNR(ω0) = 20dB, SNR(ω1) =

10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.22 Three-element Uniform Linear Array - SNR(ω0) = 0dB, SNR(ω1) =

10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.23 Five-element Non-uniform Linear Array - Spacing between elements: .15 76

2.24 Five-element Non-uniform Linear Array - Spacing between elements: .1 77

2.25 Five-element Non-uniform Linear Array - Spacing between elements: .05 77

3.1 Array Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Averaged Virtual Correlation Matrix used in MUSIC, noiseless . . . . 110

3.3 Non-averaged Virtual Correlation Matrix used in MUSIC, noiseless . 110

3.4 Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB . 112

3.5 Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB,

Four frequencies 1-1.3 GHz . . . . . . . . . . . . . . . . . . . . . . . 114

xiv



3.6 Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB,

Four frequencies 1-2 GHz . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Beamformed Image for defining sectors . . . . . . . . . . . . . . . . . 117

3.8 Averaged Virtual Correlation Matrix used in MUSIC, Four frequencies

1-2 GHz, Sector [−.6, .65] . . . . . . . . . . . . . . . . . . . . . . . . 118

3.9 Finding the Averaging Virtual Correlation Matrix in Two Different

Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1 Array Geometry for Planar Arrays . . . . . . . . . . . . . . . . . . . 125

4.2 Array for Passive Three-element Example - Normalized by λ0

2
. . . . 137

4.3 Difference Coarray for Passive Three-element Example - Normalized

by λ0

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Multi-frequency Difference Coarray for Passive Three-element Example

- Normalized by λ0

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Physical 3× 3 Arrow-shaped Array . . . . . . . . . . . . . . . . . . . 140

4.6 5× 5 Square Difference Coarray . . . . . . . . . . . . . . . . . . . . . 140

4.7 Virtual 3× 3 Filled Square Array . . . . . . . . . . . . . . . . . . . . 140

4.8 5× 5 Virtual Cross Array . . . . . . . . . . . . . . . . . . . . . . . . 140

4.9 Virtual Difference Coarray for 5× 5 Cross Array . . . . . . . . . . . . 141

4.10 Multi-frequency 5× 5 Square Difference Coarray . . . . . . . . . . . . 141

4.11 M ×M Arrow-shaped Array - Normalized by λ0

2
. . . . . . . . . . . 143

4.12 (2M−1)×(2M−1) Cross-shaped Virtual Array Geometry - Normalized

by λ0

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.13 Difference Coarray for the (2M − 1)× (2M − 1) Cross-shaped Virtual

Array - Normalized by λ0

2
. . . . . . . . . . . . . . . . . . . . . . . . 144

4.14 M ×M Filled Square Virtual Array - Normalized by λ0

2
. . . . . . . . 145

xv



4.15 Rectangular Array Example . . . . . . . . . . . . . . . . . . . . . . . 151

4.16 Possible Virtual Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1 Block Diagram for Transmit/Receive Imaging System . . . . . . . . . 159

5.2 Example Coarrays for Transmit/Receive and Retransmit Imaging . . 165

5.3 Example Point Spread Functions for Transmit/Receive and Retransmit

Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Illustration of the Crossterm appearing between Two Targets . . . . . 169

5.5 Illustration of Retransmit Imaging with the Crossterm vs. Standard

Transmit/Receive Imaging Mainbeam Widths . . . . . . . . . . . . . 172

5.6 Random Array Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.7 4-element Aperiodic Array, Targets at ±.19 . . . . . . . . . . . . . . . 179

5.8 4-element Aperiodic Array, Targets at ±.25 . . . . . . . . . . . . . . . 180

5.9 4-element Aperiodic Array, Targets at ±.165 . . . . . . . . . . . . . . 181

5.10 4-element Aperiodic Array, Targets at ±.17 . . . . . . . . . . . . . . . 182

5.11 5-element Uniformly Spaced Array, Multiple Frequencies from 1-2 GHz 184

5.12 5-element Uniformly Spaced Array, Average over all Frequencies, Tar-

gets at ±.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.13 5-element Uniformly Spaced Array, Average over all Frequencies, Tar-

gets at ±.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.14 5-element Uniformly Spaced Array, Average over all Frequencies, Tar-

gets at ±.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.15 5-element Uniformly Spaced Array, Average over all Frequencies, Tar-

gets at ±.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.16 Retransmit Imaging with Three Targets at u = [−.6, .1, .6] . . . . . . 193

5.17 Two Retransmissions and Two Targets . . . . . . . . . . . . . . . . . 195

xvi



Chapter 1

Introduction

The primary focus of this dissertation is on high-resolution imaging using multiple

frequencies, particularly with small arrays. Small arrays are loosely defined as arrays

consisting of an order less than tens of individual elements [1]. We take a natural

progression from passive line arrays to active line arrays and then extend to planar

arrays for high-resolution imaging. We also examine a retransmission beamforming

active imaging technique as another high-resolution technique.

High resolution passive imaging with line arrays has been studied intensively since

some early work in [2, 3, 4, 5]. It is intended to image scenes with sources that

are emitting their own radiation or objects that are already being illuminated by

a separate source. Examples include astronomy, where the stars emit their own

radiation [6], passive SONAR [7], which uses the noise and vibrations from propellors

or engines, and seismic imaging [8]. An advantage of passive imaging is that no

radiation is being transmitted by the observer, so a scene can be observed without

giving away that it is being imaged. For this reason, it is attractive in military-type

applications. A disadvantage of passive imaging is that coherent sources - sources that

emit radiation completely correlated with each other - cannot be resolved without
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additional processing. Coherent sources may arise as natural phenomena between

two coupled sources or as man-made interference such as signal jamming. Special

techniques, such as spatial smoothing [9] or pattern diversity [10], must be used to

process the data for coherent target imaging. Spatial smoothing and pattern diversity

can possibly lead to a reduction in the effective number of receiving elements. For

small arrays, this reduction may not be acceptable because it reduces the already

small number of sources that can be resolved.

To image a scene containing objects that do not emit their own radiation or do

not have a reliable outside illumination source, active imaging is used. Instead of

just observing radiation, radiation is transmitted into the scene, reflected, and then

the returns are received by the array. Examples of this include active SONAR [11],

and RADAR [12]. This type of imaging has distinct advantages over passive imaging.

First, we can choose the radiation that is transmitting into the scene. Second, we can

transmit from multiple antennas to direct the radiation by constructive interference.

Also, by transmitting from each antenna individually, we can store the returns in

such a way that we know which transmitting element leads to which return. This

storage capability is the idea given in [13], which allows for high-resolution location

of coherent targets without techniques such as spatial smoothing.

There are two main ideas we will use in the development of this work: the coarray

formalism and the virtual array. The coarray is a concept for both passive and active

arrays. For passive narrowband arrays, the coarray is the difference coarray and it is

defined as the set of all pairwise differences between receive array element positions:

{yDl } = {yDl |yDl = xRm − xRn,m = 1, 2, ...,M, n = 1, 2, ...,M}, (1.1)

where xRm is the position of the mth receive array element. For active imaging, the
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coarray is the sum coarray, which is defined as:

{ySl } = {ySl |ySl = xRm + xTn,m = 1, 2, ...,M, n = 1, 2, ..., N}, (1.2)

where xTn is the position of the nth transmit array element.

This difference in the coarray between active and passive imaging arises because

the operations used to form images are different in passive versus active imaging.

However, the central result is the same for both: the coarray determines imaging

capabilities of the system. For beamforming, the coarray determines the resolution

and sidelobes characteristics. This is well-studied and summarized in [14]. For high-

resolution techniques, the coarray determines the total number of sources that can

be resolved. This has been studied in [15, 13, 16], but not always from the point of

view of the coarray formalism.

A key extension of the coarray formalism obtained when multiple frequencies are

available for imaging. When multiple frequencies are used, the wideband coarray con-

tains more points than the narrowband (single frequency) coarray alone [17]. This

yields possibly better resolution and sidelobe characteristics in beamforming. For

high-resolution imaging, the effects of using multiple frequencies have been studied in

[18, 19, 20]. Multiple frequencies here were used mainly for increased robustness and

improved statistical properties of source location estimates. However, what appears

to have remained unstudied is whether the additional coarray points created by us-

ing multiple frequencies can allow for the location of additional sources beyond the

conventional narrowband limit. This is the crux of this dissertation.

The second central idea utilized in this dissertation is the virtual array. A virtual

array is an array whose effect is synthesized by the physical array. Related work has

been done with virtual arrays and coarray augmentation in [15, 21]. The conclusion
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in these works was that, for passive line arrays, if the coarray is filled and uniformly-

spaced, the number of coarray points determines the number of sources that can

be resolved using high-resolution techniques. By using the idea of virtual arrays,

additional sources can be resolved above the conventional limit. The work done in

[13] extends these ideas to active imaging and planar arrays. In [22], the work in

[21] is extended to non-filled uniformly spaced coarrays using a convex optimization

technique.

By using multiple frequencies, in this work we extend the coarray and make use

of virtual arrays to enable location of additional point sources in both active and

passive imaging. The result is that for passive imaging of sources with spectra meeting

certain requirements, the number of sources that can be resolved is only limited by

the bandwidth available. For active imaging, we combine what was done in [13],

which cannot successfully resolve coherent targets when the largest virtual array is

used, with existing coherent subspace techniques [19] to yield an elegant alternative

to coherent target location without reduction in the number of targets that can be

successfully resolved.

From there, we extend the idea to planar arrays. This is desirable since with line

arrays only elevation angle can be determined, so a one-dimensional image is obtained.

If planar arrays are used, both elevation and azimuthal angle can be resolved and the

resulting image is two-dimensional. Such two-dimensional high-resolution techniques

have been studied in [23]. The problem with imaging with planar arrays is that it

is very computationally complex. The trend in the literature is to use search-free

techniques such as root-MUSIC [24]. However, root-MUSIC, for example, relies on

the fact that the array is a uniformly-spaced line array, which obviously is not true for

planar arrays, so techniques such as array interpolation [19] and manifold separation

[25] are often used. In this dissertation, we do not consider search-free techniques.
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We assume that the time can be taken to process the signals for 2-D high-resolution

imaging, and we examine extending the techniques we develop for line arrays to planar

arrays. However, we will see that the idea of array interpolation plays a central part

in our work for both linear and planar arrays.

The final ideas in this dissertation switch focus from model-based high-resolution

techniques to a beamforming retransmission technique. This technique was originally

proposed in [26], but not studied in depth. The motivating idea behind it is to use

retransmission to increase the length of the coarray, since it is known that the length

of the coarray determines the resolution capabilities of the imaging system. Other

retransmission techniques exist, such as time reversal imaging [27], but do not increase

the diameter of the coarray in the way that we propose. It will be shown that while

this idea does indeed extend the coarray for the point spread function, for multiple

targets the gain in resolution is thwarted by “crossterms” - artifactual peaks in the

image - which arise because retransmission is a non-linear operation.

This dissertation does not directly deal with how to choose the best array element

locations or the best frequencies to use. However, these problems would make for

interesting future research in terms of minimum redundancy arrays [28, 29] when

multiple frequencies are being used.

1.1 Organization of the Dissertation

This dissertation is organized into four chapters. Chapters 2 and 3 are the main

contributions and are self-contained. Chapter 4 is an extension of Chapters 2 and

3 to planar arrays. To avoid unnecessary redundancy, it is assumed the reader has

read the previous chapters. Chapter 5 is a separate, though related, idea from the

previous chapters and is also self-contained.

5



Chapter 2 focuses on high-resolution passive imaging using multiple frequencies

and is restricted to line arrays. It is reviewed how the narrowband difference coarray

relates to high-resolution imaging. The main contribution is the extension of the

coarray relationship from narrowband to wideband (multi-frequency operation) for

high-resolution imaging. It is shown that by using multiple frequencies, under certain

conditions on the sources’ spectra, we can synthesize the effect of a larger coarray

and thus resolve additional point sources beyond conventional limits. Methods are

also examined for use when the conditions on the sources’ spectra are not satisfied.

In Chapter 3, we consider using multiple frequencies to increase the number of

coherent targets that can be resolved using high-resolution techniques in active imag-

ing with line arrays. It is not a direct extension of Chapter 2 to active imaging. This

technique uses multiple frequencies to, in effect, average out the phase coherence be-

tween targets. It is similar in spirit to spatial smoothing or pattern diversity, except

there is no reduction in the effective size of the array. The restriction here is that only

a small sector of the scene can be imaged successfully, though techniques to overcome

this are suggested.

We extend the ideas of Chapters 2 and 3 to planar arrays in Chapter 4. For

passive imaging, the extension does not directly follow the work for line arrays. We

will see that it is much more difficult. In the active imaging technique, the extension

follows nicely from line arrays.

Chapter 5 further investigates a previously proposed technique involving retrans-

mission for active imaging [26], which was not studied in depth. Instead of a single

transmit and receive step, the received signals are retransmitted into the scene and the

returns are processed by beamforming to form an image. This is not a high-resolution

technique like direction-of-arrival estimation is, but the idea is to increase resolution

on an existing array by augmenting the coarray through retransmission. It is shown
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that because this is not a linear technique, when linear beamforming processing is

used, an artifactual crossterm appears as a false peak in the image. This thwarts

any higher-resolution gained. This idea is also connected to a popular retransmission

scheme called time-reversal imaging, by the coarray concept.

The dissertation is concluded and directions for future research are suggested in

Chapter 6.

1.2 Contributions and Publications

The main contributions of this dissertation are on resolution improvement with small

arrays - that is arrays consisting of only a few elements. Small arrays are limited in res-

olution when using high-resolution techniques, because the number of sources/targets

that can be resolved is limited by the number of elements in the array. We show that

by using multiple frequencies in ways that have not been done before, the number of

sources/targets that can be resolved in passive and active imaging with line arrays

can be increased above conventional limits. This idea is also extended to planar ar-

rays. An alternative method to increase resolution with small arrays using classical

beamforming is explored using a retransmission scheme.

For high-resolution techniques applied to passive imaging with line arrays, we

show that by using multiple frequencies, additional targets can be resolved under

certain conditions on the sources’ spectra. By using multiple frequencies, the coarray

is augmented [17], which synthesizes the effect of a larger, virtual array, effectively

increasing the total number of sources that can be resolved. In [15, 21], similar

techniques using virtual arrays for passive imaging have been studied, though not

through use of multiple frequencies. These techniques rely on a uniformly spaced

coarray. Our work does not rely on a uniformly spaced coarray, as missing coarray
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points can be filled in by using multiple frequencies. Though the case of a non-

uniformly spaced coarray was studied in [30, 22], the coarray was completed by using

a convex optimization technique, yielding an approximation to the desired virtual

correlation matrix. In our work, under certain conditions on the sources’ spectra,

this step is not necessary.

While the techniques for passive imaging do not appear to be directly extendable

to active imaging, some significant improvements on the number of coherent targets

that can be resolved can be made for active imaging. Here, we do not augment

the coarray by using multiple frequencies, but we use the idea of a virtual array to

resolve additional targets. The starting point for this work is in [13], where it was

shown that additional incoherent targets can be resolved above conventional limits by

using virtual arrays. However, no approach was considered there to resolve additional

coherent targets. Our method allows for resolution of additional coherent targets. It

has a similar effect as spatial smoothing [9, 31] and pattern diversity [10]. However,

the problem with spatial smoothing, and possibly pattern diversity, with small arrays

is that the number of effective array elements is reduced, and thus the number of

targets that can be resolved is also reduced. An advantage of our method is that it

has no such reduction; it actually increases the number of coherent targets that can

be resolved.

We also explore extending these methods to planar arrays. This is desirable since

with planar arrays, both azimuthal and elevation angle can be resolved. Use of high

resolution techniques with planar arrays has been studied intensively in recent work

[32, 25, 33], and it is clearly useful if our methods can be extended in this direction.

As a different approach to the small array problem, a retransmission scheme that

was originally suggested in [26] is studied in further detail. In [26], it was suggested

that retransmission may be a viable way to increase the resolution in beamforming.
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The retransmission step, for a single target, creates a wider coarray and thus increases

the resolution in terms of main beamwidth. However, when there are multiple targets

present, it is known that false peaks appear in the image. In our work, we attempt

several methods to mitigate these false peaks.

This and related work has led to several conference and journal papers [34, 35, 36,

37, 38, 39]:

• J.L. Moulton, S.A. Kassam, “Resolving more sources with multi-frequency coar-

rays in high-resolution direction-of-arrival estimation,” 43rd Annual Conference

on Information Sciences and Systems, 2009, March 18-20, 2009, pp. 772 – 777.

• J.L. Moulton, S.A. Kassam, “High-resolution spectrum estimation for non-

coherent source location using the multi-frequency virtual correlation matrix,”

IEEE Pacific Rim Conference on Communications, Computers and Signal Pro-

cessing, 2009, Aug. 23-26, 2009, pp. 843 – 848.

• J.L. Moulton, S.A. Kassam, “High-resolution coherent reflector location with

multi-frequency active virtual arrays,” 44th Annual Conference on Information

Sciences and Systems, 2010, Marc. 17-19, 2010, pp. 1 – 5.

• J. Moulton, S. Kassam, F. Ahmad, M. Amin, K. Yemelyanov, “Target and

change detection in synthetic aperture radar sensing of urban structures,” IEEE

Radar Conference, 2008, Aug. 26-30, 2008 pp. 1 – 6.

• J.L. Moulton, S.A. Kassam, “Multi-frequency MUSIC for passive imaging with

line arrays,” in preparation.

• J.L. Moulton, S.A. Kassam, “Frequency smoothing with virtual arrays for active

imaging,” in preparation.
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Chapter 2

Passive Multi-frequency

High-Resolution Techniques

2.1 Introduction

In high-resolution imaging, the objective is to be able to resolve sources which are

much closer together than can be resolved with linear beamforming (Fourier) methods.

Many high-resolution techniques exist, but are generally limited by the number of

sensors observing the scene. To resolve a number of distinct point sources, the number

of sensors must be greater than the number of point sources. In situations where the

number of point sources is greater than or equal to the number of receiving elements,

the otherwise powerful high-resolution techniques are rendered useless.

Work has been done for narrowband passive arrays, [21, 15], showing that the

number of point sources that can be resolved is not necessarily directly dependent on

the size of the array, but on the size and configuration of what is called the coarray -

or the set of correlation lags between the array elements. The application of this idea

in these previous studies is contingent on producing a full, uniformly spaced coarray.
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Under this condition, more point sources can be resolved.

In this chapter, we propose a method to resolve additional sources without the

need for a full, uniformly spaced coarray at a single frequency. We will show that

multiple frequencies can be used to expand the size of the coarray, fill in missing

coarray points, and produce the effect of a larger, uniformly spaced array at a single

frequency under certain assumptions. The proposed method will be most useful in

situations where there are many point sources, but not many available physical array

elements. Such situations may arise, for example, when the available real estate for

antennas is limited or very expensive, or where the antennas themselves are very

expensive or large. The method could be useful in a situation where an array is

already deployed, but needs additional imaging capabilities without changing the

array configuration. It will be shown that under the conditions necessary, for any

array, the number of sources which can be resolved is limited only by the bandwidth

available - the band need not necessarily be a continuous band, it can, in fact, be

quite sparse, perhaps making this approach attractive for multi-band applications.

Section 2.2 will provide a brief overview of passive imaging of incoherent sources

including the data model, narrow- and wideband coarrays, the spatial correlation

matrix, and some well-known high-resolution imaging techniques. Section 2.3 will

introduce the “virtual correlation matrix” - a matrix constructed from narrowband

correlation matrices at different frequencies that synthesizes the effect of a larger array.

Section 2.4 will simulate a simple but relevant example that explores the properties

of the virtual correlation matrix and the conditions under which it is valid. The

effect of noise on the virtual correlation matrix is discussed in Section 2.6. Additional

examples are included in Section 2.7 and the chapter is concluded in Section 2.8.
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2.2 Incoherent Imaging

Incoherent imaging, or passive imaging, is an imaging scenario in which an array of

sensor elements measures incident radiation from a distribution of incoherent sources.

The object of the passive imaging system is to provide an estimate of the angular

distribution of source power from sources that are emitting their own radiation. This

is in contrast to active imaging in which sources are reflecting transmitted radiation.

The arrays considered in this chapter will consist of sensing elements in a line,

called line arrays, receiving radiation from the sources. The positions of these elements

are denoted by {xRm|m = 1, 2, ...,M} with respect to an arbitrary origin, which is

often taken to be the midpoint of the array. The origin may or may not be an element

position. The array diameter, DA, is defined as the distance between the two array

elements furthest away from each other.

The sources are assumed to emit independently of each other in a narrow frequency

band, and they are assumed to be far enough away from the array and small enough

that they can be viewed as far-field point sources, thus producing plane waves at

the receive array. For now, we will consider that the array is receiving radiation at

a frequency ω0 with corresponding wavelength λ0. A widely accepted condition for

far-field imaging is that the sources must be at a distance of at least
D2
A

λ0
from the

array [40]. When sources are emitting narrowband radiation or the received radiation

is filtered by a narrowband filter, the received phase is the quantity of interest. The

assumption of source independence in a narrow band of frequencies means that the

sources are phase incoherent with each other - the phases with which the plane waves

from each source arrives at the array do not depend on each other. The variation

in phase may arise when the sources are not fixed in space with respect to each

other. Mathematically, the random complex amplitudes of each source, Sk(ω0), k =
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1, 2, ..., K have the following relationship between them at a frequency ω0:

E[Sk(ω0)S
∗
n(ω0)] =


Pk(ω0) for k = n

0 for k 6= n

(2.1)

Here Pk(ω0) is the power of the kth source at frequency ω0.

The line array can be thought of as being contained in the intersection of two

particular planes - the ground plane and the vertical plane which is orthogonal to

the ground plane. The sources are assumed to lie in the vertical plane. For a source

located in this plane, since we are considering far-field imaging, the position of the

source is given by the angle that the line between the source and the origin makes

with the array. This is illustrated in Figure 2.1. The direction in the vertical plane

normal to the array is referred to as broadside of the array and this will be the

reference direction from which the source directions are measured. The K sources

are located in the directions {θk}, k = 1, 2, ..., K measured from broadside, and we

denote uk = sin θk.

The array is generally capable of receiving wideband radiation, but we say that

the reference frequency is ω0 when the spacing of the array elements is specified on the

basis of λ0, the wavelength corresponding to ω0. For example, in linear beamforming,

the Nyquist sampling spacing is elements spaced at λ0

2
[40]. For a 5 element array,

the elements could be at locations {−λ0,−λ0

2
, 0, λ0

2
, λ0} = {−2,−1, 0, 1, 2}λ0

2
. This

type of array which contains all integer multiples of λ0

2
between two integers is called

a uniformly spaced array and will play a central part in this chapter.
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Figure 2.1: Array Geometry

2.2.1 Data Collection

Suppose an array of M co-linear elements with positions {xRm|m = 1, 2, ...,M} is

receiving narrowband radiation at frequency ω0 from K farfield sources. As is illus-

trated in Figure 2.1, the complex amplitudes received at the set of array elements is

stored in the data vector x(ω0), given by

x(ω0) = AR(ω0)s(ω0) + w(ω0) =



∑
k Sk(ω0)e

jk0ukxR1∑
k Sk(ω0)e

jk0ukxR2

...∑
k Sk(ω0)e

jk0ukxRM


+



w1(ω0)

w2(ω0)

...

wM(ω0)


, (2.2)
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where k0 = 2π
λ0

is the wavenumber associated with the reference frequency. The receive

array manifold matrix at frequency ω0, AR(ω0), is given by

AR(ω0) =



ejk0u1xR1 ejk0u2xR1 ... ejk0uKxR1

ejk0u1xR2 ejk0u2xR2 ... ejk0uKxR2

...
...

...
...

ejk0u1xRM ejk0u2xRM ... ejk0uKxRM


, (2.3)

s(ω0) = [S1(ω0), S2(ω0), ..., SK(ω0)]
T is the vector of the complex amplitudes of each

source, and w(ω0) = [w1(ω0), w2(ω0), ..., wM(ω0)]
T is the complex vector of observa-

tion noise associated with the each element at frequency ω0. The noise observed at

the elements in the narrow band at frequency ω0 is assumed to be zero-mean, circu-

lar, independent, Gaussian noise with variance σ2(ω0). Note that because the source

radiation is incoherent, we do not need to account for the exact path lengths from the

sources to the elements. The path length differences are sufficient and are captured

in the {ukxRm} products in the argument of the exponentials in the array manifold

matrix.

2.2.2 Correlation, Beamforming and the Coarray

In incoherent imaging, the correlation between the data collected at each of the

elements is used to form an image (i.e. the angular power density). The normalized
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correlation between the m and nth element is given by

R(ω0)m,n =
E[xm(ω0)x

∗
n(ω0)]

1
M

E[xH(ω0)x(ω0)]

=
K∑
k=1

K∑
r=1

E[Sk(ω0)Sr(ω0)
∗]

1
M

E[xH(ω0)x(ω0)]
ejk0ukxRme−jk0urxRn +

σ2(ω0)
1
M

E[xH(ω0)x(ω0)]
δ(m− n)

=
K∑
k=1

Pk(ω0)∑K
l=1 Pl(ω0) + σ2(ω0)

ejk0uk(xRm−xRn) +
σ2(ω0)∑K

l=1 Pl(ω0) + σ2(ω0)
δ(m− n)

=
K∑
k=1

P̄k(ω0)e
jk0uk(xRm−xRn) + σ̄2(ω0)δ(m− n),

(2.4)

where xm(ω0) is the mth element of the data vector and δ(m − n) is the Kronecker

delta function. The bars over the source powers and noise variance denote normalized

power (normalized by total power received at that frequency), so that

P̄k(ω0) =
Pk(ω0)∑K

l=1 Pl(ω0) + σ2(ω0)

σ̄2(ω0) =
σ2(ω0)∑K

l=1 Pl(ω0) + σ2(ω0)
.

(2.5)

For high enough signal-to-noise ratio (SNR),

P̄k(ω0) ≈
Pk(ω0)∑K
l=1 Pl(ω0)

σ̄2(ω0) ≈
σ2(ω0)∑K
l=1 Pl(ω0)

.

(2.6)

Note that the correlation between the m and nth element is supported on the point

xRm − xRn. This point is called a coarray point. The coarray is the support for the

correlation operation. For incoherent narrowband imaging at the reference frequency,

the coarray points are defined as the set of all possible pairwise differences between
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the array element positions [14]:

{yl} = {yl|yl = xRm − xRn|m,n = 1, 2, ...,M} (2.7)

The coarray plays an important role in understanding the capabilities of an imaging

system.

In linear beamforming, the image is formed by “looking” in the direction desired,

u, by phase delaying the array elements so that if there were a source in the direction

u, the radiation received at each of the elements would add constructively. The image

at u is given by summing over all receive elements. Disregarding noise, is image is

easily seen to be obtained as follows:

I(u) =
M∑
m=1

M∑
n=1

R(ω0)m,ne
−jk0uxRmejk0uxRn

=
M∑
m=1

M∑
n=1

K∑
k=1

P̄k(ω0)e
−jk0(u−uk)(xRm−xRn)

(2.8)

If we consider a source with unit power at broadside, its image as a function of u

is the point spread function (or impulse response) of the system:

PSF (u) =
M∑
m=1

M∑
n=1

e−jk0u(xRm−xRn) =
L∑
l=1

γle
−jk0uyl (2.9)

Here {yl} are the coarray points and γl is the coarray weight (number of distinct

array element pairs) associated with the difference yl. We refer to this point/weight

combination collectively as the coarray. We see that the point spread function is

the Fourier transform of the coarray. This is a central result given in [14], and

the consequence of this relationship is that the coarray controls the beamwidth and

sidelobe characteristics of the image. The resolution capabilities of an imaging system
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are generally associated with the 3 dB beamwidth - the narrower the beam, the closer

the two sources can be and still be resolved. Resolution in linear beamforming can

be controlled by manipulating the coarray and its weighting [14, 41].

For example, if we consider a uniform linear array with spacing at the Nyquist

spacing (λ0

2
), the coarray is also uniformly spaced with a Bartlett (triangular) weight-

ing. Note that in general, array weights {wRm} can be applied to the array elements

when beamforming to change the coarray weighting, but we will only consider uniform

weighting for simplicity. For the uniformly spaced and weighted array, the angular

distance from the center of the mainbeam to the 3 dB point is given approximately

by .88
M

[40], which means that two source must be approximately separated more than

1.76
M

(in the units of u) in order to be resolved. Since the expression for beamwidth is

inversely proportional to M , more elements in the array yields a better resolution.

We will illustrate this by example. For a 5 element λ0

2
uniformly spaced array,

the approximate minimum resolvable angular separation is 1.76
5

= 0.352. In Figure

2.2(a), the two point sources are separated by 0.35 and they appear as one peak in

the image. They cannot be resolved. When the sources are separated slightly further

apart by 0.39, they can be resolved, as is shown in Figure 2.2(b).

Wideband Coarray

It is possible to observe radiation at a frequency other than the reference frequency.

