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Linear and Nonlinear Auditory Response Properties Of Interneurons In A
High Order Avian Vocal Motor Nucleus During Wakefulness

Abstract
Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli.
Sensory tuning properties in these areas, especially during wakefulness, and their relation to perception,
however, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure
with auditory responses well defined under anesthesia but poorly characterized during wakefulness. I used a
large set of song stimuli including the bird‟s own song (BOS) and many conspecific stimuli (CON) to
characterize auditory tuning properties in putative interneurons (HVCIN) during wakefulness. My findings
suggest that HVC contains a heterogeneity of response types; a third of neurons are either suppressed or show
no response to any stimuli and two thirds show excitatory responses to one or more stimuli. A subset of
excitatory neurons are tuned exclusively to BOS and show very low linearity as measured by spectrotemporal
receptive field analysis (STRF), but many respond well to both BOS and CON stimuli and show response
linearity comparable to that previously measured in structures of the ascending auditory pathway. Fourier
analysis of the STRFs of linear HVCIN reveals a range of peak spectrotemporal tuning properties, with
approximately half of these neurons showing peak sensitivity to modulations occurring with high power in
zebra finch song. Previous work has established that HVC lesioned birds are impaired in operant contingency
reversals involving CON stimuli and birds with lesions to song nuclei receiving auditory input from HVC are
impaired in discriminations between BOS and CON stimuli. The findings of the present study are consistent
with these results and suggest a possible role for HVC in species-relevant auditory tasks.
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                                                                     ABSTRACT 

 

 LINEAR AND NONLINEAR AUDITORY RESPONSE PROPERTIES 

         OF INTERNEURONS IN A HIGH ORDER AVIAN VOCAL  

                  MOTOR NUCLEUS DURING WAKEFULNESS 

         Jonathan N. Raksin 

                      Marc F. Schmidt 

 

Motor-related forebrain areas in higher vertebrates also show responses to passively 

presented sensory stimuli. Sensory tuning properties in these areas, especially during 

wakefulness, and their relation to perception, however, are poorly understood. In the 

avian song system, HVC (proper name) is a vocal-motor structure with auditory 

responses well defined under anesthesia but poorly characterized during wakefulness. I 

used a large set of song stimuli including the bird‟s own song (BOS) and many 

conspecific stimuli (CON) to characterize auditory tuning properties in putative 

interneurons (HVCIN) during wakefulness. My findings suggest that HVC contains a 

heterogeneity of response types; a third of neurons are either suppressed or show no 

response to any stimuli and two thirds show excitatory responses to one or more stimuli. 

A subset of excitatory neurons are tuned exclusively to BOS and show very low linearity 

as measured by spectrotemporal receptive field analysis (STRF), but many respond well 
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to both BOS and CON stimuli and show response linearity comparable to that previously 

measured in structures of the ascending auditory pathway. Fourier analysis of the STRFs 

of linear HVCIN reveals a range of peak spectrotemporal tuning properties, with 

approximately half of these neurons showing peak sensitivity to modulations occurring 

with high power in zebra finch song. Previous work has established that HVC lesioned 

birds are impaired in operant contingency reversals involving CON stimuli and birds with 

lesions to song nuclei receiving auditory input from HVC are impaired in discriminations 

between BOS and CON stimuli. The findings of the present study are consistent with 

these results and suggest a possible role for HVC in species-relevant auditory tasks.   
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Chapter 1. Introduction 

Overview 

The goal of this Introduction is to provide context for the work presented in Chapter 2, 

where I describe both „low order‟ (e.g. response valence and magnitude) and „high order‟ 

(e.g. linear receptive field structure) properties of a large population of putative 

interneurons in the high-order vocal motor nucleus HVC (proper name) in awake, 

unrestrained adult male zebra finches. In Section 1 of this Introduction, I describe HVC 

in the context it is most commonly studied, as a key structure in the song production 

circuit. In Section 2, I describe evidence that HVC can also be thought of as a sensory 

structure, with response properties that have often been found to vary with changes in 

behavioral state. This section is divided into separate discussions of auditory activity in 

HVC during song production and activity during passive presentation of complex stimuli, 

with a focus on auditory properties during wakefulness. A key motivation of the work 

described in Chapter 2 is that, though previous studies have shown robust responses to 

passively presented stimuli during wakefulness, these studies have been limited in 

multiple ways. These limitations include implementation of recording techniques 

disruptive to ongoing behavior and yielding few single neurons, stimulus sets 

insufficiently comprehensive to make strong statements about neural selectivity, and 

analytical techniques restricted to spike rate-derived measures at the exclusion of the 

analysis of receptive field structure. In Section 3, I discuss the known involvement of 
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HVC and its song system afferents in perceptual discriminations between naturalistic, 

species relevant stimuli, as gleaned from lesion-behavior studies in both operant and 

semi-naturalistic conditions. These functional results are critical for framing the possible 

significance of the response features of putative HVCIN described in Chapter 2. In 

Section 4, I discuss evidence that HVC receives auditory input from at least several 

different ascending sources. Because response properties during wakefulness differ 

across these afferent structures, these differences may account for a substantial portion of 

the heterogeneity in response properties of putative HVCIN that I report in Chapter 2.  

Finally, in Section 5, I discuss the nature and functional properties of spontaneous and 

auditory activity in HVC and its immediate target in the primary song production motor 

pathway (the robust nucleus of the arcopallium, RA) during sleep. Though this section 

relates most closely to topics discussed in the Future Directions section (Chapter 3), it 

also has relevance to a type of response during wakefulness that I describe in Chapter 2 

in which neurons show extreme preference for the bird‟s own song (BOS) as compared to 

the songs of other birds of the same species (conspecific, or CON). 

Section 1. HVC and Vocal Motor Production  

HVC is an essential component of the song production circuit in adult songbirds. Large 

(Nottebohm et al., 1976; Simpson and Vicario, 1990) and small (Thompson and Johnson, 

2007; Thompson et al., 2007) bilateral, as well unilateral (Williams et al., 1992), lesions 

of HVC lead to immediate cessation of production of the learned, stereotyped song and a 

reversion to production of a highly variable plastic „subsong‟ normally seen only in 

juvenile birds before the onset of learning (Aronov et al., 2008). Destruction of the 
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axonal output of HVC in the primary motor axis also leads to song degradation (Scharff 

et al., 2000). Functional recovery of the original song can occur in the wake of partial 

HVC lesions, though auditory feedback is required for such recovery in a manner that is 

not yet understood at a mechanistic level (Thompson et al., 2007). While lesion studies 

merely demonstrate HVC‟s necessity and not sufficiency for normal stereotyped song 

production, recent work involving slowing of local network dynamics via cooling 

suggests that HVC is likely the single most important structure for dictating the timing of 

song output in normal adult birds (Long and Fee, 2008), though brainstem reafferent 

(Ashmore et al., 2005) and feed forward cortico-basal ganglia (Williams and Mehta, 

1999) loops may also influence timing to some degree. 

 HVC contains three basic neuronal types that can be readily distinguished from one 

another based on spontaneous activity (Fee et al., 2004; Hahnloser and Fee, 2002), spike 

morphology (Rauske et al., 2003; see Figure 2.3C), and premotor properties (Hahnloser 

et al., 2002; Kozhevnikov and Fee, 2007) during vocal motor output. The first class of 

neuron (HVCRA), projects in the primary motor axis to the robust nucleus of the 

arcopallium (RA), which is itself divided in to a dorsal area (dRA; see Figure 1.1) 

projecting to brainstem respiratory effectors facilitating the temporal pattern of song 

output and a ventral area (vRA) projecting to syringial effectors associated with the 

frequency modulation of song (Vicario, 1991; Wild 1993, 1997). HVCRA neurons have 

virtually no spontaneous activity during wakefulness and exhibit just a single, precise 

(jitter <1ms from motif to motif) premotor burst of 3-4 spikes at one point during each 

song motif (see Figure 2.4 for visual and textual description of a song motif). These 
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neurons are extremely hard to record from because of their virtual lack of spontaneous 

activity, despite the fact that they represent 50-80% of all HVC neurons (Fee et al., 

2004). A second class of HVC neuron (HVCX) projects to the avian basal ganglia 

homologue Area X, and this projection forms the initial part of a highly topographically 

conserved feed-forward basal ganglia-cortico loop ultimately converging on to RA (and 

back to Area X as well) (Luo et al., 2001; see  Figure 1.1). HVCX neurons fire nearly as 

precisely and sparsely within a single burst as HVCRA neurons during song production, 

though they can do so at up to four points during each song motif, and they have a low 

but measurable spontaneous rate of <1 Hz.  

The interneuronal population (HVCIN) , the focus of the recordings described in Chapter 

2, is the third group of neurons found within HVC. In the song system (Spiro et al., 

1999), as in a multitude of other systems (Ferster and Miller, 2000; Merchant et al., 2008; 

Murayama et al., 2009), interneurons precisely shape the output of projection neurons. In 

HVC, slice experiments have demonstrated that interneurons reciprocally interact with 

the two previously described classes of projection neuron (Mooney and Prather, 2005). 

Despite the fact that they are almost always considered as a single group in physiology 

studies, HVCIN show a large degree of diversity based on cell morphology, calcium-

binding protein profile, and intrinsic firing properties (Mooney, 2000; Nixdorf et al., 

1989; Wild et al., 2005). In awake birds, HVCIN have higher spontaneous firing rates than 

either class of projection neuron (2-40 Hz), which makes it much easier to pick these 

neurons up than their relative rarity (<10% of all HVC neurons) and small size would 

suggest. In sharp contrast to the two classes of projection neurons, HVCIN fire tonically 
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throughout song production and lack extreme stereotypy in their temporal pattern of 

firing across song renditions. Nonetheless, they still show recognizable patterns of 

activity from motif to motif and their activity, unlike that of either class of projection 

neuron, is significantly correlated with song syllable patterns (Kozhevnikov and Fee, 

2007).  

Section 2. Auditory Responses in HVC 

Part 1: Sensitivity to Self Generated Auditory Feedback During Song Production 

Birdsong is highly similar to human speech in that both require the guidance of auditory 

feedback for normal maintenance in adulthood, well after stereotyped motor patterns 

have been established (Lane and Webster, 1991; Nordeen and Nordeen, 1993; Okanoya 

and Yamaguchi, 1997; Leonardo and Konishi, 1999; Lombardino and Nottebohm, 2000). 

In addition, it has been demonstrated that both speech (Howell and Archer, 1984; Howell 

and Powell, 1987; Houde and Jordan, 1998) and song production (Cynx and von Rad, 

2001; Sakata and Brainard, 2006) are sensitive to alteration of auditory feedback in real 

time. While it would seem logical that motor structures themselves would directly receive 

instructive signals related to ongoing performance, especially when such signals indicate 

error, evidence for this is not readily forthcoming from either human functional imaging 

studies (Hashimoto and Sakai, 2003) or electrophysiology experiments in songbirds 

(Hessler and Doupe, 1999; Leonardo, 2004; Kozhevnikov and Fee, 2007). In the song 

system, several studies have looked specifically at whether ongoing singing-related 

activity in HVCX (basal ganglia-projecting) neurons is influenced by the presence of 
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delayed auditory feedback (DAF). In both late juvenile (Kozheznikov and Fee, 2007) and 

adult (Prather et al., 2008)  birds from several songbird species, the highly stereotyped, 

phasic and precise song premotor activity shown by HVCX neurons is unchanged in the 

presence of DAF relative to during interleaved trials with no feedback disruption. In 

addition, HVCX  neurons that are responsive to the bird‟s own song (BOS) during passive 

awake auditory playback (see Part 2 of this section) are completely insensitive to 

auditory stimulation during a window of time spanning from 500 ms previous to the onset 

of production to 500 ms after the offset of song production (Prather et al., 2008). No 

studies have looked at whether HVC neurons projecting in the primary motor axis to the 

robust nucleus of the arcopallium (RA) (see Figure 1.1) are affected by DAF, though 

these neurons, unlike HVCX and HVCIN neurons, do not show passive auditory responses 

during wakefulness in at least several songbird species (see next sections) (Prather et al., 

2008).  

In the domesticated Bengalese finch, closely related to the zebra finch, though possessive 

of a substantially more variable song (Nakamura and Okanoya, 2004; Okanoya, 2004), 

some sensitivity to perturbed auditory feedback has been demonstrated in putative HVCIN 

(Sakata and Brainard, 2008). This sensitivity occurs in the form of a decrease in activity 

over a very short (~10ms) window starting ~50ms after the onset of feedback disruption. 

This activity modulation, while significant, can be said to be non-specific in several 

ways. Firstly, the inhibition occurs with equal vigor on trials where feedback disruption 

causes no ongoing song changes as on trials where ongoing song is altered. Thus, this 

type of modulation cannot be said to be predictive of real time adaptation to the feedback 
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disruption. Secondly, the activity decrease is indiscriminate with respect to whether the 

disruptive signal is a time-delayed version of the ongoing element, the previously 

discussed DAF, or an entirely different, temporally displaced element. Thus, it seems 

unlikely that the signal carries specific information regarding the features of the chunk of 

sound that should be making its way back to the motor system for evaluation at that 

specific moment. Nevertheless, it will be interesting to know whether these effects are 

present in zebra finch HVCIN. Because Bengalese finches produce a more variable song 

and demonstrate more rapid song deterioration after deafening (Woolley and Rubel, 

1997, 1999) than do zebra finches, one might expect stronger sensory related signals in 

Bengalese finch HVC during song production if such signals are in any way related to the 

subsequent, real-time modulation of singing behavior. 

If autogenously generated, instructive auditory signals are not channeled to HVC during 

song production, it may be directly related to the extreme demands of solving the so-

called “temporal credit assignment” problem in real time. The general form of this 

problem, which has long been appreciated as a major challenge to motor learning and 

feedback evaluation (Lashley KS, 1951; Troyer and Doupe, 2000), is that circuits moving 

through a motor production sequence in time have no obvious way to „tag‟ elements 

responsible for previous time steps in the process when feedback related to performance 

at those previous time steps finds its way back to the production circuit. In the song 

circuit, the first part of this lag is caused by a premotor delay that has been estimated at 

40-50 ms from HVC multiunit and HVCIN recordings (McCasland, 1987; Schmidt, 

2003), but may be substantially shorter for at least some neurons (on the order of 15-
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20ms) based on estimates derived from recording of single, antidromically verified 

HVCRA neurons (Hahnloser et al., 2002). The second component of the lag is the delay 

time for auditory input making it back to the song system after production of a particular 

element occurs. This lag has been estimated at roughly 20ms for RA (Dave and 

Margoliash, 2000), which receives putatively monosynaptic auditory input from HVC 

(Doupe and Konishi, 1991).  Because individual song elements tend to be between 50 and 

100ms long (mean temporal modulation rate of ~7.5 Hz) (Woolley et al., 2009), with 

notes evolving on an even shorter timescale, by the time auditory information can get 

back to neurons involved in motor output, the motor program has likely moved on to 

representation of a new element or, almost certainly, a new element sub-component. 

Several sophisticated models have been proposed to account for reafferent auditory lag 

times by speculating that the basal ganglia pathway  is involved in delaying efference 

copies of song motor commands just long enough to facilitate comparison of these 

signals with reafferent auditory information reaching the song system (Dave and 

Margoliash, 2000; Troyer and Doupe, 2000). While long synaptic delays that could 

potentially support this timing do exist in the basal ganglia pathway (Luo and Perkel, 

1999), these models critically require the reentry of auditory information specific to 

ongoing song activity to the song system. As described earlier in this section, evidence 

for this type of activity is currently underwhelming, which presents a major challenge to 

any model in which expected and actual feedback signals are compared in real time 

within the song system proper. 
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If the song system is not the primary site of autogenous feedback evaluation during 

singing, where might this type of processing occur? A recent study in zebra finches 

during the latter stages of juvenile song learning raises the intriguing possibility that real 

time auditory feedback evaluation occurs outside of the song system proper, in areas 

analogous to primary and secondary auditory cortex in mammals. In this study (Keller 

and Hahnloser, 2009), a small population of neurons in the ascending auditory areas Field 

L and CLM (see Figure 1.1) were found that were virtually silent during ongoing song 

output except for epochs where a call vocalization was played back as a perturbing 

stimulus. The properties of these neurons suggest that they are sensitive not to auditory 

feedback, per se, but to the discrepancy between expected and actual feedback. Some 

neurons exhibited responses during passive presentation of BOS when the bird wasn‟t 

actually singing, but only during epochs where „errors‟(i.e. disruptive calls) had been 

spliced in to the song. The existence of several flavors of error sensitivity strongly 

implies that these putatively primary sensory neurons have access to a representation of 

the expected outcome of song production. Otherwise, there would be no way to generate 

an error signal when a deviation from the expected outcome arises.  Furthermore, in 

neurons displaying stereotyped, non error-sensitive auditory responses to passive BOS 

playback, activity during singing reliably precedes that during playback by a few 

milliseconds. If this activity during song production were purely sensory in nature, it 

would be expected that it would be delayed relative to that seen during passive 

presentation by an interval equal to the premotor delay, which is on the order of tens of 

milliseconds (see previous section on premotor delay and HVC). That it actually occurs 

earlier than activity during passive presentation suggests that there is a premotor and/or 
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predictive component. In Section 5 of this Introduction, I describe putatively sensory 

activity during sleep in RA that similarly shows sensory activity earlier than expected 

based on assumptions of passive sensory processing (Dave and Margoliash, 2000). That 

activity has been theorized to be at least partially of an anticipatory motor predictive 

nature, and that description may just as well be applied to the sensory activity in primary 

sensory cells described here. 

Part 2: Responses to Passively Presented Stimuli 

A large number of studies in HVC of anesthetized (Margoliash, 1983; Margoliash and 

Konishi, 1985; Margoliash, 1986; Sutter and Margoliash, 1994) and sedated (Cardin and 

Schmidt, 2003, 2004a) birds have demonstrated the presence of robust auditory responses 

that are highly selective for BOS over other complex stimuli and homogenous across 

time and recording sites. In one study conducted under urethane anesthesia, intracellular 

recordings demonstrated that all three classes of HVC neuron in the zebra finch display 

robust, BOS selective responses at both supra and super threshold levels (Mooney, 2000). 

It is important to note that the vast majority of studies reporting highly BOS selective 

responses during anesthesia and sedation have been carried out in only two species, the 

white-crowned sparrow and zebra finch. These species are non-representative of oscine 

songbird species in general in that they exhibit only a single, highly stereotyped song 

type that is virtually unchanged across the adult lifespan. Further, neither species exhibits 

territorial behavior in which male birds exhibit song matching with encroaching rivals. 

Such behavior may require song motor areas to show robust sensitivity to a broad range 

of song features that represent overlap between the bird‟s own vocal repertoire and that of 
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other birds (Nealen and Schmidt, 2006; Prather et al., 2008). Perhaps illuminating the 

problem of making general inferences about tuning from studies limited to a few species 

is a recent study in the canary, a territorial songbird (Appeltants et al., 2005) with a 

relatively extensive song repertoire (Leitner and Catchpole, 2004). The results of this 

study suggest that robust HVC auditory responses under anesthesia can extend to 

elements and phrases not exhibited by any BOS variants of the subject bird (Lehongre 

and Del Negro, 2009). Clearly, further studies in oscine species with a diversity of song 

repertoire and social ecology features will be needed to elucidate the critical variables in 

determining the degree of BOS selectivity shown by HVC neurons during non-natural 

states. 

Studies of passive auditory response properties in HVC during wakefulness suggest a 

situation somewhat different from that which occurs during anesthesia and sedation. 

Multiple studies carried out in zebra finches with low impedance (on the order of 100 

kΩ), fixed tungsten wire implants have demonstrated a suppression of auditory response 

in HVC immediately following arousal at the massively multiunit level (at least tens of 

neurons simultaneously recorded) (Schmidt and Konishi, 1998; Nick et al., 2001; Cardin 

and Schmidt, 2003). This arousal suppression has also been seen in smaller multiunit 

recordings and in recordings from individual putative HVCIN (Cardin and Schmidt, 

2004b), and is likely mediated by both direct cholinergic (Shea and Margoliash, 2003) 

and indirect noradrenergic (Cardin and Schmidt, 2004b) mechanisms. Experiments 

linking modulatory state to HVC auditory response properties  have been carried out only 

in lightly sedated (Cardin and Schmidt, 2004b) and anesthetized (Shea and Margoliash, 
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2003) birds. Thus, evidence for relationships between modulatory state, specific awake 

behavioral characteristic, and auditory response properties has not been directly observed. 