When observing radiation at a frequency different from the reference frequency, the

source powers and noise power may change. The phases received at the array sensors

will also differ from those at the reference frequency. The array data obtained at a
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(a) Two sources separated by 0.35, unresolvable

(b) Two sources separated by 0.39, resolvable

Figure 2.2: Linear Beamforming Example with Two Incoherent Point Sources and
Five Array Elements
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frequency ωq = αqω0 is modeled as

x(ωq) = AR(ωq)s(ωq) + w(ωq) =



∑
k Sk(ωq)e

jkqukxR1∑
k Sk(ωq)e

jkqukxR2

...∑
k Sk(ωq)e

jkqukxRM


+



w1(ωq)

w2(ωq)

...

wM(ωq)


, (2.10)

where kq = 2π
λq

= αqk0 is the wavenumber associated with the frequency ωq. The

factor αq = ωq
ω0

is related to the fact that we are observing radiation of frequency ωq

when the array spacing is generally based on the reference frequency ω0. The receive

array manifold matrix at frequency ωq, AR(ωq), is given by

AR(ωq) =



ejkqu1xR1 ejkqu2xR1 ... ejkquKxR1

ejkqu1xR2 ejkqu2xR2 ... ejkquKxR2

...
...

...
...

ejkqu1xRM ejkqu2xRM ... ejkquKxRM



=



ejk0u1αqxR1 ejk0u2αqxR1 ... ejk0uKαqxR1

ejk0u1αqxR2 ejk0u2αqxR2 ... ejk0uKαqxR2

...
...

...
...

ejk0u1αqxRM ejk0u2αqxRM ... ejk0uKαqxRM


.

(2.11)

The vector s(ωq) = [S1(ωq), S2(ωq), ..., SK(ωq)]
T is the vector of the complex am-

plitudes of each source and w(ωq) = [w1(ωq), w2(ωq), ..., wM(ωq)]
T is the vector of

observation noise associated with the each element at frequency ωq. The noise ob-

served at the elements in the narrow band at frequency ωq is assumed to be zero-mean,

independent, circular, Gaussian noise with variance σ2(ωq).

Just as in Equation 2.4, the normalized correlation between the mth and nth
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element at frequency ωq = αqω0 is given by

R(ωq)m,n =
E[xm(ωq)x

∗
n(ωq)]

1
M

E[xH(ωq)x(ωq)]

=
K∑
k=1

K∑
r=1

E[Sk(ωq)Sr(ωq)
∗]

1
M

E[xH(ωq)x(ωq)]
ejkqukxRme−jkqurxRn +

σ2(ωq)
1
M

E[xH(ωq)x(ωq)]
δ(m− n)

=
K∑
k=1

Pk(ωq)∑K
l=1 Pl(ωq) + σ2(ωq)

ejk0ukαq(xRm−xRn) +
σ2(ωq)∑K

l=1 Pl(ωq) + σ2(ωq)
δ(m− n)

=
K∑
k=1

P̄k(ωq)e
jk0ukαq(xRm−xRn) + σ̄2(ωq)δ(m− n)

(2.12)

where xm(ωq) is the mth element of the data vector and δ(m − n) is the Kronecker

delta function. The bars over the source powers and noise variance denote normalized

power (normalized by total power received at that frequency):

P̄k(ωq) =
Pk(ωq)∑K

l=1 Pl(ωq) + σ2(ωq)

σ̄2(ωq) =
σ2(ωq)∑K

l=1 Pl(ωq) + σ2(ωq)

(2.13)

For high enough signal-to-noise ratio (SNR),

P̄k(ωq) ≈
Pk(ωq)∑K
l=1 Pl(ωq)

σ̄2(ωq) ≈
σ2(ωq)∑K
l=1 Pl(ωq)

(2.14)

We see that the correlation between the mth and nth element at frequency ωq is

supported on the coarray point αq(xRm − xRn). Comparing this to Equation 2.4,

using a frequency other than the reference frequency effectively dilates the coarray

by the factor αq [17]. When multiple frequencies are used, more coarray points are
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generated than when using a single frequency. Using multiple frequencies is a way of

manipulating the coarray.

The wideband beamformed image is given by phase aligning each element at each

frequency in a direction u and then summing the beamformed data over all array

elements and all frequencies. The point spread function for wideband imaging with

Q frequencies is given by:

PSFWB(u) =
M∑
m=1

M∑
n=1

Q−1∑
q=0

e−jkqu(xRm−xRn)

=
M∑
m=1

M∑
n=1

Q−1∑
q=0

e−jk0uαq(xRm−xRn) =
L∑
l=1

ζle
−jk0uzl .

(2.15)

For wideband imaging, the set of coarray points is

{zl} = {zl|zl = αq(xRm − xRn), q = 0, 1, ..., Q− 1,m = 1, 2, ...,M, n = 1, 2, ...,M}.

(2.16)

As used in Equation 2.15, the set {zl} is assumed to be indexed such that it is

a set of distinct points. The possible redundancies arising from multiple (q,m, n)

combinations contributing to the same coarray point zl are accounted for by the

coarray weight ζl.

The wideband coarray can also be viewed as a union of the narrowband coarray

at the reference frequency dilated by various αq:

{zl} =

Q−1⋃
q=0

αq{yl}

where

{yl} = {xRm − xRn|m = 1, 2, ...,M, n = 1, 2, ...,M}.

(2.17)
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Using a frequency higher than the reference frequency causes an expansion of the

coarray - the coarray points become further apart and the coarray has a larger di-

ameter. Using a frequency lower than the reference frequency causes a contraction

of the coarray - the coarray points become closer together and the coarray diameter

decreases. This idea can be used to created desired coarray points. For example,

if we have the array {0, 1, 2, 6}λ0

2
, the corresponding narrowband coarray at the ref-

erence frequency is {0,±1,±2,±4,±5,±6}λ0

2
. This is a uniformly spaced coarray

except that it is missing the coarray points ±3λ0

2
. Suppose for the image we wish to

produce, it is necessary to have the point ±3λ0

2
in the coarray. These points can be

obtained by using an additional frequency, ωq = αqω0. The coarray corresponding

to ωq is {0,±αq,±2αq,±4αq,±5αq,±6αq}λ0

2
and values of αq that yield the coarray

point ±3λ0

2
are 3, 3

2
, 3

4
, 3

5
, 1

2
. The value of αq that is chosen may be chosen to fit any

bandwidth constraints, but often it is desirable to minimize the bandwidth used. In

this case, choose αq so that it minimizes |ωq − ω0| = |αq − 1|ω0.

In our case, we would choose αq = 3
4

to minimize bandwidth. The wideband

coarray becomes

{0,±1,±2,±4,±5,±6}λ0

2
∪ 3

4
{0,±1,±2,±4,±5,±6}λ0

2

⊃ {0,±1,±2,±3,±4,±5,±6}λ0

2
,

(2.18)

and it contains the desired uniformly spaced coarray.

2.2.3 The Narrowband Correlation Matrix and High Reso-

lution Techniques

When the coarray cannot be manipulated in a way to deliver the linear beamformer

resolution necessary, non-linear high-resolution techniques may be used. Many high-
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resolution techniques make use of the narrowband correlation matrix. The normalized

narrowband correlation matrix at the reference frequency is found as follows:

R(ω0) =
E[x(ω0)x(ω0)

H ]
1
M

E[xH(ω0)x(ω0)]

= AR(ω0)P̄(ω0)AR(ω0)
H + σ̄2(ω0)I,

(2.19)

where

P̄(ω0) = diag[P̄1(ω0), P̄2(ω0), ..., P̄K(ω0)] (2.20)

is the diagonal matrix of normalized source powers. The (m,n)th element is given by

(same as Equation 2.4)

R(ω0)m,n =
K∑
k=1

P̄k(ω0)e
jk0uk(xRm−xRn) + σ̄2(ω0)δ(m− n). (2.21)

The matrix possesses a special structure. From (2.21), we see that without noise the

(m,n)th element of R(ω0) has support on the point xRm − xRn. As was addressed

in Section 2.2, this point is called a coarray point. The coarray is useful in high-

resolution imaging because it reveals the structure of the correlation matrix.

Narrowband correlation matrices can also be formed at frequencies different from

the reference frequency. The narrowband spatial correlation matrix at frequency ωq

is given by

R(ωq) =
E[x(ωq)x(ωq)

H ]
1
M

E[xH(ωq)x(ωq)]

= AR(ωq)P̄(ωq)AR(ωq)
H + σ̄2(ωq)I,

(2.22)

where P̄(ωq) = diag[P̄1(ωq), P̄2(ωq), ..., P̄K(ωq)] is the diagonal matrix of normalized
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source powers at the qth frequency. The (m,n)th element is given by

R(ωq)m,n =
K∑
k=1

P̄k(ωq)e
jk0ukαq(xRm−xRn) + σ̄2(ωq)δ(m− n). (2.23)

This matrix possesses a similar structure to that at the reference frequency, but the

(m,n)th element is now supported on the point αq(xRm−xRn). This is consistent with

the dilation of the coarray when using frequencies other than the reference frequency

as shown in Section 2.2.1.

There exist many well-known narrowband (single-frequency of operation) high-

resolution imaging techniques. In this chapter, we will use three of the most popular

- Multiple Signal Classification (MUSIC), Capon’s Minimum Variance method, and

Autoregressive (AR) - for comparison.

Multiple Signal Classification (MUSIC)

The basis of MUltiple SIgnal Classification (MUSIC) is the eigen-decomposition of

the narrowband correlation matrix. The eigenvalue decomposition of the M × M

narrowband correlation matrix is

R(ω0) = V(ω0)Λ(ω0)V(ω0)
H , (2.24)

where V(ω0) is the matrix of eigenvectors and Λ(ω0) is the diagonal matrix of eigen-

values of R(ω0). Assuming the noiseless case, if K < M and AR(ω0) has full column

rank, it can be shown [41] that there are M −K zero eigenvalues with corresponding

eigenvectors v0
i(ω0) each denoted by the subscript i = 1, 2, ...,M − K. The zero

eigenvectors are orthogonal to the columns of the array manifold matrix, so that

AR(ω0)
Hv0

i(ω0) = 0. (2.25)
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The MUSIC estimator exploits this orthogonality and is defined as

PMUSIC(u) =
1∑M−K

i=1 |aR
H(u, ω0)v0

i(ω0)|2
, (2.26)

where aR(u, ω0) is the array steering vector:

aR(u, ω0) =

[
ejk0uxR1 ejk0uxR1 ... ejk0uxR1

]T
. (2.27)

When aR(u, ω0) is evaluated at any of the source locations uk, it is the kth column of

the array manifold matrix and thus is orthogonal to the {v0
i(ω0)}.

It can also be shown that aR(u, ω0) is orthogonal to v0
i(ω0) only when u = uk.

Thus, the peaks of PMUSIC(u) are uniquely the locations of the point targets.

In the presence of spatially white noise, the eigenvectors corresponding to the

M −K smallest eigenvalues are chosen as the {v0
i(ω0)}. The addition of a diagonal

noise covariance matrix does not change the eigenvectors, so the analysis holds. For

a more detailed derivation of MUSIC, see [42].

Auto-regressive (AR) Spectrum Estimation

In auto-regressive (AR) modeling, the field sampled by the array is assumed to form

an AR process. This may be a reasonable model at least for the uniformly spaced

line array. This model is expressed as

xm(ω0) = −
M−1∑
i=1

bi(ω0)xm−i(ω0) + wm(ω0) (2.28)

where xm(ω0) denotes the mth element of the data vector and the {bi(ω0)} are the

AR parameters.

The {bi(ω0)} can be solved for by minimizing the prediction error power, given
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below, with respect to the {bi(ω0)}:

Prediction Error Power = E

∣∣∣∣∣xm(ω0) +
M−1∑
i=1

bi(ω0)xm−i(ω0)

∣∣∣∣∣
2

(2.29)

Differentiating with respect to the {bi} leads to the well-known Yule-Walker equa-

tions, [42]. The Yule-Walker equations can be written in terms of sub-matrices of

R(ω0) as

R(ω0)1:M−1,1:M−1b(ω0) = −R(ω0)2:M,1 (2.30)

where the subscripts on the block matrices represent, respectively, the range of rows

and columns and b(ω0) is the vector of the {bi(ω0)}. b(ω0) can be found efficiently

by the Levinson-Durbin algorithm [42].

The AR spectrum estimator is given as

PAR(u) =
1

|1 +
∑M−1

i=1 bi(ω0)e−j2πuxRm|2
. (2.31)

In the plot of PAR(u) for u ∈ [−1, 1], the peaks reveal the source locations. Since

there are up to M − 1 poles in Equation (2.34), there can be up to M − 1 peaks in

the plot of PAR(u) over u representing the source locations.

Capon Minimum Variance Spectrum Estimator

The Capon minimum variance spectrum estimator comes from finding the maximum

likelihood estimate of the unknown complex amplitude, S0(ω0), of source at a known

direction u0, which is observed by the array elements in additive, white, zero-mean,

complex Gaussian noise.
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The observation at the mth array element due to a source at u0 is modeled as

xm(ω0) = S0(ω0)e
jk0u0xRm + wm(ω0), (2.32)

where the {wm} are zero-mean white Gaussian variates with variance σ2(ω0). The

maximum likelihood estimate of S0(ω0) is shown to be [42]

Ŝ0(ω0) =
aR(u0, ω0)

HR−1(ω0)x(ω0)

aR(u0, ω0)HR−1(ω0)aR(u0, ω0)
. (2.33)

This is also the linear minimum variance unbiased estimate of S0(ω0).

The Capon minimum variance spectrum estimator is given by the power output

of the linear minimum variance unbiased estimator:

PCapon(u) = E[Ŝ0(ω0)Ŝ0(ω0)
∗] =

1

aR(u, ω0)HR−1(ω0)aR(u, ω0)
(2.34)

where aR(u, ω0) is the array steering vector given in Equation (2.27).

Limit on the number of sources that can be resolved

The high-resolution techniques covered here provide superior resolution capabilities

compared to linear beamforming. For specific resolution capabilities, see [42]. The

main limiting factor in high-resolution is the number of point sources which can be

resolved. For MUSIC, it is easy to see that only M − 1 point sources can be resolved

because of the rank condition necessary on the correlation matrix to ensure there

are noise eigenvectors. AR cannot resolve more than M − 1 sources, as this is the

maximum number of poles that can occur. Capon’s source limit is also M − 1 which

can be understood when it is viewed as an average of auto-regressive processes of

different orders, the maximum order being M−1 [42]. This hard limit on the number
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of sources which can be resolved can create problems from arrays that only have a

few elements due to cost or size limitations.

2.3 The Virtual Array and Constructing the Vir-

tual Correlation Matrix

A virtual array is an array whose effect we wish to synthesize. The concept of a

virtual array is not new. It has been used in works to describe data which behaves as

if it were coming from a different array [41, 19, 15]. Our intent in this chapter is to

synthesize the effect of a λ0

2
-uniformly-spaced array operating at a single frequency

with more elements than the actual array, by using multiple frequencies. A virtual

correlation matrix corresponding to the virtual array is constructed in order to resolve

more point sources using high-resolution techniques. The virtual correlation matrix

will be constructed from the narrowband correlation matrices at different frequencies

but will be larger in dimension than the component narrowband correlation matrices.

It will appear to be generated by narrowband sources being observed by the virtual

array. Since the virtual correlation matrix will appear to have come from a single

frequency, the high-resolution techniques covered in Section 2.2.3 can used without

modification, but will be able to resolve more sources than just using a narrowband

correlation matrix.

The main questions to be addressed are how to construct the virtual correlation

matrix and under what assumptions is this matrix useful. We will see that the coarray

helps us understand how to construct the virtual correlation matrix.
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2.3.1 Coarray Support Matrix

The coarray support matrix is a different way of expressing the coarray. Instead of

representing the coarray in the usual point/weight form, the coarray is represented

as a matrix. Since high-resolution imaging is based on the spatial correlation matrix,

representing the coarray in matrix form reveals its underlying structure.

For an array of M elements with elements at positions {xRm}, let the M ×M

matrix C(ω0), called the coarray support matrix for ω0, be defined such that the

(m,n)th element is

C(ω0)m,n = xRm − xRn. (2.35)

Comparing this to Equation (2.21), we see that this is the supporting coarray point of

the (m,n)th element of the narrowband correlation matrix at the reference frequency.

Since uniform linear arrays will be of great interest in this chapter, we will use

a uniform linear array of 5 elements with spacing of λ0

2
operating at the reference

frequency, ω0, as an example. The array is {−λ0,−λ0

2
, 0, λ0

2
, λ0}. The coarray support

matrix at the reference frequency is given by

C(ω0) =



0 −λ0

2
−λ0 −3λ0

2
−2λ0

λ0

2
0 −λ0

2
−λ0 −3λ0

2

λ0
λ0

2
0 −λ0

2
−λ0

3λ0

2
λ0

λ0

2
0 −λ0

2

2λ0
3λ0

2
λ0

λ0

2
0


. (2.36)

Notice that the coarray point 0 appears on every element on the main diagonal giving

it weight 5. The other coarray points appear on the other diagonals, the weight

decreasing by one all the way out to the last coarray point 2λ0 with weight 1. This

is the triangular weighting as expected. The coarray weight information is contained
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within the coarray support matrix. The number of times a coarray point appears in

the coarray support matrix is the weight of that coarray point.

In general, the coarray support matrix is always skew-symmetric since

Cm,n(ω0) = xRm − xRn = −(xRn − xRm) = −Cn,m(ω0) (2.37)

The coarray support matrix for a uniform linear array always has a Toeplitz structure

since

Cm,n(ω0) = xRm − xRn = (m− n)
λ0

2
= ((m+ i)− (n+ i))

λ0

2
= Cm+i,n+i(ω0) (2.38)

The coarray support matrix for frequency ωq = αqω0 is similarly defined as

C(ωq)m,n = αq(xRm − xRn) = αqC(ω0)m,n. (2.39)

Comparing this with equation (2.23), this is consistent with the frequencies dilating

the coarray. Using frequencies different from the reference frequency also dilates the

coarray support matrix. For our example from (2.36) for a frequency ωq = αqω0 the

coarray support matrix is

C(ωq) =



0 −αq λ0

2
−αqλ0 −αq 3λ0

2
−2αqλ0

αq
λ0

2
0 −αq λ0

2
−αqλ0 −αq 3λ0

2

αqλ0 αq
λ0

2
0 −αq λ0

2
−αqλ0

αq
3λ0

2
αqλ0 αq

λ0

2
0 −αq λ0

2

2αqλ0 αq
3λ0

2
αqλ0 αq

λ0

2
0


= αqC(ω0). (2.40)

The coarray support matrix is a useful tool to understand the underlying structure

of the narrowband correlation matrices as well as the virtual correlation matrix we
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wish to construct. By knowing this structure, we can construct the virtual correlation

matrix in a way that allows it to be used for high-resolution imaging.

2.3.2 Virtual Correlation Matrix

The virtual correlation matrix is a correlation matrix constructed from a number

of narrowband correlation matrices which appears, under certain conditions to be

explored in this section, to have been generated by a virtual array with more elements

than the actual array at a single frequency. Since the virtual array has more elements

than the actual array, the virtual correlation matrix will have a dimension larger than

the component narrowband correlation matrices from which it is constructed, and

more point sources can be resolved. The virtual correlation matrix is constructed from

the narrowband correlation matrices so that it is coarray equivalent to a correlation

matrix that would be generated by the virtual array at a single frequency observing

the same sources.

We will only consider virtual arrays which are uniformly spaced with spacing λ0

2
.

This is because we know that a uniform linear array always produces a uniform linear

coarray and then we know exactly what coarray we need to synthesize. Also, for a

uniformly spaced coarray of a given diameter, the uniform linear array is the array

with the most elements that produces this coarray. It makes sense to use the coarray

we have synthesized in a way that allows us to resolve as many sources as possible.

Suppose we want to synthesize the effect of a virtual array, with elements at

positions {x̃Rm},m = 1, 2, ..., M̃ , whose coarray support matrix is given by C̃(ω0),

i.e.

C̃(ω0)m,n = x̃Rm − x̃Rn. (2.41)

To synthesize the effect of this array we need to generate data at all of the coarray
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points contained in C̃(ω0). This is done by using multiple frequencies to dilate the

narrowband coarray support matrix C(ω0). In order to cover all of the coarray points

in C̃(ω0), the frequencies should be chosen so that

C̃(ω0)i,j = C(ωq)m,n, for some q,m, n, for all i, j. (2.42)

The subscripts represent the row and column of the matrices.

If bandwidth is an issue, to minimize the bandwidth used, the αq chosen to satisfy

Equation 2.42 can be picked such that

max
q
{αq} −min

q
{αq} (2.43)

is minimized with α0 = 1 corresponding to the reference frequency.

2.3.3 Condition for a Valid Virtual Correlation Matrix

For the virtual correlation matrix to be useable in the high-resolution techniques in

Section 2.2.3 without modification, the virtual correlation matrix must have the same

structure as a narrowband correlation matrix generated by the virtual array observing

the scene. That is,

R̃(ω0) = ÃR(ω0)P̄ÃR(ω0)
H (2.44)
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where P̄ = diag[P̄1, P̄2, ..., P̄K ] is some positive-definite diagonal matrix that does not

depend on frequency and ÃR(ω0) is the virtual array manifold,

ÃR(ω0) =



ejk0u1x̃R1 ejk0u2x̃R1 ... ejk0uK x̃R1

ejk0u1x̃R2 ejk0u2x̃R2 ... ejk0uK x̃R2

...
...

...
...

ejk0u1x̃RM̃ ejk0u2x̃RM̃ ... ejk0uK x̃RM̃


. (2.45)

All virtual coarray points in C̃(ω0) are generated from differences between two

array positions, xRm and xRn, and some frequency, ωq, i.e., for every virtual coarray

point ỹp, there exists a combination of (m,n, q) such that ỹp = αq(xRm−xRn). When

piecing together the virtual correlation matrix, the coarray point ỹp may come from

the (mp, np)
th element of the correlation matrix at frequency ωq, and the coarray

point ỹl may come from the (ml, nl)
th element of a different correlation matrix at

frequency ωr. Thus, each coarray point may come from different virtual correlation

matrix at a different frequency, but we need to ensure that when the virtual correlation

matrix is constructed that it has the structure given in Equation 2.44. Comparing the

noiseless version of Equations 2.19 and 2.44, we see this is because the high-resolution

techniques depend on the correlation matrix having this structure. This condition is

satisfied when the following equalities are satisfied for some set {P̄k}:

∑
k

P̄k(ωq)e
jk0ukỹp =

∑
k

P̄ke
jk0ukỹp for all q, p (2.46)

These equations can be satisfied if

P̄k(ωq) = P̄k(ω0) for all k, q, (2.47)
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in which case we can take the {P̄k} to be {P̄k(ω0)} Recall that the source-normalized

source power (“source-normalized” because it is normalized by the power of all sources

at that frequuency)is defined as:

P̄k(ωq) ≈
Pk(ωq)∑
l Pl(ωq)

(2.48)

for high SNR. This arises naturally in normalizing the narrowband correlation matri-

ces. Equation 2.47 states that the normalized source powers at each frequency must be

equal. While is may not be obvious, it is true that condition 2.47 is equivalent to the

condition that the sources have proportional spectra - or equal frequency-normalized

source powers - i.e.,

Pk(ωq)

Pl(ωq)
= Dk,l for all q, k, l, (2.49)

where Dk,l is a constant that depends only on the targets, not the frequency. This

means the sources have essentially the same normalized power spectrum as a function

of frequency. This examined in detail in the Appendix.

This is an intuitive condition because if the normalized source powers are not

identical, effectively, a different scene is being observed at each frequency and then

the virtual correlation matrix will be constructed from many different scenes. This

would not happen in conventional narrowband imaging.

Note on Power Normalization

There are two ways to consider the normalized power of a source.

When forming the correlation matrix, we normalize all of the diagonals to be unity.

This is a source-normalized power normalization because we divide the narrowband

correlation matrix at frequency ωq by
∑K

k=1 Pk(ωq). The power is normalized with

respect to other source power at that particular frequency.
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The other way, which may be more intuitive to think about but is not directly cal-

culable since we do not know the individual source powers, is a frequency-normalized

power normalization. The power of a source at a particular frequency is normalized

by the sum of the powers at all frequencies considered for that source. We divide the

power of a source at frequency ωq by
∑Q−1

p=0 Pk(ωp). This type of normalization allow

us to compare the emission characteristics among individual sources.

It is shown in the Appendix that sources have equal source-normalized powers is

equivalent to sources have equal frequency-normalized source powers for high enough

signal-to-ratios. If two sources have equal frequency-normalized source powers, their

sampled power spectra are proportional. From this point forward, we use the term

proportional spectra to denote the conditions in Equations 2.47 and 2.49.

This condition will be explored in an example in Section 2.4.

2.4 Example Illustrating Virtual Correlation Ma-

trix Construction and Performance

This example will illustrate the most basic problem in high-resolution imaging - re-

solving two targets which are closer than can be resolved with linear beamforming.

In conventional narrowband high-resolution imaging, there must be three receiving

elements in order to resolve the two sources. This example will show that this can be

done with only two elements using two frequencies, given that the sources have pro-

portional spectra. We will also illustrate how this method behaves when the sources

have non-proportional spectra.

The array for this example has elements at {±λ0

4
}. Operating at the reference
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frequency, the coarray support matrix is given by

C(ω0) =

 0 −λ0

2

λ0

2
0

 . (2.50)

In order to resolve the two sources, we need to have a virtual array which has

three elements. The virtual array will be constructed with elements at {−λ0

2
, 0, λ0

2
},

and the virtual coarray support matrix for this is given by

C̃(ω0) =


0 −λ0

2
−λ0

λ0

2
0 −λ0

2

λ0
λ0

2
0

 . (2.51)

To synthesize the effect of this matrix with the array we have, we need to generate the

coarray points ±λ0. For this we will need a second frequency ω1 to have α1 = λ0
λ0
2

= 2,

that is, ω1 = 2ω0. The coarray support matrix for frequency ω1 is

C(ω1) =

 0 −λ0

λ0 0

 . (2.52)

To construct the virtual correlation matrix, a map from the elements of C(ω0)

and C(ω1) to the elements of C̃(ω0) needs to be found. The map is not unique, but

one possible map is given by

C̃(ω0) =


C(ω0)1,1 C(ω0)1,2 C(ω1)1,2

C(ω0)2,1 C(ω0)1,1 C(ω0)1,2

C(ω1)2,1 C(ω0)2,1 C(ω0)1,1

 , (2.53)

where C(ωq)i,j represents the (i, j)th element from the coarray support matrix corre-
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sponding to the qth frequency. Other possible maps include using any of the following

in the zero coarray point positions (on the diagonal): C(ω0)1,1, C(ω0)2,2, C(ω1)1,1,

C(ω1)2,2 or an average of these points [41].

Applying this map to the narrowband correlation matrices, R(ω0) and R(ω1), we

get the virtual correlation matrix R̃(ω0)

R̃(ω0) =


R(ω0)1,1 R(ω0)1,2 R(ω1)1,2

R(ω0)2,1 R(ω0)1,1 R(ω0)1,2

R(ω1)2,1 R(ω0)2,1 R(ω0)1,1

 , (2.54)

where R(ωq)i,j represents the (i, j)th element from the narrowband correlation matrix

at frequency ωq.

To understand why proportional spectra is a requirement for the virtual correlation

matrix to be useful, it is helpful to look at the virtual correlation matrix fully written

out for the noiseless case:

R̃(ω0) =


1

∑
k P̄k(ω0)e

−jk0uk
λ0
2

∑
k P̄k(ω1)e

−jk0ukλ0∑
k P̄k(ω0)e

jk0uk
λ0
2 1

∑
k P̄k(ω0)e

−jk0uk
λ0
2∑

k P̄k(ω1)e
jk0ukλ0

∑
k P̄k(ω0)e

jk0uk
λ0
2 1

 (2.55)

where the sum is over k = {1, 2}. Note that the (3, 1) and the (1, 3) elements have

the terms P̄k(ω1) while the other elements have P̄k(ω0). Recall that the {P̄k(ωq)}

are the normalized source powers. Had this correlation matrix been generated by a

receive array with three elements at a single frequency ω0, all of the elements would

have contained only the {P̄k(ω0)}. Hence, R̃(ω0) will appear to have been generated

by receiving narrowband radiation at the frequency ω0 at the virtual array as if it

38



were the actual array, provided that

2∑
k=1

P̄k(ω1)e
jk0ukλ0 =

2∑
k=1

P̄k(ω0)e
jk0ukλ0 , (2.56)

which is the condition we derived more generally in Equations 2.46 and 2.47. The

condition in Equation 2.56 is satisfied when

P̄1(ω0) = P̄1(ω1) and P̄2(ω0) = P̄2(ω1) (2.57)

or

P̄1(ω0) = P̄2(ω0) and P̄1(ω1) = P̄2(ω1). (2.58)

Equation 2.57 states that when the source-normalized source powers are equal, we

can construct a valid virtual correlation matrix. Equation 2.58 states that when the

actual source spectra are proportional, we also can construct a valid virtual correlation

matrix. While it is not obvious that these conditions are equivalent, we have already

discussed why they are equilvalent, see Appendix. This is simply an illustration of

the condition derived for the general problem in Section 2.3.3.