Though the studies reporting arousal suppression in HVC leave open the possibility that 

low impedance wire electrodes are extremely biased toward neurons showing an absence 

of auditory responses during wakefulness, some studies with identical technology in the 

zebra finch have demonstrated the existence of auditory responses in HVC during 

wakefulness (Cardin and Schmidt, 2003; Cardin and Schmidt, 2004a). These responses 

fluctuate widely in strength across long periods of wakefulness in a non-circadian manner 

(Cardin and Schmidt, 2004a), though they achieve neither the vigor nor trial-to-trial 

consistency of responses at the same sites during sedation (Cardin and Schmidt, 2003; 

Cardin and Schmidt, 2004a). Strikingly, in these studies awake auditory responses were 

found to be entirely non-selective for BOS over a time-reversed version of BOS (REV). 

This is in stark contrast to both the same sites during sedation, as well as to the results of 

anesthesia studies in zebra finches and white-crowned sparrows described at the 

beginning of this section.  

Studies carried out with higher impedance electrodes (on the order of MΩ as opposed to 

kΩ) during wakefulness on single putative HVCIN or multiunit sites likely to be 

dominated by HVCIN  have yielded somewhat different results from those obtained with 

fixed wires. Unlike the fixed wire studies in zebra finches, all of these studies have 

demonstrated at least some degree of selectivity for BOS over REV and/or one or several 

CON stimuli. These studies have been carried out in multiple species, including the zebra 

finch (Rauske et al., 2003), white-crowned sparrow (Margoliash and Konishi, 1985), 
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Bengalese finch (Sakata and Brainard, 2008), and song sparrow (Nealen and Schmidt, 

2006). While this is far from an exhaustive sampling of the pool of oscine songbird 

species, it at least includes several species with non-stereotyped song (Bengalese finch 

and song sparrow) as well as one territorial bird exhibiting song matching behavior (song 

sparrow). Only one awake study targeting single HVCIN has been carried out in the zebra 

finch (Rauske et al., 2003). This study reported auditory responses in single HVCIN that, 

when present, (two-thirds of cells showed significant awake responses) were uniformly 

selective for BOS relative to REV and a single CON stimulus. Awake responses in the 

Rauske et al., study also showed a high degree of stability across time, unlike the 

responses seen in the fixed implant studies.  

It is unclear why Rauske et al. achieved results that were different from the fixed implant 

studies, both in terms of tuning properties and response strength stability over time. One 

likely possibility is selection bias; Cardin and Schmidt (2003) hypothesize that their wire 

recordings may have picked up neuronal types not recorded by Rauske et al. Cardin and 

Schmidt (2003) speculate that much of this difference may be the result of the presence 

of many HVCX neurons in their recordings. They thought it unlikely that HVCRA neurons 

were contributing because previous work had established that RA neurons themselves, 

which receive auditory input directly from HVC during anesthesia (Doupe and Konishi, 

1991), did not show auditory responses during wakefulness (Dave et al., 1998). 

Subsequent work has validated that HVCRA neurons in several oscine species do not show 

passive auditory responses during wakefulness (Prather and Mooney, 2008, 2009). 

However, recordings from HVCX neurons in the Prather and Mooney studies suggest that 
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it is also unlikely that the presence of this class of neuron confers the non-selective, 

variable response strength properties seen by Cardin and Schmidt. Prather and Mooney 

found HVCX responses that were sparse (only a few spikes per song feature), highly 

phasically precise from trial to trial, and highly BOS-selective (though CON elements 

bearing extremely high resemblance to BOS elements can receive a response) (Prather 

and Mooney, 2008, 2009). Intriguingly, these HVCX responses show the remarkable 

quality of being highly temporally congruent with song premotor activity recorded in the 

same basal ganglia-projecting neuron. I will discuss the potential functional significance 

of this sensory-motor congruence in Section 3, which concerns the relation between 

auditory responses in HVC and perception.  

Because neither the properties of HVCRA nor HVCX neurons appear to explain the 

difference between the Rauske et al. and Cardin and Schmidt results, it seems likely that 

the non-selective, response strength-variable responses seen by Cardin and Schmidt were 

mostly due to recordings of HVCIN subtypes not easily recorded from with relatively high 

impedance electrodes. It is also worth mentioning that the Rauske et al. study was carried 

out with a manual drive technology that required frequent interruption of ongoing 

behavior and no doubt involved stress to birds. While the fixed wire technology used in 

the Cardin and Schmidt studies precluded electrode movement and single unit isolation, it 

is possible that birds entered awake behavioral sub-states not attained in the Rauske et al 

study. In the work described in Chapter 2, I recorded from a much larger set of putative 

single neurons than Rauske et al., and with a remotely controlled microdrive requiring as 

little manipulation of birds as the fixed wire technology. Thus, if the difference between 
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the results seen by Cardin and Schmidt and Rauske et al. are partially the result of 

behavioral variables and/or sampling biases, the recording practices give promise a 

possible reconciliation of these somewhat conflicting studies. 

Section 3: Evidence for a Role for HVC and Associated Song Nuclei in Species-

Relevant Perceptual Tasks 

Songbirds are not alone in showing sensory responses to passively presented stimuli in 

high-order cerebral areas associated with motor output. So-called mirror neurons, which 

are active during both engagement in and observation of goal-oriented mouth and hand 

movements, have been documented in premotor area F5 (Gallese et al., 1996), primary 

motor cortical area M1 (Tkach et al., 2007), and inferior parietal cortex (Fogassi et al., 

2005) of non-human primates. Their existence in human analogues to these areas, while 

not documented by electrophysiology, has been inferred by transcranial stimulation 

(Fadiga et al., 1995; Cattaneo et al., 2009) and functional imaging (Buccino et al., 2004) 

studies. It has been proposed that mirror neurons underlie something called „action 

understanding‟ (Rizzolatti et al., 2001; Rizzolatti and Craighero, 2004). This term, though 

inconsistently and somewhat vaguely defined across the literature, can be taken to mean 

that the basis for interpretation of the goal-directed motor gestures of others lies in one‟s 

own motor circuitry for production of similar behaviors. Thus far, however, there is no 

evidence that mirror neurons serve any role in perception (Hickok, 2009; Lingnau et al., 

2009), to say nothing of functional role facilitated by a shared neural code for production 

and perception. 
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Unlike mammalian cortical areas containing mirror neurons, HVC has been shown to be 

necessary for perceptual discriminations involving song stimuli (Brenowitz, 1991; del 

Negro et al., 1998; Gentner et al., 2000; Halle et al., 2000).  In one operant conditioning 

study in adult male starlings, it was shown that HVC-lesioned birds maintain 

discriminations between CON stimuli on which they were trained pre-lesion, but they 

were impaired in their ability to appropriately respond to contingency flips involving 

these stimuli post-lesion (Gentner et al., 2000). It is not known whether the same is true 

for discriminations involving the songs of heterospecifics or those from the bird‟s own 

repertoire (starlings have large and complex vocal repertoires, unlike zebra finches). 

HVC lesions also have profound effects on perceptual discriminations in non-singing 

female birds.  Female canaries with bilateral (Brenowitz, 1991; Halle et al., 2002) (but 

not unilateral) HVC lesions give copulation solicitation displays to both heterospecific 

and conspecific songs, while control females solicit only to conspecific songs. In 

addition, even when just considering CON song, females with bilateral HVC lesions 

display relatively more to stimuli eliciting only very weak responses in intact females 

(Del Negro et al., 1998).  

Lesions to areas of the song system receiving auditory input from HVC also result in 

impaired performance in perceptual discrimination tasks. Bilateral lesions of Area X and 

LMAN, two areas of a thalamocortical basal ganglia pathway crucial for normal song 

learning (Sohrabji et al., 1990; Scharff and Nottebohm, 1991) that receive auditory input 

from HVC (Doupe and Konishi, 1991; Roy and Mooney, 2009; see Figure 1.1), result in 

significant impairments in the learning of discriminations between BOS and CON stimuli 
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but not between pairs of CON or heterospecific stimuli (Scharff et al., 1998).  

Interestingly, this specific type of perceptual deficit may align well with the previously 

mentioned concept of „action understanding‟ from the mammalian mirror neuron 

literature. Basal ganglia-projecting HVC neurons (HVCX neurons) exhibit phasic 

responses to passively presented auditory stimuli during wakefulness that show precise 

temporal alignment with their own song premotor spiking activity (Prather et al., 2008, 

2009). A similar phenomenon may exist in the other class of HVC neurons showing 

awake auditory responses (HVCIN) , though the relative trial to trial imprecision during 

song production of these neurons (Hahnloser et al., 2002)  may make it difficult to verify 

this. The extreme sensory-motor temporal congruence shown by HVCX neurons is far 

greater than any seen in macaque mirror neurons and suggests that at least one type of 

response to BOS may be encoded in the language of the motor code. Thus, circuits 

encoding both production and perception of BOS stimuli may underlie a deeply innate 

and literal form of „action understanding‟ of other song stimuli, and the impairment of 

these circuits may result in the perceptual deficits seen following lesions to Area X and 

LMAN. As mentioned previously, it is unknown whether lesions to HVC itself result in 

discrimination deficits between BOS and CON stimuli, but it seems likely to be so given 

the reliance of Area X and LMAN on HVC for auditory input, as well as HVC‟s 

involvement in discriminations between CON stimuli. 

Perceptual discrimination deficits following lesions to areas receiving auditory input from 

HVC area not restricted to song stimuli alone. RA, the primary target of HVC in the 

vocal motor pathway (see Figure 1.1), receives auditory drive directly from HVC (Doupe 
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and Konishi, 1991). As with lesions to HVC, lesions to RA result in profound disruption 

of the production of song (Nottebohm et al., 1976; Simpson and Vicario, 1990; Ashmore 

et al., 2008) and learned call (Simpson and Vicario, 1990; Vicario et al., 2001) 

vocalizations. Along with these production deficits, RA lesions cause male birds to shows 

patterns of response to the contact calls of other birds that bear a strong resemblance to 

patterns shown by intact female birds (Vicario et al., 2001). Interestingly, RA lesioned 

males maintain an ability to demonstrate the intact male preference for the features of 

female distance calls, but they exhibit that preference post-lesion via the duration of their 

response calls, as do intact females, and not through the number of response calls, as 

intact males do. This result, while suggestive of a deep connection between mechanisms 

of perception and production, also highlights the difficulty in delineating between true 

perceptual deficits and those that fall more in to the domain of sensorimotor 

transformation. Likewise, for example, the previously described copulation solicitation 

displays shown by HVC lesioned female canaries to hetereospecific song may be the 

result of behavioral disinhibition despite intact abilities to distinguish between salient and 

non-salient stimuli somewhere in the circuits underlying decision making based on 

perceptual cues. Only with multiple behavioral readouts can the process of 

disambiguation between perceptual and transformative deficits begin to be gleaned. 

Section 4: Known and Possible Sources of Auditory Input to HVC 

HVC has been verified via anatomical and functional studies to receive auditory input 

from two cerebral areas; the nucleus interface of the nidopallium (NIf) and the caudal 

mesopallium (CM) (see Figure 1.1) (Bauer et al., 2008; Cardin et al., 2005; Vates et al., 
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1996). Both NIf and CM receive their auditory input from primary auditory forebrain 

areas (Vates et al., 1996). In NIf, a structure which also shows song premotor activity 

(Cardin and Schmidt., 2005), auditory responses during anesthesia (Janata and 

Margoliash, 1999) and sedation (Cardin and Schmidt, 2004a) are highly selective for 

BOS as compared to REV and CON stimuli. Likewise, responses in the ventromedial 

portion of CM (CMM) are also highly selective for BOS over other complex stimuli 

(Bauer et al., 2008). Interestingly, both areas show state-dependent shifts away from 

extreme BOS selectivity during wakefulness. In NIf, there have been no single unit 

studies of auditory responses during wakefulness, though a multiunit study demonstrated 

a lack of BOS-selectivity relative to REV (Cardin and Schmidt, 2004a). In a study of a 

small number of single neurons during wakefulness in CMM, most cells showed no 

selectivity for BOS over CON and REV stimuli (Bauer et al., 2008).  

The state dependent responses seen in the two areas known to project to HVC are 

interesting because, as described in Section 2, Part 2 this same phenomenon has also 

been seen in multiunit recordings in HVC (Cardin and Schmidt, 2003). Nonetheless, as 

also discussed in Section 2, Part 2, other studies have, in contrast, seen a predominance 

of BOS-selective responses in HVC during wakefulness, though with decreased response 

strength relative to that seen in non-waking states (Rauske et al., 2003; Nealen and 

Schmidt, 2006). Because neurons in CM and NIf appear to not exhibit BOS-selective 

auditory activity during wakefulness, it is uncertain where BOS selective auditory 

responses in HVC during wakefulness arise from. One possibility is that some of this 

selectivity during wakefulness may arise from intrinsic network dynamics within HVC as 
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has previously been proposed in anesthetized birds (Coleman and Mooney, 2004). It is 

also possible that the limited sampling of units in CM during wakefulness and the lack of 

single unit resolution in the NIf study during wakefulness prevented detection of BOS-

selective units. 

There are at least several other candidate structures that may provide auditory input to 

HVC, possibly in a state-dependant fashion. Though anatomical studies have hinted at an 

anatomical connection between Field L and HVC via a region known as the HVC shelf 

(Fortune and Margoliash, 1995; Katz and Gurney, 1981), conclusive proof has lacked in 

this regard. However, a recent study in anesthetized birds has demonstrated functional 

connectivity between Field L and HVC with Field L with a range of Field L lead times 

(.5 to 15ms) suggestive of both monosynaptic and polysynaptic connectivity (Shaevitz 

and Theunissen, 2007). This same study also found that the lateral portion of the 

secondary-auditory cortical analogue CM (CLM) had similar connectivity patterns with 

HVC. Though the authors failed to demonstrate functional connectivity between these 

areas and HVC during auditory presentation, this failure may be a function of the 

presence of anesthesia. Both Field L and CLM neurons demonstrate a preference for song 

stimuli over other complex stimuli during anesthesia, but do not display a preference for 

BOS over other song stimuli (Amin, 2004; Grace et al., 2003; Lewicki and Arthur, 1996). 

Thus, these areas may mediate non-BOS selective auditory responses reported at the 

multiunit level previously and in many individual HVCIN I record from in the work 

described in Chapter 2 of this thesis. Another candidate for mediation of auditory 

responses to HVC during wakefulness is nucleus uvaeformus (Uva), a thalamic nucleus 
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that receives input directly from the ventral lateral lemniscus (LLV) and that sends a 

robust projection to HVC (Coleman et al., 2007). During anesthesia, neurons in Uva 

show a mix of BOS selective and non-BOS selective auditory responses. Though it does 

not appear that Uva sends auditory inputs to HVC during non-waking states (Coleman et 

al., 2007; Hahnloser et al., 2008), functional auditory connectivity between these areas 

during wakefulness is completely unexplored. 

Section 5: Activity in HVC and RA During Sleep 

Part 1: Auditory activity in HVC during sleep 

Perhaps as a reaction to the dogma that the rise of thalamocortical burst activity during 

sleep creates a situation where cortical areas become profoundly isolated from the 

sensory world and are driven entirely by intrinsic patterns of activity (McCormick DA, 

1989; Steriade, 2000), very few studies in any modality or system have evaluated the 

sensory properties of neurons during sleep. While the truth of such dogma may vary from 

modality to modality or even between different cortical layers (Livingstone and Hubel, 

1981), multiple studies have shown that in the auditory system there is a high degree of 

diversity on a cell by cell basis in terms of response strength during sleep relative to 

wakefulness (Edeline et al., 2001; Issa and Wang, 2008; Pena et al., 1999). Recent work 

has demonstrated that parts of the songbird cerebrum, such as the ectrostriatum 

(Szymczak et al., 1996) and the visual cortex analogue Wulst (Low et al., 2008) show 

electroencephalographic (EEG) hallmarks similar to those seen in mammals, including 

alternation between REM and slow-wave sleep states.  
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While the non-laminar nature of song system nuclei makes it uncertain that these 

structures „cycle‟ through sleep states in synchrony with the laminar areas, it is clear that 

song system neurons are highly sensitive to thalamic state much as cortical neurons are in 

mammals. A shift from a tonic, single spike mode to a low frequency bursting state in the 

thalamic relay nucleus Uva (see Figure 1.1) has previously been associated with 

increased vigor in BOS responses in putative HVCIN (Coleman et al., 2007; Hahnloser et 

al., 2008). However, it is critical to note that when such a state is induced via electrical 

stimulation in the thalamus during anesthesia (Coleman et al., 2007) or during melatonin 

induced sleep in a head-fixed preparation (Hahnloser et al., 2008), the underlying 

thalamocortical network dynamics are likely to be much different than during naturally 

occurring sleep. Support for this notion comes from the fact that it has previously been 

found that response dynamics in a (very small; n =10 cells) population of single putative 

HVCIN (Rauske et al., 2003) show a wide range of response strength changes across the 

wake sleep boundary. While most neurons in the Rauske et al. study did show at least 

some degree of response strength decrement during sleep relative to wakefulness, another 

study (Cardin and Schmidt, 2003) found no significant response strength change across 

the wake-sleep boundary at the multiunit level. This is in contrast to the large increase in 

response strength seen during the transition between wakefulness and sedation (Cardin 

and Schmidt, 2003; see Section 2, Part 3), and this discrepancy serves to highlight the 

caveats of extrapolating results from experiments carried out under sedation and 

anesthesia to those carried out during sleep. See Chapter 3, Section 2 for preliminary 

evidence from a large collection of putative HVCIN suggesting that response strength 

across the wake-sleep boundary does indeed vary on a cell by cell basis, and that 
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response strength changes to BOS may be at least partially independent of changes in 

response to CON stimuli.  

Part 2: Spontaneous activity during sleep may be a key component of „offline‟ song 

learning  

The discovery of error sensitive cells in the ascending auditory pathway, as I discuss in 

Section 2, Part 1, may provide an answer to the question of where a record of ongoing 

auditory feedback is registered even as the song circuitry moves forward in time during 

song production. If it is true that comparison between motor „expectancy‟ and reafferent 

sensory signals takes place outside of the song system proper, this raises the questions of 

when and how these comparisons are used to update the motor program. Previous work 

has established that sleep is critical for song learning in juvenile birds; improvements in 

performance do not occur unless a bird is allowed, in sequence, access to a tutor and 

autogenous feedback, and then a session of night sleep (Deregnaucourt et al., 2005; 

Shank and Margoliash, 2009). Thus sleep may serve a consolidating role in song learning 

analogous to that hypothesized in hippocampal-dependant memory consolidation in 

mammals (Gais et al., 2002; Marshall and Born, 2007; Ego-Stengel and Wilson, 2009).  

One highly striking commonality between hippocampus in mammals and the song system 

in birds is the existence of spontaneous „replay‟ of patterns of activity that were 

demonstrated during the previous day by the same cells during active task engagement. 

Just as rat hippocampal cells show spontaneous reinduction of patterns shown in spatial 

navigation tasks during the previous waking session (Kudrimoti et al., 1999; Nadasdy et 
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al., 1999), neurons in the song system area RA (see Figure 1.1) show patterns of activity 

during sleep which are (sometimes) temporally congruent with activity demonstrated by 

the same cells during motor production. While conclusive proof that such activity is 

critical for learning and maintenance of stable song production is still pending, the onset 

of such activity is delayed during song development if birds are not allowed access to 

both a song tutor and autogenous sensory feedback (Shank and Margoliash, 2009). When 

birds are allowed access to these two sources of auditory input in real time, spontaneous 

burst structure appears in RA the very next night and song structure begins to move 

toward tutor song the following day. Because real-time feedback evaluation during song 

production may occur outside of the song system proper, replay activity in song system 

neurons may reflect a process critical for song learning and maintenance during which 

instructive signals are integrated with the current motor program. Many future challenges 

exist in this line of research, including defining what sleep stages and song system cell 

types replay occur in, as well as identification of the detailed nature of signals entering 

the song system during sleep and their specific origin. Furthermore, at least some forms 

of song updating in the face of feedback perturbation in adult birds appear to occur 

without an intervening sleep session (Andalman and Fee, 2009; Sober and Brainard, 

2009). How these forms of learning differ both mechanistically and in an abstract sense 

from sleep-dependant forms of learning will sharpen theories about sleep‟s role in the 

process of memory consolidation. 

Part 3. Do Auditory Responses in song nuclei during sleep provide insight in to 

motor processing?  
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In RA, in contrast to HVC, it appears that most or all (putative projection) neurons show 

no auditory responses during wakefulness, but show vigorous responses to BOS during 

sleep (Dave and Margoliash, 1998, 2000). As mentioned in the previous section, many of 

these neurons show temporal congruence between premotor activity and some 

spontaneous bursts during sleep (Dave and Margoliash, 1998, 2000). Intriguingly, sleep 

BOS responses in these neurons, in turn, can show strong temporal congruence with both 

song premotor and sleep spontaneous activity. These auditory responses also show 

„predictive‟ properties (similar to neurons in the ascending auditory system during 

singing described in Section 2, Part 1)  in that auditory spikes lag premotor spikes by far 

less than they should if one adds the premotor lag time of the neuron with the expected 

delay in an auditory signal returning many synapses to RA. Furthermore, deletion of 

individual syllables has consequences for auditory responses several elements 

„downstream‟, indicating that responses integrate and encode both local features inherent 

to an individual element and an expectation of the properties of features to come.  

My working hypothesis is that predictive auditory responses in RA during sleep are a 

proxy for the types of motor program updating and maintenance tasks carried out during 

spontaneous activity epochs during sleep. Though the RA auditory responses that have 

been demonstrated during anesthesia and sleep are believed to be mediated solely via 

HVC (Doupe and Konishi, 1991), no HVC neurons of any of the three classes have been 

evaluated in terms of the relationships between premotor activity, spontaneous sleep 

activity, and sleep auditory activity (but see discussion in Section 2, Part 2 of mirror 

properties in HVCX neurons during wakefulness). Unfortunately, unlike RA neurons, 
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HVC neurons (especially projection neurons) are extremely difficult to hold for the long 

periods of time necessary to evaluate cross-state activity.  
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Figure Legends 

Figure 1.1. An „HVC-centric‟ schematic of auditory and song production circuitry. 

Caudal mesopallium (CM) and the nucleus interface of the nidopallium (NIf) are the only 

two structures (red outlines and solid red arrows) known to provide direct auditory input 

to HVC. Other potential auditory afferents to HVC (dashed red arrows) include the Field 

L complex and nucleus uveaformis of the thalamus (Uva). HVC projects to RA in the 

primary motor output axis and to the avian basal ganglia (area X) in a basal ganglia-

thalamocortical pathway that is essential for song learning and adult song plasticity, but 

that only makes subtle contributions to normal adult song production. Reafferent 

feedback connections (not shown) arising from RA and the VRN make their way back to 

HVC via the thalamus and may influence ongoing song production. LLV, ventral lateral 

lemniscus;  MLd, mesencephalicus lateralis dorsalis; Ov, nucleus ovoidalis of the 

thalamus; NCM, nidopallium caudal medial. HVC projects in the vocal-motor stream in 

two distinct pathways via the dorsal and ventral aspects of the robust nucleus of the 

arocpallium (dRA and vRA, respectively). nXIIts, tracheosyringial portion of the 

hypoglossal nucleus; VRN; ventral respiratory nuclei. 
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Figure 1.1 
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Chapter 2. Linear and Nonlinear Auditory Response Properties of Interneurons in a 

High Order Avian Vocal Motor Nucleus During Wakefulness 

ABSTRACT 

Motor-related forebrain areas in higher vertebrates also show responses to passively 

presented sensory stimuli. Sensory tuning properties in these areas, especially during 

wakefulness, and their relation to perception, however, are poorly understood. In the 

avian song system, HVC (proper name) is a vocal-motor structure with auditory 

responses well defined under anesthesia but poorly characterized during wakefulness. We 

used a large set of song stimuli including the bird‟s own song (BOS) and many 

conspecific stimuli (CON) to characterize auditory tuning properties in putative 

interneurons (HVCIN) during wakefulness. Our findings suggest that HVC contains a 

heterogeneity of response types; a third of neurons are either suppressed or show no 

response to any stimuli and two thirds show excitatory responses to one or more stimuli. 

A subset of excitatory neurons are tuned exclusively to BOS and show very low linearity 

as measured by spectrotemporal receptive field analysis (STRF), but many respond well 

to both BOS and CON stimuli and show response linearity comparable to that previously 

measured in structures of the ascending auditory pathway. Fourier analysis of the STRFs 

of linear HVCIN reveals a range of peak spectrotemporal tuning properties, with 

approximately half of these neurons showing peak sensitivity to modulations occurring 

with high power in zebra finch song. Previous work has established that HVC lesioned 

birds are impaired in operant contingency reversals involving CON stimuli and birds with 

lesions to song nuclei receiving auditory input from HVC are impaired in discriminations 
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between BOS and CON stimuli. The findings of the present study are consistent with 

these results and suggest a possible role for HVC in species-relevant auditory tasks.   

INTRODUCTION 

High order motor areas in humans (Fadiga et al., 2005; Iacobini et al., 2005) and 

non-human primates (Gallese et al., 1996; Tkach, 2007) show sensory responses during 

wakefulness. While it has been proposed that such responses facilitate self-referential 

understanding of the goal-directed motor actions of others (Rizzolatti et al., 2001), no 

functional evidence exists in support of this notion (Hickock, 2009). The forebrain 

nucleus HVC forms part of a dedicated neural circuit for vocal production in songbirds 

(Ashmore et al., 2005; Hahnloser et al., 2002).  In addition to its role in motor production, 

HVC also exhibits auditory responses during wakefulness (Cardin and Schmidt, 2003; 

Rauske et al., 2003, Sakata and Brainard, 2008). Lesions to HVC in adult male birds, 

along with disrupting song production (Nottebohm et al., 1976; Thompson et al., 

2007a,b), are also associated with perceptual and/or sensorimotor deficits. In adult male 

starlings, HVC lesions cause deficits in contingency reversals between previously 

discriminated conspecific (CON) stimuli in an operant task (Gentner et al., 2000). In non-

singing female canaries, HVC lesions cause an inability to restrict copulation solicitation 

displays to conspecifics as compared to hetereospecifics (Brenowitz, 1991; del Negro, 

1998; Halle et al., 2002). Lesions to nuclei implicated in song production receiving 

auditory input from HVC (Doupe and Konishi, 1991) also result in deficits in perceptual 

and sensorimotor tasks. Destruction of the robust nucleus of the arcopallium (RA), the 

immediate afferent of HVC in the vocal motor pathway, leads to alteration of the normal 
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pattern of call responses to male and female contact calls, while lesions of the anterior 

forebrain structures Area X and the lateral anterior nucleus of the nidopallium (LMAN) 

result in deficits of discrimination between CON and bird‟s own song (BOS) stimuli 

(Scharff et al., 1998). Because auditory processing and perceptual function are co-

localized in discrete structures, and disruption of these structures results in deficits in 

perceptual and sensorimotor tasks, the song system is ideally suited for the study of the 

specific nature and influence of sensory signals in motor systems.  

 HVC receives auditory input from two high-order forebrain sources, the caudal 

mesopallium (CM) and the nucleus interface of the nidopallium (NIf) (Bauer et al., 2008; 

Cardin et al., 2005; Vates et al., 1996). CM receives auditory input both directly and 

indirectly from the avian primary auditory cortical analog Field L (Vates et al., 1996), 

and limited studies of single units during wakefulness suggests a mix of broadly 

responsive cells, some with modest selectivity for BOS relative to other complex stimuli 

and others with no BOS selectivity (Bauer et al., 2008). NIf receives auditory input from 

CM (Vates et al., 1996) and multiunit recordings suggest a lack of selectivity for BOS 

during wakefulness (Cardin and Schmidt, 2004b). The vast majority of studies in HVC 

during non-waking states have found reliably present auditory responses highly selective 

for BOS (Cardin and Schmidt, 2003; Margoliash, 1986; Mooney, 2000; Rauske et al. 

2003). During wakefulness, however, some studies across multiple species have found 

responses that are highly selective for BOS over other complex stimuli (Margoliash and 

Konishi, 1985; Prather and Mooney, 2008, 2009; Rauske et al., 2003; Sakata and 

Brainard, 2008), while others have found responses that, though not always present 
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(Konishi and Schmidt, 1998; Nick and Konishi, 2001), are completely non-selective for 

BOS (Cardin and Schmidt 2003, 2004b). Factors including extremely limited stimulus 

sets, response analyses restricted to firing rate metrics, and, with only a few exceptions 

(Bauer et al., 2008; Prather and Mooney, 2008, 2009), a lack of non-behaviorally 

disruptive single unit recording techniques has hindered a detailed understanding of 

awake auditory response properties in both HVC and its known auditory afferents.   

Here, we probed the auditory properties of a large population (n = 215 neurons, 

17 birds) of putative HVC interneurons (HVCIN) with a large set of CON and BOS 

stimuli in freely moving, non-behaviorally disrupted adult male zebra finches during 

wakefulness. Interneurons precisely shape the output of projection neurons in a multitude 

of systems (Ferster and Miller, 2000; Merchant et al., 2008, Murayama et al., 2009; Spiro 

et al., 1999). In HVC, interneurons reciprocally interact with neurons projecting to the 

robust nucleus of the arcopallium (RA) in the primary song production axis as well as 

with those projecting to the avian basal ganglia (Area X) (Mooney and Prather, 2005). 

The extremely large population of single units and expansive stimulus set allow the most 

thorough assay of BOS-selectivity and multiple other basic response features yet carried 

out in any neural population in the song system during wakefulness. We also quantify 

linear receptive field properties of single song system neurons for the first time during 

wakefulness, with the goal of evaluating whether HVCIN are sensitive to features likely to 

be of use during song-specific perceptual discriminations. To this end, we employ 

spectrotemporal receptive field (STRF) analysis, a method that has proven successful in 

capturing linear receptive field features in the ascending auditory pathway (Gill et al., 
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2006,2008; Graña et al., 2009;  Sen et al., 2001; Theunissen et al., 2000; Woolley et al., 

2006,2009).  

 

MATERIALS AND METHODS 

Animals.  Experimental subjects were adult male zebra finches (Taeniopygia guttata) 

obtained from a local supplier (Canary Bird Farm; Old Bridge, NJ). All birds were at 

least 120 days of age at the time of experimentation. Birds were fed ad libitum and kept 

on a 12:12 light dark cycle in a colony room until several days before implantation of a 

chronic recording device (see below for details).  All procedures documented here were 

approved by an Institutional Animal Care and Use Committee at the University of 

Pennsylvania. 

Sound recording and presentation. For several days before surgery, the songs of birds 

were continuously recorded with high quality microphones (Earthworks SRO; NH, USA) 

in a sound attenuation chamber (Acoustic Systems, Austin, TX) using custom software 

(Sound Analysis Pro, D. Swigger and O. Tchernichovski). Songs were recorded at a 

sampling rate of 44.1 kHz and played back at 20 kHz with a peak intensity level of 70 db 

SPL. A stimulus set consisting of 2-3 motifs of one song from each of ten to twelve 

(CON) birds, along with a recent version of the bird‟s own song (BOS), was presented 

for each site with at least one well isolated neuron. All CON stimuli were unfamiliar to 

the subject bird previous to the onset of the experiment. Because of concerns related to 

the challenge of holding single unit recordings in awake birds, our stimulus set was 



34 
 

smaller than that typically used in anesthetized experiments involving spectrotemporal 

receptive field analysis (STRF) (Theunissen et al., 2000; Woolley et al.,2006) . However, 

stimuli were chosen such that the range of the spectral and temporal modulations inherent 

to zebra finch song was well represented (Woolley et al., 2005). To demonstrate the 

relative spectral and temporal modulation power inherent to our song ensemble, we show 

a modulation power spectrum (MPS)(Fig. 2.1D). This MPS was obtained by first 

decomposing twelve of the CON songs used in the experiment (not all birds heard the 

same set of songs) in to their ripple components, which are essentially the acoustic 

analogue of visual gratings. The power density of each ripple component was then 

estimated and plotted on a 2-D Cartesian grid (Singh and Theunissen 2003; Theunissen et 

al., 2004). When recordings were stable, we presented up to 50 repetitions of each 

stimulus in the ensemble, which guaranteed a robust data set for STRF estimation 

(Theunissen et al., 2000). Stimuli were presented in pseudorandom order with a random 

interstimulus interval between 10 and 20 s.  

Chronic Recordings. Detailed description of chronic recording device implantation has 

been previously described (Nealen and Schmidt, 2006). Briefly, birds had food and water 

removed for 1h before an acute preparatory surgery. They were administered an 

intramuscular injection of a ketamine (35mg/Kg) /xylazine (7 mg/kg) mixture and placed 

in a stereotaxic apparatus. Before scalp incision, feathers were removed and a topical 

anesthetic (1% lidocaine, Copley Pharmaceutical, Canton, MA) was applied along the 

midline incision site. The scalp was retracted and a custom built (Fred Letterio, INS 

Machine Shop, U. Pennsylvania), remotely controllable microdrive was implanted on the 
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skull such that 1-3 tungsten microelectrodes (2-4 MΩ, FHC, Bowdoinham, ME) rested 

just above the stereotaxic coordinates for HVC. Differential recordings were made 

between these leads and either a custom ground electrode implanted just outside of HVC 

(FHC, Bowdoinham, ME) or a silver ground wire implanted between the lower skull 

layer and the dura. To ensure that the ground wire did not dry out, a mixture of equal 

parts mineral oil and paraffin was applied. This mixture was also placed in the 

craniotomy above HVC to prevent the exposed surface of the brain from drying out.  

Recording locations were verified using multiple methods. These included 1) the 

presence of characteristic burst activity during initial drive implantation under anesthesia  

2) the presence of premotor activity during chronic recording sessions and 3) histological 

verification of electrode track location and extent within the cresyl violet defined 

boundaries of HVC (Cardin and Schmidt, 2003).  

 Immediately following implant surgery, birds were placed on a tether and 

habituated to the chronic recording apparatus and sound attenuation chamber for 24-48 

hrs. Once birds were fully recovered and displayed normal feeding, perching, and vocal 

behaviors, chronic recordings were initiated. Electrodes were moved remotely with 

micron resolution using customized hardware and software (RP Metrix, Princeton, NJ). 

Neurons were not selected based on response to auditory search stimuli, thus reducing 

bias in terms of response tendencies and potentially allowing for highly heterogeneous 

sampling (see Results and Discussion). Online unit isolation was achieved using a sound 

monitor (Grass Telefactor, West Warwick, RI) and oscilloscope mode of custom neural 

acquisition software (A. Leonardo, Caltech). Further assessment of unit isolation was 
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performed offline using a template and PCA-based spike sorting algorithm. Spontaneous 

and auditory evoked neural signals were amplified 100x (custom built headstage) and 

band-pass filtered between 300 and 5000 Hz (Brownlee 440 Amplifier, Brownlee 

Precision, San Jose, CA). Signals were then acquired at a sample rate of 25 kHz via the 

same custom neural acquisition software used for initial unit verification. Auditory 

presentation always occurred with the cage lights on. A camera was used to verify that 

birds were awake and active during auditory presentation. Trials were discarded if any of 

these criteria were met- (1) birds closed their eyes for more than 2s, (2) birds were not in 

an upright position and assumed one of several characteristic sleep postures (Low et al., 

2008) and (3) vocalized within 5 s of an auditory presentation. These criteria are very 

similar to those previously employed in chronic auditory recording experiments during 

wakefulness (Cardin and Schmidt, 2003).  

Data Analysis 

Characterization of single HVCIN. Clustering-based spike sorting was carried out in the 

Spike 2 programming environment (version 6, CED, Cambridge, UK). Clusters were 

visually inspected in PCA space, and cluster borders were manually delimited (see Fig. 

2.1S for example waveform and interspike interval histogram). For each site, clustering 

was done on a per stimulus basis, with all trials for a given stimulus concatenated in a 

manner that conserved relative, but not absolute time (see earlier description of 

pseudorandom presentation). This method, in theory, could lead to different principal 

components being selected for different stimuli, though spaces were qualitatively 

identical across stimuli and waveform shape was verified to be identical for a given 
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cluster across all stimuli. We frequently isolated more than one unit from a given 

electrode, though we always aimed for one large amplitude waveform per site (Fig. 

2.1A). 

 To verify that each cell was an HVCIN we measured the width of the largest positive 

going spike peak of each isolated waveform at 25% of peak amplitude (Fig. 2.1B). 

Previous work has shown that widths below .35ms were previously uniformly associated 

with a lack of antidromic activation from the two afferent targets of HVC, Area X and 

RA (Rauske et al., 2003) (Fig. 2.1C). We only accepted neurons with action potential 

widths that were < 0.35 ms (in practice all were below .3 ms). While electrode impedance 

can theoretically influence waveform shape, it should be noted that waveform 

classifications based on the described spike-width parameter were consistent between 

very low impedance glass- coated metal electrodes (< 1M MΩ) and higher impedance 

(up to 5 MΩ) glass electrodes (Rauske et al., 2003). Furthermore, HVCRA neurons, the 

only other class with waveforms relatively close in width to HVCIN , are extremely hard 

to isolate without antidromic stimultation because of their extremely small size and 

complete lack of spontaneous activity during wakefulness (Rauske et al., 2003; Fee et al., 

2004). HVCRA neurons also do not show auditory responses during wakefulness in 

several songbird species (Prather et al., 2008, 2009).  

Basic auditory response characterization. Spike times were passed back to MATLAB for 

basic statistical characterization of auditory responsiveness. These methods were 

previously used to characterize multiunit auditory responses in HVC (Cardin and 

Schmidt, 2004b).  Briefly, on a per stimulus basis, single auditory trial firing rate (FR) 
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was calculated for two second stretches of immediate pre-stimulus baseline (         

and stimulus period (        . We defined whether the response to a given stimulus was 

significant based on an unpaired t-test (Cardin and Schmidt, 2004b) between            

         measurements across all trials. The unpaired test assumes independence of 

activity during pre-stimulus and stimulus periods and is more conservative than the 

paired test, though the paired test yields extremely similar results in this particular 

comparison. For all cells showing a significant response (p<.01) to at least one stimulus, 

we calculated change in mean firing rate (spikes/s) between the pre-stimulus and stimulus 

periods as defined above. This Response Strength (RS) metric was calculated on a trial 

by trial basis as                  then the average value across trials was taken as        

for a given stimulus.  

While        is informative in that it reports the raw change in spike rate for a given stimulus 

between baseline and stimulus periods, we also wanted to report a metric that normalized 

spike rate in a way that facilitated comparison across cells with different baseline and 

peak firing rates. The metric we used for this purpose, RSINDEX was calculated as follows: 

                  STIM         BASE           STIM         BASE    

The advantage of RSINDEX is that it restricts the dynamic range of response to between -1 

and 1 for all cells. An RSINDEX of 0 indicates no difference in firing rate between pre-

stimulus and stimulus periods. A positive RSINDEX indicates an increase in firing rate 

during the stimulus period, and a negative RSINDEX indicates a decrease in firing rate 

during the stimulus period. We report RSINDEX for BOS as well as for CON stimuli. 
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Because many CON stimuli were presented to each cell (between ten and twelve), we 

represented response strength both for the stimulus that produced the strongest response 

(best-CON) as well as for the average response for all CON stimuli (mean-CON). The 

first metric, best-CON, is the response (RSINDEX) for the CON stimulus that produces the 

strongest response. The second metric, mean-CON, is the average response across the 

entire set of CON stimuli. Because these measurements are computed differently, the 

standard error of the mean (SEM) for best- CON represents the variance across trials 

whereas SEM for mean-CON represents the variance across mean RSINDEX values for 

each CON stimulus. Along with response strength metrics, we also calculated d’ values 

to report selectivity in responsive cells for BOS relative to both the best CON response as 

well as the mean CON response (Green and Swets, 1966;  Theunissen and Doupe, 1998). 

For each BOS-CON stimulus pair, d’ was calculated as follows 

  BOS CON  
        

BOS        
CON 

  BOS
   CON

 

 

       BOS
 

  and   CON
 

   are respectively the variance of RSBOS and RSCON across trials. 

In describing our findings, we divide responsive cells in to multiple categories and 

evaluate whether the mean of the d’ distribution for cells within a given category differs 

significantly from zero (     
  ) (Nealen and Schmidt, 2006). All statistical tests 

reported in the text were unpaired t-tests assuming equal variance (equality of variance 

previously verified) unless noted.   

STRF Analysis     
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STRF generation and response prediction  For the subset of cells showing significant 

excitatory responses to a least one auditory stimulus based on the response strength 

criteria described above, we generated spectrotemporal receptive fields (STRF) in the 

auditory domain (STRFPAK version 5.3, J. Gallant and F. Theunissen, 

http://strfpak.berkeley.edu). Briefly, STRF in the auditory domain is the optimal linear 

filter that transforms a representation of a time-varying stimulus in to a prediction of the 

firing rate as estimated by the PSTH of the neuron (Theunissen et al., 2000).  Auditory 

STRF methodology is well described elsewhere (deCharms et al., 1998; Hsu et al., 

2004b; Sen et al., 2001; Theunissen et al., 2000, 2004; Woolley et al., 2006, 2009). STRF 

generation, briefly, includes three steps: 1) generation of a spike-triggered average (STA) 

via cross-correlation between log spectrograms of sound (here CON song stimuli) and 

averaged time-varying spiking response 2) removal of stimulus autocorrelations from the 

STA, and 3) a regularization – cross validation step to effectively reduce the number of 

parameters used to estimate the STRF (i.e. to avoid over-fitting of the data).  For the 

initial spectrographic representation of song, we chose spectral and temporal filter widths 

of 125 Hz (from 250 Hz to 8kHz, which is the audible range for zebra finch hearing) and 

1.27ms, respectively, because these values have previously yielded good predictions in 

auditory midbrain and forebrain neurons of anesthetized birds (Singh and Theunissen, 

2003; Woolley et al., 2006). 