Provided that the spectra of the sources are proportional, the virtual correlation

matrix will appear to have come from a single frequency and as was shown in Section

2.2.3, it can be used in the high-resolution techniques.

2.4.1 Simulations

In this section, we will simulate two point sources in a noiseless environment. While

a noiseless environment is not practical, it ensures that if a simulation fails, it is not

due to noise, but to the imaging method used. The effect of noise will be discussed

in a later section.
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First we will illustrate how using just the narrowband correlation matrices does

not work. Then we will simulate imaging when the sources have proportional spectra

and use the virtual correlation matrix in a few different high-resolution techniques.

Then it will be shown that when the spectra are not proportional, using the virtual

correlation matrix yields incorrect results.

Spectral Estimate Using only a Narrowband Correlation Matrix

In this example, we are simulating two point sources at u1 = .3 and u2 = .5 with

proportional spectra given by

P1(ω0) = 0.5, P2(ω0) = 0.5

P1(ω1) = 0.5, P2(ω1) = 0.5.

(2.59)

.

Using the narrowband correlation matrices in MUSIC, the results for each of the

two frequencies, ω0 and ω1, are shown in Figure 2.3. In these figures, the peaks

represent the estimated source locations and the stars represent the actual source

locations. Figure 2.3(a) shows the results of MUSIC applied to the narrowband cor-

relation matrix at ω0. We see that only one source location is estimated and it is

incorrect. Figure 2.3(b) shows the results of MUSIC applied to the narrowband cor-

relation matrix at ω1 and this estimates that there are two sources, both at incorrect

locations. The source at u = −.6 is actually due to aliasing of the source incorrectly

located at u = 0.4 since the array elements are spaced further than the Nyquist rate

for frequency ω1.
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(a) Frequency ω0, noiseless

(b) Frequency ω1, noiseless

Figure 2.3: MUSIC applied to the Narrowband Correlation Matrices
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(a) Multiple Signal Classification (MUSIC),
noiseless

(b) Auto-regressive (AR) spectral estimator,
noiseless

(c) Capon’s minimum variance spectral esti-
mator, noiseless

Figure 2.4: High-resolution Techniques applied to the Virtual Correlation Matrix -
Proportional Spectra

Spectral Estimate Using the Virtual Correlation Matrix - Proportional

Spectra

Keeping the proportional spectra given in Equation (2.59), in this example, we use

the virtual correlation matrix in various high-resolution techniques. Shown in Figure

2.4 is the simulation of this example where MUSIC, AR spectrum estimation and

Capon’s minimum variance estimator are applied to the virtual correlation matrix.

The dots represent the actual source locations.

For proportional spectra, the sources are located with accuracy according to the
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expectations for the estimators used (see [42] for details on the performance of each

estimator). This is expected since the virtual correlation matrix is identical to a

narrowband correlation matrix that would have been formed by the virtual array.

Non-Proportional Spectra

When the spectra are not proportional, problems arise as the virtual correlation

matrix does not have the structure necessary for high-resolution imaging. We now

briefly examine the effects of non-proportional spectra for this example.

The same example is now simulated, but the source powers are changed so that

the sources have non-proportional spectra. The source powers are

P1(ω0) = 0.5, P2(ω0) = 0.5

P1(ω1) = 0.4, P2(ω1) = 0.6.

(2.60)

None of the high-resolution methods are able to locate the two sources correctly

as seen in Figure 2.5. MUSIC and AR behave similarly. They locate two sources,

although in the wrong directions. Capon displays quite different behavior. It locates

three sources, where two are approximately in the correct directions, and there is one

extraneous source.

Possible ways to mitigate the effect of non-proportional spectra will be considered

later in Section 2.5.

2.4.2 Relevance of the Two Source Scenario

The intent of this section was to clarify the method for constructing the virtual

correlation matrix, how the virtual correlation matrix can be used successfully when

the sources’ spectra are proportional and to understand how it fails when they are
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(a) Multiple Signal Classification (MUSIC),
noiseless

(b) Auto-regressive (AR) spectral estimator,
noiseless

(c) Capon’s minimum variance spectral esti-
mator, noiseless

Figure 2.5: High-resolution Techniques applied to the Virtual Correlation Matrix -
Non-Proportional Spectra
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not proportional.

Since high-resolution estimators are non-linear, it is difficult to examine the effect

of non-proportional spectra. This two-source, two-element example will also serve as

a springboard to investigate possible ways to mitigate the effect of non-proportional

spectra.

2.5 Working with Non-Proportional Spectra

It is difficult to analyze the effect of non-proportional spectra on the virtual corre-

lation matrix. For example in MUSIC the peaks of the estimator are buried in the

eigenvectors of the virtual correlation matrix. This is highly non-linear. In this sec-

tion, starting within the context of the two-source, two-element example of Section

2.4, we first examine by simulation the sensitivity of the virtual correlation matrix to

non-proportional spectra. Then we investigate possible ways to mitigate the effect of

non-proportional spectra.

2.5.1 The Effect of Source Spacing and Non-proportionality

on Estimation Error

In this simulation, we will examine the effect of source separation and amount of

non-proportionality on the accuracy of source location. We will continue with the

example of two sources and two elements in this section and vary the angle and the

amount of non-proportionality between the sources. Consider two sources which are

centered around broadside, u2 = −u1. The angular separation between the sources

is 2u1. The amount of non-proportionality can be measured by the quantity δ where
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0 ≤ δ ≤ 1 and is defined as follows:

P1(ω0) = .5, P2(ω0) = .5

P1(ω1) = .5(1− δ), P2(ω1) = .5(1 + δ)

(2.61)

If δ = 0, the spectra are proportional. As δ increases to 1 the spectra become less

proportional.

We will examine the total normalized error, which is defined as

|u1 − ũ1|+ |u2 − ũ2|
|u1 − u2|

, (2.62)

where ũk is the estimated location closest to the kth source and uk is the actual source

location.

Figure 2.6 shows the total normalized error magnitude for the MUSIC estimator

plotted against actual source separation and measure of non-proportionality. As

expected, when the spectra are proportional (δ = 0), there is no error in the estimates.

However, we see that as the non-proportionality between the spectra , δ, increases,

MUSIC with the virtual correlation matrix does not perform well. For sources that

are very close together, the error is large. As sources get further apart, the error

generally decreases. However, an interesting observation is that when sources are

spaced exactly at an angular separation of 1, the error is zero. This occurs because

the virtual correlation matrix that results from this spacing does not depend on the

proportionality at all. For general δ, the virtual correlation matrix in this example
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takes the form

R̃(ω0) =


1 cos(πu1) cos(2πu1) + .5jδ sin(2πu1)

cos(πu1) 1 cos(πu1)

cos(2πu1)− .5jδ sin(2πu1) cos(πu1) 1


(2.63)

When sin(2πu1) = 0, δ is eliminated from the virtual correlation matrix, and thus

has the effect of δ = 0, or proportionality. This occurs when u1 = n
2

for integer n.

For sources with proportional (or very close to proportional) spectra, MUSIC

performs reasonably. Also if the sources are close to 1 angular unit apart, MUSIC

performs reasonably, however, high-resolution imaging is generally not needed in this

case to resolve the sources at this distance apart.

2.5.2 Forcing the Determinant of the Virtual Correlation

Matrix to Zero

In this section, within the context of the two-source, two-element example, we will

modify the virtual correlation matrix by a Hadamard (Schur or element-wise) product.

The sources are assumed to have non-proportional spectra at the two frequencies, thus

the virtual correlation matrix is not rank deficient. We are going to examine how we

can use the Hadamard product on the virtual correlation matrix so that it becomes

rank deficient, a necessary condition for a proper (noiseless) virtual correlation matrix.

We have narrowband correlation matrices R(ω0) and R(ω1) and from these have

formed the virtual correlation matrix R̃(ω0). Since the (3, 1) and (1, 3) elements of

the virtual correlation matrix in Equation (2.55) come from a different frequency, ω1,

compared to the other matrix elements, we will use a multiplicative scalar, β = βr+jβi
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Figure 2.6: Total Normalized Error for MUSIC applied to the Virtual Correlation
Matrix
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and its conjugate β∗ = βr − jβi, on these elements of the virtual correlation matrix,

vary β and observe where the determinant of this new matrix is 0. The idea is to try

to modify the ω1 frequency contributions to make the virtual correlation matrix have

the requisite zero-determinant. Let

T(β) = R̃(ω0)� (Er + Ei), (2.64)

where

Er =


1
2

1
2

βr

1
2

1
2

1
2

βr
1
2

1
2



Ei =


1
2

1
2
−jβi

1
2

1
2

1
2

jβi
1
2

1
2

 .
(2.65)

Here, the ω0 frequency contributions are not modified (they are multiplied by

unity) and the ω1 frequency contributions are multiplied by β = βr + jβi or β∗ =

βr − jβi. For simplification of notation, let R̃(ω0)2,1 = R̃(ω0)3,2 = a, R̃(ω0)3,1 = b,

then the determinant of T (β) is given as

det T(β) = det


1 a∗ β∗b∗

a 1 a∗

βb a 1

 = 1− 2|a|2 + a∗2bβ + a2b∗β∗ − |β|2|b|2. (2.66)
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Taking derivatives with respect to βr and βi, we get [43],

∂ det T(β)

∂βr
= a∗2b+ a2b∗ − 2β∗r |b|2

∂ det T(β)

∂βi
= ja∗2b− ja2b∗ − 2β∗i |b|2

∂2 det T(β)

∂β2
r

= −2|b|2

∂2 det T(β)

∂β2
i

= −2|b|2

∂2 det T(β)

∂βr∂βi
= 0.

(2.67)

The Hessian matrix, H, is negative definite:

H =

∂2 detT(β)
∂β2
r

∂2 detT(β)
∂βi∂βr

∂2 detT(β)
∂βrβi∂β

∂2 detT(β)

∂β2
i

 =

−2|b|2 0

0 −2|b|2

 � 0 (2.68)

Thus, detT (β) is concave in βr and βi, and there exists a βc for which det T(β) is

maximized, [44, 45]. Also note that the first derivatives of detT (β) decrease with

equal rate in each radial direction away from βc.

Setting the first derivatives to zero and solving for β, the maximum occurs at

βc =
a2

b
(2.69)

giving maximum determinant of

det


1 a∗ β∗c b

∗

a 1 a∗

βcb a 1

 = det


1 a∗ a∗2

a 1 a∗

a2 a 1

 = 1− 2|a|2 + |a|4 = (|a|2 − 1)2 ≥ 0 (2.70)
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We are not actually looking for where the determinant is maximized, but where the

determinant is zero, as this is a necessary condition for having zero eigenvalues. Since

detT (βc) is always greater than or equal to zero and the function is concave, at some

point as we move radially away from βc, we will reach a value of β (call it β0) that

lies on a circle for which detT (β0) = 0. Thus, we search for solutions of the form

β0 = βc + rejx, where x ∈ [0, 2π] and r ≥ 0. With β0 in place of β in the expression

for determinant given by Equation 2.66, setting it equal to 0 and solving for r we get

1− 2|a|2 + a∗2b(βc + rejx) + a2b∗(β∗c + re−jx)...

− (|βc|2 + r2 + βcre
−jx + β∗c re

jx)|b|2 = 0

r = ±1− |a|2

|b|
∀x

(2.71)

This means that the values of β which force the determinant to zero are given by

β0 = βc + rejx =
a2

b
+

1− |a|2

|b|
ejx, x ∈ [0, 2π] (2.72)

The determinant is 0 for β on a circle about point a2

b
with radius 1−|a|2

|b| .

The values of β which force the determinant to zero lie in a circle, but which one

of these points corresponds to the correct β giving us the correct source location? In

Figure 2.7, 16 simulations are run for different values of x. These simulations suggest

that the correct value of x corresponds to the x which estimates the sources to be the

least separated. We see that the estimated source locations are the closest in angular

distance to each other in, Figure 2.7(h), and this gives the correct source locations.

The stars denote the actual source locations. This is supported by Figure 2.8 which

plots the estimated source location separation versus x. Another observation is that

the correct value of x minimizes the maximum eigenvalue of T(β0) as is shown in

Figure 2.9. Both Figures 2.8 and 2.9 are minimized at x = 2.9829.

51



(a) x = 0.2340 (b) x = 0.6267 (c) x = 1.0194 (d) x = 1.4121

(e) x = 1.8048 (f) x = 2.1975 (g) x = 2.5902 (h) x = 2.9829

(i) x = 3.3756 (j) x = 3.7683 (k) x = 4.1610 (l) x = 4.5537

(m) x = 4.9464 (n) x = 5.3391 (o) x = 5.7318 (p) x = 6.1245

Figure 2.7: MUSIC applied to T (β0) for different ejx
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Figure 2.8: Separation of Estimated Source Locations vs. x

Figure 2.9: Maximum Eigenvalue of T(β0) vs. x
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This approach works well for this 3×3 virtual correlation matrix; however, as the

dimension of the virtual correlation matrix increases, so does the number of variables

such as β. The search for where the determinant is zero becomes more complicated,

as the higher dimension surface det T(β) may no longer be concave or convex. It is

also unclear what the search criterion becomes on the subset where the determinant

is zero.

2.5.3 Using Array Interpolation to Average Source Powers

at Different Frequencies

In this part, we will investigate using an array interpolation method [19] which can

help equalize non-proportional source spectra by averaging. This is first done for the

two-element, two-source example, then it is shown how this can be extended to larger

examples.

Suppose we know the sources we are trying to locate lie within some sector [us, uf ].

This could be known from generating a lower resolution image using Fourier beam-

forming methods. Interpolation matrices B1(ω0) and B0(ω1) can be found such that

B1(ω0)AR(ω0) ≈ AR(ω1)

B0(ω1)AR(ω1) ≈ AR(ω0).

(2.73)

We do not know the array manifold matrices because they involve source locations,

but since we know the sources lie within a sector we can approximate the array

interpolation matrices by a least squares fit over the sector [us, uf ] [19]. B1(ω0) is

found by minimizing

∫ uf

us

||aR(u, ω1)−B1(ω0)aR(u, ω0)||2du (2.74)
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with respect to B1(ω0), where aR(u, ωq) is the array steering vector at frequency ωq:

aR(u, ωq) = [ejkquxR1 , ejkquxR2 , ..., ejkquxRM ]T (2.75)

To find B1(ω0), we approximate the integral in Equation 2.74 by a summation

taken over points in the sector. The sector is sampled N times and the matrices Aq,

q = 0, 1 are constructed as follows:

Aq =



aR(u1, ωq)
H

aR(u2, ωq)
H

...

aR(ui, ωq)
H

...

aR(uN , ωq)
H


(2.76)

Here ui is the ith sample of the sector.

Assuming that N ≥ 2 and that the matrices Aq each have full column rank, the

least squares solution is given by [44].

B1(ω0) = AH
1 A0[A

H
0 A0]

−1. (2.77)

Similarly,

B0(ω1) = AH
0 A1[A

H
1 A1]

−1. (2.78)

Since the columns of the array manifold matrices are the array steering vector eval-
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uated at source locations,

AR(ω0) ≈ B0(ω1)AR(ω1)

AR(ω1) ≈ B1(ω0)AR(ω0)

(2.79)

in the least square error sense.

Using this, we can define “averaged” narrowband correlation matrices:

R̄(ω0) =
1

2
[R(ω0) + B0(ω1)R(ω1)B0(ω1)

H ]

=
1

2
[AR(ω0)P̄(ω0)AR(ω0)

H + B0(ω1)AR(ω1)P̄(ω1)AR(ω1)
HB0(ω1)

H ]

≈ 1

2
[AR(ω0)P̄(ω0)AR(ω0)

H + AR(ω0)P̄(ω1)AR(ω0)
H ]

= AR(ω0)
1

2
[P̄(ω0) + P̄(ω1)]AR(ω0)

H

= AR(ω0)P̄AR(ω0)
H

R̄(ω1) =
1

2
[R(ω1) + B1(ω0)R(ω0)B1(ω0)

H ]

=
1

2
[AR(ω1)P̄(ω1)AR(ω1)

H + B1(ω0)AR(ω0)P̄(ω0)AR(ω0)
HB1(ω0)

H ]

≈ 1

2
[AR(ω1)P̄(ω1)AR(ω1)

H + AR(ω1)P̄(ω0)AR(ω1)
H ]

= AR(ω1)
1

2
[P̄(ω1) + P̄(ω0)]AR(ω1)

H

= AR(ω1)P̄AR(ω1)
H

(2.80)

Since these equalities are only approximate, the P̄ matrices in Equation 2.80 may

not be exactly the same. To partially account for this, we will assume a further

normalization in which we normalize the averaged correlation matrices such that the

diagonal elements are approximately unity. This is done by multiplying each matrix
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by M = 2 and dividing by its trace:

R̄(ω0)⇐
R̄(ω0)

1
2
TrR̄(ω0)

R̄(ω1)⇐
R̄(ω1)

1
2
TrR̄(ω1)

(2.81)

This is simply a power normalization since 1
2
TrR̄(ωq) ≈

∑K
k=1 P̄k.

These averaged correlation matrices have approximately the same diagonal power

matrix P̄ = 1
2
[P̄(ω0) + P̄(ω1)], but maintain approximately the structure of two

narrowband correlation matrices at frequencies ω0 and ω1. Thus, they can be assumed

to satisfy the criterion in Section 2.3.3 to construct a valid virtual correlation matrix.

To illustrate the potential of this method, we will simulate the case where we

have two sources being observed by the array ±λ0

4
and use two frequencies ω0 and

ω1 = 2ω0. The sources are located at u1 = .2 and u2 = .3. The source powers are

P1(ω0) = 0.5, P2(ω0) = 0.5

P1(ω1) = 0.4, P2(ω1) = 0.6.

(2.82)

The sector is taken to be [.1, .4] and we will take 100 uniformly spaced samples of the

sector. The result using the virtual correlation matrix constructed from the averaged

matrices is shown in Figure 2.10. The estimated source locations and very close to

the actual source locations despite the non-proportional source spectra. The actual

source locations are denoted by red stars.

This method appears to be sensitive to sector size. If a larger sector is chosen,

it becomes more difficult to satisfy Equation 2.73 exactly. The same simulation is

run in Figure 2.11, except the sector is increased to [−.4, .9]. The estimated source

locations are not close to the actual source locations. However, they are still much
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Figure 2.10: MUSIC using Virtual Correlation Matrix constructed from Array-
Interpolated Correlation Matrices. Sector [0.1,0.4]

more accurate than without any sort of averaging, see Figure 2.12.

For a small enough sector, this may be a viable method for larger problems with

more sources and elements. If Q frequencies are needed to construct the virtual

correlation matrix, then Q2−Q array interpolation matrices are found as in Equation

2.77:

Bq(ωp) = AH
q Ap[A

H
p Ap]

−1, for p 6= q. (2.83)

Then Q averaged correlation matrices can be formed,

R̄(ωq) =
1

Q
[R(ωq) +

∑
p 6=q

Bq(ωp)R(ωp)Bq(ωp)
H ], (2.84)

and used to construct the virtual correlation matrix.
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Figure 2.11: MUSIC using Virtual Correlation Matrix constructed from Array-
Interpolated Correlation Matrices. Sector [-0.4,0.9]

Figure 2.12: MUSIC using Virtual Correlation Matrix constructed from Original
Narrowband Correlation Matrices
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2.5.4 Weighting the Array Elements to Overcome the Effect

of Non-proportional Spectra

We will now consider an alternative approach in which the array elements are weighted

at frequency ω1 in order to attempt to compensate for the non-proportional spectra

in the two-element example. A weight w1 is applied to one array element and w2 is

applied to the other. The element weight is applied to the received complex amplitude

from that element.

This weighting can be expressed as multiplication of the array correlation matrices

with a diagonal matrix W = diag[w1, w2]. Recall that the actual correlation matrices

for the unweighted elements in the absence of noise are

R(ω0) = AR(ω0)P̄(ω0)AR(ω0)
H

R(ω1) = AR(ω1)P̄(ω1)AR(ω1)
H .

(2.85)

The weighted correlation matrix at frequency ω1 is

Rw(ω1) = WAR(ω1)P̄(ω1)AR(ω1)
HWH = WR(ω1)W

H . (2.86)

Since our objective is to force Rw(ω1) to appear to have been generated by sources

with the same powers at frequency ω0, it is useful to know what our desired correlation

matrix for frequency ω1 is. We will call this matrix Rref (ω1). Note that we do not

actually have access to this matrix for this method because we do not know the source

locations, it is simply for comparison in this study.

Rref (ω1) = AR(ω1)P̄(ω0)AR(ω1)
H (2.87)

If the method works, Rw(ω1) should equal Rref (ω1).
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To study this proposed method, we will use specific numerical results. We assume

there are receiving array elements at ±λ0

4
, two sources at 0.2 and 0.3 with powers

P1(ω0) = .5, P2(ω0) = .5, P1(ω1) = .4, P2(ω0) = .6, and the frequencies ω0 and ω1 =

2ω0 are used.

The narrowband correlation matrix at ω0 is given by

R(ω0) =

 1 .6984− .6984j

.6984 + .6984j 1

 , (2.88)

and for ω1 is given by

R(ω1) =

 1 .0618− .9511j

.0618 + .9511j 1

 . (2.89)

Had we actually observed the narrowband correlation matrix at ω1 with spectra

P1(ω1) = .5, P2(ω1) = .5, the narrowband correlation matrix would have been

Rref (ω1) =

 1 .9511j

.9511j 1

 . (2.90)

Our goal is to find W such that Rw(ω1) appears to have been generated by sources

of the same power as at frequency ω0, i.e. Rw(ω1) = Rref (ω1).

Since the source locations and powers are not known, we cannot directly solve

for W. Therefore, we propose a method based on the observation in Section 2.5.2,

that the virtual correlation matrix which yields least-separated source locations gives

the correct virtual correlation matrix. This is simply an approach based on this

observation, but it appears to work for this small example.

We restrict the weights to have unit power and to be complex conjugates of each
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other. The unit power assumption is reasonable because we do not want to attenuate

what is received at one element compared to the other. The complex conjugate

assumption is reasonable because it reduces our search parameter from two (w1 and

w2) to one (φ, where w1 = w∗2 = ejπφ). Since the weights can be applied after the

correlation matrix is formed, what matters is the phase between the weights, not their

absolute phases, and this is why we can assume the weights are complex conjugates

of each other.

We will use an iterative process. Starting from an initial φ0, the virtual correlation

matrix is constructed from R(ω0) and Rw(ω1). We measure the angular separation

between the source location estimates using a high-resolution technique applied to

the virtual correlation matrix. Call this separation δu0.

For the first iteration, φ0 is changed by a small amount to give φ1 = φ0 + δφ0.

The virtual correlation matrix is constructed using φ1, used in the high-resolution

technique, and the angular separation is measured again. Call it δu1.

For the second iteration, φ2 = φ1 + δφ1. The change in φ is based on the change

in separation between the last two iterations. δφ1 ∝ δu0 − δu1. φ2 changes based on

the change in separation. If the separation becomes smaller, we continue to increase

φ. If it becomes larger, φ is decreased.

In general, for the ith iteration, φi = φi−1 + a(δui−2− δui−1), where a is a positive

user-specified constant controlling the magnitude of change in φ from the previous

iteration. The iterations continue until the change in separation is sufficiently small,

i.e.,

|δui − δui−1| < ε. (2.91)

For our example, we start by plotting the MUSIC estimate when there is no

weighting, φ = 0. This is shown in Figure 2.13(a). Then a small change in the
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i φi δui
0 0 .5760
1 .005 .3594
2 .01 .1014
3 .15 .3364
4 .0125 .1982
5 .01125 .1244
6 .010625 .1014
7 .0103125 .0967

Table 2.1: Iteration Results

angle of the weights is tried, δφ0 = .005. w1 = w∗2 = ejπ.005, and the estimate using

this virtual correlation matrix is shown in Figure 2.13(b). The iteration is continued

until the separation from one iteration changes by less than some small number, say

ε = 5× 10−3 for this example. The results are summarized in the Table 2.1 and the

MUSIC estimates are plotted in Figure 2.13.

The weighting found is w1 = ejπ.0103125, w2 = e−jπ.0103125 and we see in Figure

2.13(h) that the estimated source locations are very close to the actual source loca-

tions.

The matrix Rw(ω1) corresponding to φ = .0103125 is

Rw(ω1) =

 1 −.0002− .9531j

−.0002 + .9531j 1

 . (2.92)

This is quite close to Rref (ω1) given in Equation 2.90.

This method may be a viable option for a two source example. Extending to more

than two sources may be a problem since the search criterion is unclear. Also, as the

number of array elements increases, the search space dimension would also increase.
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(a) φ = 0 (b) φ = .005

(c) φ = .01 (d) φ = .015

(e) φ = .0125 (f) φ = .01125

(g) φ = .010625 (h) φ = .0103125

Figure 2.13: MUSIC estimates for iterations
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2.6 Effect of Noise on the Virtual Correlation Ma-

trix

In the previous examples, the simulations were performed without noise to illustrate

that the method ideally works, but in more realistic simulations, noise must be in-

cluded as it is inevitable in practice.

As is shown in Equations 2.56-2.58, the condition for the virtual matrix to be

useful is that the sources must satisfy

P̄k(ωq) = P̄k(ω0) for all q, k. (2.93)

When this equation is examined in detail, we find that the noise power plays a role

in the normalized powers:

P̄k(ωq) =
Pk(ωq)∑K

l=1 Pk(ωq) + σ2(ωq)

P̄k(ω0) =
Pk(ω0)∑K

l=1 Pk(ω0) + σ2(ω0)

(2.94)

For high SNR,

P̄k(ωq) ≈
Pk(ωq)∑K
l=1 Pk(ωq)

P̄k(ω0) ≈
Pk(ω0)∑K
l=1 Pk(ω0)

.

(2.95)

In the case of high SNR, provided that the sources’ spectra are proportional, then

Equation 2.93 is satisfied. Since both the source powers and noise powers may vary

over frequency, a problem may occur when the noise power is significant and varies

over frequency. If this occurs, even with proportional spectra, Equation 2.93 may
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not be satisfied because the difference in noise power over frequency may cause the

normalized spectra to be non-proportional. This will be examined in the example in

Section 2.7.

Another issue with noise arises when constructing the virtual correlation matrix.

Recall that the map from the narrowband correlation matrices to the virtual corre-

lation matrix is not unique. In Equation 2.54 from the previous example, the zero-

coarray points (on the diagonal) were all chosen to come from the same frequency.

However, the diagonal elements could have been chosen to come from narrowband

correlation matrices at a different frequencies. If the normalized noise powers varied

over frequency, the effective noise matrix for the virtual correlation matrix would no

longer be a scaled identity. This can cause problems with source location estimation

since these estimators assume spatially white noise. Special care should be taken

when choosing the map such that the effective noise correlation matrix is a scaled

identity. This can be achieved by either choosing all of the zero coarray points in the

virtual correlation matrix from the same narrowband correlation matrix at a single

frequency or taking an average of correlation data at all zero coarray points over all

frequencies and using this in the zero-coarray point positions in the virtual correlation

matrix. The latter may yield better statistical results since more points are used, as is

suggested in [41]. However, since we are dealing with normalized correlation matrices

and ideally the diagonal of all of the narrowband and virtual correlation matrices

should be unity, it may be reasonable to just set all of the diagonal elements to unity

and avoid this problem all together.

If this step is taken with the zero coarray points, for high enough SNRs, then

the effect of noise on the high-resolution techniques will have the same character-

istics of the techniques applied in the traditional setting and we do not need extra

consideration for noise using the virtual correlation matrix.
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2.7 Additional Examples

In this section, we will give additional examples with different array configurations

and available bandwidths. Noise will also be taken into consideration.

2.7.1 Example: Three-Element Uniform Linear Array

In this example, we will study a three-element uniform linear array. Using conven-

tional high-resolution imaging methods, this array can resolve at most two point

sources. The array elements are at positions {−1, 0, 1}λ0

2
and the coarray is

{−2,−1, 0, 1, 2}λ0

2
. This example will be similar to the example presented in the

previous section as it also has a uniform linear coarray, so we do not need to fill in

coarray points but we use additional frequencies to extend the coarray. The coarray

points ±3λ0

2
can be included by using the frequency ω1 = 1.5ω0.

Now the augmented coarray is {−3,−2,−1, 0, 1, 2, 3}λ0

2
corresponding to the four

element array {−1.5,−.5, .5, 1.5}λ0

2
. Up to three point sources with proportional

spectra can be resolved with this virtual array.