Validation of the STRF involves a jack-knife procedure wherein the model is 

tested on untouched data. One point with critical relevance to our analyses is that the 

jack-knife procedure used to generate predicted responses to individual stimuli always 

http://strfpak.berkeley.edu/
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leaves the specific stimulus being predicted on out of the STRF used for prediction of its 

response. Thus, though we use CON-derived STRFs to predict responses to BOS stimuli 

(see next section), this prediction is an equally valid and no more stringent a test of 

linearity than is using CON-derived STRF to predict response to a novel CON stimulus. 

The noise-corrected (Gill et al., 2006) mean correlation value between the predicted and 

actual PSTHs in response to the set of CON stimuli is the mean CC ratio, which we 

commonly refer to as response linearity. We also report non-noise corrected CC ratios 

(raw CC values) for evaluation of how well the STRF model predicts responses to novel 

CON and BOS stimuli (see next section).  We chose a Hanning window width of 21ms 

for smoothing actual PSTHs, a value which has been used in previous studies with which 

we compare our results (Gill et al., 2006; Woolley et al., 2006).   

To evaluate how well novel BOS responses were predicted by CON-derived 

STRF relative to novel CON responses, we calculated a Z-score metric for the raw CC 

value (BOS CC-Z) to indicate the number of standard deviations (i.e Z‟s) that separate 

the average CON raw CC value from the BOS raw CC value. This provides a normalized 

statistic to evaluate whether CON-derived STRF predict novel BOS responses as well as 

they predict novel CON responses across our population of recorded neurons. Negative 

values indicate BOS predictions that were lower than the average CON prediction, while 

positive values indicate BOS predictions that were higher than the average CON 

prediction. 
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Where CON and BOS raw CC are the raw cross- correlation values between predicted 

and actual PSTHs for individual stimuli and              is the standard deviation of the 

individual CON raw CC values.  

STRF Feature Extraction  

STRF provides a powerful tool for measuring a host of temporal, spectral, and 

spectrotemporal receptive field features in response to complex stimuli (Theunissen et al., 

2004).  As detailed in the next few sections, we measured excitatory and inhibitory 

latencies, best inhibitory and excitatory frequencies, and temporal and spectral response 

bandwidths. In addition to these temporal and spectral parameters, we also measured joint 

spectrotemporal response properties, including best temporal and spectral modulation 

frequencies. We chose to measure spectral and temporal receptive field properties only 

from cells showing mean CC ratios that were greater than .3; which is slightly more 

conservative and less inclusive than a low-end linearity criterion previously used in the 

context of feature extraction in the auditory forebrain of anesthetized birds (Woolley et 

al., 2009). Overall, 49/82 cells showing significant responses to both BOS and CON 

stimuli reached this criterion, though we excluded nine cells from this analysis because 

the complexity of STRF shapes precluded measurement of one or more of the parameters 

described in detail below. All feature measurements we made from STRFs are 

represented in Figures 2.8E and F. Green areas on the STRF represent mean firing rate. 

Red and blue areas represent increases and decreases, respectively, in firing rate relative 

to the mean firing rate. Increasing color intensity indicates greater change in firing rate 

from baseline values.  
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Temporal feature extraction  Excitatory and inhibitory latencies describe the amount of 

time between  the presence of a stimulus feature (excitatory) or the absence of a stimulus 

feature (inhibitory) most reliably associated with a spike (Woolley et al., 2005). 

Excitatory latency was taken as the time of maximum amplitude in the STRF and, 

likewise, inhibitory latency was taken as the time of minimum amplitude in the STRF. 

Temporal bandwidth relates the temporal precision between the occurrences of specific 

frequencies and changes in firing rate. We defined temporal bandwidth as the full width 

at 50% peak amplitude of the peak excitatory and inhibitory regions in a 2-D temporal 

profile of the STRF at best frequency (Nagel and Doupe, 2008). When these regions did 

not overlap in time (as in Fig. 2.8F), this measurement reflected the time from the onset 

of the first peak component, be it excitation or inhibition, to the offset of the second 

component (Woolley et al., 2006). In the small subset of cells where there was partial 

temporal overlap between peak excitation and inhibition, the measurement reflected the 

time from onset of the first peak component to the offset of the second, minus the region 

of temporal overlap. Finally, because excitatory and inhibitory best frequencies were 

nearly always offset (as in Fig. 2.8E), temporal widths were measured separately for 

excitatory and inhibitory response components at their respective best frequencies (see 

next section for description of best frequency measurement). 

Spectral feature extraction  Excitatory and inhibitory best frequency describe the sound 

frequencies most likely to elicit a spike based on their presence (excitatory) or absence 

(inhibitory) prior to a spike. Excitatory best frequency was defined as the point of peak 

amplitude in a frequency profile of the STRF at the time of peak excitation. Inhibitory 
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best frequency was defined as the point of minimum amplitude in a frequency profile of 

the STRF at the time of peak inhibition. Spectral bandwidth defines the range of 

frequencies that are reliably associated with increases, in the case of excitation, or 

decreases, in the case of inhibition, of spike rate relative to mean firing rate. We 

measured spectral bandwidth separately for excitation and inhibition and defined it as the 

full width at half of peak amplitude in a frequency profile of the STRF at the time of peak 

excitation or inhibition, respectively (Nagel and Doupe, 2008; Sen et al., 2001).  

Spectrotemporal feature extraction  We carried out 2-D Fourier transform of the best 

STRF for linear neurons in order to obtain their modulation transfer functions (MTFs). 

MTFs show the range of temporal modulations, such as peaks and troughs in the song 

amplitude envelope (measured in Hz), and spectral modulations, such as harmonic 

elements (measured in cycles/kHz) to which neurons are sensitive (Theunissen et al., 

2004). The temporal and spectral modulations corresponding to the peak amplitude of the 

MTF were defined as the best temporal and spectral modulation frequencies. MTFs are 

plotted on the same scale as the modulation power spectrum (MPS) of song (see above 

and Figure 2.1D), and can thus be used to evaluate whether the modulation power of a 

given neuron falls within the region well represented in the stimulus ensemble. Though 

spectral and temporal tuning properties can also be calculated fitting each best STRF with 

a product of Gabor functions (Qiu et al., 2003; Woolley et al., 2009), many of our STRFs 

violated separability requirements of this method. Nonetheless, estimates of temporal and 

spectral STRF parameters between the two methods are quite similar (Theunissen et al., 

2004).  From the MTF, we measured a symmetry index by dividing the modulation 
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spectrum in to left (       and right (        halves (Miller et al., 2002; Nagel and Doupe, 

2008): 

               

               
 

The symmetry index, as the RSINDEX described above, ranges from -1 to 1. Large negative 

values indicate strong sensitivity to upwardly modulated frequency sweeps, while large 

positive values indicate strong sensitivity to downwardly modulated frequency sweeps.  

 

RESULTS 

HVC  interneurons in awake birds show a hetereogeneity of auditory responses 

The high degree of auditory selectivity to the bird‟s own song (BOS) and the 

virtual omnipresence of stereotyped auditory responses in the zebra finch song system 

during non-waking states is extremely well established (Margoliash, 1986 ; Mooney, 

2000; Sutter and Margoliash, 1994). While it is also well established that auditory 

responses in the zebra finch are suppressed for some time upon arousal (Cardin and 

Schmidt, 2003; Nick and Konishi, 2001; Schmidt and Konishi, 1998), there are 

conflicting reports concerning the degree of BOS- selectivity, consistency and vigor of 

responses when present during wakefulness (Cardin and Schmidt, 2003; Rauske et al., 

2003). Previous studies have been limited in terms of stimuli presented (usually just BOS 

and one or two other complex stimuli), small numbers of single units that, when present, 
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were usually recorded with techniques highly disruptive to ongoing behavior, and 

analysis of responses limited to spike-rate derived measures. 

  In an effort to provide a rigorous characterization of awake auditory response 

properties in zebra finch HVC at the single neuron level, we sampled from a large 

number of neurons (n = 215 single units in 17 birds) with a non-disruptive motorized 

microdrive and used a comprehensive stimulus set for each recorded neuron that 

consisted of 10-12 conspecific song (CON) stimuli and 1 BOS stimulus. Recordings in 

HVC focused entirely on responses in neurons that were defined as putative interneurons, 

a class of neuron well known to shape the output of projection neurons across many 

neural systems.  All neurons in the present study had waveform widths at 25% peak 

amplitude that were smaller than 0.35 ms        
           (Fig. 2.1C). Based on a 

previous study, this cutoff is sufficient to provide a clear separation from antidromically 

identified projection neurons, which have much wider waveforms (Rauske et al.,2003). 

Figure 2.1C shows the complete lack of overlap between the distribution of spike widths 

for the cells included in the present study and those obtained in the Rauske et al. study for 

both types of HVC projection neurons. From here forward, we refer to these neurons as 

HVC interneurons or HVCIN. 

We found that neurons could be classified into three broad classes based on their 

auditory responsiveness: (1) excitatory responses to one or more stimuli (n = 146 cells; 

67.9% of total cells), (2) suppressive responses to one or more stimuli with no excitatory 

responses to any stimuli (n = 30 cells; 14% of total cells) and (3) no significant excitatory 

or inhibitory responses to any stimuli (n = 39 cells; 18.1% of total cells). BOS responses 
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of a representative cell from each of the three broad classes are shown in the top panel of 

Figure 2.2.  The excitatory neuron (top right panel) was obtained simultaneously from 

the same electrode as the neuron showing the suppressive response (top left panel). It was 

not uncommon for us to simultaneously record cells from different classes at the same 

electrode site, highlighting the heterogeneity of auditory response types in HVC during 

wakefulness suggested in a previous study (Rauske et al., 2003). Additional examples of 

paired recordings highlighting simultaneous recordings of cells with particularly striking 

differences in response properties, are found in Figures 2.2S and 2.3S. To quantify and 

compare response strengths in the population of HVCIN, we calculated a normalized 

response strength, RSINDEX , for each cell. Because all excitatory neurons responded to 

BOS but not necessarily to CON (see next section), we only plot the distribution of 

RSINDEX in response to BOS. The wide distribution of BOS RSINDEX values from 

moderately negative to highly positive reinforces the notion of a range of response types 

in our population of HVCIN (Fig. 2.2, bottom panel). To test whether putative HVCIN 

exhibiting these different response properties might be distinguished by other 

physiological attributes, we compared both action potential waveform as well as 

spontaneous activity across these different populations of neurons. No difference was 

observed for either spike waveform (p>.05, one-way ANOVA) or spontaneous activity 

(p>.05, one-way ANOVA). Thus, it appears that HVCIN with similar spike morphology 

and baseline firing properties can respond differently to auditory stimuli.  

Auditory properties of HVCIN showing suppressive responses to auditory stimuli 
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While the remainder of this study focuses on the attributes of cells demonstrating 

excitatory responses to one or more BOS and CON stimuli, neurons with suppressive 

auditory responses merit a quantitative description of their properties in terms of possible 

biases in suppression for BOS over CON stimuli. In a previous study recording from a 

small number of auditory responsive HVCIN (n=  21 cells), it was found that a subset of 

neurons (n = 4) showed suppressive auditory responses to song stimuli. A few of these 

cells showed less suppression to BOS than they did to CON stimuli or to BOS stimuli 

presented in reverse (Rauske et al., 2003).  In the present study, neurons showing only 

suppressive responses to one or more stimuli (n =30 cells) tended to have RSINDEX values 

that indicated less suppression to BOS        
       than to CON 

stimuli                           
     ;  p<.05).  Nonetheless, the d’ value 

comparing the response to BOS and the mean CON response was low for these cells 

       
      , indicating a lack of strong selectivity for BOS in this group of neurons. The 

suppressive example shown in Figure 2.2 (top right panel) exemplifies this relative lack 

of selectivity (response to non-BOS stimuli not shown).. 

Auditory properties of HVCIN showing excitatory responses to auditory stimuli 

The majority of HVCIN (146/215) showed excitatory auditory responses to one or 

more stimuli. To test for the possible bias these neurons might have had for BOS, we 

presented each neuron with BOS as well as a large set of CON stimuli (n =10-12 stims) 

that well represented the richness (e.g  the range of temporal and spectral modulations) 

inherent to zebra finch song (Fig. 2.1D; Woolley et al., 2005).  We used this stimulus set 

to establish rigorous criteria for BOS selectivity and divided cells into those that showed 
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excitatory responses exclusively to BOS (BOS-ONLY cells) and those that showed 

excitatory responses to both BOS and CON stimuli (BOS-CON cells). Even with the 

extensive CON stimulus set, we observed a remarkably large number of BOS-ONLY 

cells (n = 64/146 excitatory cells). Multiple lines of evidence suggest that there were 

fundamental differences between the BOS-ONLY and BOS-CON cells at the population 

level.  Firstly, BOS-CON cells (n = 82/146 excitatory cells) tended to show excitatory 

responses to many of the presented CON stimuli 

(      
                                     (Fig. 2.3A) with a distribution mode of 100 

percent of presented CON stims. The tendency to respond to many CON stimuli indicates 

that BOS-CON cells were quite different as a population than the BOS-ONLY cells, 

which by definition showed excitatory responses to not a single CON stimulus.  

Secondly, the strength of response to BOS, the one stimulus that both cell types 

responded to, was significantly greater in BOS-CON cells. Figure 2.3B shows the strong 

tendency for BOS RS (spikes/s above baseline) to be higher in BOS-CON cells (white 

bars;          
             ) than in BOS-ONLY cells (black bars;         

             ) 

(p<.001).  

Characterization of auditory properties of BOS-ONLY Neurons 

The typical response properties of BOS-ONLY cells are well represented by the 

example in Figure 2.4. This cell had relatively modest, phasic excitatory peaks in 

response to BOS (RSINDEX = .12) that were reliably present from trial to trial at specific 

time points throughout the stimulus. These phasic excitatory peaks were sometimes 

followed by transient suppression below baseline levels, a common response property of 
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cells in this class. This example cell also clearly showed response peaks during the 

second and third motifs (M2 and M3 in the top panel of Fig. 2.4) that were larger than 

during the first motif (M1). This increase in response magnitude across motifs was a 

response feature that we sometimes observed in BOS-ONLY cells.  In contrast to its 

response to BOS, this cell showed no response peaks to any of the representative CON. 

Rather, the cell showed a tendency toward weak suppression in response to CON stimuli 

(mean RSINDEX =       
      , which is highly representative of responses to CON 

stimuli in BOS-ONLY cells (see Fig. 2.3C). 

As described earlier, BOS-ONLY cells showed a relatively modest average 

increase in spike rate during BOS stimulation (range: .05 to 11.2 spikes/s above baseline 

firing rate). By definition, cells in this group did not show significant responses to CON 

stimuli. Quantitative confirmation of these properties is shown in Figure 2.3C, where 

RSINDEX to BOS is greater than the best (i.e. most positive) CON 

response          
     (p<.001)(Fig. 2.3C, left of dashed line), as well as greater than the 

mean RSINDEX for all CON stimuli             
                   

             . As a 

population, we found that the distribution of best CON responses in these cells was 

significantly smaller than zero (p<.002;      
  ), indicating that CON responses in 

BOS-ONLY cells were suppressed below baseline firing rates. As a comparison point for 

many other studies, we also computed the selectivity metric d’ for neurons in this group. 

For the BOS vs. mean CON response comparison, mean d’ was highly significant 

     
       (     

    p <.001). When compared to the best CON response, d’ was 
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lower       
        than for mean CON but nevertheless still highly significant (     

 

   p <.001).  

Characterization of auditory properties in BOS-CON neurons 

Beyond response to BOS and at least one CON stimulus, response properties of 

BOS-CON neurons tended to be diverse. To capture the range of responses observed in 

these neurons, we depict two examples in Figures 2.5 and 2.6 that represent most of the 

response features observed in this class of HVCIN. Both cells showed BOS RS values 

(4.36 and 11.32, respectively) that were substantially higher than the typical BOS-ONLY 

cell (see previous section). The cell depicted in Figure 2.5 showed reliable phasic 

response peaks to both BOS (Fig. 2.5B top panel, black PSTH) as well as CON stimuli 

(bottom two panels, black PSTHs). This particular cell did not show a strong preference 

for BOS as compared to CON stimuli (d’ = 0.01; BOS vs. best-CON). The cell depicted 

in Figure 2.6 had somewhat different, yet still common to the BOS-CON class, response 

characteristics. While responses to CON stimuli (Fig.2.6B, bottom two panels, black 

PSTHs) were well above baseline, responses were substantially weaker than those 

elicited by BOS (Fig. 2.6B top panel, black PSTH).This selectivity for BOS is supported 

by a moderately high d’ value relative to the best CON response (d’ = .34). Finally, while 

there were clearly consistent response peaks to both BOS and CON stimuli, this cell had 

higher background activity and slightly less precision than the cell shown in Figure 2.5. 

As will be discussed later in the context of temporal precision of STRF-derived linear 

response, the population of BOS-CON cells showed a range of phasic and tonic response 

properties.  
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As a population, BOS-CON neurons showed a diversity of response 

characteristics both in terms of the degree of BOS selectivity as well as the overall 

strength of response. The response strength to BOS ranged from .28 to 31.6 spikes/s with 

a mean RSINDEX       
        that was significantly greater than that calculated for the 

mean response to all CON stimuli       
         (p<.001) as well as for the CON stimulus 

that elicited the strongest response       
       (p<.001)(Fig. 2.3C; right of dashed line). 

BOS selectivity at the population level for BOS-CON cells was verified by measurement 

of d’, which was significant when compared to both the mean CON response       
       

(p<.001), as well as to the best CON response       
      (     

    p <.001).  

While BOS selectivity was evident at the population mean level, we found that 

over half of BOS-CON cells (42/82) showed d’ values of below .5 relative to mean CON 

response. The number of cells with d’ less than .5 increased to 57/82 when BOS 

responses were compared to best CON response. In previous studies, cells with d’ below 

.5 were deemed to be non-selective for BOS (Cardin and Schmidt, 2003; Solis and 

Doupe, 1997). Figure 2.5 exemplifies the relative lack of BOS selectivity exhibited by 

many BOS-CON cells. Because many neurons responded equally well to BOS and CON 

stimuli, we decided to investigate whether established linear analysis methods could be 

used to characterize spectral, temporal and spectrotemporal receptive field properties in 

these neurons.  

A subpopulation of BOS-CON neurons showed responses well predicted by linear 

STRF 
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Spectrotemporal receptive field analysis (STRF) is a method by which the linear 

portion of responses to complex, time-varying stimuli, such as songs and other natural 

sounds, can be estimated and used to predict responses to other such stimuli. Introduction 

of static nonlinearities in the initial spectrographic representation of song has aided 

response prediction in areas of the songbird auditory forebrain where neurons are tuned 

to features inherent to CON song as compared to complex modulated noise stimuli 

(Grace et al., 2003; Theunissen et al., 2000).  However, because auditory responses in 

HVC under anesthesia are highly biased toward the bird‟s own song (BOS), and thus 

show an extreme degree of nonlinearity, CON-based STRF has not previously been used 

to analyze auditory responses in this area (Theunissen and Doupe, 1998). The existence 

of a relatively large population of HVCIN, the BOS-CON cells, which respond both to 

BOS and CON stimuli in awake birds motivated us to employ STRF based methods to 

describe the linear tuning properties of these cells. We measured mean CC ratio (response 

linearity) as the normalized (see Materials and Methods for details) average cross 

correlation between the actual time-varying response of neurons to CON stimuli and the 

response predicted by STRF generated from responses to other CON stimuli.  

Figure 2.7A shows the distribution of response linearities across the population of 

BOS-CON cells. The population of BOS-CON cells showed mean response 

linearity        
       similar to that measured in various areas of the ascending auditory 

pathway in anesthetized birds using similar CON stimulus sets, spectrogram time-

frequency parameters, and STRF smoothing parameters (Gill et al., 2006; Sen et al., 

2001). In contrast to BOS-CON neurons, it is not surprising that BOS-ONLY cells 
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showed very low linearity in response to CON stimuli       
        given their extreme 

nonlinearity and resemblance to HVC responses under anesthesia.  Because of their lack 

of significant excitatory response to the CON stimuli we used to generate our STRFs, 

BOS-ONLY cells are not included in the distribution depicted in Figure 2.7A or in any 

further STRF-based analyses.  