Simulations were run for various signal-to-noise ratios and spacing between the

sources. The following high-resolution techniques were applied to the resulting virtual

correlation matrices: MUltiple SIgnal Classification (MUSIC), Auto-Regressive (AR)

spectrum estimator and Capon’s minimum variance spectrum estimator. The results

are shown in Figures 2.14-2.19. The simulations were performed using 1000 snapshots

to create the narrowband correlation matrices. Sources at both frequencies have equal

powers.

In general, accuracy of the estimated location of the sources decreases as the

sources becomes more closely spaced together (see the progression from Figure 2.14

to 2.19) and also as the signal-to-noise ratio (SNR) decreases (from top to bottom
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Figure 2.14: Three-element Uniform Linear Array - Source locations u = [-0.6 0 0.6]

of each figure). MUSIC performs the best of the estimators used here. It is the last

to degrade with decreasing SNR and source separation. Capon’s minimum variance

estimator performs the worst as it is the first to degrade with both decreasing SNR

and source separation. This is consistent with the performance given in the literature

[42] and is expected because when the sources have proportional spectra, the virtual

correlation matrix appears to have actually come from the virtual array at a single

frequency.

It was stated in Section 2.6 that for low SNRs, problems may arise with normal-

ization when the SNRs vary over frequency. We will examine this by simulation. In

Figure 2.15 with equal SNRs at both frequencies, MUSIC has no problem resolving

the sources at any of the SNRs. Figure 2.20 simulates the same example except the

SNR at ω0 is 40 dB and at ω1 is 20 dB. Here, even though there is a large discrep-

ancy in the SNRs, they are high enough that there is no problem with source location.

Figure 2.21 shows the results of MUSIC when the SNR at ω0 is 20 dB and at ω1 is

10 dB. There is a small amount of error in the source location estimates. In Figure
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Figure 2.15: Three-element Uniform Linear Array - Source locations u = [-0.45 0
0.45]

Figure 2.16: Three-element Uniform Linear Array - Source locations u = [-0.3 0 0.3]
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Figure 2.17: Three-element Uniform Linear Array - Source locations u = [-0.15 0
0.15]

Figure 2.18: Three-element Uniform Linear Array - Source locations u = [-0.1 0 0.1]
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Figure 2.19: Three-element Uniform Linear Array - Source locations u = [-0.05 0
0.05]

2.22, the results are plotted for when the SNR at ω0 is 0 dB and at ω1 is 10 dB.

There is significant error in the source location estimates. These problems arise at

low SNRs because the assumption in Equation 2.14 can no longer be made. Even if

the source spectra are proportional, the large noise variance skews the proportionality

when normalized.

If the available bandwidth permitted, a third frequency, ω2 = 2ω0 could be used to

give the augmented coarray {−4,−3,−2,−1, 0, 1, 2, 3, 4}λ0

2
and yield the virtual array

{−2,−1, 0, 1, 2}λ0

2
with which up to four sources with proportional spectra could be

resolved.

Comment on General Uniformly Spaced Arrays

In general, for a λ0

2
-uniformly-spaced linear array with M elements, the 2M − 1

element coarray at the reference frequency ranges from −(M −1)λ0

2
to (M −1)λ0

2
. To

extend the coarray by using multiple frequencies to include the points ±(M + l)λ0

2
,

l = 1, 2, ..., the bandwidth available needs to include the frequency ωl = αlω0 where
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Figure 2.20: Three-element Uniform Linear Array - SNR(ω0) = 40dB, SNR(ω1) =
20dB

Figure 2.21: Three-element Uniform Linear Array - SNR(ω0) = 20dB, SNR(ω1) =
10dB
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Figure 2.22: Three-element Uniform Linear Array - SNR(ω0) = 0dB, SNR(ω1) =
10dB

αl = M−1+l
M−1

. When the frequency ωl = αlω0 is used, the coarray points ±(M − 1)λ0

2

(at the reference frequency) are dilated to the points ±αl(M−1)λ0

2
= ±(M−1+ l)λ0

2
.

Examining the expression for α1, as M increases, less bandwidth is needed to

include the next extra coarray point in a uniform linear coarray.

Bandwidth for extra coarray point = |ω1 − ω0| = |α1 − 1|ω0

=

∣∣∣∣ M

M − 1
− 1

∣∣∣∣ω0 → 0 as M increases
(2.96)

This means for larger arrays, it is less expensive in terms of bandwidth to resolve

an extra point source.

2.7.2 Example: Five-Element Non-Uniform Linear Array

Much attention has been given to “fully-augmentable arrays” - those arrays which

produce a uniformly spaced coarray [15, 21, 41]. When arrays are only partially-

augmentable (not fully-augmentable), [22] develops a convex optimization technique

to fill in the missing coarray points.
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With our technique, for sources with proportional spectra, partially-augmentable

arrays can be filled in by using multiple frequencies. Also, as in the previous examples,

the multiples frequencies can be used to extend the length of the coarray.

Borrowing portions of an example from [22] to show how our techniques extends

array capabilities, consider a five element non-uniformly spaced linear array with

elements at

{xRn} = {0, 1, 4, 9, 11}λ0

2
. (2.97)

The sources are wideband incoherent sources and they can be assumed to have pro-

portional spectra in the band [1,1.2] GHz. They may be emitting in a wider band

than this, but we are assuming this is the band our array elements can receive. With

this array using conventional high-resolution imaging techniques, four sources can be

resolved.

The narrowband coarray at the reference frequency is given by

{yl} = {−11,−10,− 9,−8,−7,−5,−4,−3,−2,−1, ...

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11}λ0

2
.

(2.98)

The coarray points ±6λ0

2
are missing, which means that it does not produce a uniform

linear coarray and cannot be arranged in such a way that it appears to have come from

a uniform linear array [15, 21]. In [22], Toeplitz matrix completion is used to fill-in the

missing coarray points, yielding a matrix which is almost coarray equivalent to a 12

element uniformly spaced linear array, and thus up to 11 sources can be resolved. In

our method with sources of proportional spectra, we use extra frequencies to obtain

these coarray points. Without using any extra bandwidth beyond what was used to

fill in the missing coarray points, a few extra coarray points to extend the coarray

length can be obtained as well. Then by creating a virtual correlation matrix, it is
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possible to resolve up to 13 sources.

If data from the frequencies

fq = {1, 13

11
, 1.2}ω0 (2.99)

are used then the multi-frequency coarray becomes

2⋃
q=0

αq{0,±1,±2,±3,±4,±5, ...

...,±7,±8,±9,±10,±11}λ0

2

⊃ {0,±1,±2,±3,±4,±5,±6,±7, ...

...,±8,±9,±10,±11,±12,±13}λ0

2

= {ỹl}

(2.100)

where αq = fq
f0
∈ {1, 13

11
, 1.2}. The subset {ỹl} of the multi-frequency coarray appears

to have come from a virtual array

{x̃Rn} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}λ0

2
. (2.101)

Thus the narrowband correlation matrices can be arranged into a 14 × 14 virtual

correlation matrix. Since the sources are assumed to have proportional spectra, this

virtual correlation matrix appears to have come exactly from the virtual array and

up to 13 sources can be resolved.

Figures 2.23-2.25 show the simulation results from this example. This simulation

behaves much like the previous example. The 13 sources can be resolved when they

are not too close together and the SNR is not too low, though these simulations
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Figure 2.23: Five-element Non-uniform Linear Array - Spacing between elements: .15

are slightly more sensitive than the three source example because there are many

more sources. From a 5 element array, up to 13 sources can be resolved within the

limitations of the high-resolution technique used.

It is interesting to note that linear beamforming is almost at it’s resolution thresh-

old when the spacing is at about .15 between sources. High-resolution techniques with

virtual arrays allow us to resolve sources that are more closely spaced together without

additional array elements.

2.8 Conclusion

It was shown in this chapter that the effect of a larger array can be synthesized by

using multiple frequencies, and existing direction-of-arrival estimation techniques can

be applied without modification. Synthesizing a larger array allows for more sources

to be resolved in DOA estimation than can be resolved with a narrowband correla-

tion matrix alone. However, to locate the sources correctly, the sources must have
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Figure 2.24: Five-element Non-uniform Linear Array - Spacing between elements: .1

Figure 2.25: Five-element Non-uniform Linear Array - Spacing between elements: .05
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proportional spectra. While this is a somewhat restrictive requirement, many situa-

tions exist where closely spaced targets are identical or similar in nature, including

wideband noise-like sources and intentionally designed sources for tagging.

When the virtual correlation matrix is used in an existing high-resolution esti-

mator, there is no performance degradation in the presence of noise compared to

using a narrowband correlation matrix of the same size provided that care is taken

to select the correlation data corresponding to the zero-coarray points in the virtual

correlation.

If the spectra of the sources are not proportional, the virtual correlation matrix

can be modified to attempt to equalize the source spectra. In this chapter, there were

three methods shown to correct errors in the source location estimates for an example

with two array elements and two frequencies, forming a 3×3 virtual correlation matrix.

The method using array interpolation is the most promising to extend to examples

with larger arrays and more sources, but more research will need to be done.

When the spectra of the sources are proportional, the number of sources which

can be resolved is limited only by the bandwidth available. Even with only two array

elements, with enough bandwidth, as many sources can be resolved as is necessary.

Sparse non-uniform linear arrays (that do not necessarily have a full uniform linear

coarray) are particularly useful with this technique, as a virtual correlation matrix

with dimension much larger than the number of array elements can be constructed,

where missing coarray lags are filled in with multiple frequencies. To fill in coarray

points, a continuous band is not needed - only a sparse sampling of frequencies, which

may make this technique appealing for multi-band applications.
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2.9 Appendix

In this appendix, we show that having a group of K sources with each source hav-

ing the same normalized power at each frequency is equivalent to sources having

proportional power spectra. This is helpful because when considering the statistical

characteristics of the sources, it is natural to look at each source spectrum varying

over frequency; however, when forming the narrowband correlation matrices, it is

natural to normalize each of the source powers by the total power received from all

sources at that frequency. This is a frequency specific normalization across all K

sources.

The kth source has sampled spectrum

[Pk(ω0), Pk(ω1), ...Pk(ωQ−1)]. (2.102)

When comparing sources to each other, it is also generally useful to normalize the

spectrum of each source. For example, sources may be at different distances (though

still in the farfield) and normalization will compensate for this difference. The nor-

malized spectrum for the kth source is obtained by dividing the spectrum by the sum

of the powers at each frequency,

[
Pk(ω0)∑Q−1
q=0 Pk(ωq)

,
Pk(ω1)∑Q−1
q=0 Pk(ωq)

, ...
Pk(ωQ−1)∑Q−1
q=0 Pk(ωq)

]
. (2.103)

We call this the frequency-normalized spectrum since we are summing over frequen-

cies. This is a source-specific normalization across all frequencies.

When we are forming narrowband correlation matrices, each matrix is normalized

by the sum of the powers of each source at that frequency, i.e. frequency-specific

normalization. This is a useful normalization because then at each frequency, all of
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the zero-coarray points are normalized to 1. The vector of source powers at frequency

ωq is given by

[P1(ωq), P2(ωq), ..., PK(ωq)] , (2.104)

and the frequency-specific normalized source power vector is

[P̄1(ωq),P̄2(ωq), ..., P̄K(ωq)]

=

[
P1(ωq)∑K
k=1 Pk(ωq)

,
P2(ωq)∑K
k=1 Pk(ωq)

, ...,
PK(ωq)∑K
k=1 Pk(ωq)

]
.

(2.105)

We will show that if the set of K sources has identical normalized source power

vectors for different frequencies defined by Equation 2.105, all sources equivalently

have identical normalized spectra defined by Equation 2.103, i.e.,

Pk(ωq)∑K
l=1 Pl(ωq)

= Ak for all q, k ⇔ Pk(ωq)∑Q−1
r=0 Pk(ωr)

= Bq for all q, k (2.106)

First we will prove the left to right implication. If

Pk(ωq)∑K
l=1 Pl(ωq)

= Ak for all q, k, (2.107)

then

Pk(ωq)∑K
l=1 Pl(ωq)

=
Pk(ωp)∑K
l=1 Pl(ωp)

⇒ Pk(ωq) = Cq,pPk(ωp).

(2.108)

It follows that

Pk(ωq)∑Q−1
r=0 Pk(ωr)

=
Cq,pPk(ωp)∑Q−1
r=0 Cr,pPk(ωp)

=
Cq,pPk(ωp)∑Q−1
r=0 Cr,pPk(ωp)

=
Cq,p∑Q−1
r=0 Cr,p

. (2.109)
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Since this is independent of k, we also have:

Pm(ωq)∑Q−1
r=0 Pm(ωr)

=
Cq,p∑Q−1
r=0 Cr,p

. (2.110)

Therefore

Pk(ωq)∑Q−1
r=0 Pk(ωr)

(2.111)

is independent of k and only depends on q:

Pk(ωq)∑Q−1
r=0 Pk(ωr)

= Bq for all q, k. (2.112)

We prove the right to left implication similarly. We start with

Pk(ωq)∑Q−1
r=0 Pk(ωr)

=
Pm(ωq)∑Q−1
r=0 Pm(ωr)

⇒ Pk(ωq) =

∑Q−1
r=0 Pk(ωr)∑Q−1
r=0 Pm(ωr)

Pm(ωq) = Dk,mPm(ωq)

(2.113)

then,

Pk(ωq)∑K
l=1 Pl(ωq)

=
Dk,mPm(ωq)∑K
l=1Dl,mPm(ωq)

=
Dk,m∑K
l=1Dl,m

(2.114)

Since this is independent of q, we also have:

Pk(ωp)∑K
l=1 Pl(ωp)

=
Dk,m∑K
l=1Dl,m

. (2.115)

Therefore,

Pk(ωq)∑K
l=1 Pl(ωq)

(2.116)
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is independent of q and depends on k

Pk(ωq)∑K
l=1 Pl(ωq)

= Ak. (2.117)

QED.
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Chapter 3

High-Resolution Active Imaging

using Multiple Frequencies

3.1 Introduction

MUltiple SIgnal Classification (MUSIC) is a well-known high-resolution direction-of-

arrival technique. In its original form for passive receive-only imaging, only incoherent

sources can be resolved and the number of sources must be less than the number of

receiving elements. For the narrowband passive imaging case, methods to increase

the dimensions of the array correlation matrix, and thus the number of targets that

can be resolved, have been proposed in [15, 21]. MUSIC was extended to active

transmit/receive imaging in [13] to resolve both incoherent and coherent narrowband

reflectors. The number of reflectors that can be resolved using MUSIC in active

imaging is limited by the size of the array correlation matrix obtained directly from

the array elements. However, it was shown that if the ability to resolve coherent

reflectors is sacrificed, more incoherent reflectors can be resolved by using virtual

arrays.
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In this work, we seek to increase the number of coherent reflectors that can be

resolved using MUSIC with active imaging. Essentially, virtual correlation matrices

will be constructed so that they maximize the total number of reflectors that can be

resolved as in [13]. By using array interpolation [19], we combine virtual correlation

matrices at different frequencies in a way such that the resulting matrix can be used

to resolve coherent reflectors.

Averaging over frequency is similar in spirit to spatial smoothing [9, 31] or pat-

tern diversity [10] because they all allow for coherent targets to be resolved using

imaging techniques intended for incoherent targets. With spatial smoothing, there is

a reduction in the dimension of the spatial correlation matrix, meaning fewer targets

can be resolved. For small arrays, but many targets, this reduction in dimensionality

can be a problem. The frequency averaging technique proposed here does not cause

a reduction in the dimension of the correlation matrix. Pattern diversity does not

necessarily cause a reduction in the dimension of the spatial correlation matrix, but

to preserve the dimension of the spatial correlation matrix, each array element must

be capable of producing independent patterns. For frequency averaging, all that is

necessary is that the array elements must be capable of transmitting and receiving

multiple frequencies. The ability to resolve coherent targets by frequency averaging

does not come for free. The trade-off is that only a fraction of the scene can be

imaged. Because of this restriction, we consider imaging scenarios where the targets

are clustered together. However, this may not be too restrictive an assumption since

we are considering high-resolution techniques.
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3.2 Active Imaging

Active imaging is used to estimate the locations of targets which do not emit their

own radiation. Radiation sent by an array of emitting elements is reflected by a

distribution of targets. The reflections are received by an array of sensing elements.

The received signals are processed to yield an estimate of the target locations. There

are many ways to process the received signals. In this chapter, we focus on high-

resolution techniques, specifically Multiple Signal Classification (MUSIC). Classical

beamforming will also be discussed briefly, as it is used later in the chapter to assist

with target location.

In this chapter, we restrict our discussion to line arrays. To understand the array

geometry, it is helpful to consider the array elements and targets to lie in the x-z

plane, see Figure 3.1. The transmit and receive array elements lie on the x-axis. The

transmit array elements are located at {xTn, n = 1, 2, ..., N} and the receive array

elements at {xRm,m = 1, 2, ...,M} with respect to an arbitrary origin. The two

arrays may or may not share elements. We define the array diameter, DA, as the

furthest distance between any two transmit or receive array elements. The z-axis,

which is normal to the x-axis, is referred to as broadside of the array and serves as a

reference for direction. We assume K reflectors in the scene are located at (Rk, uk),

where Rk is the distance from the origin to the kth reflector, uk = sin θk and θk is the

direction to the kth reflector from broadside.

Both of the arrays are assumed to be capable of wideband operation. A waveform,

s(t), is sent from the transmit array elements. We construct s(t) from multiple

frequencies, ωq, q = 0, 1, ..., Q− 1, i.e., s(t) =
∑Q−1

q=0 e
j(ωqt+ξq) with Fourier Transform

S(ω) =
∑Q−1

q=0 e
jξqδ(ω − ωq). The phase ξq ∈ [−π, π] is the random, but fixed, phase

associated with the frequency ωq. In practice, we cannot realistically construct such a
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Figure 3.1: Array Geometry

pulse, as it would be infinite in time. The true signal would consist of a summation of

narrowband pulses about the Q frequencies. Approximating the narrowband pulses

as ideal, single frequencies is often done in the literature for narrowband imaging,

and we make use of the same approximation for simplicity.

The frequency ω0 is called the reference frequency because the array spacing is

based on wavelength λ0 corresponding to ω0. In this chapter, we assume the transmit

and receive arrays are uniformly spaced arrays with each array having spacing between

the elements of λ0

2
. This is the Nyquist spatial sampling rate. Frequencies other than

the reference frequency can be represented as a multiple of the reference frequency,

ωq = αqω0.

It is assumed that the targets lie in the far-field of the array. Thus, the targets are

far enough away from the array that the wavefronts arriving at the targets from the

transmit array and the reflections arriving at the receive array can be approximated

as plane waves. An accepted condition is that [40]

min
k
Rk >>

D2
A

minq λq
. (3.1)
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This condition ensures that the far-field condition is satisfied for all target ranges and

frequencies.

When radiation of frequency ωq is incident on kth reflector, it reflects with complex

amplitude ãk(ωq). This amplitude takes into account the power of reflection and the

reflection phase. Two reflectors are said to be coherent if the phase difference received

at the array origin from reflections by each one, at any frequency, is the same at every

snapshot. This may occur when the reflectors and array are fixed in space with respect

to each other. Groups of reflectors may be mutually coherent, each pair having a fixed

phase relationship. On the other hand, reflectors are incoherent when they do not

reflect with the same phase between snapshots. This may occur if the targets move

independently of each other between snapshots. This phase relationship is important

because not all imaging techniques can resolve targets which have a coherent phase

relationship. Coherent targets are generally more difficult to image and will be the

focus of this chapter. Recall that K denotes the total number of targets and we

let Kc denote the number of them that are mutually coherent. For simplicity of

discussion, we assume that there is only a single group of mutually coherent targets.

It is explained in [41] that considering this case is mathematically sufficient and can

easily be generalized to multiple groups of mutually coherent targets.

3.2.1 Data Collection

Since we may possibly be imaging coherent targets, it is necessary that we collect the

data so that the data from each transmit/receive pair can be accessed individually. To

do this, the waveform s(t) is transmitted individually from each transmitting element

and received by all receiving elements.

Assuming s(t) is transmitted from xTn, the wavefront arrives at the kth target
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with delay τk,Tn, where

τk,Tn =

√
(Rkuk − xTn)2 +R2

k(1− u2
k)

c
, (3.2)

and c is the speed of light. Similarly, the reflected signal from the kth target arrives

at receiving element xRm with delay τk,Rm:

τk,Rm =

√
(Rkuk − xRm)2 +R2

k(1− u2
k)

c
. (3.3)

Assuming additive, zero-mean, temporally and spatially white, circular Gaussian ob-

servation noise processes, the total received signal at xRm from xTn is the sum of all

reflections from the targets:

[

Q−1∑
q=0

K∑
k=1

ãk(ωq)e
jωq(t−τk,Tn−τk,Rm)ejξq ] + wm,n(t) (3.4)

where wm,n(t) is the observation noise process from the nth transmission at the mth

receiver. Since the targets are assumed to be in the farfield, we can make a simplifi-

cation in Equation 3.4. Expanding cτk,Tn and cτk,Rm in 1
Rk

we get

cτk,Tn = Rk − ukxTn +
1

2Rk

[x2
Tn − u2

kx
2
Tn] +

1

2R2
k

[ukx
3
Tn − u3

kx
3
Tn] + ...

cτk,Rm = Rk − ukxRm +
1

2Rk

[x2
Rm − u2

kx
2
Rm] +

1

2R2
k

[ukx
3
Rm − u3

kx
3
Rm] + ...,

(3.5)

and in the far-field they can be approximated as

cτk,Tn ≈ Rk − ukxTn

cτk,Rm ≈ Rk − ukxRm.
(3.6)

By matched filtering at each frequency at the receivers, the complex amplitude we
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receive at xRm from xTn at frequency ωq is

Xm,n(ωq) =
K∑
k=1

ãk(ωq)e
−jkq2Rkejξqejkquk(xRm+xTn) + wm,n(ωq)

=
K∑
k=1

ak(ωq)e
jkquk(xRm+xTn) + wm,n(ωq),

(3.7)

where

ak(ωq) = ãk(ωq)e
−jkq2Rkejξq (3.8)

and wm,n(ωq) is independent, complex, circular, Gaussian noise with variance σ2. The

complex amplitude ak(ωq) now depends on not only the characteristics of the target,

but the phase depends on the distance from the target to the array and the phase

associated with each frequency at transmission, which vary over frequency. Because

of this, even for otherwise identical targets, generally

ak(ωq) 6= al(ωp) for all k 6= l, q 6= p (3.9)

except under very strict conditions on the target ranges and chosen frequencies. The

received phase from each reflection changes over frequency in two ways: at the reflec-

tion and from the propagation.

The complex amplitudes received from all transmitters and receivers at each fre-

quency can be arranged into data matrices, {X(ωq)}, where the data resulting from

the transmission from xTn received at xRm at frequency ωq is the (m,n)th element of

X(ωq). This is what is given in Equation 3.7.

For each frequency, the data matrix can be factored as follows:

X(ωq) = AR(ωq)S(ωq)AT(ωq)
T + W(ωq), (3.10)
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where AR(ωq) is the receive array manifold matrix,

AR(ωq) =



ejkqu1xR1 ejkqu2xR1 ... ejkquKxR1

ejkqu1xR2 ejkqu2xR2 ... ejkquKxR2

...
...

...
...

ejkqu1xRM ejkqu2xRM ... ejkquKxRM


, (3.11)

the transmit array manifold matrix, AT(ωq), is

AT(ωq) =



ejkqu1xT1 ejkqu2xT1 ... ejkquKxT1

ejkqu1xT2 ejkqu2xT2 ... ejkquKxT2

...
...

...
...

ejkqu1xTN ejkqu2xTN ... ejkquKxTN


, (3.12)

S(ωq) = diag[a1(ωq), a2(ωq), ...aK(ωq)] is the diagonal matrix of reflectivities and

W(ωq) is the matrix of observation noise at frequency ωq.

3.2.2 Coarray

In active imaging, the sum coarray is defined as the set of all possible pairwise sums

between a transmit array element position and a receive array element position:

{yl} = {yl|yl = xRm + xTn,m = 1, 2, ...,M, n = 1, 2, ...,M}. (3.13)

The coarray is an important concept in imaging. For beamforming, the coarray

determines the resolution and other image characteristics obtainable by the array.

For high-resolution imaging, we will see that the coarray helps us understand the

structure of the data matrices. At the reference frequency ω0, the (m,n)th element of
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the noiseless data matrix is

Xm,n(ω0) =
K∑
k=1

ak(ω0)e
jk0uk(xRm+xTn) (3.14)

It is supported on the coarray point xRm + xTn. Notice this is a sum coarray point.

We use the known coarray support structure of the data matrix to better help us

understand high-resolution imaging.

For frequencies other than the reference frequency, ωq = αqω0, the (m,n)th data

matrix at the frequency ωq is

Xm,n(ωq) =
K∑
k=1

ak(ωq)e
jkquk(xRm+xTn) =

K∑
k=1

ak(ωq)e
jk0ukαq(xRm+xTn). (3.15)

This has the same structure as Equation 3.14, except for the factor αq in the argument

of the exponential. The αq factor arises because when a frequency other than the

reference frequency is used, the coarray dilates by the factor αq [17]. Even though

all frequencies are transmitted and received by the same arrays, they have different

coarray support. Thus, by using multiple frequencies, we generate additional coarray

points compared to using a single frequency.

The complex amplitude associated with each coarray point can be thought of as

a unique piece of information about the target locations and reflectivities. The more

coarray points we have, the more information we have about the targets, so using

multiple frequencies provides more information about the targets compared to using

a single frequency.
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3.2.3 Active Imaging Techniques

The focus of this chapter is on high-resolution techniques. Here we derive the high-

resolution technique Multiple Signal Classification. The derivation reveals important

conditions that must be considered later in the chapter. Linear beamforming is

also briefly described since it will be used in conjunction with the high-resolution

techniques.

Beamforming

In linear beamforming, the transmitted radiation and received radiation is focused by

applying appropriate delays to the transmit and receive elements. First, the transmit-

ted radiation is focused in the direction desired, u, by applying phase delay weights

on the transmit array elements so that the wavefronts add constructively in the di-

rection u. If there is a reflector at u, the focused radiation reflects strongly and the

reflection is received at the receive array elements. The received signals are given a

phase weighting profile so that they add constructively from the direction u. The

image is a sum of all focused received signals as a function of u. Disregarding noise,

the image expression is easily seen to be obtained as follows:

I(u) =
M∑
m=1

M∑
n=1

X(ω0)m,ne
−jk0uxRme−jk0uxTn

=
M∑
m=1

M∑
n=1

K∑
k=1

ak(ω0)e
−jk0(u−uk)(xRm+xTn)

(3.16)

The image magnitude has peaks when u = uk. However, there is a limit on how

closely the targets can be spaced. This limit depends on the length of the coarray [14].

For small arrays, closely spaced targets cannot be resolved. They appears as a single

peak in the image. High-resolution techniques can be used when the beamforming
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resolution of the array is not sufficient.

Multiple Signal Classification (MUSIC)

In [13], it was shown that high-resolution techniques, which in their conventional form

are used to passively image incoherent sources, can also be used in active imaging

to resolve coherent targets. MUltiple SIgnal Classification (MUSIC) is a well-known

high-resolution imaging technique and is the technique we will use for simulations.

The basis of MUSIC is the eigendecomposition of the narrowband correlation matrix

R(ω0), [42]. Since conventional high-resolution techniques are narrowband, we assume

operation at the reference frequency throughout this section.

Temporarily ignoring observation noise, the array correlation matrix for active

imaging is defined as

R(ω0) = E[X(ω0)X(ω0)
H ], (3.17)

where the expectation is taken over multiple snapsnots. The array correlation matrix

has the following structure in terms of the array manifold matrices:

R(ω0) = AR(ω0)E[S(ω0)AT(ω0)
TAT(ω0)

∗S(ω0)
H ]AR(ω0)

H (3.18)

We define

ST(ω0) = E[S(ω0)AT(ω0)
TAT(ω0)

∗S(ω0)
H ] (3.19)

as the source correlation matrix at frequency ω0. Note that it depends on the target

reflectivities as well as the transmit array positions. For incoherent targets, over

multiple snapshots, the target reflectivities are uncorrelated and

ST(ω0) = Ndiag[|a1|2, |a2|2, ..., |aK |2]. (3.20)

93



When the targets are incoherent, the correlation matrix has the same structure as

a correlation matrix obtained from a passive imaging system observing incoherent

sources, and no additional consideration is necessary to use high-resolution techniques

with active imaging. However, for coherent targets, the target reflectivities do not

become uncorrelated over multiple snapshots. They are completely correlated. When

the expectation is taken, the source correlation matrix has the following form:

ST(ω0) = E[S(ω0)AT(ω0)
TAT(ω0)

∗S(ω0)
H ]

= S(ω0)AT(ω0)
TAT(ω0)

∗S(ω0)
H .