To extract spectral and temporal response parameters from individual neuron 

STRF, we chose to focus on neurons whose response linearity scores were at least .3. 

This criterion is similar to that previously used in a study of neural properties under 

anesthesia in the ascending auditory pathway (Woolley et al., 2009). Using this criterion, 

we were left with a subgroup of cells (n = 49/82 BOS-CON cells) that we refer to as 

linear neurons from here forward.  

STRFs and response prediction in the subpopulation of BOS-CON linear neurons  

As stated in the Materials and Methods, the jack-knife procedure used to validate 

the STRF allows prediction of responses to „novel‟ (e.g. not used in generation of their 

own prediction) stimuli. We wanted to know whether STRFs generated based on the 

responses to the set of CON stimuli were as effective at predicting responses to novel 

BOS stimuli as they were at predicting responses to novel CON stimuli. Within the 

population of linear neurons, we found a strong positive correlation between response 

linearity (i.e. the ability of STRF to predict responses to novel CON stimuli) (Fig. 2.7B, 

vertical axis) and the degree to which individual novel CON and BOS responses could be 

well predicted (horizontal axis) (r = .57;  p < .001). In other words, the cells showing the 
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highest average response linearity to the ensemble of CON stimuli also had BOS 

responses well predicted by CON-derived STRF. In contrast, neurons showing low 

linearity scores had BOS responses that were much more poorly predicted than CON 

responses. We represent the quality of BOS predictions with Z-scores to facilitate 

comparison across neurons. A BOS CC-Z score of -1 indicates that prediction of BOS 

response by CON-derived STRF was one standard deviation lower than the mean 

prediction of response to all individual CON stimuli. Cells within the range of -1 to +1 Z-

score (shaded grey area in Fig. 2.7B) were defined as having well-predicted BOS 

responses, while those with a Z score lower than -1 were defined as having poorly 

predicted BOS responses.  

Mean linearity for cells within the well- predicted BOS response range 

      
           was significantly higher than the mean linearity for all BOS-CON 

cells (p<.001). The cell depicted in Figure 2.5 (circled and labeled in Fig. 2.7B) is a 

representative example of the group with well- predicted BOS responses and illustrates 

nicely how well the measured PSTH (black PSTH) can follow the predicted (red PSTH) 

response (Figure 2.5B). This neuron showed a high linearity value (mean CC ratio: .57) 

and had a well predicted BOS response (BOS raw CC: .55) (open symbol in Fig. 2.5C) 

that was comparable to the mean raw response predictions to individual CON stimuli 

(                      
      (closed symbols). The BOS CC-Z score for this neuron (-

.30) (see Fig. 2.7B) is highly representative of that shown by neurons in the well- 

predicted BOS response group. Figure 2.4S profiles an additional cell in this response 
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group, and Figure 2.6S profiles an unusual case of a neuron with a very high mean CC 

ratio to CON stimuli but a relatively poorly predicted BOS response. 

In contrast to the well- predicted BOS response group, cells in the poorly 

predicted BOS response group showed lower linearity values in response to CON stimuli. 

Mean linearity for the poorly predicted BOS response group       
      was significantly 

lower than for cells in the well- predicted BOS response group (p<.001). The cell 

depicted in Figure 2.6 (circled and labeled in Figure 2.7B) is a representative example of 

the poorly predicted BOS response group. The linearity of this cell (mean CC ratio: .41) 

was high relative to mean linearity in all BOS-CON cells, but substantially lower than 

that seen in most cells in the well- predicted BOS response group. As shown in the figure, 

the predicted responses to CON stimuli (red PSTHs in bottom two panels of Fig. 2.6B) 

closely follow the measured PSTHs for these stimuli (black lines). In contrast, the 

predicted response to BOS (red PSTH in top panel) provides a relatively poor prediction 

of the actual PSTH obtained for BOS (black line) across the entire stimulus. Neural 

response to BOS in this cell was poorly predicted (BOS raw CC: .22) (open symbol in 

Fig. 2.6C) compared to individual CON responses                       
      

(closed symbols). This neuron was associated with a very large negative BOS CC-Z score 

(-2.59) (see Fig. 7B). Figure 2.5S profiles another cell from the poorly predicted BOS 

response group, though one with very different STRF characteristics than those of the cell 

depicted in Figure 2.6.  

To make sure that lower response linearity values measured in the poorly 

predicted BOS response group were not simply due to lower response strength values to 
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CON stimuli, we compared response strength values between this group and the well- 

predicted BOS response group. We found that RSINDEX  in response to CON stimuli did 

not differ between groups (Fig. 2.7C, left), although there was a non-significant trend 

toward weaker CON responses in the well-predicted BOS response group (p =.09). This 

suggests that the lower mean linearity seen in the poorly predicted BOS response group is 

not likely the result of weaker responses to CON stimuli.  Response strength to BOS, 

however, was significantly greater for cells in the poorly predicted BOS response group 

(BOS RSINDEX:       
      than for those in the well predicted BOS response group (BOS 

RSINDEX:       
      (p<.001) (Fig. 2.7C, right). These results, when considered with the 

linearity scores detailed in the previous section, indicate that cells in the poorly predicted 

BOS response group receive strong excitatory drive to both BOS and CON stimuli and 

that this drive is BOS-biased and only partially linear. The nonlinearity of these responses 

is highlighted by the poorly predicted large response peaks in the example in Figure 2.6B 

(middle panel and indicated by dashed arrows in top inset). Because cells in the poorly 

predicted BOS response group showed strong, partially linear CON responses and 

stronger, highly nonlinear BOS responses we refer to them as “hybrid cells” (i.e. 

exhibiting properties that are observed in both highly linear BOS-CON cells and 

nonlinear BOS-ONLY cells) in the legends for Figures 2.6 and 2.7, as well as in the 

Discussion . 

STRFs and Receptive Field Feature Extraction 

 Prediction of response linearity exemplifies only one small facet of the power of 

the STRF approach. Analysis of two-dimensional temporal and spectral slices through the 
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STRF allow extraction of „classical‟ receptive field properties including, but not limited 

to, spike latencies, precision of the relationship between specific stimulus features and 

modulation of spike rate, and the spectral frequencies that a neuron is reliably sensitive 

to. Moreover, deconstruction of the STRF in to its fundamental ripple components via 2-

D Fourier analysis reveals the joint spectral and temporal (i.e. spectrotemporal) 

sensitivities of the neuron. Such analysis is especially informative because it is carried 

out in the same parameter space as analysis of the power density of zebra finch song (see 

Fig. 2.1D), allowing a direct assessment of whether and to what extent neurons are 

sensitive to features common to song stimuli. We obtained receptive field features from a 

large subset of linear neurons (40/49 neurons with mean CC ratios >.3) from which we 

could unambiguously extract all measured features from the best STRF.   

Spectral receptive field features in BOS-CON linear neurons 

We found that the population of linear neurons from which we could 

unambiguously extract features (n = 40) showed best excitatory (range: .263 kHz to 6.44 

kHz) and inhibitory (range: .656 kHz to 7.49 kHz) frequencies that nearly spanned the 

entire range of frequencies represented in our STRF analysis (.250 kHz to 8 kHz). This 

range of best frequencies also covered the range of frequencies audible to the zebra finch 

(.05 kHz to 7 kHz) (Okanoya and Dooling, 1987). Excitatory and inhibitory best 

frequencies were observed across the entire STRF frequency range (Fig. 2.8A) and there 

was a significant tendency for best excitatory frequencies        
              to be 

lower than best inhibitory frequencies        
                                  . 

The STRFs in Fig. 2.5B and Fig. 2.8E are representative of this trend in the population. 
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Individual neurons tended to show broadband frequency sensitivity. For comparison, we 

include the estimated inter-quartile range of frequency bandwidth measured in a previous 

study (Woolley et al., 2009)  from the auditory forebrain area Field L in anesthetized 

birds (dashed grey box in Fig. 2.8B). Though Woolley et al. considered inhibitory and 

excitatory bandwidth concurrently, the majority of their values fell over a considerably 

more restricted range than ours. This testifies to the relatively broadband nature of 

responses in our population. Furthermore, the Field L population included many cells 

with extremely narrow frequency bandwidths (<  1kHz) that were not represented at all in 

our population. As with best frequency, mean spectral bandwidth in linear HVCIN 

differed significantly between excitation        
          and inhibition 

       
         (p<.001). The tendency for inhibition to have wider spectral bandwidth 

than excitation is well illustrated by the STRF shown in Fig. 2.8E.  

Temporal receptive field features in BOS-CON linear neurons 

Along with the spectral parameters described above, we extracted two types of 

temporal parameters from the STRFs of linear neurons. First, we extracted excitatory and 

inhibitory spike latencies. This measure indicates the most reliable time interval between 

the presence (excitation) or absence (inhibition) of a given frequency in the song stimulus 

and a neural spike. We found that minimum excitatory         
           and 

inhibitory         
           latencies were not significantly different at the population 

level                     . The vertical black arrows on the STRF in Figure 2.8F 

depict the measurement of excitatory and inhibitory spike latency. Although population 

latencies were similar, at the single cell level, as is well represented by the STRF in 
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Figure 2.5D, peak inhibition and excitation tended to be offset in time. The scatter plot in 

Figure 2.8C shows the trend for temporal offset of excitation and inhibition and 

illustrates clearly that there was a near equal probability for each response component to 

lead the other (peak excitation led peak inhibition in 24/40 cells).  

A second temporal feature that we extracted from STRFs of linear neurons is the 

temporal bandwidth (Fig. 2.8D). This measure indicates the precision of the temporal 

relationship between specific spectral frequencies in the song stimuli and neural spiking. 

Lower temporal bandwidths indicate a temporally precise relationship (i.e. low jitter) 

between a neuron‟s response and the presence of a specific spectral frequency. Because 

peak excitatory and inhibitory STRF components were always offset in time, the overall 

measurement of temporal bandwidth extended from the onset of the first component (here 

inhibition) to the end of the second component. The population of neurons recorded in 

the current study showed a broad range of temporal bandwidths, 10-52 ms, with a mean 

value of     
           . For comparison, we provide the estimated inter-quartile range 

of temporal bandwidths obtained from primary auditory forebrain area Field L responses 

in a previous study (grey dashed box in Fig. 2.8D; Woolley et al., 2009). As with spectral 

bandwidth, temporal bandwidth for BOS-CON linear neurons was much broader than for 

Field L neurons, with Field L containing many values below 10ms. Such low values were 

never observed in BOS-CON neurons and indicates strong coherence and especially 

precise phase locking between stimulus and response in Field L that is not observed in 

HVCIN. The STRF of the cell profiled in Figure 2.5 exhibits a narrow temporal 

bandwidth (12ms) at the low end of the range observed in our population of BOS-CON 
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linear neurons. This is typical for cells with a sharp relationship between stimulus and 

spiking response. In contrast, the STRF of the cell profiled in Figure 2.6 shows a 

relatively wide temporal bandwidth (28ms) (see also Fig. 2.7S for another example), 

which is typical for cells that have a relatively imprecise temporal relationship between 

stimulus features and spiking response.  

Consideration of joint spectral and temporal properties in BOS-CON linear neurons 

Simultaneous consideration of joint spectral and temporal properties facilitates a 

deeper understanding of the specific stimulus features that drive responses in linear 

HVCIN. Figure 2.9A shows a scatter plot of the temporal and spectral bandwidth 

properties described in the previous sections, though here they are plotted against each 

other. This representation illustrates clearly the relatively broadband temporal and 

spectral properties measured in this group of BOS-CON neurons. As a point of 

comparison, the estimated joint inter-quartile range of temporal and spectral bandwidths 

in the population of Field L neurons obtained in a previous study is plotted as well (grey 

dashed box; Woolley et al., 2009). Though the joint sensitivities of the two populations 

overlap to some degree, the Field L population contains many more cells with narrow 

spectral and temporal bandwidths.  

Fourier analysis of STRFs reveals spectral and temporal modulation sensitivity  

Two-dimensional (2-D) Fourier analysis of STRFs yields the modulation transfer 

function (MTF), which provides a map of the spectral and temporal modulation 

sensitivities of neurons in the same space as the modulation power spectrum of the CON 



62 
 

song ensemble (MPS; see Fig. 2.1D). Figure 2.9B shows several prominent features of 

the population of BOS-CON linear neurons in terms of their modulation sensitivities. 

Cells showed peak sensitivity to a relatively broad range of temporal modulation 

frequencies (8-57Hz; range). This range of best temporal modulation frequencies largely 

overlaps the range of temporal modulations commonly seen in our CON song ensemble 

(the inner and outer red contour lines represent the 50% and 80% modulation power 

density boundaries, respectively, of our ensemble MPS). The average temporal 

modulation frequency of zebra finch song syllables has been estimated at  ~7.5 Hz, and 

rapid song transients, such as note and syllable boundaries, occur in the 50 Hz range 

(Woolley et al., 2009). Thus, the population of HVCIN may be sensitive to the broad 

range of timescales inherent to zebra finch song. The cell described in Figure 2.5 showed 

peak temporal modulation sensitivity (45 Hz) near the high end of the observed range, 

indicating a peak sensitivity to rapid transients that is consistent with the strong onset 

characteristics evident in the STRF. For a cell with similar transient sensitivity, but with 

clear offset, as opposed to onset, characteristics, see Figure 2.6S.  In contrast, the cell 

described in Figure 2.6 showed relatively low peak temporal modulation sensitivity (12 

Hz). This feature, coupled with the complex STRF shape, indicates that the cell may be 

sensitive to spectrotemporal features varying on a longer timescale than transient features 

such as onsets and offsets (see also the cell depicted in Figure 2.7S). For comparison, we 

plot the estimated inter-quartile range of peak temporal modulation sensitivities 

previously observed in Field L (grey dashed box along x-axis; Woolley et al., 2009).  
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The majority of BOS-CON linear neurons showed peak sensitivity to relatively 

low spectral modulations, indicating limited sensitivity to spectral content in the CON 

song stimuli. Three quarters (30/40) of cells had a peak spectral modulation sensitivity of 

below .5 cyc./kHz, which corresponds to a peak spectral pitch sensitivity of 500 Hz. This 

fundamental frequency corresponds to the lowest commonly seen in zebra finch song 

(Hsu et al., 2004a ; Zann, 1993). The neurons depicted in Figures 2.5, 2.4S, and 2.6S 

show the population-typical peak sensitivity to low spectral modulations. Nonetheless, 

the remaining 10/40 cells showed peak spectral modulation sensitivities above .5 

cyc./kHz, ranging up to as high as 1.11 cyc./Hz. While the CON ensemble MPS 

contained substantial power in spectral modulation frequencies well above 1 cyc./kHz, 

most cells in our population with high peak spectral modulation sensitivity showed 

relatively high peak temporal modulation sensitivities (> 10 Hz) as well. Because most 

power in zebra finch song occurring at high spectral modulation frequencies occurs at 

low temporal modulation frequencies (see Fig. 2.9B), these cells do not respond 

optimally to the most common joint spectrotemporal features seen in CON song. See 

Figures 2.6 and 2.5S for examples of cells with peak sensitivity to relatively high 

spectral modulations. As previously mentioned, the cell depicted in Figure 2.6 (see also 

the cell depicted in Figure 2.7C) has, along with a relatively high peak spectral 

modulation sensitivity (.91 cyc./kHz), a relatively low peak temporal modulation 

frequency (12 Hz), which makes it a strong candidate for sensitivity to the complex 

spectrotemporal information inherent to the non-transient parts of many song elements. It 

is clear from the MTF of this cell that there is sensitivity to various parts of the 

modulation spectrum in zebra finch song containing high power. Many cells in Field L 
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(inter-quartile range shown in grey dashed box along y-axis) show peak spectral 

sensitivity above .5 cyc./kHz, and many of these cells are similar to those with high 

spectral modulation sensitivity in our study in that they showed peak sensitivity to 

relatively high temporal modulations.  

Evidence for frequency modulation sensitivity in the population of BOS-CON linear 

neurons 

The existence of a small, yet substantial, minority of linear BOS-CON neurons 

showing peak sensitivity to relatively high spectral modulation frequencies opens the 

possibility that at least a subset of HVCIN are involved in the analysis of the complex 

spectral structure of song, such as harmonic composition. Furthermore, many neurons 

with low peak spectral modulation sensitivity were nevertheless sensitive to higher 

spectral modulation frequencies (see Figs. 2.5E, 2.4SE, and 2.6SE). Figure 2.10A shows 

the distribution of symmetry indices in the population of linear cells. This index is 

derived from comparison of the relative power in the left and right halves of the MTF for 

a given cell; a negative index indicates a cell with relatively more sensitivity to 

downwardly modulated frequency sweeps, while a positive index indicates a cell with 

relatively more sensitivity to upwardly modulated frequency sweeps. The population of 

BOS-CON linear neurons recorded in the present study showed a significant bias toward 

a negative symmetry index         
         (     

    p <.01). Along with the 

information derived from the MTFs, the structures of most of the STRFs of linear 

neurons suggest sensitivity to frequency modulation. Figure 2.10B shows a scatter plot of 

the absolute value of the difference in excitatory and inhibitory spike latencies (horizontal 
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axis) against the absolute value of the difference in excitatory and inhibitory best spectral 

frequency (vertical axis). Because the majority of values (30/40 cells) fall in the upper 

right quadrant delimited by the dashed lines, this indicates that most of our cells had peak 

excitation and inhibition offset in both time and frequency (see Figs. 2.8A & C and 

previous section for quantitative description of mean differences between excitation and 

inhibition in both the frequency and time domains). This type of STRF shape 

(represented well by the canonical STRF in Figure 2.10C), has previously been 

associated with sensitivity to oriented frequency sweeps in bats (Andoni et al., 2007).  

DISCUSSION 

Heterogeneity of auditory response properties in HVC of awake songbirds 

The present study is the first to record from a large number of single units in a 

song vocal motor nucleus during presentation of a comprehensive set of complex, natural 

stimuli in awake, freely behaving birds. The heterogeneity in response properties we 

observed in the population of HVCIN stands in sharp contrast to the vast majority of 

studies of HVC auditory responses in non-waking birds, which have shown vigorous, 

excitatory, BOS-selective responses that are highly homogenous in their responses 

properties across time and (at least in species with highly stereotyped songs) recording 

sites (Cardin and Schmidt, 2003; Rauske et al., 2003; Sutter and Margoliash, 1994). 

Furthermore, the wide range of response properties shown by HVCIN in the present study 

provides a possible functional correlate to the diversity previously described for this cell 
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type based on morphology, calcium-binding protein profile, and intrinsic firing properties 

(Mooney, 2000; Nixdorf et al., 1989; Wild et al., 2005).  

The results of some previous studies have opened the possibility that factors such 

as repertoire sharing (Lehongre et al., 2009) and territorial interactions requiring rapid 

song matching of neighboring birds (Margoliash and Konishi, 1985; Prather and Mooney, 

2008, 2009) may be positively correlated with responses extending beyond the bird‟s 

own song (BOS) in HVC during wakefulness. The results of the present study, however, 

support previous multiunit studies suggesting that broad and non BOS-selective 

responses also occur in the zebra finch (Cardin and Schmidt, 2003, 2004b), a species with 

a highly stereotyped song and no overt repertoire sharing or territorial behavior (Zann, 

1993). Nonetheless, we also recorded from many cells showing a high degree of BOS-

selectivity, and this corroborates the results of multiple previous studies in species with 

diverse social ecology and repertoire sizes (Margoliash and Konishi, 1985; Nealen and 

Schmidt, 2006; Rauske et al., 2003; Sakata and Brainard, 2008). Only a few studies 

previous to the present one have involved single unit recordings with techniques not 

highly disruptive to ongoing behavior (Prather and Mooney, 2008, 2009), and these 

studies focused on responses in basal ganglia-projecting neurons (HVCX) in the swamp 

sparrow, an uncommonly studied species. Thus, further studies will be needed to 

elucidate cell type, behavioral niche, and species specific correlates of BOS- selectivity in 

HVC during wakefulness. 

In addition to the two-thirds of HVCIN showing excitatory responses to song 

stimuli, a third of cells showed either only suppressive responses or were completely 
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unresponsive. The finding of many suppressive HVCIN, in both BOS-selective and non 

BOS-selective varieties, corroborates hints of their existence from a highly limited 

population recorded in a previous study (Rauske et al. 2003). The song evoked 

suppression of HVCIN may promote auditory responses in HVCX neurons, a class of cell 

which shows precise, phasic responses to BOS and BOS-like stimuli during wakefulness 

(Prather and Mooney, 2008, 2009).  In anesthetized birds, a decrease in HVCIN spiking 

activity during song playback is associated with less hyperpolarization in HVCX neurons 

(Mooney, 2000). The existence of HVCIN showing no auditory responses during 

wakefulness may be related to previous findings showing a complete suppression of 

responsiveness in HVC following arousal (Cardin and Schmidt 2003, 2004a; Nick and 

Konishi, 2001; Schmidt and Konishi, 1998). Many non-responsive HVCIN, however, 

retained this property stably across many hours of wakefulness. Previous multiunit 

studies showing slow oscillation from non-responsive to vigorous responsiveness in HVC 

during wakefulness (Cardin and Schmidt 2003, 2004b) would certainly have missed 

individual persistently non-responsive cells among those that did become active during 

„up‟ states.  

Possible sources of auditory input to HVCIN during wakefulness 

The results of the present study imply that HVCIN, as a population, receive 

auditory inputs exhibiting a combination of linear and nonlinear response properties. 

HVC receives direct auditory input from two cerebral areas, NIf (Coleman and Mooney, 

2004; Cardin et al., 2005) and CM (Bauer et al., 2008), that receive input from the 

primary auditory forebrain (Vates et al., 1996) (see Fig. 2.1B). Data obtained from 
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multiunit recordings in awake birds suggests that neurons in NIf, whose projection 

neurons drive all three classes of HVC neuron (Hahnloser and Fee, 2007), lack BOS 

selectivity (Cardin and Schmidt, 2003). A limited amount of single unit data obtained in 

CM during wakefulness suggests a mix of broadly responsive cells, some with modest 

selectivity for the bird‟s own song (BOS) relative to other complex stimuli and others 

with no BOS- selectivity.  Thus, it appears that these structures are unlikely sources for 

the extremely BOS-selective excitatory responses shown by approximately one-third of 

auditory responsive HVCIN (BOS-ONLY cells). Nevertheless, the limited scope of these 

studies does not preclude that there may exist specific subpopulations of neurons in these 

areas that might provide BOS-selective input during wakefulness, especially considering 

that auditory activity in non-waking states is dominated by BOS-selective responses in 

both areas (Bauer et al., 2008; Cardin and Schmidt, 2004b; Janata and Margoliash, 1999). 

Alternatively, or in addition, intrinsic network dynamics within HVC may shape less 

BOS-selective inputs, as has been suggested by simultaneous recordings in NIf and HVC 

projection neurons during anesthesia (Coleman and Mooney, 2004).  

The basic response properties of CM and NIf neurons do not account for the 

extreme BOS-selectivity seen in many HVCIN during wakefulness. Nevertheless, these 

properties are consistent with these areas providing most or all input to the highly linear, 

non-BOS selective neurons as well as to the moderately linear “hybrid” neurons that 

show robust responses to CON stimuli and exhibit a degree of BOS selectivity. 

Somewhat paradoxically, spike latencies derived from STRF analysis indicate that many 

of these BOS-CON linear neurons have input latencies similar to those obtained in 
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primary and secondary auditory forebrain structures (Sen et al., 2001). Though these 

auditory forebrain values were obtained in anesthetized birds and anesthesia is known to 

significantly alter auditory spike latencies and other receptive field properties (Populin et 

al., 2005; Wang et al., 2005), the shortest excitatory latencies observed in the current 

study (8 ms) are only a few milliseconds longer than the mean of those recorded in 

nucleus MLd of the auditory midbrain (Woolley et al., 2006). While no evidence exists 

for direct auditory connectivity between MLd and HVC, HVC does receive a robust input 

from nucleus uvaeformis (Uva), a thalamic nucleus that receives input directly from the 

ventral lateral lemniscus (LLV) in the auditory hindbrain (Coleman et al., 2007). Neurons 

in Uva show both BOS selective and non-BOS selective auditory responses during 

anesthesia, and may therefore be a source of short latency auditory inputs to HVC. 

Unfortunately, nothing is known about awake auditory properties in this structure. 

Another possible contributor of short latency auditory input to HVC is the primary 

auditory cortical analogue Field L, which has recently been shown to have direct 

functional connectivity with HVC under anesthesia (Shaevitz and Theunissen, 2007). 

HVC interneurons exhibit a range of linear and nonlinear response properties and 

may subserve perceptual discrimination of song 

To evaluate the possible link between auditory response properties in HVC and 

the song-related perceptual processes in which this structure is involved (Gentner et al., 

2000) it is crucial to understand the nature of the song features that best drive neurons in 

HVC. One class of HVCIN we recorded from (BOS-ONLY cells) demonstrated the 

remarkable property of showing excitatory response only to BOS and not a single 



70 
 

stimulus from the large ensemble of CON stimuli. The low overall linearity of these 

responses supports previous work in anesthetized birds showing that these responses are 

exclusively driven by nonlinear inputs (Theunissen and Doupe, 1998). The second class 

of neurons (BOS-CON cells) were responsive to both BOS and CON stimuli. Within this 

group of neurons, a substantial number of cells (approximately 10% of all auditory 

responsive HVCIN) showed excitatory responses that had mean linearity values as high as 

those observed in Field L (Gill et al., 2006) and MLd (Gill et al., 2006; Woolley et al., 

2006), an area where neurons respond with high precision to the temporal features of 

sound (Woolley and Casseday, 2004, 2005). These results imply that response linearity 

can propagate many synapses from the auditory periphery to the highest levels of the 

auditory system. The high degree of temporal precision exhibited by many highly linear 

HVCIN (see Fig. 2.5) is consistent with earlier work showing that relative time-varying 

phase across frequency bands of complex stimuli is preserved in HVC at the millisecond 

timescale (Theunissen and Doupe, 1998). Interestingly, many cells in areas closer to the 

auditory periphery exhibit response linearity as low as that seen in BOS-ONLY 

interneurons (Sen et al., 2001; Woolley et al., 2006). Thus, it is likely that linearity is 

established early in some auditory processing streams and is preserved to the highest 

levels of the system, while in other processing streams linearity is either rapidly lost or 

simply never established.  

We described one prevalent group of BOS-CON cells as hybrid because they had 

vigorous excitatory responses to CON stimuli but showed responses to BOS that were 

both substantially more vigorous than their CON responses and poorly predicted by 
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STRF.  These neurons tended to have linearity scores in response to CON stimuli similar 

to the mean linearity value observed in CM of anesthetized birds (Gill et al., 2006) but 

nevertheless lower than the highly linear BOS-CON neurons. We propose that hybrid 

neurons receive a combination of linear (making them respond reliably to time-frequency 

features common to many or all song stimuli) and non-linear (biasing them toward 

responding more strongly to BOS) inputs. Figure 2.11 depicts plausible ways in which 

these neurons may acquire their response properties and serves to summarize how the 

different response types may emerge in HVCIN.  

Hybrid neurons, possessive of strong yet well differentiated response properties to 

both CON and BOS stimuli, may be particularly well suited to participate in perceptual 

discrimination between these song types given the evidence that lesions to song nuclei 

(Scharff et al., 1998) receiving auditory input from HVC (Doupe and Konishi, 1991) 

significantly affect this specific type of discrimination. HVC-lesioned birds have not been 

explicitly tested for deficits in BOS vs. CON discriminations, though they show deficits 

in contingency reversals during perceptual discrimination tasks involving CON stimuli 

with previously defined operational salience (Gentner et al., 2000). Nonetheless, auditory 

responses during wakefulness in basal ganglia -projecting HVC neurons (Prather et al., 

2008, 2009) show a remarkable temporal concordance with motor activity in the same 

neurons. Thus, BOS responses may function as „self‟ in a motor-based comparison with 

„other‟ (CON responses), in a similar manner to what has been proposed for mirror 

neurons in primate and human premotor cortex (Rizzolatti et al., 2001). In this regard, it 

will be interesting to know how well aligned auditory and motor activity are in BOS-
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ONLY HVCIN, though such comparison may be complicated by the relative variability of 

song premotor activity shown by this class of neuron (Hahnloser et al., 2002; 

Kozhevnikov and Fee, 2007).  

A population of HVC interneurons specializes in temporal coding on timescales 

common in song  

Few studies in vertebrates have focused on the spectrotemporal properties of 

single sensorimotor neurons in awake behaving animals (David et al., 2009; Elhilali et 

al., 2007) and ours is the first to do so in the songbird (but see Graña et al., 2009). In non-

awake birds, many neurons in MLd (Woolley et al., 2006) and Field L (Nagel and Doupe, 

2008; Woolley et al., 2009) are tuned to temporal modulation frequencies between 50-

100 Hz and therefore fall above the range that is typically observed in zebra finch song. 

Most linear HVCIN, in contrast, showed peak sensitivity to temporal modulation 

frequencies (range; 8-57 Hz) falling within the range common in zebra finch song, 

suggesting that these neurons might be specialized toward the analysis of temporal 

features inherent to species-specific vocal output. These might include the onsets (high 

end of the range; see Fig. 2.5) and offsets (see Fig. 2.6S) of syllables, as well as whole 

syllables and gaps (low end of the range; see Fig. 2.6).  

Relatively few linear BOS-CON cells showed peak sensitivity to high spectral 

modulation. In this regard, our population is more similar to that previously documented 

(in anesthetised birds) in MLd as compared to Field L (Woolley et al., 2009) and suggests 

a relative insensitivity to frequency characteristics such as spectral pitch and harmonic 
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structure commonly seen in species song elements. Our finding is consistent with the 

previous suggestion that HVC neurons, at least in anesthetized birds, are more sensitive 

to the temporal features of songs than to their spectral features (Theunissen and Doupe, 

1998). Nonetheless, one-quarter (10/40) of the population of linear BOS-CON HVCIN 

showed peak spectral modulation sensitivity above .5 cyc./kHz, which corresponds to a 

spectral frequency (500 Hz), close to the low end typically found in zebra finch call and 

song elements (Vicario, 2004; Zann, 1993). Interestingly, it was recently found that peak 

spectral modulation sensitivities of a population of songbird auditory forebrain neurons 

during anesthesia were consistently higher than their STRF-derived best spectral 

frequencies (Woolley et al., 2009). Because the majority of power in zebra finch song lies 

above 1.5 kHz (albeit at lower temporal modulation frequencies), it is possible that cells 

tuned to especially high spectral modulation frequencies, and/or with STRFs showing 

harmonic structure (see Fig. 2.7C) may be beneficial in extracting salient spectral content 

from complex stimuli. In this regard, six of our cells showed peak spectral modulation 

sensitivity of .8 or higher (spectral frequency of 750 Hz and above), and may therefore be 

involved in extraction of spectral information from power-laden song components that 

are nonetheless well above typical fundamental frequencies. Other pieces of evidence 

suggesting some degree of spectral sensitivity in our population include a significant 

population preference for downward, as opposed to upward, frequency modulations and a 

tendency for peak inhibitory and excitatory STRF components to be offset in both time 

and frequency. Interestingly, previous work indicated neither spectrotemporally oriented 

STRFs nor modulation sensitivity at the population level in neurons of the ascending 

auditory system in non-anesthetised birds (Nagel and Doupe, 2008).  
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  The ability to record from a large number of single units while presenting a wide 

range of ethologically relevant auditory stimuli has allowed a characterization of the 

heterogeneity of auditory response properties in HVC during wakefulness. Our findings 

reveal that HVCIN exhibit auditory tuning properties that include feature-based linearity 

and robust selectivity for BOS. A significant future challenge will be to understand how 

these linear and nonlinear, BOS-selective response properties are integrated to subserve 

perceptual discrimination. Recent evidence in secondary auditory forebrain suggest that 

these areas can encode the recent exposure history (Gill et al., 2008; Terlaph et al., 2008), 

ethological relevance (George et al., 2008) and behavioral salience (Gentner and 

Margoliash, 2003) of complex acoustic stimuli. If HVC neurons are sensitive to these or 

related contextual stimulus features, it will provide strong evidence that the auditory 

forebrain and the song system constitute a unified network that functions in high-order, 

behaviorally relevant perception.  
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Figure Legends 

Figure 2.1.  Neural recordings from putative single HVC interneurons (HVCIN).  

(A), Representative raw trace with a well isolated single unit (top panel) during the 

presentation of conspecific (CON) song (bottom panel). Song is represented as a spectral 

derivative, with time on the x-axis and frequency on the y-axis. (B) A schematic of 

verified and potential auditory afferents to HVC. Caudal mesopallium (CM) and the 

nucleus interface of the nidopallium (NIf) are the only two structures (red outlines and 

arrows) known to provide direct auditory input to HVC. Other potential auditory 

afferents to HVC (dashed red arrows) include the Field L complex and nucleus 

uvaeformis of the thalamus (Uva). LLV, ventral lateral lemniscus;  MLd, 

mesencephalicus lateralis dorsalis; Ov, nucleus ovoidalis of the thalamus; NCM, 

nidopallium caudal medial. HVC projects in the vocal-motor stream in two distinct 

pathways via the dorsal and ventral aspects of the robust nucleus of the arcopallium (dRA 

and vRA, respectively). nXIIts, tracheosyringial portion of the hypoglossal nucleus; VRN; 

ventral respiratory nuclei. (C) Spike width characteristics were typical of HVC 

interneurons. All recorded neurons in the present study (n = 215; left most distribution) 

had spike widths at 25% of maximal value that were < .3ms. This width was narrower 

than those of any antidromically verified projection neurons (HVCRA and HVCX) 

recorded in a previous study by Rauske et al. (shown in the shaded grey area. (D) 

Modulation Power Spectrum (MPS) of 12 CON zebra finch songs used in the experiment. 

Not all songs used in generating this MPS were presented to any given neuron. The inner 

and outer black contour lines denote 50% and 80%, respectively, of the total modulation 
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power in the CON song ensemble. Green indicates areas of low power density on the 

MPS, while red indicates areas of high power density. 

Figure 2.2. HVC interneurons exhibited three general classes of responses to song 

stimuli.  

The top two panels represent the raster plot (top) and PSTH (middle) for each of three 

example neurons to illustrate the general types of responses obtained from HVCIN during 

the presentation of a song stimulus. In all three examples, the stimulus was the BOS. The 

left most example (“suppressed”) represents neurons showing suppressive responses to 

song stimuli. This response type was observed in 30/215 cells (14%). These neurons 

showed suppressive responses to one or more stimuli and failed to show excitatory 

responses to any CON or BOS stimuli. The center example (“Non-responsive”) 

represents neurons showing a lack of response to BOS or any other song stimuli. This 

response type was observed in 39/215 cells (18.1%). These cells showed no significant 

suppressive or excitatory responses to any CON or BOS stimuli. The example to the right 

(“Excitatory”) represents neurons showing excitatory responses to at least one song 

stimulus and made up the majority of neurons recorded in this study (146/215; 67.9%). 

The bottom row shows the distribution of RSINDEX values following presentation of BOS 

for all 215 neurons recorded in this study. The arrows illustrate the RSINDEX values for the 

three example cells. These values were respectively, -0.51, 0.07 and 0.42 for the 

suppressed, non-responding and excitatory neurons.  The suppressive cell in the top left 

panel and the excitatory cell in top right panel were recorded simultaneously from the 

same electrode.  
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Figure 2.3. Response characteristics of HVC interneurons showing excitatory 

responses to one or more song stimuli. 

(A) BOS-CON cells responded to multiple CON stimuli. The distribution of all recorded 

BOS-CON neurons shows the tendency for these cells to exhibit excitatory responses to 

multiple CON stimuli. This feature strongly distinguished them from BOS-ONLY cells, 

which showed excitatory responses only to BOS. Arrow represents the mean percentage 

of CON stimuli capable of eliciting an excitatory response. (B) Response strength in 

HVC interneurons. BOS-ONLY (black bars) and BOS-CON (white bars) cells both 

showed excitatory responses to BOS stimuli but response strength tended to be more 

robust in BOS-CON cells. Arrows in A and B denote mean response strength values. (C) 

Comparison of response strength characteristics in BOS-ONLY and BOS-CON cells. 

BOS-ONLY cells (n = 64, left of dashed line) had a positive mean RSINDEX in response to 

BOS and a suppressive mean RSINDEX in response to the CON stimulus eliciting the most 

positive response (best- CON). BOS-CON cells (n =82; right of dashed line) had a 

strongly positive mean RSINDEX in response to BOS but, unlike BOS-ONLY cells, also 

showed an excitatory mean RSINDEX to best- CON. Mean BOS RSINDEX was nevertheless 

significantly greater for BOS than for best CON. (*** = p<.001). 

Figure 2.4. Auditory Response Profile of a typical BOS-ONLY neuron.  

Like the majority of BOS-ONLY neurons, this exemplar shows a modest, phasic 

excitatory response to BOS (RSINDEX = .12; top half). The BOS stimulus used in this 

experiment was made up of three individual motifs (top panel, M1-M3). The BOS 
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response of this neuron was stronger for M2 and M3 than M1, a feature sometimes 

observed in BOS-ONLY neurons. Response to CON stimuli (mean RSINDEX =  

     
      ; bottom half) tended to be slightly suppressed relative to baseline. Moderate 

suppression to CON stimuli was common in BOS-ONLY neurons.  

Figure 2.5. Response profile of a highly linear BOS-CON neuron.  

(A) Neural response to CON. This neuron had phasic, precise response peaks reliably 

present across trials.  The top panel depicts the song spectral derivatives (Sound Analysis 

Pro, O. Tchernichovski, D. Swigger), the middle panel the raster plot and the bottom 

panel the PSTH (red dashed line denotes baseline firing rate). (B and C) This neuron 

showed high linearity in response to CON stimuli (mean CC ratio: .57). The neural 

response to BOS (black PSTH in top panel of B) was well predicted by CON-derived 

STRF (red PSTH in top panel of B, open symbol in C). Neural responses to CON (black 

PSTHs in bottom two panels of B) were also well predicted (red PSTHs in bottom two 

panels of B, closed symbols in C). The insets in B highlight how well large response 

peaks could be modeled by CON-derived STRF for both BOS (top inset) and CON 

(middle and bottom insets) stimuli. (D) Best STRF for the neuron. The rapid succession 

from peak excitation (red) to peak inhibition (blue) and broadband frequency sensitivity 

in this neuron are characteristic of a cell with strong sensitivity to the onsets of sounds. 

(E) Modulation Transfer Function (MTF). This example neuron showed peak sensitivity 

to relatively high temporal (45 Hz) and low spectral (.12 cycles/kHz) modulations, 

reinforcing the notion that this cell was sensitive to rapid changes in song amplitude. Red 

regions of the MTF have relatively high power density, bluer regions have relatively little 
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power density. The inner and outer black contour lines represent the 50 and 80% power 

density inherent to the song MPS. The peak modulation sensitivities of this neuron, like 

many linear cells in our population, fell within the range of modulations common to 

zebra finch song.  

Figure 2.6. Response profile of a moderately linear “hybrid” BOS-CON neuron.  

(A) Response to a CON stimulus. This neuron, like the neuron depicted in Figure 5, 

showed consistent phasic response peaks, but with more tonic background activity in 

both pre-stimulus and stimulus periods. (B & C) This neuron type showed moderate 

linearity (mean CC ratio: .41) to CON stimuli. The neural response to BOS (black PSTH 

in top panel of B) was poorly predicted by CON-derived STRF (red PSTH in top panel of 

B, open symbol in C). In contrast, neural responses to CON (black PSTHs in bottom two 

panels of B) were relatively well predicted (red PSTHs in bottom two panels of B, closed 

symbols in C). The insets in B highlight how many of the peaks could be well modeled 

by CON-derived STRF (bottom inset panel). In contrast to highly linear cells, many of 

the larger response peaks during the presentation of CON stimuli (dashed arrows, top 

inset panel) were as poorly predicted as the responses recorded during the presentation of 

BOS. (D)  Best STRF for the neuron. The long integration time dominated by inhibition 

is indicative of a neuron optimally sensitive to the presence of gaps between song 

elements. (E) Modulation Transfer Function. This example neuron showed peak 

sensitivity to both low temporal (14 Hz) and spectral modulations (.02 cycles/kHz). 

These peak sensitivities overlap with the high modulation power density area of the 
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ensemble MPS, indicating strong sensitivity to common features in zebra finch song. 

Figure conventions are identical to those in Figure 2.5.  

Figure 2.7. BOS-CON neurons exhibit a wide range of STRF-derived linearity 

values.  

(A)  Linearity distribution for BOS-CON cells. Linearity scores (mean CC ratio) ranged 

from 0.03 to 0.64 with a mean linearity score for the population (n = 146) of       
    . 