(3.21)

Even though we take the expectation, since there is no randomness in the reflectivities

and we are assuming no noise, the source correlation matrix is a deterministic quantity

for coherent sources. Recall that AR(ω0) has dimension M × K and AT(ω0) has

dimension N ×K. It is reasonable to assume that the columns of the array manifold

matrices are linearly independent for {uk} ∈ [−1, 1], thus AR(ω0) has rank min(M,K)

and AT(ω0) has rank min(N,K). The matrix S(ω0) is a full-rank diagonal matrix

with dimension K ×K.

Since AR(ω0), AT(ω0) and S(ω0) are all full rank, rank of ST (ω0) is min(N,K)

and it is full rank if N ≥ K. Having a full-rank source correlation matrix ST(ω0) is

necessary to use MUSIC. Provided that the source correlation matrix ST(ω0) has full

rank K, R(ω0) has rank min(M,K). If M > K, R(ω0) is rank deficient. These rank

conditions are important to understand because MUSIC exploits the rank deficiency

of the array correlation matrix.

When imaging both incoherent and coherent targets, it was shown in [13] that the

rank conditions derived above hold as long as N ≥ Kc and M > K.

In summary, the conditions needed to use high-resolution imaging techniques de-

pend on the rank of the source correlation matrix and the rank of the array correlation
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matrix. The rank conditions are satisfied for all types of targets as long as

N ≥ Kc

M > K.

(3.22)

Given that the conditions in Equation 3.22 are satisfied, existing high-resolution tech-

niques can be applied to the correlation matrix R(ω0) for active imaging of coherent

targets.

If K < M and Kc ≤ N , there exist M −K zero eigenvalues of R(ω0) with cor-

responding eigenvectors v0
i(ω0), i = 1, 2, ...M −K, and the {v0

i(ω0)} are orthogonal

to the columns of the array manifold matrix, AR(ω0) [42]:

v0
i(ω0)

HR(ω0)v
0
i(ω0) = 0

⇔ v0
i(ω0)

HAR(ω0)ST(ω0)
1
2 = 0

⇔ v0
i(ω0)

HAR(ω0) = 0

⇔ v0
i(ω0)

HaR(u, ω0) = 0 for u = uk

(3.23)

where

aR(u, ω0) = [ejk0uxR1 ejk0uxR2 ... ejk0uxRM ]T (3.24)

is the array steering vector. Note that aR(u, ω0) is equal to the kth column of AR(ω0)

when u = uk. Exploiting this orthogonality, the MUSIC pseudo-spectrum is defined

as [42]

PMUSIC(u) =
1∑M−K

i=1 |aR
H(u, ω0)v0

i(ω0)|2
. (3.25)

The peaks of PMUSIC(u) correspond to the directions-of-arrival, {uk} of the reflectors.

We see from the second and third lines in Equation 3.23 that derivation of MUSIC

depends on ST(ω0) being full rank. If N < Kc, ST(ω0) is not full rank and MUSIC
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will fail to correctly locate the coherent targets.

Note that when additive spatially-white Gaussian observation noise of variance σ2

is present, this adds a scaled identity matrix to the correlation matrix:

E[X(ω0)X(ω0)
H ] = AR(ω0)ST(ω0)AR(ω0)

H + σ2I. (3.26)

The addition of a scaled identity does not change the eigenvectors. The only change

in the above analysis is that the “zero-eigenvectors” are chosen to be those with the

M −K smallest eigenvalues.

3.3 Constructing the Virtual Data and Correla-

tion Matrices

The idea behind creating virtual data and correlation matrices is that, presumably,

the virtual correlation matrix will have a dimension larger than the correlation matrix

obtained directly from the array. From Equation 3.22, a correlation matrix with larger

dimension should allow for more total targets to be resolved. However, we will see

that these targets cannot necessarily all be mutually coherent. There is a trade off

between the number of coherent targets which can be resolved and the increase in the

dimension of the virtual correlation matrix.

3.3.1 Virtual Arrays

In active imaging, there are two arrays, the transmit and receive arrays. We assume

that both of these arrays are uniformly spaced with N and M elements respectively.

The coarray generated by these arrays is a uniformly spaced coarray with N +M − 1

elements. This same uniformly spaced coarray could also be generated by transmit
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and receive arrays of lengths M̃ and Ñ provided that Ñ+M̃ = N+M . Such arrays of

virtual transmit and receive elements are called virtual arrays ; their effect is obtained

by viewing the actual data matrix in a different way. To avoid confusion, we will

call the physical array the natural array. In terms of the coarray, we must choose a

virtual array that is coarray equivalent to the natural array, meaning that they have

the same coarray.

The virtual array element locations are denoted by {x̃Rm},m = 1, 2, ..., M̃ and

{x̃Tn}, n = 1, 2, ..., Ñ , and their array manifold matrices are

ÃR(ωq) =



ejkqu1x̃R1 ejkqu2x̃R1 ... ejkquK x̃R1

ejkqu1x̃R2 ejkqu2x̃R2 ... ejkquK x̃R2

...
...

...
...

ejkqu1x̃RM̃ ejkqu2x̃RM̃ ... ejkquK x̃RM̃


(3.27)

and

ÃT(ωq) =



ejkqu1x̃T1 ejkqu2x̃T1 ... ejkquK x̃T1

ejkqu1x̃T2 ejkqu2x̃T2 ... ejkquK x̃T2

...
...

...
...

ejkqu1x̃TÑ ejkqu2x̃TÑ ... ejkquK x̃TÑ


. (3.28)

Since the virtual and natural arrays are coarray equivalent, we can use the coarray

concept to help us understand how to construct the virtual data matrix, X̃(ωq).

X̃(ωq) is an M̃× Ñ matrix and we will only consider virtual arrays where M̃ > M

because we are interested in increasing the number of targets that can be resolved. As

we increase the number of virtual receivers, M̃ , the number of virtual transmitters,

Ñ , decreases.

The virtual data matrix, X̃(ωq) = ÃR(ωq)S(ωq)ÃT(ωq)
T , can be constructed from

the natural data matrix, X(ωq), in such a way that it appears to have come from the
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virtual arrays.

3.3.2 Coarray Support Matrix

Since we are dealing with data matrices, it is useful to consider the coarray in matrix

form. The coarray support matrix is the coarray in matrix form. It is defined as a

matrix that is the same dimension as X(ω0). The (m,n)th element of the M × N

natural coarray support matrix for frequency ω0 is

Cm,n(ω0) = xRm + xTn. (3.29)

From Equation 3.7, the coarray support matrix is simply the coarray support of the

narrowband data matrix.

Likewise, the (m,n)th element of the M̃ × Ñ virtual coarray support matrix is

C̃m,n(ω0) = x̃Rm + x̃Tn. (3.30)

This is a useful way of viewing the coarray for high-resolution imaging because

we primarily deal with matrices. The (m,n)th element of the sum coarray support

matrix at frequency ω0 gives us the coarray support point for the (m,n)th element of

the data matrix at frequency ω0.

3.3.3 Virtual Data and Virtual Correlation Matrices

The objective is to create a virtual data matrix, X̃(ω0), that appears to have come

from virtual arrays with transmit and receive elements at {x̃Tn} and {x̃Rm}, respec-

tively, with enough elements to resolve the total number of reflectors desired. Since

we know the natural and virtual arrays are coarray equivalent, we can find a map that
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matches the elements of the natural coarray support matrix, C(ω0), to the elements

of the desired virtual coarray support matrix, C̃(ω0),

C(ω0)
f−→ C̃(ω0). (3.31)

Then we can construct the virtual data matrix, X̃(ω0), from the natural data matrix,

X(ω0), using the same map:

X(ω0)
f−→ X̃(ω0). (3.32)

The autocorrelation of the virtual data matrix yields an M̃×M̃ virtual correlation

matrix :

R̃(ωq) = E[X̃(ωq)X̃(ωq)
H ]

= ÃR(ωq)S̃T(ωq)ÃR(ωq)
H .

(3.33)

Comparing the virtual correlation matrix to the natural correlation matrix in Equa-

tion 3.18, we see that they have the same structure except that the virtual source

correlation matrix,

S̃T(ωq) = E[S(ωq)ÃT(ωq)
T ÃT(ωq)

∗S(ωq)
H ], (3.34)

now depends on the virtual transmit array and no longer the natural transmit array.

This changes the rank characteristics. The virtual transmit array manifold, ÃT(ωq),

has dimension Ñ×K and rank min(Ñ ,K), and the virtual source correlation matrix,

S̃T(ωq), also has rank min(Ñ ,K). We are only considering cases where M̃ > M ,

thus Ñ < N , and as was shown in [13], there is a decrease in the number of coherent

targets that can be resolved.

By maximizing M̃ , i.e. M̃ = M + N − 1 and Ñ = 1, this maximizes the total
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number of reflectors which can be resolved. The problem is that none of them can

be coherent. It is desirable to increase the number of coherent reflectors that can

be resolved and in the next section, we will address how we can allow for additional

coherent targets to be resolved using virtual data matrices.

For frequencies other than the reference frequency, using the same map, f , addi-

tional virtual data and correlation matrices can be constructed at frequencies {ωq},

X(ωq)
f−→ X̃(ωq)

R̃(ωq) = E[X̃(ωq)X̃(ωq)
H ]

= ÃR(ωq)S̃T(ωq)ÃR(ωq)
H .

(3.35)

For all ωq, R̃(ωq) and S̃T(ωq) share the same rank characteristics as R̃(ω0) and S̃T(ω0).

3.3.4 Averaged Virtual Correlation Matrix

In this section, we consider using virtual arrays to resolve all the way up to M̃ −

1 coherent targets. This is done by averaging the virtual correlation matrix over

frequencies. This frequency averaging produces a similar effect to spatial smoothing

[9, 31] and pattern diversity [10], but without a reduction in the dimensionality of the

correlation matrix. However, the averaged virtual correlation matrix is only valid in

a sector of the scene.

Array Interpolation

Array interpolation matrices allow us to add correlation matrices at different frequen-

cies while retaining to structure given in Equation 3.18.
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We want to find an array interpolation matrix B0(ωq) such that [19]

ÃR(ω0) ≈ B0(ωq)ÃR(ωq). (3.36)

Since the {ÃR(ωq)} are functions of the unknown {uk}, we cannot directly solve for

the {B0(ωq)}. However, we assume it is known that uk ∈ [us, uf ], thus we can find

B0(ωq) by a least squares fit over the sector [us, uf ]. The optimal B0(ωq) in the least

squares sense minimizes

∫ uf

us

||ãR(u, ω0)−B0(ωq)ãR(u, ωq)||2du (3.37)

with respect to B0(ωq), where ãR(u, ωq) is the virtual receive array steering vector at

frequency ωq:

ãR(u, ωq) = [ejkqux̃R1 , ejkqux̃R2 , ..., ejkqux̃RM̃ ]T . (3.38)

To find B0(ωq), we approximate the integral in Equation 3.37 by a summation

taken over points in the sector. The sector is sampled P ≥M times and the matrices

Ãq are constructed as follows:

Ãq =



ãR(u1, ωq)
H

ãR(u2, ωq)
H

...

ãR(ui, ωq)
H

...

ãR(uP , ωq)
H


(3.39)

Here ui is the ith sample of the sector. Assuming that P ≥M and that the matrices

101



Ãq each have full column rank, the least squares solution is given by [44]:

B0(ωp) = ÃH
0 Ãp[Ã

H
p Ãp]

−1. (3.40)

When we pre- and post-multiply the spatial correlation matrix at frequency ωq

by the appropriate array interpolation matrix, the correlation matrix at frequency ωq

appears to have come from frequency ω0 in the sector,

B0(ωq)R̃(ωq)B0(ωq)
H = B0(ωq)ÃR(ωq)S̃T(ωq)ÃR(ωq)

HB0(ωq)
H

≈ ÃR(ω0)S̃T(ωq)ÃR(ω0)
H ,

(3.41)

but with a different source correlation matrix at each frequency.

Averaged Correlation Matrix

Recall that if the source correlation matrix ST(ω0) is not full rank (i.e. Kc > Ñ),

MUSIC will be unable to resolve the coherent targets. We show that averaging the

virtual correlation matrices over multiple frequencies can increase the rank of the

source correlation matrix and allow coherent targets to be resolved. This effectively

decorrelates the targets.

The correlation matrices cannot be directly averaged over frequency since they

each have different coarray support, so we use array interpolation to force each spa-

tial narrowband correlation matrix to appear to have come from frequency ω0 as in

Equation 3.41. This forces each correlation matrix to have approximately the same

coarray support.

102



The averaged virtual correlation matrix is defined as:

R̄(ω0) =
1

Q
[R̃(ω0) +

Q−1∑
q=1

B0(ωq)R̃(ωq)B0(ωq)
H ]

=
1

Q
[ÃR(ω0)S̃T(ω0)ÃR(ω0)

H +

Q−1∑
q=1

B0(ωq)ÃR(ωq)S̃T(ωq)ÃR(ωq)
HB0(ωq)

H ]

≈ 1

Q

Q−1∑
q=0

ÃR(ω0)S̃T(ωq)ÃR(ω0)
H

= ÃR(ω0)[
1

Q

Q−1∑
q=0

S̃T(ωq)]ÃR(ω0)
H

= ÃR(ω0)S̄TÃR(ω0)
H

(3.42)

The averaged correlation matrix has the same structure as a correlation matrix ob-

serving the scene at a frequency ω0, but since we averaged over frequencies, we have

a new averaged source correlation matrix,

S̄T =
1

Q

Q−1∑
q=0

S̃T(ωq). (3.43)

Recall that for R̄(ω0) to be useful in high-resolution techniques, S̄T (ω0) must be

full-rank. We show that S̄T (ω0) has full rank when the number of frequencies is

greater than or equal to the number of coherent targets,

Q ≥ Kc. (3.44)

To show this, we assume the worst case where all of the reflectors are coherent,
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K = Kc, and the virtual transmit array only has one element at {0}. Then

ST(ωq) = S(ωq)



1

1

...

1


[
1 1 ... 1

]
S(ωq)

H = s(ωq)s(ωq)
H , (3.45)

has rank 1, where

s(ωq) = [a1(ωq), a2(ωq), ..., aK(ωq)]
T . (3.46)

It is reasonable to assume that the vectors {s(ωq)} are linearly independent,

s(ωq) 6=
∑
p 6=q

ηps(ωp) for all q (3.47)

because the phases of the complex amplitudes {ak(ωq)} depend on frequency in two

ways: the phase at the reflection boundary and the phase resulting from the propa-

gation delay, see Equations 3.8 and 3.9.

The averaged correlation matrix can be written as a sum of Q dyadic products:

QS̄T =

Q−1∑
q=0

s(ωq)s(ωq)
H . (3.48)

From the linear independence assumption in Equation 3.47, Equation 3.48 shows that

S̄T has a basis of Q linearly independent vectors. Since S̄T is a K ×K matrix, it has

rank min(K,Q). Thus if Q ≥ K, it has full rank.

More generally, when imaging both coherent and incoherent target, the number

of frequencies used should be greater than the number of coherent targets, Q ≥ Kc.

If this condition is satisfied, S̄T has full rank and thus R̄(ω0) is useful in MUSIC.
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3.4 Illustration of the Construction and Use of the

Averaged Virtual Correlation Matrix

In this example, we illustrate the construction and use of the averaged virtual cor-

relation matrix. First we consider a noiseless example, then we study the effect of

noise.

3.4.1 Noiseless

Consider a small array with two transmit/receive elements at

{xRm} = {−λ0

4
,
λ0

4
},M = 2

{xTn} = {−λ0

4
,
λ0

4
}, N = 2.

From Equation 3.29, the natural coarray support matrix at the reference frequency is

C(ω0) =

−λ0

2
0

0 λ0

2

 . (3.49)

To maximize the total number of targets that can be resolved, we choose the

virtual arrays with the maximum number of receivers and a single transmitter:

{x̃Rm} ={−λ0

2
0

λ0

2
}, M̃ = 3

{x̃Tn} ={0}, Ñ = 1.
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This virtual array yields the virtual coarray support matrix

C̃(ω0) =


−λ0

2

0

λ0

2

 . (3.50)

To construct the virtual data matrix X̃(ω0) from X(ω0), we first must find a map

from C(ω0) to C̃(ω0). There are three possible maps:

C̄(ω0) =


C(ω0)1,1

C(ω0)2,1

C(ω0)2,2

 ,


C(ω0)1,1

C(ω0)1,2

C(ω0)2,2

 ,


C(ω0)1,1

1
2
(C(ω0)1,2 + C(ω0)2,1)

C(ω0)2,2

 . (3.51)

The latter is the preferred map. It may yield better statistical results as is suggested

in [13] since it averages over redundant coarray points. The resulting virtual data

matrix X̃(ω0) is formed by using a map that matches the elements of C(ω0) to C̃(ω0)

and applying it to X(ω0):

X̃(ω0) =


X(ω0)1,1

1
2
(X(ω0)1,2 + X(ω0)2,1)

X(ω0)2,2

 (3.52)

The virtual data matrix is used to construct the virtual correlation matrix given

in Equation 3.33:

R̃(ω0) = E[X̃(ω0)X̃(ω0)
H ]. (3.53)

The resulting virtual correlation matrix is a rank 1, 3 × 3 matrix. As was discussed

in Section 3.3.3, using this correlation matrix, up to two targets can be resolved, but

they cannot be coherent.
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Similarly, by transmitting and receiving a different frequency ω1, different virtual

data and correlation matrices can be formed:

X̃(ω1) =


X(ω1)1,1

1
2
(X(ω1)1,2 + X(ω1)2,1)

X(ω1)2,2

 , (3.54)

R̃(ω1) = E[X̃(ω1)X̃(ω1)
H ]. (3.55)

Averaging the virtual correlation matrix over frequency can allow for coherent

targets to be resolved. From Equation 3.44, two frequencies should be sufficient to

resolve two coherent targets. The averaged virtual correlation matrix is formed as

follows:

R̄ =
1

2
[R̃(ω0) + B0(ω1)R̃(ω1)B0(ω1)

H ]

≈ ÃR(ω0)
1

2
[S̃T(ω0) + S̃T(ω1)]ÃR(ω0)

H

= ÃR(ω0)S̄TÃR(ω0)
H

(3.56)

If we assume that we have two coherent reflectors with complex amplitudes

a1(ω0), a2(ω0), a1(ω1), a2(ω1), (3.57)

we can examine the source correlation matrix S̃T(ω0) and averaged source correlation

matrix S̄T more closely.

The source correlation matrix written out is

S̃T(ω0) =

 a1(ω0)
2 a1(ω0)a2(ω0)

a2(ω0)a1(ω0) a2(ω0)
2

 . (3.58)
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It is easy to see that the columns of S̃T(ω0) are linearly dependent for any reflectivities.

Thus S̃T(ω0) is not full rank. This is why R̃(ω0) alone will not work in MUSIC for

coherent targets. The same analysis applies to S̃T(ω1).

However, the averaged source correlation matrix from Equation 3.56 is

S̄T =
1

2

 ∑1
q=0 a1(ωq)

2
∑1

q=0 a1(ωq)a2(ωq)∑1
q=0 a2(ωq)a1(ωq)

∑1
q=0 a2(ωq)

2

 . (3.59)

This matrix is full rank unless

det S̄T = 0⇔ a1(ω1)a2(ω0) = a2(ω1)a1(ω0)

⇔ ã1(ω1)e
−jk12R1 ã2(ω0)e

−jk02R2 = ã2(ω1)e
−jk12R2 ã1(ω0)e

−jk02R1 .

(3.60)

Recall that ãk(ωq) encompasses the strength of reflection and the phase change at

the reflection boundary for the kth target at frequency ωq, but not the phase change

due to propagation. The exponentials are the phase change due to propagation delay

and depend on the target range, Rk, and the frequency. Equation 3.60 is not true in

general, and thus S̄T is full rank in general. However, to explore where problems may

arise with the rank conditions, assume that the target reflectivities are identical, i.e.,

ã1(ω0) = ã2(ω0)

ã1(ω1) = ã2(ω1).

(3.61)

Then, Equation 3.60 is satisfied if

e−jk12R1e−jk02R2 = e−jk12R2e−jk02R1 ⇔ e−jk02(α1R1−R2) = e−jk02(α1R2−R1)

⇔ R1 = R2 +
nλ0

2(1 + α1)
for integer n.

(3.62)

This condition implies that for some target ranges, at certain frequencies (governed

108



by α1), there may be rank problems with the averaged source correlation matrix

S̄T. However, recall that we assume the targets are identical. For different targets,

Equation 3.62 will not cause rank deficiency in S̄T. If it is a worry that the targets

may be identical, a few different frequencies could be used to ensure that Equation

3.62 is not satisfied for some frequency.

Thus, it is generally reasonable to assume that the columns of S̄T are linearly

independent. Assuming this, S̄T has full rank and R̄(ω0) can be used in MUSIC to

resolve up to two coherent targets. This is an improvement over using the natural

correlation matrix, which could resolve only one target, and also over the non-averaged

virtual correlation matrix, which could resolve two non-coherent targets.

Simulation

For our simulation, there are two coherent reflectors located at (R1, u1) = (3.1, 0) and

(R2, u2) = (3.7, .15), which meet the far-field conditions. We will use frequencies 1

GHz and 1.1 GHz to average the virtual correlation matrices. The sector we use to

calculate the array interpolation matrix B0(ω1) is [−.1, .2] and it is calculated using

100 uniformly spaced samples of the sector.

The averaged virtual correlation matrix is used in MUSIC. Note that in the MUSIC

estimator from Equation 3.25, we are now using the virtual array steering vector,

ãR(u, ω0) = [e−jk0u
λ0
4 , 1, ejk0u

λ0
4 ]T , (3.63)

in place of the natural array steering vector given in Equation 3.25 because we are

using virtual arrays.

The result using the averaged virtual correlation matrix R̄(ω0) in MUSIC is shown

in Figure 3.2. We see that the coherent reflectors are successfully located. The stars
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Figure 3.2: Averaged Virtual Correlation Matrix used in MUSIC, noiseless

Figure 3.3: Non-averaged Virtual Correlation Matrix used in MUSIC, noiseless

denote actual reflector locations.

For comparison, Figure 3.3 shows the result when only the virtual correlation

matrix R̃(ω0) is used in MUSIC. It is unable to resolve the coherent reflectors because

the source correlation matrix is not full rank.

Using the averaged virtual correlation matrix, we were able to resolve two co-

herent reflectors with just two transmit/receive array elements, where with active

MUSIC using virtual arrays in [13], the targets could not be resolved because they

are coherent.
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3.4.2 Examining the Effect of Noise on the Averaged Virtual

Correlation Matrix

When additive, zero-mean, circular, spatially white Gaussian observation noise of

variance σ2 is present, the virtual correlation matrices have a scaled identity added

to them:

R̃(ω0) + σ2I

R̃(ω1) + σ2I

(3.64)

Generally, MUSIC does well in such a noise environment because the addition of

a scaled identity matrix preserves the eigenvectors. However, when the correlation

matrices are averaged over frequency, the averaged virtual correlation matrix in noise

becomes

R̄ =
1

2
[R̃(ω0) + σ2I + B0(ω1)[R̃(ω1) + σ2I]B0(ω1)

H ]

≈ ÃR(ω0)S̄TÃR(ω0)
H +

σ2

2
[I + B0(ω1)B0(ω1)

H ].

(3.65)

Since B0(ω1) is not necessarily an orthogonal matrix, the effective additive noise may

no longer be a scaled identity. This may lead to problems when used in MUSIC

because it changes the eigenvectors and thus the estimated target locations.

We define the reflectivity power to noise power ratio, or signal-to-noise ratio

(SNR), as the ratio of maximum reflectivity power over noise power:

SNR =
maxq,k |ak(ωq)|2

σ2
. (3.66)

For this example, assuming an SNR of 20 dB, and using 1000 snapshots to esti-

mate each of the virtual correlation matrices, the result using the averaged virtual
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Figure 3.4: Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB

correlation matrix is shown in Figure 3.4. The reflector location estimates are quite

close to the actual reflector locations. They are estimated to be at u1 = −0.0106 and

u2 = 0.1574.

The fact that B0(ω1) is not an orthogonal matrix does not appear to affect the

reflector location estimates drastically in this example. This is consistent with the

results in [46]. The effect of noise will be further examined in Section 3.5.

3.5 Averaging the Virtual Correlation Matrices in

the Presence of Noise

As was considered at the end of the previous section, when using array interpolation

in the presence of observation noise, the effective noise correlation matrix may no

longer be a scaled identity and could potentially cause problems with estimation. We

further examine this problem.

In general, the averaged virtual correlation matrix takes the form

R̄(ω0) +
σ2

Q

Q−1∑
q=0

B0(ωq)B0(ωq)
H . (3.67)
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If the addition of the effective noise matrix, σ2

Q

∑Q−1
q=0 B0(ωq)B0(ωq)

H , drastically

changes the eigenvectors of the sum from those of R̄(ω0), there may be problems

with estimating the target locations since MUSIC is based on the eigenvectors. For

high SNR, σ2 is small compared to the reflection powers, and will not change the

eigenvectors by much. However, for lower SNR, σ2 is large compared to the reflection

powers, and if the effective noise matrix is highly non-orthogonal, the effect on target

location can be problematic.

Consider an example with transmit and receive array elements in positions

{xRm} = {−λ0

2
, 0,

λ0

2
}

{xTn} = {−λ0

2
, 0,

λ0

2
}.

(3.68)

We want to create a virtual correlation matrix based on the virtual array

{x̃Rm} = {−λ0,
−λ0

2
, 0,

λ0

2
, λ0}

{x̃Tn} = {0}.
(3.69)

To resolve up to four coherent targets, we must use at least four frequencies for

averaging the virtual correlation matrices. First, we choose the frequencies 1.0, 1.1, 1.2

and 1.3GHz. The simulation for four coherent targets at locations

{(Rk, uk)} = {(5.1, 0), (4.98, .09), (5.24, .21), (4.72, .3)}, (3.70)

assuming an SNR of 20 dB, is shown in Figure 3.5. The targets are not properly

resolved. However, if we increase the bandwidth used so that we average over four

frequencies 1.0, 1.25, 1.5 and 2.0GHz, we see in Figure 3.6 that the targets are suc-

cessfully resolved.
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Figure 3.5: Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB, Four
frequencies 1-1.3 GHz

Figure 3.6: Averaged Virtual Correlation Matrix used in MUSIC, SNR = 20 dB, Four
frequencies 1-2 GHz
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Using a wider band may help combat the problems associated with array interpo-

lation in the presence of observation noise.

For the array interpolation matrices calculated in the band 1.0 − 1.3GHz, the

average of the array interpolation matrices over frequency is

1

5

4∑
q=0

B0(ωq)B0(ωq)
H = 1.1331 .3496−.1781j −.1973+.2716j +.0002j −.1126−.3465j

.3496+.1781j .8555 .1599−.0815j −.0283+.0389j +.0002j
−.1973−.2716j .1599+.0815j 1.0000 .1599−.0815j −.1973+.2716j
−.0002j −.0283−.0389j .1599+.0815j .8555 .3496−.1781j

−.1126+.3465j −.0002j −.1973−.2716j .3496+.1781j 1.1331

 . (3.71)

The matrix elements (5, 1) and (1, 5) cause the matrix to be highly non-orthogonal.

Comparing this to the average of the array interpolation matrices in the band 1.0−

2.0GHz,

1

5

4∑
q=0

B0(ωq)B0(ωq)
H = 1.1708 .3537−.1802j −.1089+.1500j −.0212+.1340j −.0714−.2198j

.3537+.1802j .8101 .3601−.1835j .0539−.0742j −.0212+.1340j
−.1089−.1500j .3601+.1835j 1.0000 .3601−.1835j −.1089+.1500j
−.0212−.1340j .0539+.0742j .3601+.1835j .8101 .3537−.1802j
−.0714+.2198j −.0212−.1340j −.1089−.1500j .3537+.1802j 1.1708

 , (3.72)

the off diagonal-elements are considerably smaller and the matrix is more like an

orthogonal matrix.

Since we are able to choose the frequencies used, we could choose the frequencies

to ensure that their sum does not yield a highly non-orthogonal matrix. A measure

that could be used is one of the form

Degree of Non-orthogonality = ||W � (
1

Q

Q−1∑
q=0

B0(ωq)B0(ωq)
H − I)||F (3.73)

where W is a weighting matrix that weights difference more heavily for non-diagonal

elements.
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In this example, the matrix in Equation 3.71 for a narrower band of frequencies

has a non-orthogonality measure of 0.8490, where the weighting matrix W was taken

to be zero for the main and secondary diagonals and 1 for remaining diagonals. The

matrix in Equation 3.72 for the wider band of frequencies, the non-orthogonality

measure is 0.5786. The array interpolation matrices which yield correct results have

a lower non-orthogonality measure.

3.6 Out-of-Sector Targets

Until this point, we have only considered cases where all of the targets were clustered

within a sector. In this section, we will examine what happens when there are targets

that do not fit in a sector of sufficiently small size. For targets that cover a wide

angular sector, the fit of the array interpolation matrix may be poor.

Using the same example in the previous section with array

{xRm} = {−λ0

2
, 0,

λ0

2
}

{xTn} = {−λ0

2
, 0,

λ0

2
},

(3.74)

and virtual array

{x̃Rm} = {−λ0,
−λ0

2
, 0,

λ0

2
, λ0}

{x̃Tn} = {0},
(3.75)

we simulate a noiseless scene with four coherent targets located at {−.5, .4, .47, .59}.

To get a rough idea of where the targets are located, we process the received signals

using beamforming first. The beamformed image is shown in Figure 3.7. We clearly

see that there are two sectors corresponding to the peaks of the beamformed image
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Figure 3.7: Beamformed Image for defining sectors

containing the targets. The stars denote the actual target locations. Having targets

in two separate sectors is a problem since the methods we have derived for averaging

the virtual correlation matrices assume only one sector.

Using a large enough sector to cover both peaks causes the problems with target

location estimation. This is demonstrated in Figure 3.8. Here the array interpolation

matrices are calculated using the sector [−.6, .65] and the frequencies 1.0, 1.25, 1.5

and 2GHz are used to average the virtual correlation matrices.

Another approach is to take two different sectors and average the virtual corre-

lation matrices over frequency for each sector. Figure 3.9, shows the simulations for

two different sectors, [−.6,−.4] and [.35, .65], for four frequencies in 1-2 GHz. This,

unfortunately, also does not give good results.

There exist MUSIC techniques that allow power within desired sector and null

power outside of the sector [47]. Beamspace MUSIC is a technique where the data

matrix X̃(ω0) is pre-multiplied by some beamforming matrix, F(ω0). For beamspace
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Figure 3.8: Averaged Virtual Correlation Matrix used in MUSIC, Four frequencies
1-2 GHz, Sector [−.6, .65]

techniques, the virtual correlation matrix becomes

R̃(ω0) = F(ω0)E[X̃(ω0)X̃(ω0)
H ]F(ω0)

H

= F(ω0)ÃR(ω0)S̃T(ω0)ÃR(ω0)
HF(ω0)

H .

(3.76)

Then in MUSIC, instead of using the virtual array steering vector given in Equation

3.38, the modified vector F(ω0)ãR(u, ω0) is used and the estimator for beamspace

MUSIC is

PBS-MUSIC(u) =
1∑M−K

i=1 |ãR(u, ω0)HF(ω0)Hv0
i(ω0)|2

. (3.77)

The array interpolation we use is a type of beamspace technique, but it is not robust

against out-of-sector targets.

We suggest, but do not investigate further, a technique to find matrices {F(ωq)}

such that they compensate for both the array interpolation and selecting the appro-
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(a) Sector taken as (.35,.65)

(b) Sector taken as (-.6,-.4)

Figure 3.9: Finding the Averaging Virtual Correlation Matrix in Two Different Sec-
tors
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priate sector. This can be done by minimizing

∫ uf

us

||F(ω0)ãR(u, ω0)− F(ωq)ãR(u, ωq)||2du (3.78)

with respect to F(ωq). In this expression, F(ω0) is known. It is the beamspace matrix

that selects the desired sector and nulls the undesired sector. The matrices {F(ωq)}

are found and the virtual correlation matrix is

R̄(ω0) =
1

Q

Q−1∑
q=0

F(ωq)R̃(ωq)F(ωq)
H

=
1

Q

Q−1∑
q=0

F(ωq)ÃR(ωq)S̃T(ωq)ÃR(ωq)
HF(ωq)

H

≈ 1

Q

Q−1∑
q=0

F(ω0)ÃR(ω0)S̃T(ωq)ÃR(ω0)
HF(ω0)

H

= F(ω0)ÃR(ω0)S̄TÃR(ω0)
HF(ω0)

H

(3.79)

Since there is a beamspace matrix, beamspace MUSIC given in Equation 3.77 should

be used to estimate the target locations.

3.7 Conclusion

The existing idea of using virtual data and correlation matrices in direction-of-arrival

estimation was combined with array interpolation to allow for additional coherent

targets to located above the conventional limit. For transmit and receive arrays of N

and M elements, respectively, it was shown that up to N + M − 2 coherent targets

can be resolved when the virtual correlation matrices are averaged over multiple

frequencies. The conventional limit is min(N,M − 1). However, the ability to resolve

coherent targets is only obtained by restricting the area to be imaged to a sector.
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The targets must lie within a reasonably small sector, but this is not an unreasonable

assumption since high-resolution techniques are used.

For this technique, a low SNR environment may cause estimation problems, but

using a larger bandwidth may help alleviate some of these problems. Also, it was

shown that if a target lies outside of the sector in consideration, there may be problems

with estimating the target locations. A method based on beamspace MUSIC was

suggested to mitigate this problem, but additional research and simulation needs to

be carried out. Both of these issues may be able to be solved by more carefully

choosing the array interpolation matrix, i.e., adding constraints to the least squares

fit, and finding a way in which frequencies can be chosen optimally.
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Chapter 4

High-resolution Imaging with

Multiple Frequencies using Planar

Arrays

4.1 Introduction

In Chapters 2 and 3, we used the concept of virtual arrays to increase the number

of point sources/targets that can be resolved in passive and active imaging with line

arrays. In this chapter, we suggest ways these ideas from the previous chapters can be

extended to planar arrays. This is a desirable extension because with planar arrays,

both elevation and azimuthal angle can be resolved, where with a line array, only

elevation angle can be [23].

For passive imaging, we will see that extending the idea formulated in Chapter

2 to planar arrays is not always possible in the general case, but we will describe a

class of arrays for which the extension works. For active imaging, the extension of the

virtual array method in Chapter 3 is relatively straightforward for rectangular lattice
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arrays.

The background and problem development from the previous chapters are briefly

reviewed with the necessary modifications for planar arrays. However, it is assumed

that the reader has read the previous two chapters and is familiar with the high-

resolution techniques and the motivation behind using virtual arrays.

4.2 Imaging with a Planar Array

4.2.1 Array Geometry

In Chapters 2 and 3, we restricted the array elements to be in a line. In this chapter

we allow them to be distributed in a plane. This is advantageous because with a

planar array, both elevation and azimuthal angle can be reseolved.

Consider the transmit and receive array elements to be located in the x-y plane at

positions {xTn, n = 1, 2, ..., N} and {xRm,m = 1, 2, ...,M}, respectively. In the fol-

lowing discussions, we will use multiple representations of the array element positions.

We represent the positions in three ways:

• As a vector in Cartesian coordinates:

xTn = [xTn, yTn] is the nth transmitting element position

xRm = [xRm, yRm] is the mth receiving element position.

(4.1)

• In polar coordinates:

(rTn, ϕTn) is the nth transmitting element position

(rRm, ϕRm) is the mth receiving element position,

(4.2)
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where rRm and rTn are the radii from the origin and ϕRm and

ϕTn are the angles measured from the x-axis.

• As a complex scalar:

xTn + jyTn is the nth transmitting element position

xRm + jyRm is the mth receiving element position.

(4.3)

It should be obvious which notation is being used, and we will switch between them

often, as each one has its advantages for understanding the array geometry.

We consider arrays that are fixed to a lattice with spacing λ0

2
. The wavelength λ0

is the wavelength corresponding to frequency ω0. We call this the reference frequency

because it is the frequency on which the array spacing is based.

4.2.2 Target and Source Distributions

The array elements are located in the x-y plane. We define the z-axis (broadside) as

normal to the x-y plane, see Figure 4.1. We assume that there are K targets/sources

in the scene. Their positions are represented in spherical coordinates, where the kth

target location is (Rk, φk, θk). Rk is the distance of the target from the origin. The

elevation angle θk is measured from the z-axis and φk is the azimuthal angle measured

with respect to the x-axis in the array plane. We restrict θk ∈ [0, π
2
] (z > 0) so that

there is no ambiguity, and take φk ∈ [−π, π].

We restrict the targets/sources considered to be in the farfield of the array. That

is, the wavefronts arriving from the targets/sources at the array can be approximated

as plane waves. Thus, we only consider the direction of the targets/sources and denote
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Figure 4.1: Array Geometry for Planar Arrays

the direction of kth target/source by the vector

uk = [sin θk cosφk, sin θk sinφk]. (4.4)

Even though the array geometry may be basically the same for passive or active

imaging, the nature of the targets/sources is different for each and we recall their

properties from Chapters 2 and 3.

Passive imaging

In passive imaging, sources emitting wideband radiation are observed by the array.

The frequencies {ωq, q = 0, 1, ..., Q− 1} are assumed to be in the band and the array

performs narrowband filtering to extract the signal at each frequency considered.
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Recall that the frequency ω0 is the reference frequency - the frequency on which the

array spacing is based.

We assume that these sources are emitting independently of each other, that is,

over multiple observations, the radiation emitted from different sources is uncorre-

lated. Mathematically, the complex amplitudes, {Sk(ωq)}, received at the origin of

the array, have the following relationship between sources over multiple snapshots at

each frequency:

E[Sk(ωq)S
∗
n(ωq)] =


Pk(ωq) for k = n

0 for k 6= n.

(4.5)

Here Pk(ωq) is the power of the kth source at frequency ωq.

Active Imaging

In active imaging, the targets are not emitting their own radiation, but they are

reflecting transmitted radiation. Radiation consisting of frequencies

{ωq, q = 0, 1, ..., Q− 1} is transmitted from the transmit array and when radiation of

frequency ωq is incident on the kth target, the target reflects with reflectivity ãk(ωq).

This reflectivity embodies the strength of the reflection as well as the reflection phase.

The reflectivities between a pair of targets may be incoherent or coherent. We assume

that they are coherent, as this is the more difficult and interesting case. Over multiple

snapshots, the coherent relationship means that each pair of targets always reflects

with the same phase difference between them. We further assume that the reflections

are deterministic, that is

E[ãk(ωq)ã
∗
n(ωq)] = ãk(ωq)ã

∗
n(ωq) for all k, n. (4.6)
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4.2.3 Data Collection

The data collection for passive imaging differs from active imaging since with active

imaging, we must consider transmitting the signals. Since the effect of noise was

studied in Chapters 2 and 3, we ignore it here for simplicity of discussion.

For the mathematical represention of the data collected, we make use of the farfield

approximation. The propagation delays from a target/source at (Rk, φk, θk) to a

receive array element position xRm is

cτk,Rm ≈ Rk − uk
TxRm, (4.7)

where c is the speed of light. Likewise, the propagation delay from a transmit array

element at xTn to the same target is

cτk,Tn ≈ Rk − uk
TxTn. (4.8)

Passive Imaging

Suppose an array of M co-planar elements with positions {xRm,m = 1, 2, ...,M} is

receiving narrowband radiation at frequency ωq from K farfield sources. The complex

amplitudes received at frequency ωq at the set of array elements is stored in the data
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vector x(ωq), given by

x(ωq) = AR(ωq)s(ωq) =



∑
k Sk(ωq)e

jkquk
TxR1∑

k Sk(ωq)e
jkquk

TxR2

...∑
k Sk(ωq)e

jkquk
TxRM



=



∑
k Sk(ωq)e

jk0uk
TαqxR1∑

k Sk(ωq)e
jk0uk

TαqxR2

...∑
k Sk(ωq)e

jk0uk
TαqxRM


.

(4.9)

Here k0 = 2π
λ0

is the wavenumber associated with the reference frequency. We define

αq so that the frequency ωq is represented as a multiple of the reference frequency,

ωq = αqω0. The receive array manifold matrix at frequency ωq, AR(ωq), is given by

AR(ωq) =



ejkqu1
TxR1 ejkqu2

TxR1 ... ejkquK
TxR1

ejkqu1
TxR2 ejkqu2

TxR2 ... ejkquK
TxR2

...
...

...
...

ejkqu1
TxRM ejkqu2

TxRM ... ejkquK
TxRM


, (4.10)

and s(ωq) = [S1(ωq), S2(ωq), ..., SK(ωq)]
T is the vector of the complex amplitudes

of each source. Note that because the source radiation is incoherent and we assume

farfield sources, we do not need to account for the exact path lengths from the sources

to the elements. The path length differences are sufficient and are captured in the

{uk
TxRm} products in the argument of the exponentials in the array manifold matrix.
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Active Imaging

Since we may possibly be imaging coherent targets, it is necessary that we collect the

data so that the data from each transmit/receive pair can be accessed individually.

To do this, the waveform s(t) is constructed from multiple frequencies, transmitted

individually from each transmitting element and received by all receiving elements.

The total received signal at xRm from xTn is the sum of all reflections from the

targets:
Q−1∑
q=0

K∑
k=1

ãk(ωq)e
j(ωq(t−τk,Tn−τk,Rm)+ξq), (4.11)

where ξq ∈ [−π, π] is a random but fixed phase associated with frequency ωq Since the

targets are assumed to be in the farfield, we can make a simplification in Equation

4.11. Using the farfield approximation given in Equations 4.7 and 4.8, and matched

filtering at the receivers about frequency ωq, the complex amplitude we receive at

xRm from xTn at frequency ωq is

Xm,n(ωq) =
K∑
k=1

ãk(ωq)e
−jkq2Rkejξqejkquk

T (xRm+xTn)

=
K∑
k=1

ak(ωq)e
jkquk

H(xRm+xTn),

(4.12)

where

ak(ωq) = ãk(ωq)e
−jkq2Rkejξq . (4.13)

The complex amplitude ak(ωq) now depends on not only the characteristics of the

target, but the phase depends on the distance from the target to the array and the

transmit phase, which vary over frequency. As for linear arrays, because of this, even
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for otherwise identical targets, generally

ak(ωq) 6= al(ωp) for all k 6= l, q 6= p, (4.14)

except under strict conditions on the target ranges and chosen frequencies.

After matched filtering about the Q frequencies, the complex amplitudes received

from all transmitters and receivers at each frequency can be arranged into data ma-

trices, {X(ωq)}, where Equation 4.12, the data resulting from the transmission from

xTn received at xRm at frequency ωq, is the (m,n)th element of X(ωq).

For each frequency, the data matrix can be factored as follows:

X(ωq) = AR(ωq)S(ωq)AT(ωq)
T , (4.15)

where AR(ωq) is the receive array manifold matrix given in Equation 4.10, the trans-

mit array manifold matrix, AT(ωq), is

AT(ωq) =



ejkqu1
TxT1 ejkqu2

TxT1 ... ejkquK
TxT1

ejkqu1
TxT2 ejkqu2

TxT2 ... ejkquK
TxT2

...
...

...
...

ejkqu1
TxTN ejkqu2

TxTN ... ejkquK
TxTN


, (4.16)

and S(ωq) = diag[a1(ωq), a2(ωq), ...aK(ωq)] is the diagonal matrix of reflectivities.

4.2.4 Correlation

For high-resolution techniques, in both passive and active imaging, the spatial corre-

lation matrix is used. This is the autocorrelation of the data vector or data matrix

with itself.
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For passive imaging, the spatial correltation matrix at frequency ωq is given as

R(ωq) = E[x(ωq)x(ωq)
H ], (4.17)

where x(ωq) is the data vector arising from observing radiating sources. The expecta-

tion is estimated by averaging over multiple snapshots. The spatial correlation matrix

for passive imaging can be factored as

R(ωq) = AR(ωq)P(ωq)AR(ωq)
H , (4.18)

where P(ωq) is the diagonal matrix of source powers,

P(ωq) = diag[P1(ωq), P2(ωq), ..., PK(ωq)], (4.19)

and AR(ωq) is the receive array manifold matrix in Equation 4.10. The (m,n)th

element of the spatial correlation matrix for passive imaging at frequency ωq is

R(ωq)m,n =
K∑
k=1

K∑
l=1

E[Sk(ωq)Sl(ωq)
∗]ejkquk

TxRme−jkqul
TxRn

=
K∑
k=1

Pk(ωq)e
jk0uk

Tαq(xRm−xRn).

(4.20)

This represents the correlation between what is received at the mth and nth receive

array elements.

For active imaging, the correlation matrix at frequency ωq is

R(ωq) = E[X(ωq)X(ωq)
H ], (4.21)

where X(ωq) is the data matrix. In practice, the expectation is estimated by averaging
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over multiple snapshots. However, since we are assuming coherent targets and no

noise, there is no randomness in the signal, and R(ωq) is treated as a deterministic

quantity. The spatial correlation matrix can be factored in the following way:

R(ωq) = AR(ωq)S(ωq)AT(ωq)
TAT(ωq)

∗S(ωq)
HAR(ωq)

H

= AR(ωq)ST(ωq)AR(ωq)
H ,

(4.22)

where S(ωq) is the diagonal matrix of target reflectivities,

S(ωq) = diag[a1(ωq), a2(ωq), ..., aK(ωq)], (4.23)

AR(ωq) is the receive array manifold matrix given in Equation 4.10, and AT(ωq) is

the transmit array manifold matrix in Equation 4.16. We define the source correlation

matrix ST(ωq) as

ST(ωq) = S(ωq)AT(ωq)
TAT(ωq)

∗S(ωq)
H . (4.24)

Comparing Equations 4.18 and 4.22, we see that the correlation matrices for both

passive and active imaging have the same basic structure. This means that we can

applying the same high-resolution techniques to either passive or active imaging. We

consider the well-known two-dimensional high-resolution technique MUSIC.

4.2.5 MUSIC for Planar Arrays

MUSIC has already been derived in Chapters 2 and 3 for both passive and active imag-

ing. Here, we state the changes we need in order to use it for two-dimensional imaging

[23]. MUSIC for two-dimensional imaging is similar to that of one-dimensional imag-

ing. The main difference is that instead of varying just the elevation angle, we now
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vary both the elevation angle and the azimuthal angle. Since this is a narrowband

technique, we assume operation at the reference frequency.

We define the array steering vector as

aR(u, ω0) = aR(θ, φ, ω0) = [ejk0u
TxR1 , ejk0u

TxR2 , ..., ejk0u
TxRM ]T . (4.25)

.

The two-dimensional MUSIC estimator is defined as

PMUSIC(θ, φ) =
1∑M−K

i=1 |aR(θ, φ, ω0)Hv0i(ω0)|2
(4.26)

where as in one-dimensional MUSIC, the {v0i(ω0)} are the zero-eigenvectors of the

correlation matrix R(ω0).

This estimator is derived assuming P(ω0) or ST(ω0) of the correlation matrix

R(ω0) is full-rank, which is always true in passive imaging of incoherent targets and

in active imaging when N ≥ K. Assuming this, in passive imaging, up to M − 1

incoherent sources can be resolved using MUSIC and in active imaging, up to M − 1

total targets can be resolved of which N can be coherent. This is the same result as

for one-dimensional MUSIC except the azimuthal location of the targets/sources can

also be resolved.

4.2.6 Coarray

The difference and sum coarrays for planar arrays are no different than for line arrays

except that now the vector sum or difference is taken between array element positions
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[14]. The difference coarray for passive imaging at the reference frequency is

{yD
l} = {yD

l|yD
l = xRm − xRn,m = 1, 2, ..,M, n = 1, 2, ...,M}. (4.27)

We see that this is the support for the correlation matrix at the reference frequency

ω0 for incoherent targets, Equation 4.20.

Likewise, the sum coarray for active imaging at the reference frequency is

{yS
l} = {yS

l|yS
l = xTn + xRm,m = 1, 2, ..,M, n = 1, 2, ..., N}. (4.28)

This is the support in the data matrix for frequency ω0.

Any sum or difference coarray point, yl, can be represented in Cartesian, polar or

complex coordinates, just as for array element positions. The notations, respectively,

are yl = [xl, yl], (rl, ϕl) and xl + jyl.

For a sum or difference coarray {yl} at the reference frequency, the coarray at

frequency ωq is dilated version of the coarray, αq{yl} [17]. In polar coordinates,

this dilated coarray is {(αqrl, ϕl)}. Thus, when a frequency other than the reference

frequency is used, the coarray dilates radially from the origin, but does not change the

coarray angle at all. We will see that this has consequences for when we attempt to

use virtual arrays for passive imaging because we need to be able to generate arbitrary

coarray points by using multiple frequencies.

Note that for line arrays, yl = [xl, 0] for every coarray point. In polar coordinates,

the representation is (xl, 0). All of the coarray points for a line array lie along the

same radial direction, thus, by using some frequency, we can generate any arbitrary

coarray point along the line.
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4.3 Using a Virtual Array for Passive Imaging

4.3.1 Generating Difference Coarray Points Using Multiple

Frequencies

Recall from Chapter 2 that the effect of a larger, virtual array can be synthesized by

the physical array using multiple frequencies, provided that the multi-frequency dif-

ference coarray covers the virtual difference coarray. This condition can be expressed

in terms of the coarray support matrices defined in Chapter 2. For a planar array, to

define the difference coarray support matrices, we use the complex representation of

the array element positions. The (m,n)th element of the difference coarray support

matrix at frequency ωq is

C(ωq)m,n = αq((xRm − xRn) + j(yRm − yRn)), for all q. (4.29)

Likewise, the (m,n)th element of the virtual difference coarray support matrix is

C̃(ω0)m,n = (x̃Rm − x̃Rn) + j(ỹRm − ỹRn), (4.30)

where {x̃Rm,m = 1, 2, ..., M̃} are the virtual array element positions.

We can construct the virtual correlation matrix corresponding to the virtual array

from the narrowband correlation matrices provided that

C̃(ω0)m,n = C(ωq)i,j for some q, i, j, for all m,n. (4.31)

In Chapter 2, for line arrays, this equation could be satisfied for any array and virtual

array if we had access to a wide enough band of frequencies. We will see that for

planar arrays, this is not always the case.
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As an example, consider an array with elements at positions

{xRm} = {[0, 0], [1, 0], [0, 1]}λ0

2
. (4.32)

The complex representation is shown in Figure 4.2. The difference coarray support

matrix at the reference frequency is

C(ω0) =


0 j λ0

2
−λ0

2
+ j λ0

2

−j λ0

2
0 −λ0

2

λ0

2
− j λ0

2
λ0

2
0

 , (4.33)

and the difference coarray is illustrated in Figure 4.3. If we use a frequency that is a

multiple of the reference frequency, ωq = αqω0, the dilated difference coarray support

matrix at frequency ωq becomes

C(ωq) =


0 jαq

λ0

2
αq(−λ0

2
+ j λ0

2
)

−jαq λ0

2
0 −αq λ0

2

αq(
λ0

2
− j λ0

2
) αq

λ0

2
0

 . (4.34)

The union of the difference coarray at the reference freqeuncy and the dilated differ-

ence coarray is shown in Figure 4.4. From Figure 4.4, geometrically we see that for

no αq could we ever generate the coarray point λ0

2
+ j λ0

2
. Thus, Equation 4.31 could

not be satisfied for an arbitary virtual array.

Another way to think about this is by examining the coarray angles generated by

the array. For this array, the available coarray angles are

{0, π
2
,
3π

4
, π,−π

2
,
−π
4
}. (4.35)
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Figure 4.2: Array for Passive Three-element Example - Normalized by λ0

2

Figure 4.3: Difference Coarray for Passive Three-element Example - Normalized by
λ0

2

The coarray angle of the point we wish to generate, λ0

2
+j λ0

2
, is π

4
and is not available,

thus we cannot generate this difference coarray point using multiple frequencies. How-

ever, we could, for example, generate the difference coarray point 3λ0

4
+ 0j by using

the frequency 1.5ω0, because the coarray angle associated with this difference coarray

point is 0 and is indeed covered by the obtainable coarray angles.

Relating this idea of coarray angles to Chapter 2, for imaging with linear arrays,

the only possible configuration for arrays and coarrays is a line, so for line arrays,

we do not have to worry about coarray angles since all coarray points lie on the

same coarray angle. Because of this, when dilating a linear coarray by using multiple

frequencies to synthesize the effect of a linear virtual array, any desired coarray point

can be synthesized with a large enough bandwidth. However, for planar arrays, this

is not the case. We cannot generate a coarray point that does not lie in a radial

direction of an existing coarray point. Thus, in general, it is much more difficult to

find an array and a corresponding virtual array for planar arrays than it is for linear

arrays.
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Figure 4.4: Multi-frequency Difference Coarray for Passive Three-element Example -
Normalized by λ0

2

A necessary condition for the condition in Equation 4.31 is that the set of coarray

angles produced by the physical array covers the set of virtual coarray angles:

{ϕl} ⊇ {ϕ̃l}. (4.36)

If this condition is not satisfied, we cannot use multiple frequencies to augment the

difference coarray and synthesize the effect of a larger virtual array, regardless of the

band of frequencies we have available. In the following section, we suggest a class

of arrays and virtual arrays for multi-frequency high-resolution imaging that satisfy

Equation 4.36 and examine their effectiveness compared to existing narrowband vir-

tual array techniques.

4.3.2 A Class of Arrays and Virtual Arrays for High-resolution

Techniques with Multiple Frequencies

As discussed in the previous section, the problem with finding a virtual array for pla-

nar arrays in passive imaging is that we cannot generate arbitrary difference coarray
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points. Any difference coarray points we need to generate by using multiple frequen-

cies must lie in the same coarray direction as an existing difference coarray point.

However, if we restrict ourselves to virtual arrays yielding virtual coarrays whose

coarray angles are covered by the difference coarray at the reference frequency, then

we will always be able to generate the points that we need.

Suppose we have the arrow-shaped array shown in Figure 4.5. It is capable of

resolving up to six point sources using the correlation matrix directly obtainable

from the array. Its difference coarray, a filled square coarray, is illustrated in Figure

4.6. Existing narrowband virtual array techniques can be used to resolve additional

sources. Notice that this difference coarray could also have been generated by the

virtual array in Figure 4.7. With this virtual array, it is possible to resolve to up

eight point sources if the correlation matrix is rearranged as is described in [13].

This virtual array can be obtained by using only the reference frequency. Multiple

frequencies do not need to be used to synthesize the effect of this array.

However, we can use multiple frequencies to synthesize the effect of a different

virtual array shown in Figure 4.8. Its coarray is shown in Figure 4.9. Notice that

the virtual difference coarray consists of the 5 × 5 square we know we can generate

with the arrow array, plus extra difference coarray points that lie on existing coarray

directions. Since these extra coarray points lie in covered coarray directions, we can

use multiple frequencies to generate them. By using two extra frequencies, 1.5ω0 and

2ω0, we obtain the multi-frequency difference coarray in Figure 4.10. This multi-

frequency coarray covers the virtual coarray points we needed to generate. Thus, we

can construct our virtual correlation matrix from the narrowband correlation matrices

as explained in Chapter 2.

For this example, the coarray points we needed to generate with multiple frequen-

cies lay in the coarray directions [0, π
2
, π,−π

2
]. These coarray angles were covered by
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Figure 4.5: Physical 3× 3 Arrow-shaped Array

Figure 4.6: 5× 5 Square Difference Coarray

Figure 4.7: Virtual 3× 3 Filled Square Array

Figure 4.8: 5× 5 Virtual Cross Array
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Figure 4.9: Virtual Difference Coarray for 5× 5 Cross Array

Figure 4.10: Multi-frequency 5× 5 Square Difference Coarray
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the coarray and we could generate these points using multiple frequencies. In fact,

for any array that produces a square difference coarray, the angles [0, π
2
, π,−π

2
] will

be covered. Also, for a cross shaped virtual array, it always produces a difference

coarray with a filled square, plus additional coarray points along the coarray direc-

tions [0, π
2
, π,−π

2
]. Since the coarray points’ angles we need to generate are covered,

with the arrow array, we can synthesize the effect of the cross array using multiple

frequencies. We suggest this as an example of a class of arrays for which multiple

frequencies can be used to synthesize the effect of a larger, planar array.

The class of arrays to generate the square difference coarray we propose is the

M ×M arrow array shown in Figure 4.11. This array was chosen because the arrow

array is a sparse array generating the square coarray. With this array, there are

3M − 2 physical array elements and thus 3(M − 1) point sources can be resolved.

This array generates a (2M − 1)× (2M − 1) filled square coarray. By using multiple

frequencies, we can synthesize the effect of the (2M−1)×(2M−1) cross array shown

in Figure 4.12, which has 4M − 3 virtual elements and can resolve up to 4(M − 1)

point sources. That is an improvement of M − 1 point sources. The coarray for this

virtual array is shown in Figure 4.13, which consists of an (2M − 1)× (2M − 1) filled

square difference coarray plus additional coarray points in the directions [0, π
2
, π,−π

2
],

which we know we can generate using multiple frequencies.

However, recall in the example at the beginning of this section that without using

multiple frequencies, the effect of a filled square array can be synthesized by the arrow

array since these arrays are coarray equivalent. Without using multiple frequencies,

using the M×M arrow array, we can synthesize the effect of a filled square array with

M2 elements shown in Figure 4.14 and resolve up to M2 − 1 point sources. Whereas

using multiple frequencies and assuming a cross virtual array, we can only resolve up

to 4(M −1) point sources. Thus, the virtual array without using multiple frequencies
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Figure 4.11: M ×M Arrow-shaped Array - Normalized by λ0

2

Figure 4.12: (2M−1)×(2M−1) Cross-shaped Virtual Array Geometry - Normalized
by λ0

2
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Figure 4.13: Difference Coarray for the (2M − 1) × (2M − 1) Cross-shaped Virtual
Array - Normalized by λ0

2
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Figure 4.14: M ×M Filled Square Virtual Array - Normalized by λ0

2
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provides better performance in terms of number of point sources that can be resolved

for M > 3.