(B) Linearity correlates with the ability to predict responses to BOS. In cells with high 

linearity (mean CC ratio >.3; n = 49 cells) there was a strong positive correlation between 

prediction of BOS response and linearity values obtained from the CON stimulus set (r = 

.57, p<.001). Neurons showing high linearity in response to CON stimuli (mean CC ratio 

>.45, y-axis) tended to have relatively well predicted BOS responses (BOS CC-Z score, 

x-axis) whereas cells with moderate linearity (mean CC ratio between 0.3 and 0.45) 

tended to have poorly predicted BOS responses. The grey shaded area delimits the range 

of Z- scores between -1 and +1 and highlights neurons whose responses can be well 

predicted to both BOS and CON stimuli. Points to the left of this area (e.g BOS CC-Z 

score more than one Z below mean raw CC) represent cells in the poorly predicted BOS 

response group. The two small circles in the distribution identify the two neurons we 

highlight in Figures 2.5 and 2.6. (C) Response strength does not correlate with response 

linearity. RSINDEX values to CON stimuli did not differ between the poorly predicted and 

well predicted BOS response groups, indicating that the lower mean linearity seen in the 

poorly predicted BOS response group was not the result of weaker responses to CON 

stimuli. In contrast, RSINDEX values to BOS were stronger in the poorly predicted 



81 
 

neurons, suggesting that this group actually received greater overall excitatory drive 

relative to the well- predicted BOS response group. *** = p<.001  

Figure 2.8. STRF-derived spectral and temporal features of BOS-CON linear 

neurons.  

(A) Distribution of best spectral frequencies. Neurons subject to feature extraction (n = 

40 cells) showed a broad distribution of best spectral frequencies. Population mean best 

excitatory frequency (red bars) was significantly lower than best inhibitory frequency 

(blue bars). Blue and red colored arrows denote, respectively, the mean best spectral 

frequency for inhibition and excitation. (B) Spectral Bandwidth. The majority of cells 

showed spectrally broadband excitation (red bars) and inhibition (blue bars), with a 

significant difference in mean spectral bandwidth between inhibition and excitation. Blue 

and red colored arrows represent, respectively, the mean excitatory and inhibitory 

spectral bandwidth. Field L (grey box) shows a narrower range that is skewed toward 

extremely sharp spectral tuning, which is rarely observed in HVCIN . (C) Temporal 

Bandwidth. Most cells in the population showed temporal separation of peak excitation 

and inhibition. The dashed line denotes simultaneous peak inhibition and excitation.  (D) 

Distribution of temporal bandwidths. Temporal bandwidths were distributed over a broad 

range (10 to 52 ms) but were never observed below 10 msec. Field L (grey box) shows a 

range that is skewed to the left and narrower than for HVCIN. This suggests that Field L 

neurons show greater relative precision between stimulus features and neural responses. 

(E & F) STRF of a representative cell indicating spectral (E) and temporal (F) feature 

measurements. Temporal bandwidth, as measured in D, represents time from the onset of 



82 
 

the first STRF component (here inhibition) to the offset of the second component (here 

excitation). The grey dashed boxes in B & D show the estimated inter-quartile range of 

spectral (B) and temporal (D) bandwidth seen in Field L of anesthetized birds (Woolley 

et al., 2009).  

Figure 2.9.  Spectrotemporal properties of BOS-CON  linear neurons.  

(A)  Linear neurons lacked temporal bandwidths in the 5 – 10 msec range and showed 

temporal bandwidths that were consistently broader than those measured in Field L 

(shaded box).  Spectral bandwidth for excitatory frequencies (Y-axis) was also much 

broader than in Field L (note the log scale) with the large majority of neurons having 

frequency bandwidth greater that 1 KHz. (B) Best spectral and temporal modulation 

frequencies were obtained via 2-D Fourier analysis of STRFs, a process that generates a 

modulation transfer function (MTF) for a neuron (see Figs. 2.5E and 2.6E). 

Approximately half of all BOS-CON linear cells showed joint peak spectral and temporal 

modulation sensitivity that fell within the 80% power density of the CON song ensemble 

(outer red contour line). The Field L population (grey box), in contrast, showed a much 

broader range of peak sensitivities. The grey dashed boxes in A & B show the estimated 

inter-quartile range of spectral and temporal bandwidths (A) and best spectral and 

temporal modulation frequencies (B) seen in Field L of anesthetized birds (Woolley et 

al., 2009).  

Figure 2.10.  Evidence for modulation sensitivity in BOS-CON linear neurons.  
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(A) Linear neurons are preferentially biased toward oriented frequency sweeps.  The 

symmetry index compares total power in the left and right halves of the modulation 

transfer function. HVCIN showed a moderate but significant bias toward downward 

frequency sweeps (mean symmetry index:        
       (p <.01). (B) The majority of 

linear cells showed peak inhibition and excitation separated in both time and frequency. 

Three quarters of neurons (30/40 BOS-CON linear cells) fell in the upper right quadrant 

delimited by the dashed lines, which indicates that they showed a difference of at least 1 

kHz in best excitatory and inhibitory spectral frequency and 5ms in excitatory and 

inhibitory latency. (C) The offset between excitation and inhibition may increase 

sensitivity in the direction of offset between the two STRF components (white arrow), 

much as inhibitory regions in classical receptive fields increase sharpness of tuning in 

their preferred dimension.  

Figure 2.11. Hypothetical model of how auditory inputs might shape response 

characteristics of HVCIN during wakefulness. 

Neurons showing excitatory responses to auditory stimuli fall in to two broad categories: 

BOS-ONLY neurons respond selectively to BOS and often show response suppression to 

CON. BOS-CON neurons show excitatory responses to BOS as well as CON. Within this 

category, some neurons have highly linear STRFs that predict responses well to both 

BOS and CON stimuli (“highly linear neurons”). Other neurons have STRFs that predict 

responses to CON stimuli well but predict BOS responses poorly. Because these neurons 

respond more vigorously to BOS than they do to CON, these “hybrid” neurons are 

hypothesized to receive a linear input that drives the CON response and a nonlinear input 
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that acts to boost the response to BOS. This scheme predicts that CON responses in 

hybrid neurons should be weaker than those in highly linear neurons. This trend is 

present in the data, but does not achieve statistical significance (p = .09). Likely input 

sources are shown to the right. It should be noted that further response shaping is likely to 

take place within the HVC network itself, where HVCIN interact closely and reciprocally 

with other interneurons and both types of projection neurons (Prather and Mooney, 

2005). Plus symbols (+) denote gain estimates based on BOS and CON response 

strengths for each of the three classes of excitatory inputs. Red circles represent inputs 

that are functionally inhibitory. Relative size of symbols is scaled to input strength.  

Supplementary Figure Legends 

Figure 2.1S. Action potential characteristics of HVCIN.  

An averaged waveform of a putative HVCIN shows a characteristic narrow positive peak 

(top panel). The duration indicated by the horizontal arrow indicates the spike width at 

25% of positive going peak amplitude. Single units were verified by relative suppression 

of inter-spike intervals (ISI) below 1 ms (indicated by arrowhead) (bottom panel).  

Figure 2.2S. Paired Recording Example I 

(A) Responses to BOS and a representative CON stimulus for a BOS-ONLY (Cell 1; top 

panels with PSTH in blue) and BOS-CON cell (Cell 2; bottom panels with PSTH in blue) 

simultaneously recorded on the same electrode. Black dashed lines in PSTH denote 

baseline firing rate. (B) Averaged raw waveforms (left panel) and PCA space (right 

panel) for this simultaneously recorded pair. 
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Figure 2.3S. Paired Recording Example II 

(A) Responses to BOS and a representative CON stimulus for a BOS-CON cell showing 

some degree of BOS selectivity(Cell 1; top panels with PSTH in blue) and a BOS-CON 

cell (Cell 2; bottom panels with PSTH in blue) showing no preference for BOS relative to 

CON stimuli. Black dashed lines in PSTH denote baseline firing rate. (B) Averaged raw 

waveforms (left panel) and PCA space (right panel) for this simultaneously recorded pair. 

Figure 2.4S Response profile of a highly linear BOS-CON neuron.  

(A) Response to a CON stimulus. This neuron had phasic response peaks reliably present 

across trials, though it also showed a substantially higher tonic firing rate than the highly 

linear example shown in Figure 2.5. (B and C)  As was typical of neurons showing high 

linearity in response to CON stimuli (mean CC ratio: .59), actual BOS response (black 

PSTH in top panel of B) was well predicted by CON-derived STRF (red PSTH in top 

panel of B, open symbol in C). Actual CON responses (black PSTHs in bottom two 

panels of B) were also well predicted (red PSTHs in bottom two panels of B, closed 

symbols in C). The inset in B highlights how well modeled large response peaks were in 

response to both BOS and CON stimuli for this cell. (D) Best STRF for the neuron. The 

rapid succession from peak excitation (red) to peak inhibition (blue) and broadband 

frequency sensitivity are characteristic of a cell with strong sensitivity to the onsets of 

sounds. (E) the Modulation Transfer Function (MTF) of the neuron. The neuron showed 

peak sensitivity to relatively high temporal (48 Hz) and low spectral (.13 cycles/kHz) 

modulations, reinforcing the notion that the cell was sensitive to rapid changes in song 
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amplitude. The peak modulation sensitivities of this neuron, like many linear cells in our 

population, fell within the range of modulations common found in zebra finch song. 

Figure conventions are identical to those in Figures 2.5 and 2.6.  

Figure 2.5S Response profile of a moderately linear BOS-CON neuron.  

(A) Response to a CON stimulus. This neuron showed consistent response peaks across 

trials and a relatively low baseline firing rate. (B and C)  As was typical of neurons 

showing moderate linearity (mean CC ratio: .37), actual BOS response (black PSTH in 

top panel of B) was poorly predicted by CON-derived STRF (red PSTH in top panel of 

B, open symbol in C). In contrast, actual CON responses (black PSTHs in bottom two 

panels of B) were relatively well predicted (red PSTHs in bottom two panels of B, closed 

symbols in C). The insets in B highlight another typical property of moderately linear 

cells; many fluctuations in CON response were well modeled (bottom inset panel) but 

some larger peaks in response to CON were as poorly predicted as large peaks in the 

BOS response (dashed arrows in middle inset panel). (D) best STRF for the neuron. The 

rapid succession from peak excitation (red) to peak inhibition (blue) and broadband 

frequency sensitivity are characteristic of a cell with strong sensitivity to the onsets of 

sounds. (E) the Modulation Transfer Function of the neuron. This neuron had a high best 

spectral modulation frequency (.64 cycles/kHz) relative to most neurons in our 

population (see Fig. 2.9B). Best temporal modulation frequency (37 Hz) was also 

relatively high.  These peak sensitivities are indicative of a neuron sensitive to both 

transient changes in the amplitude envelope (in this case sound onsets) and to some 

degree of spectral structure as well. Though the peak spectral modulation sensitivity of 
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this neuron was high relative to that shown by most cells in our population, both it and 

peak temporal modulation sensitivity fell within the range of modulations commonly 

found in zebra finch song. Figure conventions are identical to those in Figures 2.5, 2.6, 

and Figure 2.4S. 

Figure 2.6S Response profile of a highly linear BOS-CON neuron with relatively low 

BOS response linearity.  

(A) Response to a CON stimulus. This neuron had phasic response peaks reliably present 

across trials. (B and C)  In a slightly atypical manner for neurons showing high linearity 

in response to CON stimuli (mean CC ratio: .61), actual BOS response (black PSTH in 

top panel of B) was relatively poorly predicted by CON-derived STRF (red PSTH in top 

panel of B, open symbol in C). Actual CON responses (black PSTHs in bottom two 

panels of B) were well predicted (red PSTHs in bottom two panels of B, closed symbols 

in C). The top inset in B highlights how some response peaks to BOS were largely under-

predicted while most response peaks to CON stimuli were very well predicted (middle 

and bottom insets). (D) Best STRF for the neuron. The rapid succession from peak 

inhibition (blue) to peak excitation (red) and broadband frequency sensitivity are 

characteristic of a cell with strong sensitivity to the offsets of sounds. (E) the Modulation 

Transfer Function (MTF) of the neuron. The neuron showed peak sensitivity to relatively 

high temporal (37 Hz) and low spectral (.11 cycles/kHz) modulations, reinforcing the 

notion that the cell was sensitive to rapid changes in song amplitude. The peak 

modulation sensitivities of this neuron, like many linear cells in our population, fell 
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within the range of modulations common found in zebra finch song. Figure conventions 

are identical to those in Figures 2.5, 2.6, 2.4S, and 2.5S.  

Figure 2.7S Response profile of a moderately linear BOS-CON neuron with high 

best spectral modulation frequency sensitivity.  

(A) Response to a CON stimulus. This neuron had an extremely low spontaneous firing 

rate (dashed red line in PSTH) and a response profile characterized by relatively precise 

peaks and some epochs of near complete suppression. (B)  As was typical of neurons 

showing moderate linearity (mean CC ratio: .44), many large response peaks to both BOS 

(black PSTH in top panel of B) and CON (black PSTHs in middle and bottom panels of 

B) were poorly predicted. (C) quality of individual CON predictions varied widely (open 

symbols) and prediction of BOS response (closed symbol) was not as relatively poor as 

was typical of the moderately linear BOS-CON cell group. (D) Best STRF for the neuron. 

Relative to the population of linear BOS-CON neurons, this cell showed a high degree of 

„spectral‟ orientation; a restricted frequency domain and an extended temporal domain.  

(E) the Modulation Transfer Function (MTF) of the neuron. As anticipated from the 

STRF shape, this cell showed peak sensitivity to low temporal (8.45 Hz) and high 

spectral (1.1 cycles/kHz) modulations. This combination of peak sensitivities falls within 

the 80% power bound of the ensemble modulation power spectrum (MPS), and therefore 

this neuron may be sensitive to spectrotemporal content commonly found in zebra finch 

song.  
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Chapter 3. Conclusions and Future Directions 

 

Section 1. Heterogeneity of Auditory Responses in Putative HVCIN During 

Wakefulness 

In Chapter 2, I demonstrate that a large population (n = 215 cells) of putative 

HVC interneurons (HVCIN) show a wide array of response properties to bird‟s own song 

(BOS) and conspecific (CON) stimuli. Two-thirds of cells showed excitatory responses to 

one or more BOS and CON stimuli, and nearly half of these cells showed excitatory 

responses to both types of stimuli. Of the neurons showing excitatory responses to both 

BOS and CON stimuli, nearly half showed a degree of response linearity, as measured by 

spectrotemporal receptive field analysis (STRF), comparable to that deemed to be 

substantial in previous studies in the ascending auditory system (Gill et al., 2008; 

Woolley et al., 2006). Fourier analysis of STRFs revealed a range of temporal and 

spectral sensitivities that overlaps substantially with the range of such modulations 

occurring with high power in the species song (Hsu et al., 2004a). Thus, while the 

population as a whole is less sensitive to extremely rapid spectral and temporal 

modulations than the population of cells in the avian auditory cortical analogue Field L 

(Nagel and Doupe, 2008; Woolley et al., 2009), it may still be well poised to participate 

in perceptual discriminations tasks in which HVC has previously been demonstrated to be 

a necessary player (Brenowitz, 1991; Gentner et al., 2000). 

The most pressing issue in regard to solidifying this work is to reanalyze all spike 

data using a sophisticated, automated, Bayesian clustering algorithm (C. Glaze, custom in 
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MATLAB 7.0). As described in Chapter 2 (Materials and Methods), all spike 

clustering was carried out in the Spike 2 (version 6, CED, Cambridge, UK) programming 

environment on a stimulus by stimulus basis. The main weakness of the previous 

approach is that it is theoretically possible that different principal components were used 

to generate cluster maps for different stimuli. This new method should yield more 

accurate results, despite the fact that with the previous method the same template width 

and amplitude thresholding parameters were used for each stimulus, maps were 

qualitatively similar across all stimuli for a given cell, and averaged waveforms were 

verified to be identical for a given putative unit across all stimuli. An additional benefit to 

the new methodology is that data are analyzed in a completely time-sequential manner. 

Previously, all trials for a given stimulus were concatenated before analysis; while the 

pseudo-random presentation paradigm ensured that not very much time elapsed between 

any two presentations of the same stimulus (see Chapter 2, Materials and Methods) the 

several minute gaps between trials may have, in some cases, caused temporal 

discontinuities between trials that could make it more difficult to track gradual shifts in 

spike shapes.  Finally, the new method has quantitative criteria (the exact details are still 

pending) for determining whether clusters are sufficiently separated to deem them single 

units, whereas in the previous methodology such determinations were made on a strictly 

qualitative basis. 

Assuming the results after reanalysis are similar to those obtained with the 

previous method, there are many possible lines of experimental inquiry to follow up the 

results. Many of these lines are considered in the Chapter 2 Discussion. To my mind, the 
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most intriguing line of further exploration would be to link HVC auditory responses to 

functional roles in perceptual discrimination tasks. Gentner et al., 2000 showed that 

starlings previously trained to distinguish between conspecific (CON) stimuli in a 

GO/NO GO operant task were impaired in contingency flips in the wake of HVC lesions. 

Cells and circuits involved in discriminations between stimuli with previously established 

operationally defined salience would need to carry signals sufficient to not just 

distinguish the features of these stimuli (as I may have recorded in the experiments 

described in Chapter 2), but also, critically, to link these features to a particular 

contingency.      

Previously, cells in the caudal mesopallium (CM), an area known to send auditory 

information to HVC (Bauer et al., 2008; Roy and Mooney, 2009), have been shown to 

respond (at least under anesthesia) to the salience of complex auditory objects. Neurons 

in this area have been shown to be sensitive both to the prior probability of recent 

presentations of CON stimuli (Gill et al., 2008), as well as to the previously defined 

operational salience of CON songs (Gentner and Margoliash, 2003). Results from a 

single study of auditory responsiveness in CM during wakefulness under salience neutral 

conditions similar to those under which I recorded in Chapter 2 (Bauer et al., 2008) 

suggest a mix of responses with no BOS selectivity and moderate BOS selectivity. Given 

this profile, it is likely that at least some BOS-CON cells in HVC receive auditory inputs 

from CM during wakefulness. Based on this logic, it would be interesting (but far from 

easy) to train birds on an operant task similar to that employed by Gentner and 

Margoliash (2003) with a set of song stimuli, some with and some without pre-defined 
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operational salience and then record from individual BOS-CON neurons in HVC during 

wakefulness. One question would be whether CON stimuli with operational salience 

showed response properties, including STRF properties, clearly different from those 

shown by CON stimuli without operational salience (or perhaps those with operational 

salience but on trials with no operational context).  

If  BOS-CON neurons in HVC were to show task-related modulation, a logical 

second order experiment would be to transiently inactivate CM in order to evaluate 

whether this had effects of feature based and/or task related response properties in HVC. 

Perhaps perturbation of the activity of single BOS-CON cells within HVC would have 

detectable effects on perceptual discrimination behavior as well, though effects may only 

be seen if the functional network for auditory object/operational salience representation is 

relatively non-distributed (Houweling and Brecht, 2008; Voigt et al., 2008). Gentner et 

al., 2000 did not evaluate whether HVC is necessary for discrimination behavior 

involving BOS stimuli. Our discovery of „hybrid‟ cells, with partially linear responses to 

CON stimuli and larger, non-linear responses to BOS stimuli, raises the possibility that at 

least some BOS-CON cells in HVC are sensitive to differences between BOS and CON 

stimuli. Given that anterior forebrain vocal motor structures receiving auditory input from 

HVC (Doupe and Konishi, 1991) have been show to be important for perceptual 

discriminations involving BOS and CON stimuli, it is likely that HVC is involved as 

well. 

Section 2. Future Directions  
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Part 1. Overview: Toward Understanding of BOS Selective Auditory Responses 

In the remainder of this chapter, I describe preliminary work in which I focus on 

the properties of BOS-selective neurons in HVC. Most of this work was carried out 

during sleep, where it has previously been shown in both HVC (Chi et al., 2003; 

Hahnloser et al., 2008; Rauske et al., 2003) and its immediate afferent in the vocal motor 

pathway, the robust nucleus of the arcopallium (RA) (Dave and Margoliash, 1998, 2000), 

that BOS responses are more vigorous than during wakefulness. As I discuss in Chapter 

1, Section 5, mounting evidence suggests that BOS auditory responses during sleep may 

provide deep insights in to motor production in the song system. Auditory responses of 

putative projection neurons in RA during sleep show high temporal alignment with both 

their own premotor activity and spontaneous activity during non-auditory sleep epochs 

(Dave and Margoliash, 2000). Likewise, „mirroring‟ responses recorded in response to 

BOS during wakefulness in basal ganglia-projecting HVC neurons (HVCX) show a high 

degree of temporal alignment with their own premotor activity (Prather et al., 

2008,2009). My own experiments focus on responses in HVCIN, which may lack as a 

population (but see examples like Figure 2.5) the temporal sparseness and precision to 

facilitate alignments between different activity modes such as have been performed in 

RA and HVCX neurons. Nonetheless, as I detail in the final section, their responses can 

still be probed from the perspective of what they may tell us about motor function in the 

song system. 