Using multiple frequencies with passive imaging is not straightforward. For the

class of arrays we have found that works, the increase in the number of sources that

can be resolved is small compared to using existing techniques for single frequency

virtual arrays. However, there may exist other classes of arrays and virtual arrays

that yield better results using multiple frequencies and additional research will need

to be carried out.

4.4 Virtual Array for Active Imaging

As we did for passive imaging, we can extend the virtual array for active imaging

to planar arrays. The difference is that instead of constructing a virtual correlation

matrix from multiple frequencies, we construct multiple virtual data matrices, each

at a single frequency, then average them over frequency using array interpolation.

For active imaging, we restrict ourseves to rectangular arrays. As in passive

imaging, we form the coarray support matrix by using the complex representation,

except that in active imaging, we use the sum coarray. The complex representation

that is the (m,n)th of the coarray support matrix is

C(ω0)m,n = (xRm + xTm) + j(yRm + yTm). (4.37)

Likewise, the (m,n)th element of the virtual coarray support matrix is

C̃(ω0)m,n = (x̃Rm + x̃Tm) + j(ỹRm + ỹTm), (4.38)

where {x̃Rm,m = 1, 2, ..., M̃} and {x̃Tn, n = 1, 2, ..., Ñ} are the virtual receive and
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transmit element positions, respectively.

To construct a virtual data matrix, X̃(ω0), a map that takes the elements of

C(ω0) to C̃(ω0) is found and applied to X(ω0) to form X̃(ω0). Additional virtual

data matrices can be constructed by applying the same map to X(ωq) to form X̃(ωq).

The virtual correlation matrices are formed by taking the autocorrelation of the

virtual data matrices:

R̃(ωq) = E[X̃(ωq)X̃(ωq)
H ]

= ÃR(ωq)S(ωq)ÃT(ωq)
T ÃT(ωq)

∗S(ωq)
HÃR(ωq)

H

= ÃR(ωq)S̃T(ωq)ÃR(ωq)
H ,

(4.39)

where ÃR(ωq) is the virtual receive array manifold matrix,

ÃR(ωq) =



ejkqu1
T x̃R1 ejkqu2

T x̃R1 ... ejkquK
T x̃R1

ejkqu1
T x̃R2 ejkqu2

T x̃R2 ... ejkquK
T x̃R2

...
...

...
...

ejkqu1
T x̃RM̃ ejkqu2

T x̃RM̃ ... ejkquK
T x̃RM̃


(4.40)

ÃT(ωq) is the virtual transmit array manifold matrix,

ÃT(ωq) =



ejkqu1
T x̃T1 ejkqu2

T x̃T1 ... ejkquK
T x̃T1

ejkqu1
T x̃T2 ejkqu2

T x̃T2 ... ejkquK
T x̃T2

...
...

...
...

ejkqu1
T x̃TÑ ejkqu2

T x̃TÑ ... ejkquK
T x̃TÑ


. (4.41)

and S̃T(ωq) is the virtual source correlation matrix,

S̃T = S(ωq)ÃT(ωq)
T ÃT(ωq)

∗S(ωq)
H . (4.42)
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The individual correlation matrices formed from the narrowband data matrices

allow for up to M̃ − 1 total targets to be resolved, and only Ñ may be coherent. We

use array interpolation to combine the matrices at different frequencies to allow for

coherent targets to be resolved as we did in Chapter 3. Array interpolation for planar

arrays is described in the following section.

4.4.1 Array Interpolation Matrices for Planar Arrays

Array interpolation matrices allow us to add correlation matrices at different frequen-

cies while retaining the structure necessary to use MUSIC.

We want to find an array interpolation matrix B0(ωq) such that [19]

ÃR(ω0) ≈ B0(ωq)ÃR(ωq). (4.43)

Since the {ÃR(ωq)} are functions of the unknown {uk}, we cannot directly solve for

the {B0(ωq)}. However, we assume it is known that uk is in some spherical sector,

φ ∈ [φs, φf ] and θ ∈ [θs, θf ], thus we can find B0(ωq) by a least squares fit over the

spherical sector. The optimal B0(ωq) in the least squares sense minimizes

∫ φf

φs

∫ θf

θs

||ãR(u, ω0)−B0(ωq)ãR(u, ωq)||2dφdθ (4.44)

with respect to B0(ωq), where ãR(u, ωq) is the virtual receive array steering vector at

frequency ωq:

ãR(u, ωq) = ãR(θ, φ, ωq) = [ejkqu
T x̃R1 , ejkqu

T x̃R2 , ..., ejkqu
T x̃RM̃ ]T . (4.45)

To find B0(ωq), we approximate the integral in Equation 4.44 by a summation

taken over points in the sector. The sector is sampled P ≥M times and the matrices
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Ãq are constructed as follows:

Ãq =



ãR(u1, ωq)
H

ãR(u2, ωq)
H

...

ãR(ui, ωq)
H

...

ãR(uP, ωq)
H


(4.46)

Here ui is the ith sample of the sector. Assuming that P ≥M and that the matrices

Ãq each have full column rank, the least squares solution is given by [44]:

B0(ωp) = ÃH
0 Ãp[Ã

H
p Ãp]

−1. (4.47)

When we pre- and post-multiply the spatial correlation matrix at frequency ωq

by the appropriate array interpolation matrix, the correlation matrix at frequency ωq

appears to have come from frequency ω0 in the sector,

B0(ωq)R̃(ωq)B0(ωq)
H = B0(ωq)ÃR(ωq)S̃T(ωq)ÃR(ωq)

HB0(ωq)
H

≈ ÃR(ω0)S̃T(ωq)ÃR(ω0)
H ,

(4.48)

but with a different source correlation matrix at each frequency.

Averaged Correlation Matrix

Recall that if the virtual source correlation matrix S̃T(ω0) is not full rank (i.e. K >

Ñ), MUSIC will be unable to resolve the coherent targets. Averaging the virtual

correlation matrices over multiple frequencies can increase the rank of the source

correlation matrix and allow coherent targets to be resolved.
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As in Chapter 3, the averaged virtual correlation matrix is defined as:

R̄(ω0) =
1

Q
[R̃(ω0) +

Q−1∑
q=1

B0(ωq)R̃(ωq)B0(ωq)
H ]

=
1

Q
[ÃR(ω0)S̃T(ω0)ÃR(ω0)

H +

Q−1∑
q=1

B0(ωq)ÃR(ωq)S̃T(ωq)ÃR(ωq)
HB0(ωq)

H ]

≈ 1

Q

Q−1∑
q=0

ÃR(ω0)S̃T(ωq)ÃR(ω0)
H

= ÃR(ω0)[
1

Q

Q−1∑
q=0

S̃T(ωq)]ÃR(ω0)
H

= ÃR(ω0)S̄TÃR(ω0)
H

(4.49)

The averaged correlation matrix has the same structure as a correlation matrix ob-

serving the scene at a frequency ω0, but since we averaged over frequencies, we have

a new averaged source correlation matrix,

S̄T =
1

Q

Q−1∑
q=0

S̃T(ωq). (4.50)

Recall that for R̄(ω0) to be useful in high-resolution techniques, S̄T must be full-

rank. In Chapter 3, the averaged source correlation matrix, S̄T , was shown to have

full rank when the number of frequencies is greater than or equal to the number of

coherent targets,

Q ≥ K. (4.51)
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Figure 4.15: Rectangular Array Example

4.4.2 Example

As an example, consider a four element transmit/receive array with elements in lo-

cations

{λ0

4
+ j

λ0

4
,−λ0

4
+ j

λ0

4
,
λ0

4
− j λ0

4
,−λ0

4
− j λ0

4
}. (4.52)

This array has the 9 element sum coarray

{0, λ0

2
+ j

λ0

2
,−λ0

2
− j λ0

2
,−λ0

2
+ j

λ0

2
,
λ0

2
− j λ0

2
, j
λ0

2
,
λ0

2
, 0,−λ0

2
,−j λ0

2
}. (4.53)

This is illustrated in Figure 4.15. Some virtual arrays that are coarray equivalent to

this array are shown in Figure 4.16. From the virtual arrays, we choose the one with

nine receivers and a single transmitter in order to resolve the maximum number of

targets, but they must all be incoherent.

In general, for an M ×N rectangular transmit/receive array, to resolve the max-

imum number of total targets, we can consider the virtual receive array to be a

2M − 1 × 2N − 1 rectangular array and have only a single virtual transmitter.

With this, up to (2M − 1)(2N − 1) − 1 coherent targets can be resolved if at least

(2M−1)(2N−1)−1 frequencies are used to average the virtual correlation matrices.

There of course is a limit to this. Even though this is a high-resolution technique, the

number of targets that can be resolve is limited because the sector must be sufficiently
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Figure 4.16: Possible Virtual Arrays

small. Too many targets in a small sector will lead to location estimation errors.

4.5 Conclusion

The results in Chapter 2 and 3 can be extended to two dimensions. For passive

imaging, we have seen that it is extendable to a class of arrays and virtual arrays,

but not necessarily any arbitrary array and virtual array. For active imaging, the

extension is straight-forward for rectangular arrays and should work for a sufficiently

small spherical sector of the scene.

One obstacle that must be considered before pursuing further research is that

two-dimensional MUSIC is computationally intensive. A search must be performed

over two angular variables. For large spherical sectors, this is a problem. The trend

in the literature for direction of arrival estimation with planar arrays seems to be

to use “search-free” techniques such as root-MUSIC [24, 32, 25, 33]. However, since

root-MUSIC is not designed for planar arrays in its conventional form, approximate

numerical techniques are used to compensate for this. This may cause complications
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with search-free techniques since we are already under strict conditions on the sources’

spectra in passive imaging and using array interpolation in active imaging.
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Chapter 5

Active Imaging using

Retransmission

5.1 Introduction

In active imaging with phased linear arrays, radiation is sent from an array of trans-

mitting elements into a scene and the reflections from the scene are received by a line

array a receiving elements. The quality of the image depends on the width of the

coarray [14]. Generally, the wider the coarray, the higher the resolution of the image.

Increasing the length of the coarray can be done be adding additional array elements

to either the transmit or the receive array, or by using multiple frequencies [17].

Another possible way in which the length of the coarray can be increased is re-

transmission, which was proposed in [26], but has not been studied in depth. Re-

transmission is an imaging scheme where radiation is sent out by the transmit array,

reflected by the scene and received by an intermediate array - called the retransmit

array - then this received signal is sent back out into the scene and finally received

at the receive array. As will be shown, this retransmission step lengthens the coarray
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in the point spread function. Theoretically, lengthening the coarray should provide

higher resolution, but as was shown in [26], extraneous estimated target locations

called crossterms arise. In this chapter, we will investigate the crossterms in depth

for two coherent point targets and examine various techniques to reduce or eliminate

crossterms. Retransmission with multiple targets and/or multiple retransmissions

will also briefly be studied.

5.2 Review of Active Imaging and the Coarray

Active imaging is used to obtain an image of a scene of reflectors that do not emit their

own radiation. Radiation is sent out from a transmit array, reflected by the reflectors

and the returns are collected by a receive array. From these received returns, an

estimate of the angular reflected power density is made.

Suppose the transmit array has transmitting elements in a line at positions

{xTn|n = 1, 2, ..., N} and the receive array has receiving elements in a line at positions

{xRm|m = 1, 2, ...,M}. The array may or may not share some or all of their elements,

and the positions are measured from an arbitrary origin which also may or may not be

an array element. We say the arrays are operating at the reference frequency ω0 if the

array element spacings are based on the wavelength λ0 corresponding to frequency ω0.

For example, a common spacing is the Nyquist spacing of λ0

2
. It is possible transmit

and receive frequencies, ωq = αqω0, other than the reference frequency.

The scene being imaged consists of K point targets (reflectors). The reflectors

are assumed to be small enough and far enough away from the arrays that they can

be viewed as far-field point targets. Then for both the transmitted radiation arriving

at the targets and the reflections arriving at receive array, the wavefronts can be

approximated as plane waves. The targets are located at angles {θk, k = 1, 2, ..., K}
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measured from broadside and the notation uk = sin θk is used. Each source is assumed

to have complex reflectivity Sk(ωq) for frequency ωq. This reflectivity embodies the

power of the reflection, the phase shift due to reflection and the phase due propagation

delay received at the origin. The parenthetical argument will be dropped unless we

are dealing with frequencies other than the reference frequency. The relationship

between reflection phase shifts for different targets is important. If the phase shifts

due to reflection between targets is indepedent, we say that the targets are incoherent.

If there is a fixed relationship between the phase shifts, the targets are called coherent.

We will assume that the targets are phase coherent with each other, unless stated

otherwise, as this is the more difficult, interesting case for imaging.

5.2.1 Beamforming

Beamforming is used to “steer” the transmitted radiation in a desired direction, u,

and is used to phase align the returns at the receive array so that if there were a

target at u, the returns would add constructively. For a single frequency (assume the

reference frequency), this is done by applying appropriate phase shifts at the transmit

and receive elements. To transmit narrowband radiation in direction u using linear

beamforming, the element in the transmit array at xTn must be phase-delayed by

e−jk0uxTn . Here k0 = 2π
λ0

is the wavenumber associated with frequency ω0. Likewise,

to receive in direction u, the receive element at xRm is phase-delayed by e−jk0uxRm .

We assume that the radiation is sent from each transmit element individually and

received by all receive elements. This way, we have access to each transmit/receive

pair individually and this allows for off-line processing. The complex signal amplitude
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received at xRm from xTn is

Im,n =
K∑
k=1

Ske
jk0uk(xTn+xRm). (5.1)

Adding the beamforming phase-delays to look in direction u, and additional weights

wTn and wRm to the transmit and receive elements respectively for mainbeam width

and sidelobe control of the beampattern, yields

Im,n(u) =
K∑
k=1

SkwTnwRme
−jk0(u−uk)(xTn+xRm). (5.2)

The image as a function of u is given by summing over the transmit and receive

element pairs:

I(u) =
M∑
m=1

N∑
n=1

K∑
k=1

SkwTnwRme
−jk0(u−uk)(xTn+xRm) (5.3)

Notice that the image function is “supported” on the set of points

{xTn + xRm|m = 1, 2, ...,M, n = 1, 2, ..., N}. (5.4)

The sum xTn + xRm is called a coarray point and is an important concept in linear

beamforming [14]. In Equation 5.3, there may be multiple element pairs with the same

value for xTn + xRm, and the sum of the corresponding wTnwRm weight products is

the coarray weight for the coarray point at xTn + xRm. We can label the coarray

points with indices l and call the lth coarray point yl and its corresponding weighting

γl. The coarray points and weights together are collectively referred to as the sum
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coarray. Equation 5.3 can be rewritten as

I(u) =
L∑
l=1

K∑
k=1

Skγle
−jk0(u−uk)yl . (5.5)

5.2.2 Point Spread Function

The response of the imaging system to a unit-reflectivity point target at broadside

(u1 = 0) is called the point spread function. Note this is analagous to the impulse

response of a linear time-invariant system. Equation 5.3 becomes

PSF (u) =
L∑
l=1

γle
−jk0uyl , (5.6)

where {yl} are the coarray points and {γl} are the corresponding weights. We see

that the point spread function is the Fourier transform of the coarray, where u is

the variable in the Fourier domain. Ideally, PSF (u) would be a delta function at 0

since there is just a single point target, but this is not possible with finite L. As L

becomes large, PSF (u) can effectively approch δ(u). Thus, the more coarray points

we have, the better the image resolution. For a more detailed explanation of the

coarray concept, see [14].

The relationship among coarray, array and image quality can be better understood
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Figure 5.1: Block Diagram for Transmit/Receive Imaging System

if we write Equation 5.6 more carefully. Starting from Equation 5.3:

PSF (u) =
N∑
n=1

wTne
−jk0uxTn

M∑
m=1

wRme
−jk0uxRm

= F [{wTn}]F [{wRm}]

= F [{wTn} ∗ {wRm}]

=
L∑
l=1

γle
−jk0uyl

= F [{γl}]

(5.7)

The coarray is the convolution of the sets of transmit and receive array weightings.

When there are multiple targets as in Equation 5.5, the image produced can be

viewed as the superposition of many weighted and shifted point spread functions.

Figure 5.1 illustrates this. The input is the target reflectivity distribution, here a

sum of delta functions weighted by the complex target amplitudes, and the output is
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the image. From linear system theory, we know that for a general target distribution

S(u), the image is given by the target distribution convolved with the point spread

function.

By manipulating the coarray, the point spread function can be modified. As the

number of coarray points L increases, the width of the mainbeam generally becomes

narrower. This is related to the resolution capabilities of the imaging system, and

will be our focus in this chapter.

5.2.3 Multi-Frequency Coarray

Multiple frequencies can be used to modify the coarray [26]. If we use Q frequencies,

ωq = αqω0, q = 0, 1, ..., Q− 1 (where α0 = 1 corresponds to the reference frequency),

by superposition, Equation 5.3 is now given by

I(u) =

Q−1∑
q=0

M∑
m=1

N∑
n=1

K∑
k=1

Sk(ωq)wTnwRme
−jk0(u−uk)αq(xTn+xRm), (5.8)

and the coarray is the set of points

{αq(xTn + xRm)|m = 1, 2, ...,M, n = 1, 2, ..., N, q = 0, 2, ..., Q− 1}

=

Q−1⋃
q=0

αq{xTn + xRm|m = 1, 2, ...,M, n = 1, 2, ..., N}.
(5.9)

The coarray is the union of narrowband coarray points dilated by the factors {αq}. We

can re-index the coarray points such that zl is the lth multi-frequency coarray point.

The weight ζl corresponding to the coarray point zl now encompasses the sums of the

product wTnwRm over the element-pairs and frequency combinations contributing to

160



the lth coarray point and is given explicitly by

ζl =
∑

(m,n,q)∈S

wTnwRm, (5.10)

where the set S = {(q,m, n)|zl = αq(xTn + xRm)}.

The multi-frequency coarray may be denser and/or wider than single-frequency

narrowband coarray. This modifies the point spread function and generally improves

image quality in terms of resolution and/or sidelobe height.

The Fourier Transform relationship still holds for the point spread function when

multiple frequencies are used:

PSF (u) =
L∑
l=1

ζle
−jk0uzl = F [{ζl}] (5.11)

5.3 Retransmission

For the retransmission scheme, we have the initial transmit array {xTn, n = 1, 2, ..., N},

an intermediate receive/transmit array {xp, p = 1, 2, ..., P} and the final receive array

{xRm,m = 1, 2, ...,M}. These arrays may or may not be identical.

A narrowband signal is sent from a transmit element at xTn. The signal is reflected

by the targets and received by the transmit/receive array. The complex amplitude of

the intermediate received signal from xTn to xp is

w̃p,n =
K∑
k=1

Ske
jk0uk(xTn+xp). (5.12)

This intermediate receive signal is transmitted back out into the scene from xp, re-

flected by the targets and received at the receive array. The complex amplitude of
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the final received signal at xRm is

Xm,p,n =
K∑
l=1

w̃p,nSle
jk0ul(xp+xRm)

=
K∑
k=1

K∑
l=1

SkSle
jk0uk(xTn+xp)ejk0uk(xp+xRm).

(5.13)

In order to beamform, we compensate for the propagation delays from xTn to a pixel

in direction u, u to xp, xp to u again, and u to xRm. Array weights wTn, wp and wRm

may be applied to the transmit, transmit/receive and receive arrays respectively.

Applying the weights and compensating for the propagation delays yield the image:

I(u) =
M∑
m=1

P∑
p=1

N∑
n=1

wTnwpwRmXm,p,ne
jk0u(xTn+2xp+xRm)

=
M∑
m=1

P∑
p=1

N∑
n=1

K∑
k=1

K∑
l=1

SkSlwTnwpwRme
−jk0(u−uk)(xTn+xp)e−jk0(u−ul)(xp+xRm)

(5.14)

The retransmission scheme can be interpreted as a single transmit/receive scheme.

To see this, consider using the received complex amplitudes from the first trans-

mit/receive step as transmit weights for the second transmit step. The total receive

complex amplitude at the pth intermediate receiver is

w̃p =
N∑
n=1

wTnwpw̃p,n =
N∑
n=1

K∑
k=1

wTnwpSke
jk0uk(xTn+xp). (5.15)

Then Equation 5.14 can be rewritten as

I(u) =
M∑
m=1

N∑
n=1

K∑
l=1

Slw̃pwRme
jk0(u−ul)(xp+xRm). (5.16)
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This has the same form as a single transmit/receive step with transmit weights w̃p

and receive weights wRm.

5.3.1 Point Spread Function

If the only target in the scene is a target at broadside with unit reflectivity, the point

spread function for retransmission becomes from Equation 5.14,

PSFRT (u) =
M∑
m=1

P∑
p=1

N∑
n=1

wRmwpwTne
−jk0u(xTn+2xp+xRm)

=
L∑
l=1

ηle
−jk0uvl .

(5.17)

where {vl} = {xRm + 2xp + xTn|m = 1, ...,M, p = 1, ..., P, n = 1, ..., N} are the

new coarray points and {ηl} are the new weights. The point spread function of the

retransmit scheme is given by the Fourier Transform of the coarray weights ηl at the

coarray points vl. Examining the point spread function more carefully, we see that it

is a product of beampatterns:

PSFRT (u) = [
M∑
m=1

wRme
−jk0uxRm ][

P∑
p=1

wpe
−jk0u2xp ][

N∑
n=1

wTne
−jk0uxTn ]

= [BR(u)][B(2u)][BT (u)]

(5.18)

Here each function in square brackets corresponds to a beampattern. BR(u) is the

receive array beampattern, BT (u) is the transmit array beampattern and B(u) is the

retransmit array beampattern. The beampatterns are the Fourier Transforms of the

array weights at the array element positions. Notice that in the expression for the

point spread function, the retransmit beampattern is evaluated at 2u. This arises

because we retransmit from this array.
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Continuing with the analysis of the point spread function,

PSFRT (u) = F [{wRm}]F [{wp ↑2}]F [{wTn}]

= F [{wRm} ∗ {wp ↑2} ∗ {wTn}]

= F [{ηl}]

=
L∑
l=1

ηle
−jk0uvl .

(5.19)

In this expression, ↑N represents the operation upsampling by a factor N . For an

array, the upsampling operation stretches the array by a factor of N . The upsampled

array has points at N times their original spacing each retaining their original weight

and “array elements” with zero weight are inserted at the empty locations.

The coarray for retransmission is given by the convolution of the transmit array

weights, receive array weights, and the retransmit array weights upsampled by a

factor of two. Comparing the point spread function of the retransmit scheme to the

point spread function of the standard scheme (Equation 5.6), we see that the coarray

for retransmission has an additional convolution. This will yield a wider coarray than

just the convolution of the transmit and receive elements. Thus, we expect the point

spread function to have a narrower beam than conventional transmit/receive imaging.

This yields finer location resolution for a single point target.

From this point forward, unless otherwise stated, it will be assumed that the

transmit, retransmit and receive arrays are the same array which is uniformly spaced

with spacing λ0

2
. λ0 is the wavelength associated with the reference frequency ω0.

The array weighting is assumed to be uniform, i.e. wTn, wp, wRm = 1 ∀ n, p,m unless

stated otherwise.

As an example to illustrate how retransmission influences the point spread func-

tion, consider a uniformly spaced three element array, with unit weighting, where
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Figure 5.2: Example Coarrays for Transmit/Receive and Retransmit Imaging

the same array is used for all transmit and receive operations. In the conventional

transmit/receive scenario, the coarray weighting is given by the convolution of the

transmit and receive array weightings, [1, 1, 1] ∗ [1, 1, 1] = [1, 2, 3, 2, 1]. The coarray,

shown in Figure 5.2, consists of five uniformly spaced elements at the same spacing.

The coarray has a triangular weighting.

When we consider the same array in a retransmission scheme, the coarray becomes

[1, 1, 1] ∗ [1, 0, 1, 0, 1] ∗ [1, 1, 1] = [1, 2, 4, 4, 5, 4, 4, 2, 1]. The coarray has nine uniformly

spaced elements and is shown in Figure 5.2. This will cause the beamwidth of the

point spread function to be narrower than in conventional transmit/receive imaging.

Note that the coarray weighting is no longer triangular.

The point spread functions corresponding to the coarrays in Figure 5.2 are plotted
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Figure 5.3: Example Point Spread Functions for Transmit/Receive and Retransmit
Imaging

in Figure 5.3. The mainbeam of point spread function for the retransmission scheme

is about half the width of the mainbeam for standard active imaging. Mainbeam

width is the characteristic related to resolution, so it is reasonable to expect better

resolution with retransmission.

The retransmission scheme seems to allow for an interesting coarray synthesis.

With only a few real array elements, a relatively wide coarray can be synthesized.

However, we will see that there are some problems for more than one target in the

scene.

5.3.2 Retransmission with Two Coherent Point Targets

To examine the resolution capabilities of retransmission further, consider a scene

which has two coherent point targets at u1 and u2 each with unit reflectivity. Assume
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unit array weights, wTn = wp = wRm = 1, for all n,m, p, then Equation 5.14 becomes

I(u) =
M∑
m=1

P∑
p=1

N∑
n=1

2∑
k=1

2∑
i=1

e−jk0(u−uk)(xTn+xp)e−jk0(u−ui)(xp+xRm)

=
M∑
m=1

P∑
p=1

N∑
n=1

(e−jk0(u−u1)(xTn+xp) + e−jk0(u−u2)(xTn+xp))

× (e−jk0(u−u1)(xTn+xp) + e−jk0(u−u2)(xTn+xp))

=
M∑
m=1

P∑
p=1

N∑
n=1

[e−jk0(u−u1)(xTn+2xp+xRm) + e−jk0(u−u1)(xTn+xp)e−jk0(u−u2)(xRm+xp)

+ e−jk0(u−u1)(xRm+xp)e−jk0(u−u2)(xTn+xp) + e−jk0(u−u2)(xTn+2xp+xRm)].

(5.20)

The first and fourth terms inside of the square brackets are the retransmit point

spread functions with peaks at u = u1 and u = u2, respectively. This is what we want

to see in our image. The second and third terms are crossterms ; these are artifactual

terms. We can rewrite Equation 5.20 as

I(u) = PSFRT (u− u1) + PSFRT (u− u2) + F (u) (5.21)
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where F (u) contains the crossterms. Examining the crossterms,

F (u) =
M∑
m=1

P∑
p=1

N∑
n=1

e−jk0(u−u1)(xTn+xp)e−jk0(u−u2)(xRm+xp)

+ e−jk0(u−u1)(xRm+xp)e−jk0(u−u2)(xTn+xp)

=
M∑
m=1

P∑
p=1

N∑
n=1

e−jk0(u−u1+u2
2

)(xTn+2xp+xRm)×

[ejk0
u1−u2

2
(xTn+xp)e−jk0

u1−u2
2

(xp+xRm) + e−jk0
u1−u2

2
(xTn+xp)ejk0

u1−u2
2

(xp+xRm)]

=
M∑
m=1

P∑
p=1

N∑
n=1

e−jk0(u−u1+u2
2

)(xTn+2xp+xRm)[ejk0
u1−u2

2
(xTn−xRm) + e−jk0

u1−u2
2

(xTn−xRm)]

=
M∑
m=1

P∑
p=1

N∑
n=1

e−jk0(u−u1+u2
2

)(xTn+2xp+xRm)2 cos[k0
u1 − u2

2
(xTn − xRm)]

(5.22)

we see that the crossterm F (u) looks very similar to a point spread function evaluated

at u1+u2

2
, however it is modified by the cosine factor which effectively gives an element

weighting depending on the angular separation of the target locations. The peak of

the crossterm appears at the average of the two target locations.

The image I(u) has three potential peaks: two desired peaks near the target

locations u1 and u2 and one undesired peak near u1+u2

2
. Figure 5.4 illustrates this

effect of the crossterm. This simulation was performed with a 9 element λ0

2
uniformly-

spaced array being used for transmission, retransmission and receiving, with targets

at u = ±.15. The simulation shows the correctly estimated target locations near ±.15

and the crossterm is clearly present at u = 0.

To further examine the behavior of the crossterm, assume without loss of gener-

ality, that the array is symmetric about the origin. Then the sets {xRm + xTn} =

{xRm − xTn} = {yl}. If the arrays are uniformly spaced at λ0

2
, then {yl} has a trian-
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Figure 5.4: Illustration of the Crossterm appearing between Two Targets
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gular weighting {γl}. Evaluating the crossterm, F (u) at the peak crossterm location

u = u1+u2

2
yields

F (
u1 + u2

2
) =2

M∑
n=1

M∑
m=1

cos[k0
u1 − u2

2
(xTn − xRm)]

M∑
p=1

e−jk0(
u1+u2

2
−u1+u2

2
)(xTn+2xp+xRm)

=2M
M∑
n=1

M∑
m=1

cos[k0
u1 − u2

2
(xTn − xRm)]

=2M
M−1∑

l=−(M−1)

(M − |l|) cos[lπ
u1 − u2

2
].

(5.23)

The last equation is true since we have assumed uniformly-spaced unit-weighted array

centered at the origin.

For very separated targets, u1 → 1 and u2 → −1, so u1−u2

2
→ 1. When M is

even, F (1+1
2

) = F (1) = 0. When M is odd, F (1+1
2

) = F (1) = 2M . Comparing

this to the power at an actual target, which is PSFRT (0) = M3, when the targets

are far apart, the power at the crossterm location is small compared to the power at

the actual target locations. The crossterm is not a major issue for separated targets.

However, for very closely spaced targets, u1 → u2 and u1−u2

2
→ 0, F (0) = 2M3 which

is comparable to the power at the actual target locations. A large crossterm may

appear.

The idea of increasing the diameter of the coarray by retransmission to increase

resolution capabilities of the system creates an undesirable crossterm which is signifi-

cant as the targets come closer together. This occurs because retransmission is not a

linear operation. For multiple point targets, the image is not a superposition of the

individual point spread functions as it is in standard active imaging.
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5.4 Resolution Limits

In this section, we will analyze the beamwidth of the point spread functions for both

transmit/receive and retransmit imaging to determine whether retransmit imaging

with the crossterm present can provide better resolution.

In standard transmit/receive imaging, two targets are said to be resolvable if they

are more than 2u3dB apart. u3dB is the 3 dB point of the mainlobe of the point

spread function - the postive point closest to zero where PSF (u3dB) = 1
2
, assuming

the maximum of the point spread function has been normalized to unity.

Since in retransmission with two targets we have two mainbeams corresponding

to the estimated target locations and then the crossterm halfway in between, the

crossterm is distinguishable from the two mainbeams if it is at least 2uRT3dB from each

target. uRT3dB is the positive point closest to zero where PSFRT (uRT3dB) = 1
2
. This means

that the targets must be at least 4uRT3dB away from each other. This is illustrated in

Figure 5.5.

For retransmission where a crossterm is present, to be able to have better resolu-

tion capabilities than standard transmit/receive imaging, we need

4uRT3dB ≤ 2u3dB. (5.24)

5.4.1 Analysis of Beamwidths

Assuming a uniform weighting on the M -element uniformly spaced array which is

centered about the origin, the receive and transmit beampatterns for a target at
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Figure 5.5: Illustration of Retransmit Imaging with the Crossterm vs. Standard
Transmit/Receive Imaging Mainbeam Widths

broadside with unit reflectivity are given by their respective Fourier Transforms,

BR(u) =
M∑
m=1

e−jk0uxRm =
sin(M

2
πu)

sin(1
2
πu)

, BT (u) =
M∑
n=1

e−jk0uxTn =
sin(M

2
πu)

sin(1
2
πu)

. (5.25)

The point spread function is the product of the two beampatterns:

PSF (u) = BT (u)BR(u) =
M∑
m=1

M∑
n=1

e−jk0u(xRm+xTn) =
sin2(M

2
πu)

sin2(1
2
πu)

(5.26)

For the retransmit scheme where the M elements are used to transmit, retransmit

and receive, the beampatterns for the transmit and receive stages are again given by

Equation 5.25 and the retransmit stage is given by the upsampled version,

B(u) =
M∑
p=1

e−jk0u2xRm =
sin(Mπu)

sin(πu)
. (5.27)
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M u3dB uRT3dB 4uRT3dB − 2u3dB

2 0.5 0.2880 0.1520
3 0.3106 0.1790 0.0948
4 0.2277 0.1313 0.0698
5 0.1804 0.1040 0.0552
6 0.1495 0.0863 0.0462
7 0.1277 0.0737 0.0394
8 0.1116 0.0644 0.0344
9 0.0990 0.0572 0.0308
10 0.0891 0.0514 0.0274
> 10 .8858

M
.5108
M

.2716
M

Table 5.1: 3 dB Beamwidths for Transmit/Receive and Retransmit Imaging for Var-
ious Array Sizes

The point spread function is given by the products of the three beampatterns (see

Equation 5.18):

PSFRT (u) = BT (u)B(2u)BR(u)

=
M∑
m=1

M∑
n=1

M∑
p=1

e−jk0u(xRm+2xp+xTn) =
sin2(M

2
πu)

sin2(1
2
πu)

sin(Mπu)

sin(πu)
.

(5.28)

For the purpose of estimating the 3 dB point of the point spread function, we can

approximate the mainbeam of the beampatterns with sinc(.) = sin(.)
(.)

functions with

reasonable accuracy for large enough M (approximately M > 10). This is because as

M increases, the 3 dB point becomes smaller and the small angle approximation can

be used, sin(πu) ≈ πu. Using these expressions, Table 5.1 summarizes the distance

from the peak of the mainlobe to the 3 dB point of the mainlobe for transmit/receive

(u3dB) and retransmit cases (uRT3dB). The values were calculated numerically using

MATLAB. Exact values are used for M ≤ 10 and the sinc(.) approximation is used

for M > 10.

Now that we have these exact beamwidth results, we can compare the beamwidths
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of retransmit to standard transmit/receive. For retransmit imaging to have an ad-

vantage over standard transmit/receive imaging, the targets in the retransmit scheme

should be able to be closer than in the standard scheme. As was stated in the begin-

ning of this section, this condition is

4uRT3dB ≤ 2u3dB. (5.29)

Based on this table, for anyM , we see that this is not true since the difference (given in

the last column of the table) is always positive. Thus, for any M we cannot achieve the

resolution in retransmit with the crossterm present that we can in standard transmit

receive. Thus the only way to make retransmission feasible is to consider means for

eliminating or reducing the crossterm.

5.4.2 Crossterm Mitigation Schemes

Modifying Array Element Spacing

One approach to reducing the crossterm is to force F (u) to zero at u = u1+u2

2
by

choosing the array appropriately. This is equivalent to forcing the argument of the

cosine factor in F (u) to π
2

(modulus π) for all {xTn−xRm}. For this exercise, assume

we know the separation u1 − u2, then the argument of the cosine factor should be

chosen such that it is equal to π
2

modulus π, i.e.,

k0
u1 − u2

2
(xTn − xRm) = lπ +

π

2

xTn − xRm =
(l + 1

2
)λ0

u1 − u2

xTn − xRm =
lλ0

u1 − u2

+
λ0

2(u1 − u2)
for all n,m and for some l

(5.30)

If we know the spacing of the targets, the above analysis simply says that in
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order to reduce the crossterm, we must modify the spacing of the array elements. As

the targets get closer together, the spacing of the elements must get further apart.

However, if such a spacing is chosen, the targets might be able to be resolved without

using retransmission because of the wider coarray. This approach also causes grating

lobes due to undersampling. The spacing of targets is generally unknown, so this

approach is not likely viable. However, this analysis provides some insight into other

methods which may be useful. Essentially what is happening here is we are chosing

the array elements so that the contributions from the crossterms add up out of phase.

We can use this idea applied to other methods of crossterm reduction such as using

aperiodic arrays or multiple frequencies as will be examined in the following sections.

Using an Aperiodic Array

In this section, we simulate examples of aperiodic arrays to observe the effect of the

aperiodicity in the retransmission scheme. The hope is that the aperiodicity will help

reduce the crossterm size while preserving the narrow shape of the retransmission

beam to allow for higher resolution.

The first array we study is a 5-element array. We fix the length of the aperture

at 2λ0, which is the length of the 5-element λ0

2
-uniformly-spaced array, so that the

increase in resolution does not come from an increase in aperture size. The other

three array element positions are variable. We will simulate many trials where each

of the elements is uniformly randomly located within the aperture. We assume that

we are observing two targets which are symmetric about broadside.

Quantities to be observed are the how close the estimated target locations are to

the actual target locations, the power of the null between the two target locations

(u = 0) and the peak sidelobe power. We will compare retranmission with standard

transmit/receive imaging in each of these areas.
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For our first examination, we have two targets at ±0.19 and use frequency ω0 = 1

GHz. This separation is chosen because it is just barely resolvable by a uniformly

spaced 5 element array, see Table 5.1. 100 trials are run, allowing the three variable

array elements to be placed randomly within the aperture with a uniform probabil-

ity density function over [−λ0, λ0]. The results of the trials are plotted in Figure

5.6. For standard transmit/receive imaging, the two targets were successfully re-

solved 100 out of 100 times. Retransmission imaging resolved the targets 83 out of

100 times. The times where the two targets were not resolved in retransmission, the

crossterm at u = 0 dominated. When the targets were resolved, on average, standard

transmit/receive imaging estimated the target locations to be at u = ±.2039 and

retransmission imaging estimated them to be at u = ±.2176. For standard active

imaging, the power between the targets u = 0 was −2.0025 dB while for retransmis-

sion it was slightly better at −2.8701 dB. The peak sidelobe level for standard active

imaging was on average −1.3815 dB and for retransmission is was significantly better

at −5.0224 dB.

For this experiment, it seems that standard active imaging provides a better

chance of resolving the targets and gives better accuracy in estimating the target

locations, but retransmit imaging gives a deeper null between targets when they are

resolved and significantly lower peak sidelobe power.

One of the chosen random arrays which provided low crossterm and sidelobe levels

for retransmission imaging will be examined. The array [−.3,−.1365,−.1297, .1304, .3]

provided good results. We will slightly modify this array for our simulations. The

array elements −.1365 and −.1297 are too close to actually have two separate array

elements there, so we will consider them one element. We will also enforce symmetry

on the array. The array we use for simulations is [−.3,−.1365, .1365, .3]. We will com-

pare this array for both standard transmit/receive imaging and retransmit imaging

176



(a) Standard Transmit/Receive Imaging Trials

(b) Retransmit Imaging Trials

Figure 5.6: Random Array Trials

177



for various target separations. As is shown in Figure 5.7(a), for u = ±.19, standard

transmit/receive imaging estimated the targets to be at ±.22, with a between target

null of −1.3848 dB and peak sidelobe power of −6.462 dB. Retransmit imaging also

estimated the targets to be at ±.22, with a between target null of −2.1618 dB and

peak sidelobe power of −8.4801 dB. This is shown in Figure 5.7(b). Retransmission

for this case overall performs better than standard transmit/receive imaging.

If the targets are slightly more separated to ±.25, standard transmit/receive imag-

ing estimates the targets to be at ±.27, with a between target null of −6.2277 dB

and peak sidelobe power of −6.3121 dB. Retransmit imaging estimated the targets

to be at ±.265, with a between target null of −9.34 dB and peak sidelobe power of

−9.303 dB. This simulation is shown in Figure 5.8. The retransmission scheme again

outperforms standard transmit/receive imaging. Notice that there is an actual peak

at the crossterm location. It is on the level of the sidelobes, so it is not prohibitively

large.

If the targets are moved closer together to ±.165, retransmission cannot resolve

them, while standard transmit/receive can barely do so. See Figure 5.9. At ±.17, they

can be resolved by both schemes as is shown in Figure 5.10. Standard transmit/receive

imaging estimats the targets to be at ±.165, with a between target null of −.3037 dB

and peak sidelobe power of −6.3414 dB. Retransmit estimates the targets to be at

±.16, with a between target null of −.2475 dB and peak sidelobe power of −9.1282

dB. Now, in terms of target resolution, standard transmit/receive imaging is better

in this case.

There are trade-offs between standard transmit/receive imaging and retransmis-

sion imaging. Retransmission does not appear to provide better resolution capabilities

with an aperiodic array. Standard transmit/receive imaging may be able to resolve

targets that retransmission cannot, and standard transmit/receive imaging seems
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.7: 4-element Aperiodic Array, Targets at ±.19
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.8: 4-element Aperiodic Array, Targets at ±.25
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.9: 4-element Aperiodic Array, Targets at ±.165
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.10: 4-element Aperiodic Array, Targets at ±.17
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to provide better target accuracy. However, for targets that are not at the critical

resolution capability, retransmission with an aperiodic array could provide slightly

better imaging in terms of narrower beamwidth, depth of the null between the target

locations and peak sidelobe power.

Using Multiple Frequencies

As has been shown, using multiple frequencies changes the coarray, [17]. In this

section, we examine the effect of using multiple frequencies on retransmission imaging

and compare it to standard transmit/receive imaging.

We assume we have a 5 element λ0

2
-uniformly spaced array. Radiation of various

frequencies is transmitted and received (and retransmitted and received again for

retransmission imaging). The image is formed by beamforming and summing over all

of the returns at each frequency. The hope is that these returns will add up out of

phase at the crossterm location.

For targets at ±.19, which are barely resolvable for narrowband imaging at the

reference frequency, we simulate the image at various frequencies. In Figure 5.11(a),

the standard transmit/receive image from 20 equally spaced frequencies from 1 GHz

to 2GHz are individually plotted. The reference frequency is taken to be ω0 = 1GHz.

We see that as frequency increases, the mainlobe width decreases, the null between the

targets decreases and grating lobes appear. This is expected because as the frequency

increases, the effective array spacing increases yielding higher resolution, but grating

lobes appear because the spatial sampling separation is below the Nyquist spacing,

[40]. Figure 5.11(b) shows the retransmit image from the same 20 equally spaced

frequencies and the effects are the same. The power of the crossterm decreases as

frequency increases.

In Figures 5.12(a) and 5.12(b), the average of the images from each of the fre-
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.11: 5-element Uniformly Spaced Array, Multiple Frequencies from 1-2 GHz
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quencies is taken for standard transmit/receive and retransmit imaging, respectively.

We see that with the use of multiple frequencies, the targets become more resolvable.

Averaging over the frequencies controls grating lobes, as they add up out of phase,

but preserves the increased resolution. The crossterm power is reduced because the

cosine factors in F (u) are adding up out of phase. In this example, both retransmit

and standard transmit/receive imaging estimate the targets to be in the correct lo-

cation, at ±.19. Retransmission performs better in terms of between target null. For

retransmission it is −5.4909 dB and for standard transmit/receive it is −4.8280 dB.

Retransmission also has lower peak sidelobe levels.

As happened with aperiodic arrays, as the targets become closer together, retrans-

mission performance degrades compared to standard transmit/receive imaging. Fig-

ures 5.13(a) and 5.13(b) show the multi-frequency simulation for target at u = ±.15.

Here, retransmission still outperforms standard transmit/receive imaging in terms

of peak sidelobe height and null depth between targets. When the targets are less

separated at u = ±.12, retransmission cannot resolve the two targets, while standard

transmit/receive imaging can - the crossterm becomes too large. This is shown in Fig-

ures 5.14(a) and 5.14(b). For targets at u = ±.13, retransmission can resolve them,

but standard transmit/receive imaging performs better in terms of depth of null be-

tween the targets and accuracy of target location estimation. Retransmission still has

better sidelobe characteristics. These simulations are shown in Figures 5.15(a) and

5.15(b).

Using multiple frequencies in retransmit imaging can help reduce the crossterm

size, however, overall resolution capabilities do not appear to be improved compared

to standard transmit/receive imaging. Retransmission imaging can yield improved

image quality in terms of lower sidelobe levels and depth of between target null

for sufficiently separated targets. This result is similar to using aperiodic arrays in
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.12: 5-element Uniformly Spaced Array, Average over all Frequencies, Targets
at ±.19
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.13: 5-element Uniformly Spaced Array, Average over all Frequencies, Targets
at ±.15
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.14: 5-element Uniformly Spaced Array, Average over all Frequencies, Targets
at ±.12
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(a) Standard Transmit/Receive Imaging

(b) Retransmit Imaging

Figure 5.15: 5-element Uniformly Spaced Array, Average over all Frequencies, Targets
at ±.13
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retransmit imaging.

5.5 Retransmission with Incoherent Targets

So far, we have only considered coherent targets - targets that reflect with a fixed

phase difference - and the reflectivities could be considered deterministic because of

this fixed phase difference. In this section, we consider incoherent targets, which

are targets that each reflect with an independent uniformly random phase. Now, we

must consider taking the expection of the image given in Equation 5.14. The complex

amplitude Sk can be modeled as a real, deterministic amplitude ak and a uniformly

random phase βk ∈ [−π, π]. The phases for different targets are independent of each

other. Since we are observing a random process, we take multiple snapshots of the

scene and average the images of the snapshots. Over the snapshots, the relationship

between the complex amplitudes is

E[SkSi] =


E[ake

jβkaie
jβi ] = akaiE[ejβk ]E[ejβi ] = 0 for k 6= i

E[ake
jβkake

jβk ] = a2
kE[ej2βk ] = 0 for k = i

(5.31)

Because of this, when the targets are incoherent, Equation 5.14 becomes

I(u) =
M∑
m=1

N∑
n=1

P∑
p=1

K∑
k=1

K∑
i=1

E[SkSi]e
−jk0(u−uk)(xTn+xp)e−jk0(u−ui)(xp+xRm) = 0 (5.32)

and retransmit imaging with independent targets is rendered useless.

Since there is no conjugation involved, the expectation of the source reflectivities

over the snapshots is zero. A popular method called Time Reversal Imaging is basi-

cally retransmission, except that in the retransmit stage the complex conjugate of the

received data is used as weights, [27]. In this case where conjugation is performed,
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the relationship between the target reflection amplitudes is

E[SkS
∗
i ] =


E[ake

jβka∗i e
−jβi ] = aka

∗
iE[ejβk ]E[e−jβi ] = 0 for k 6= i

E[ake
jβka∗ke

−jβk ] = |ak|2 otherwise.

(5.33)

Then, if time reversal imaging is used, the image is

I(u) =
M∑
m=1

N∑
n=1

P∑
p=1

K∑
k=1

K∑
i=1

E[S∗kSi]e
jk0(u−uk)(xTn+xp)e−jk0(u−ui)(xp+xRm)

=
M∑
m=1

N∑
n=1

P∑
p=1

K∑
k=1

|ak|2ejk0(u−uk)(xTn+xp)e−jk0(u−uk)(xp+xRm)

=
M∑
m=1

N∑
n=1

P
K∑
k=1

|ak|2e−jk0(u−uk)(xRm−xTn).

(5.34)

We see that the coarray for time reversal imaging is the difference coarray. For a

uniformly spaced array, the difference coarray and the sum coarray seen in standard

transmit/receive imaging are the same, [41]. Time reversal imaging does not provide

increased resolution through coarray dilation, however, in the literature [27], time

reversal imaging is shown to have increased resolution when clutter is present, but

this is out of the scope of this chapter.

5.6 Retransmission with More than Two Targets

As the number of targets increases, the crossterms may become more of an issue - as

there are multiple crossterms resulting from each pair of targets. Instead of examining

the complicated imaging expressions for more than two targets, we can examine what

happens by examining polynomial multiplication analogy.
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The general image expression for more than two targets is given by

I(u) =
M∑
m=1

P∑
p=1

N∑
n=1

K∑
k=1

K∑
i=1

SkSiwTnwpwRme
−jk0(u−uk)(xTn+xp)e−jk0(u−ui)(xp+xRm).

(5.35)

The crossterm arises because of the coupling of the factors containing i and k in the

summations.

To understand how this is related to polynomial multiplication, we let everything

in the expression involving target ui be represented by vi, then the image can roughly

be written as
K∑
k=1

K∑
i=1

vkvi = (v1 + v2 + v3 + ...+ vK)2. (5.36)

For the familiar case when there are two targets, K = 2, this is

(v1 + v2)
2 = v2

1 + v2
2 + 2v1v2. (5.37)

Comparing this to Equation 5.20, we see that there are two “pure” terms involving

target u1 and u2 separately. These correspond to v2
1 and v2

2 in Equation 5.37. We know

that there is one crossterm involving u1 and u2 jointly in Equation 5.20, corresponding

to 2v1v2 in Equation 5.37.

For three targets, the polynomial analogy becomes

(v1 + v2 + v3)
2 = v2

1 + v2
2 + v2

3 + 2v1v2 + 2v1v3 + 2v2v3 (5.38)

and we see that there are three “pure” targets and three crossterms.

In general, for K targets, by the multi-nomial theorem, there will be K pure target

locations and K(K−1)
2

crossterms. The number of crossterms grows quadratically in
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Figure 5.16: Retransmit Imaging with Three Targets at u = [−.6, .1, .6]

K.

This can potentially be a large number of crossterms. However, recall from Section

5.3.2 that as the targets become further apart, the strength of the crossterm decreases,

so not every crossterm will appear above sidelobe levels. For example, a 5 element

uniformly spaced array with three equal power targets at u = [−.6, .1, .6] produces

the image in Figure 5.16. Note that the only noticeable crossterm present is at

u = .1+.6
2

= .35.
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5.7 Multiple Retransmissions

More than one retransmission can be used. For each retransmission, the received

signal at each element is used as the weight for the next transmission. Multiple

retransmissions would create an even larger coarray for a single target. The initial

transmit array is denoted by {xTn, n = 1, 2, ..., N}. The ith retransmit array is denoted

by {xp(i), p(i) = 1, 2, ..., P (i)} and the final receive array is {xRm,m = 1, 2, ...,M}

For L retransmit arrays, the image is

I(u) =
N∑
n=1

P (1)∑
p(1)=1

P (2)∑
p(2)=1

...

P (L)∑
p(L)=1

K∑
k(0)=1

K∑
k(1)=1

...
K∑

k(L)=1

M∑
m=1

Sk(0)Sk(1)...Sk(L−1)Sk(L)...

× e−jk0(u−uk(0))(xTn+xp(1))e−jk0(u−uk(1))(xp(1)+xp(2))e−jk0(u−uk(2))(xp(2)+xp(3))...

× ...e−jk0(u−uk(L−1))(xp(L−1)+xp(L))e−jk0(u−uk(L))(xp(L)+xRm)

(5.39)

The polynomial analogy is now given by

K∑
k(0)=1

K∑
k(1)=1

...
K∑

k(L)=1

vk(0)vk(1)...vk(L) = (v1 + v2 + ...+ vK)L+1 (5.40)

As an example, for two targets and two retransmissions, polynomial multiplication

is

(v1 + v2)
3 = v3

1 + v3
2 + 3v2

1v2 + 3v1v
2
2. (5.41)

From this, we would expect two crossterms to appear. This is supported by simulation

in Figure 5.17. For a 5-element uniformly spaced array, performing two retransmission

with two targets located at u = ±.33, there are clearly two crossterms located at

u = ±.0762.

In general, for K targets and L retransmissions, by the multi-nomial theorem,
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Figure 5.17: Two Retransmissions and Two Targets
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there are K pure terms and (K+L)!
(K−1)!(L+1)!

−K crossterms. The number of crossterms

now grows quickly in both K and L.

5.8 Conclusion

Retransmission was examined in this chapter with the hope for increasing resolution.

In terms of the point spread function, the mainbeam is narrower than in standard

transmit/receive imaging with the same array. The coarray length appears to approx-

imately double. However, for retransmit imaging this does not translate to higher

resolution when two targets are present. This is because retransmission is a non-

linear operation and the coarray analysis does not apply. When there are multiple

targets present, the image is not the superposition of shifted point spread functions -

crossterms can appear between actual target locations.

It was shown for two targets that as targets become closer together, in the image,

the power of the crossterm between them becomes larger and can overpower the actual

target location estimates. This thwarts any hope for resolution gain. As the targets

become further apart, the crossterm power decreases.

A rough beamwidth analysis was performed on uniformly spaced array for both

retransmit and standard transmit/receive imaging showing that, with the crossterm

present, standard transmit/receive imaging provides better resolution.

It was demonstrated for some aperiodic arrays that retransmission can slightly

outperform standard transmit/receive imaging in peak sidelobe power and in the

depth of the null between the estimated target locations, provided that the targets

were sufficiently separated. It does not appear to perform better in resolution or

target location accuracy with aperiodic arrays. Retransmission may help provide a

cleaner image, though not better resolution.
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Likewise, multiple frequencies can be used to produce multiple images. In retrans-

mission, if the images are summed together over frequency, they may add up out of

phase at the crossterm, and thus reduce its power relative to the estimated target lo-

cations. Using multiple frequencies extends the coarray in standard transmit/receive

imaging, so any reduction is crossterm power acheived is matched by increased reso-

lution in transmit/receive imaging, but as with aperiodic array, retransmission may

only help provide a slightly cleaner image in terms of sidelobe height and null depth

between targets for sufficiently separated targets.

When more than two targets are present, additional crossterms arise between all

possible target locations. For K targets, it was shown that K2−K
2

crossterms are

present, however, since the power of the crossterm decreases as target become further

apart, for many targets spread over the scene, not all of them may be visable above

sidelobe levels.

For multiple retransmissions, the number of crossterms present depends on the

number of targets and the number of retransmissions used. For K targets and L

retransmissions, it was shown that (K+L)!
(K−1)!(L+1)!

−K crossterms are present. For many

targets and many retransmissions, this number could be quite large.

Overall, retransmission may not provide the resolution gain as hoped, but it may

be a viable way to obtain clean-up of some image on an existing transmit/receive

system.
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Chapter 6

Conclusion

Using multiple frequencies in imaging yields additional information. In this disserta-

tion, we researched ways to use this extra information to allow for better resolution

capabilities. We considered both passive and active high-resolution techniques. By

using multiple frequencies with existing techniques, we can resolve more point sources

than the existing techniques alone permit. We also considered using multiple frequen-

cies in a retransmission scheme to increase resolution for beamforming methods.

In Chapter 2, we showed that by using multiple frequencies, the effect of a larger,

virtual array can be synthesized for passive imaging with line arrays. The effect of

a larger, virtual array allowed for more points sources to be resolved using existing

high-resolution techniques compared to using the existing techniques in their original

narrowband form. It was shown that when the sources had proportional power spec-

tra, our approach worked well. However, for sources with non-proportional power

spectra, the source location estimation was skewed. Some methods were suggested

to mitigate the effect of non-proportional sources in the context of a small example.

One such method using array interpolation stood out as a possibility to extend this

method to larger problems where sources with non-proportional spectra are present.
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Chapter 3 presented a frequency-smoothing method similar to spatial-smoothing

or pattern diversity to allow for coherent targets to be resolved with line arrays using

Multiple Signal Classification [9, 10]. It was previously shown that using virtual

arrays with active imaging, additional targets could be resolved at the expense of the

ability to resolve coherent targets [13]. The key contribution in this chapter is that

we showed by averaging the virtual correlation matrices over frequency, these targets

could be coherent and still be successfully resolved.

The work done in the first two chapters was extended to planar arrays in Chapter

4. For active imaging, the extension was relatively straightforward. However, for

passive imaging, it was not always possible to synthesize the effect of any virtual

array with any physical array. A class of arrays that works for passive imaging was

suggested, but shown to not perform as well as existing narrowband virtual array

techniques.

Chapter 5 focused on increasing the length of the coarray to improve resolution

in beamforming techniques by using a retransmission scheme. Previous work showed

that when retransmission was used, artifactual peaks, called crossterms, arise in the

image [26]. These crossterms counter any resolution gain when more than one target

is present. We investigated this work further. A few techniques were employed in

order to reduce or eliminate the crossterms, including using multiple frequencies, but

it was shown that these provide very little, if any, gain in performance over standard

transmit/receive imaging.

6.1 Possibilities for Future Research

In Chapter 2, we suggested ways to help combat the effect of non-proportional spectra.

One of the more promising ways, which should be extendable to larger arrays and
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more sources, is using array interpolation [19] to average the narrowband correlation

matrices before forming the virtual correlation matrix. This averaging, in theory,

causes each of the averaged narrowband correlation matrices to have the same source

correlation matrix and thus is equivalent to having proportional spectra. This same

averaging process could potentially allow for coherent sources to be resolved. This

approach needs to be fully investigated, because it would be ideal for the multi-

frequency high resolution techniques to be able to be applied to all types of sources.

The work done in Chapter 3 applies only to targets clustered together in a suffi-

ciently small sector. If targets of comparable reflection power lie outside of the sector,

this causes location estimation errors. We suggested an alternative way of finding the

array interpolation matrices using a beamspace method that nulls out of sector tar-

gets, but it was not examined in detail. Similar techniques exist in the literature

[47], and further research should be performed to see if similar beamspace techniques

could work for our technique.

The main extension that should be examined for the work done in Chapter 4 is

using a search-free technique, such as root-MUSIC, since two-dimensional MUSIC is

computationally intensive. Also, for passive imaging, additional array and virtual

array geometries which work could possibly be found that provide an advantage over

the existing narrowband virtual array techniques for passive planar arrays.

In addition, it would be an interesting problem to try to find the minimum redun-

dancy arrays when using multiple frequencies [28]. In theory, using multiple frequen-

cies generates additional coarray points, so potentially, even more sparse arrays can

be found when multiple frequencies are used [17]. This may also be an interesting

exercise for retransmit imaging, though its effort may not have true practical value

since crossterms arise.
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