Part 2. Auditory Responses of Putative HVCIN Across the Wake-Sleep Boundary 
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Though it is often assumed that the transition from wakefulness to non-REM 

sleep is associated with a closing of the forebrain to sensory signals (Steriade et al., 1993; 

McCormick and Bal, 1997), few studies have looked at cross-state response dynamics in 

single cortical neurons. Studies in the visual (Evarts, 1963; Livingstone and Hubel, 

1981), somatosensory (Gȕcer, 1979) and auditory (Edeline et al., 2001) cortices have 

indeed demonstrated decreased neural responsiveness at the population level during non-

REM sleep. However, several studies in the auditory cortex (Edeline et al., 2001; Issa and 

Wang, 2008; Pena et al., 1999) have demonstrated that many individual cells either 

maintain or increase their responsiveness during non-REM sleep. It is not known whether 

cross-state response strength heterogeneity generalizes beyond mammalian primary 

sensory cortex.  

In songbirds, as in mammals, loop circuitry reciprocally connects thalamic and 

forebrain structures (Striedter and Vu, 1998; Vates et al., 1997) and the forebrain shows 

the electroencephalographic hallmarks of REM and non-REM sleep (Szymczak et al., 

1996; Low and Margoliash, 2008). The forebrain song nucleus HVC (proper name) 

receives input from a polymodal thalamic relay (nucleus uvaeformis, Uva) (Streidter and 

Vu, 1998; Wild, 1994). As with thalamic relay activity in mammals (Glenn and Steriade, 

1982; Swadlow et al., 2002), sleep bursting in Uva is associated with a transition from 

single spike to burst mode in HVC interneurons (HVCIN) (Hahnloser et al., 2008). The 

transition from wakefulness to sleep is associated with a large increase in auditory 

response strength to the bird‟s own song (BOS) in single neurons of the main afferent of 

HVC in the vocal motor pathway (the robust nucleus of the acropallium, RA) (Dave et 
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al., 1998; Dave and Margoliash, 2000).  In HVC itself, however, which appears to 

provide all auditory drive to RA (Doupe and Konishi, 1991), there have been very few 

recordings of auditory responses in single neurons across the wake-sleep boundary 

(Hahnloser et al., 2008; Rauske and Margoliash, 2003), and the few studies that have 

been carried out have looked at responses to only BOS and one or several other stimuli.  

I have recorded from a fairly large population (n = ~70) of HVCIN (see Chapter 2 

for criteria for identifying single HVCIN) across the wake-sleep boundary while 

presenting BOS and a large ensemble (10-12) CON stimuli. Preliminary results suggest 

that the transition from wakefulness to sleep is not accompanied by a uniform change in 

response patterns across all single units, which corroborates the findings of a previous 

cross-state study of a very small population (n =10 cells) of single putative HVCIN in 

which the ratio of response strengths to BOS in waking vs. sleeping birds ranged widely 

(Rauske et al., 2003). Cases where BOS and CON response strengths are modulated in 

different directions (see Figure 3.2 and Figure 3.5A) across the wake-sleep boundary 

challenge simple models in which changes in thalamic firing properties control the gain 

of HVC auditory response properties in a simple linear manner (Hahnloser et al., 2008).   

Despite the heterogeneity on a cell by cell basis, I have found that the general trend is for 

an increase in responsiveness to BOS stimuli across the wake-sleep boundary (see Figure 

3.5 A,B), which was also a significant trend in the Rauske et al. study despite the 

aforementioned cell to cell variability in modulation of response strength. Interestingly, 

Cardin and Schmidt (2003) found no significant difference in BOS response strength 

across the wake-sleep boundary at the massively multiunit level. This is yet another 
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difference between the findings of Rauske et al., 2003 and Cardin and Schmidt, 2003 

(discussed at length in Chapter 1, Section 2) and likely primarily reflects (as discussed 

in Chapter 1) a difference in the types of neurons recorded from with the two very 

different techniques. 

Figures 3.1-3.4 provide a qualitative description of the various response transition 

flavors I encountered in my recordings. If I were to proceed with this data set, one of the 

principle challenges would be to come up with a prudent way to delineate when response 

changes across states were significant. A particular complication in this regard is that 

only a single BOS stimulus was presented while a large set (10-12) of CON stimuli were 

presented. Thus, it would be more likely that small response strength changes in response 

to one or more CON stimuli would be picked up as significant as opposed to equal-sized 

changes in response to the single BOS stimulus. A second challenge would be to figure 

out a way to incorporate spectrotemporal receptive field analysis (STRF) to evaluate 

whether linear receptive field properties change across defined natural states. Such a 

study would be informative, since only a single study I am aware of (in the auditory 

cortex of marmosets; Issa and Wang, 2008) has looked at receptive field dynamics across 

the wake-sleep boundary in response to ethologically relevant stimuli. However, many of 

the neurons I managed to hold across the wake-sleep boundary showed relatively weak 

responses to CON stimuli during wakefulness and these responses were often further 

attenuated during sleep (see Figure 3.5). Thus, while I have preliminarily employed a 

well established method for comparing STRFs across states (SI Index; Escabi and 

Schreiner, 2002; Woolley et al., 2006) there are major questions surrounding the validity 
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of this approach when the responses being measured, at least during sleep, have very low 

response strengths associated with them.  

Part 3. BOS Responses During Sleep in the Wake of Peripheral Song Production 

Disruption 

 In Part 2 of the Future Directions chapter, I describe preliminary evidence 

corroborating earlier work (Rauske et al., 2003) suggesting that the responses of single 

units to the bird‟s own song (BOS) increase in their vigor across the transition from 

wakefulness to sleep. I also report that, for the most part, responses to non-BOS stimuli 

are attenuated during sleep relative to wakefulness in putative HVC interneurons 

(HVCIN). The functional significance of auditory responses highly selective for BOS 

remains one of the most enigmatic questions associated with the song system. During 

wakefulness, highly BOS selective responses occur in basal ganglia-projecting neurons 

(HVCX), and these responses demonstrate high temporal congruity with the premotor 

song activity shown by the same neurons during song production (Prather et al., 2008; 

Prather et al., 2009). While such activity suggests a deep linkage between auditory and 

motor function (indeed, the authors dub these to be „mirroring‟ responses), there have 

been no attempts to either provide a functional significance to them or to enact a 

manipulation to attempt to dissociate sensory and motor properties. 

 So how might one challenge the system to evaluate the specific relationship 

between sensory and motor representations? One approach is to manipulate motor output 

in the periphery such that central motor commands result in unexpected feedback. 
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Transection of the tracheosyringial nerve (ts transection) causes an immediate disruption 

of spectral, but not temporal, features of song production in the zebra finch (Williams et 

al., 1992; Williams and McKibben, 1992).  Bilateral ts transections, among other effects, 

remove all learned frequency components from song (and distance call) output. Unilateral 

ts transections, especially right side transections, greatly reduce the amount of frequency 

complexity in song output without causing the breathing distress induced by bilateral 

transections. In a subset of birds, ts transections induce changes to song syntax, which, as 

opposed to the immediate disruption of spectral content, manifest days to weeks after 

transection. These temporal disruptions, which can include stuttering of pre-existing or 

novel elements, and additions and deletions of elements, have been shown to be centrally 

mediated. These changes, but not spectral changes, do not occur if nerve injury is induced 

after disruption of LMAN (Williams and Mehta, 1999), which provides the output of a 

thalamocortical basal ganglia pathway critical for vocal learning (Aronov et al., 2008; 

Scharff and Nottebohm, 1991) on to the primary vocal motor axis.  

 Because ts transection causes immediate and permanent (I remove the distal 

stump to prevent regrowth) spectral changes in all birds, and later temporal changes in a 

subset of birds (the exact proportion varies widely from study to study and seems to be 

highly sensitive to song analysis methodology), it is a useful tool for evaluating the 

properties of BOS responses in sensorimotor neurons. I have recorded from >20 birds 

during sleep at various time points following ts transection. The study is not truly 

longitudinal, in that recording of a given bird has been restricted to a narrow time 

window (no longer than four days) due to technical concerns. The basic question I have 
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begun to ask is whether neurons continue to favor the version of BOS that pre-existed the 

transection, i.e. the version presumably intended by the central motor program, or do they 

begin to show preference for the spectrally disrupted version that comes back to the 

sensory and sensorimotor systems each time the bird sings in the wake of ts transection. 

A second-order question is whether relative preference for pre vs. post ts transection song 

is in any way related to the central commitment to change the motor program (syntax 

plasticity) shown by a proportion of the birds with some delay relative to the immediate 

spectral effects.  

 A range of outcomes are clearly possible; a „motor template‟ hypothesis might 

suggest that neurons remain highly tuned to the original song no matter the spectral 

and/or subsequent temporal consequences of ts transection. Such an outcome would 

strongly suggest that the sensory response is immutably imprinted during the initial 

learning of song. A „sensory‟ hypothesis might suggest that neurons rapidly come to 

prefer the spectrally degraded version of song induced immediately upon ts transection. 

This outcome would imply that these responses are truly sensory in nature, and that they 

align with the motor representation of song in adult birds because of the tight 

correspondence between intended and actual output. A „sensorimotor‟ hypothesis would 

suggest that relative preference may be contingent on whether the system has made the 

commitment to change the temporal pattern of song in the days to weeks following ts 

transection.  

 My preliminary results rule out the extreme „motor template‟ hypothesis and lean 

toward a hybrid of the „sensory‟ and „sensorimotor‟ type hypotheses. Figures 3.6 and 3.7 
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depict neurons from two different birds highly representative of those recorded (n = 5 

birds) during the first week post right ts transection. Even though all birds have heard 

themselves produce numerous renditions (usually hundreds of motifs) of spectrally 

degraded songs by the time of neural recording, neurons remain highly preferential for 

the features of pre ts transection BOS. In these two birds, as in the other three first week 

birds, the temporal pattern of song was highly conserved at the time of neural recording. 

Thus, it is clear that temporal song characteristics alone do not dictate responses in these 

neurons; otherwise, the pre and post ts transection versions would show similar 

responses. 

 In the second and third weeks post ts transection (n = 8 birds), the story begins to 

get more complicated. Figure 3.8 depicts a cell recorded in the second week post ts 

transection (I should add here that all cells recorded in a given bird at a given time point 

tended to have at least qualitatively similar preferences) that showed a strong preference 

for the pre ts transection song and virtually no responsiveness to features of the post 

transection song, like that shown by all cells in the first week post ts transection. In some 

birds during the second week post ts transection (represented by Figure 3.9), however, 

responses to at least some features of post transection song began to show some vigor, 

despite the fact that these elements were spectrally quite different that those of the 

identical elements in pre transection song. The bird depicted in Figure 3.9 is notable in 

that he showed syntax changes starting late in the first week post ts transection. 

Interestingly, a response peak during the latter half of the element „D‟ was stronger when 

preceded by its normal „C‟ as opposed to by the novel element „X‟. Novel and non-
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stereotyped elements appear to generally be associated with weak responses (see also 

Figure 3.13) and this phenomenon may be related to the consequences of violating 

sensorimotor prediction previously shown during sleep by auditory units in RA (see 

Section 5 of Introduction for details).  

 Three birds recorded in the second and third weeks post ts transection had cells 

with properties similar to those depicted in Figure 3.10. These cells showed a near 

complete reversal of the situation from first week birds; cells showed relatively strong 

preference for post ts transection song and a near absence of response to pre transection 

song. Though the bird depicted in Figure 3.10 showed no  overt syntax change at all at 

the time of recording, he and two others with cells showing strong preference for post ts 

transection song during weeks two and three post ts transection went on to show syntax 

changes within several weeks after these recordings were made. Thus, the intriguing 

possibility exists that preference for the spectrally degraded song in the wake of ts 

transection is in some way predictive (if not a precondition) of subsequent syntax 

changes. Such anticipatory tuning shifts have recently been seen in the second and third 

weeks post ts transection in urethane anesthetized birds in LMAN (Roy and Mooney, 

2009). Nonetheless, data from more birds during this interesting period, ideally with 

diverse syntax change outcomes in terms of both type and timing, is needed before 

conclusions can be made about the factors critical for dictating whether tuning shifts will 

occur.  

 Results from birds recorded more than one month post ts transection (n = 12 

birds) bolster the notion that the sleep BOS responses of HVC neurons show a mix of 
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sensory and sensorimotor properties. Regardless of syntax status, all cells from birds 

recorded more than a month post ts transection showed bias toward the current version of 

the song. The cells depicted in Figures 3.11 and 3.13 share a common thread in that both 

birds showed song largely conserved from pre ts transection versions, though with the 

addition of a novel element outside of the core motif. Both depicted cells showed 

preference for the current post ts transection song, though the cell depicted in Figure 3.13 

showed a substantially higher degree of selectivity. The cell depicted in Figure 3.12, like 

the one shown in Figure 3.13, had a very high degree of selectivity for the current post ts 

transection song. However, this bird had a song motif that, save for the first element, was 

completely different from the original motif. While long term restabilization with a new 

motif has been reported in the literature as a fairly common phenomenon (Williams and 

Mehta, 1999) this bird is my only example that I have recorded sleep auditory responses 

from. Thus, it is impossible at this point to know whether the most radical syntax changes 

are reliably associated with the strongest post ts transection tuning.  
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Figure Legends 

Figure 3.1. Examples of three variants of BOS selective neuron across the wake-

sleep boundary.  (A) This neuron showed a significant excitatory response to BOS 

during wakefulness (green on raster and PSTH) and a larger excitatory response during 

sleep (red on raster and PSTH). In contrast, CON responses (representative example 

shown) were either suppressive or non-significant during wakefulness and more strongly 

suppressive during sleep. (B) This neuron showed no significant response during 

wakefulness to BOS but had a significant response during sleep. CON responses, when 

present, were suppressive, when present, during wakefulness and remained similar during 

sleep. (C) This neuron showed no detectable activity, spontaneous or otherwise, during 

wakefulness but had a strong BOS response during sleep. CON responses during sleep 

were suppressive to all presented stimuli.  

Figure 3.2. Examples of BOS-CON cells showing bi-directional modulation of 

auditory responses across the wake-sleep boundary. (A) This cell showed a relatively 

strong excitatory response to BOS during wakefulness and a substantially increased 

response strength during sleep. In contrast, significant excitatory responses to CON 

stimuli were seen during wakefulness, but there was a dramatic shift during sleep, when 

almost all CON stimuli elicited suppressive responses. (B) This cell showed response 

trends during sleep similar to those seen in the cell depicted in A, though responses 

during wakefulness and sleep were more phasic and the degree of change in response to 

both BOS and CON stimuli across states was more modest.  
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Figure 3.3. A simultaneous recording on the same electrode of two very different 

response types. The cell depicted in (A) was one of the few highly linear cells I held 

across the wake-sleep transition. It showed an uncommon decrement in response strength 

to both BOS and CON stimuli during sleep (and subsequent recovery during 

wakefulness). In contrast, the BOS response in (B) goes from weakly to strongly 

excitatory across the wake-sleep transition, while the response to CON moves from 

weakly excitatory to some stimuli to non-significant or weakly suppressive during sleep. 

This response profile was fairly common in the population of neurons recorded across the 

wake-sleep boundary (see Fig. 3.1 for similar examples).  

Figure 3.4. Examples of two less common response transition types. 

(A) This cell showed modest excitatory responses to both BOS and CON stimuli during 

wakefulness and increased response magnitude to both types of stimuli during sleep. (B) 

This cell showed robust excitatory responses to both BOS and CON stimuli during 

wakefulness with no significant changes in either type of response during sleep.  

Figure 3.5. BOS-CON cells tended to show increased response magnitude to BOS 

and decreased response magnitude to CON across the wake-sleep transition. (A) For 

all cells showing excitatory response to BOS and CON stimuli during wakefulness (BOS-

CON cells; n = 43) change in mean CON RSINDEX from wake to sleep (x-axis) is plotted 

against the same change for BOS RSINDEX. The majority of these cells (top left quadrant) 

showed increased responsiveness to both BOS and CON stimuli, while a significant 

majority (bottom left quadrant) showed decreased responsiveness to both kinds of 
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stimuli. (B) RSINDEX to CON stimuli showed a significant decrease across the wake-sleep 

boundary in the population of BOS-CON neurons. RSINDEX to BOS stimuli, in contrast, 

showed a significant increase across the wake-sleep boundary. (C) During sleep, in the 

population of BOS-CON neurons, the mean percentage of CON stimuli receiving 

significant excitatory responses decreased across the wake-sleep transition, while the 

mean percentage of CON stimuli receiving significant inhibitory responses increased 

across the wake-sleep transition.  

Figure 3.6. Sleep auditory responses of HVCIN in the first week post ts nerve  

transection show strong preference for the pre transection song: Example I 

As was typical of cells in first week post ts nerve transection birds, response was highly 

tuned to the pre transection song (A). There was very little response to the first week post 

transaction song (B) or songs of intact conspecific (CON) birds (C). The temporal 

structure of song was identical in the pre and post ts nerve transection conditions, as 

indicated by the syntax labels (in red in A and B). In Figures 3.6-3.13, syntax structure of 

BOS songs is indicated in red. Syntax that is conserved (though spectrally altered post ts 

nerve transection) has letters that are the same across stimuli. Syntax elements that are 

new to post nerve transection song are labeled in parentheses and assigned late alphabetic 

letters (most commonly X). Lowercase letters denote introductory elements, which are 

not considered part of the motif proper and are produced in variable amounts from 

rendition to rendition. Letters followed by an apostrophe denote elements which are 

likely slightly modified versions of pre existing elements (e.g. A and A‟). Each figure 

part  (A,B, and C) in Figures 3.6-3.13 consists, top to bottom, of a song amplitude 
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waveform, a spectral derivative of song (a form of time-frequency representation), a trial 

by trial raster of neural events, and a peri-stimulus time histogram (PSTH) of neural 

events normalized to spikes/s.  

Figure 3.7. Sleep auditory responses of HVCIN in the first week post ts nerve  

transection show strong preference for the pre transection song: Example II 

 This neuron, as the one in the previous figure from a different bird, was highly selective 

for the pre ts nerve transection BOS, with very little response to either the first week post 

transection BOS or the song of a conspecific. This bird demonstrated some degree of 

syntax variability both before and immediately following nerve injury. 

Figure 3.8.   An HVCIN recorded during sleep in the second week post ts nerve  

transection showing strong preference for pre transection song 

This bird had stable song at the time of neural recording and also at a later time point. 

Though this cell showed robust selectivity for pre-transection song, there was some 

response to at least one feature of post cut song (end of element C).  

Figure 3.9. An HVCIN recorded during sleep in the second week post ts nerve 

transection showing strong responses to both pre and post transection song 

Though response to pre ts transection song was still slightly stronger than that to post ts 

transection song, the bias was much lower than that shown by any cells in the first week 

post ts nerve transection. Interestingly, this bird had begun to show song syntax plasticity 

by the time of neural recording, which may be a factor in the tuning bias of neurons 

recorded from this bird. 
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Figure 3.10.  An HVCIN recorded during sleep in the second week post ts nerve 

transection showing strong preference for post transection song.  Several birds 

showed this complete reversal from the typical case in first week birds during the second 

week post ts nerve transection. Though this bird showed no syntax changes at the time of 

neural recording, he and several others went on to show syntax plasticity six week post ts 

nerve transection (not shown). Thus, it is possible that strong tuning preference for post ts 

transection song may be linked to subsequent vocal motor plasticity.  

Figure 3.11.  HVCIN recorded in the long term post ts nerve transection all show 

some degree of tuning bias toward the current song: Example I. The bird in this 

example maintained his pre-transection syntax, though he added a variable repeat of a 

novel element (X) and a slightly modified version of a pre-existing element (F‟). This 

neuron, as many in long term post ts nerve transection birds, maintained some degree of 

response to some features of pre-nerve transection song.  

 Figure 3.12. HVCIN recorded in the long term post ts nerve transection all show 

some degree of tuning bias toward the current song: Example II. This bird showed a 

radical syntax rearrangement in the long term post ts nerve transection. The song became 

newly stereotyped conserving only a single element (A) from the original song. Cells in 

this bird showed very little response to features of the previous song, though I have not 

recorded from other birds with such radical syntax change and restabilization to evaluate 

whether the degree of the preference for the current song is related to the nature of the 

syntax changes. 
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Figure 3.13. HVCIN recorded in the long term post ts nerve transection all show 

some degree of tuning bias toward the current song: Example III. This bird 

maintained the integrity of his original song structure (save for the common deletion of a 

high tonal element immediately upon nerve transection) though by the time of recordings 

produced a stutter of a novel element (X) a highly variable number of times. 

Interestingly, responses to all cells recorded in this bird were very weak or nonexistent to 

the novel stuttered element. This phenomenon was seen in multiple birds at both short 

(see Figure 3.9) and long timepoints relative to nerve transection. 
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131 
 

                      Figure 3.5 
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136 
 

                    Figure 3.10 

 

  



137 
 

                    Figure 3.11 

 

  



138 
 

                    Figure 3.12 
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