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Control of Quantized Multi-Agent Systems with Linear Nearest Neighbor
Rules: A Finite Field Approach

Abstract
We study the problem of controlling a multi-agent system where each agent is only allowed to be in a discrete
and finite set of states. Each agent is capable of updating its state based on the states of its neighbors, and there
is a leader agent in the network that is allowed to update its state in arbitrary ways (within the discrete set) in
order to put all agents in a desired state. We present a novel solution to this problem by viewing the discrete
states of the system as elements of a finite field. Specifically, we develop a theory of structured linear systems
over finite fields, and show that such systems will be controllable provided that the size of the finite field is
sufficiently large, and that the graph associated with the system satisfies certain properties. We then use these
results to show that a multi-agent system with a leader node is controllable via a linear nearest-neighbor
update as long as there is a path from the leader to every node, and that the number of discrete states for each
node is large enough.
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Control of Quantized Multi-Agent Systems with Linear Nearest

Neighbor Rules: A Finite Field Approach

Shreyas Sundaram and Christoforos N. Hadjicostis

Abstract— We study the problem of controlling a multi-agent
system where each agent is only allowed to be in a discrete and
finite set of states. Each agent is capable of updating its state
based on the states of its neighbors, and there is a leader agent
in the network that is allowed to update its state in arbitrary
ways (within the discrete set) in order to put all agents in
a desired state. We present a novel solution to this problem
by viewing the discrete states of the system as elements of
a finite field. Specifically, we develop a theory of structured
linear systems over finite fields, and show that such systems
will be controllable provided that the size of the finite field is
sufficiently large, and that the graph associated with the system
satisfies certain properties. We then use these results to show
that a multi-agent system with a leader node is controllable
via a linear nearest-neighbor update as long as there is a path
from the leader to every node, and that the number of discrete
states for each node is large enough.

I. INTRODUCTION

Multi-agent and -robot systems hold great promise in

a variety of applications [1], [2], and for this reason, a

tremendous amount of research has gone into the problems

of controlling and coordinating such systems [3], [4]. These

distributed systems have no coordinator who is able to

command all agents directly, and thus the agents must rely

on interactions with their neighbors in order to achieve

the overall objective. For example, the topic of distributed

consensus has received a great deal of attention, where all of

the agents are expected to converge to a common decision (or

value) after repeated interactions with their neighbors (e.g.,

see [4] and the references therein). The topic of controlling

multi-agent systems with one or multiple leader agents has

also attracted attention over the past few years; the objective

in this case is to cause all of the agents to be in some desired

state via a set of actions by the leader agents [5], [6], [7], [8],

[9]. These investigations (which consider continuous-time

systems with continuous state-spaces) have led to various

characterizations of network topologies that are controllable
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Science Foundation under NSF ITR Award 0426831 and NSF CNS
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funding from the European Commission’s Seventh Framework Programme
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necessarily reflect the views of NSF or EC.
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by the leaders under a specific set of nearest neighbor

rules (e.g., when the dynamics of the overall system are

given by the Laplacian of the graph [5]). The papers [5],

[6], [7] showed that topologies that are “symmetric” from

the perspective of the leader(s) are not controllable, and

developed control strategies for multi-agent systems with

other topologies.

As the field of distributed control in multi-agent systems

matures, researchers have started to investigate the problem

of quantization, where the agents in the network can only

exchange a finite number of bits with their neighbors, or

can only occupy a fixed number of states [10], [11], [12].

These works have revealed that nearest neighbor rules can

be adapted in various ways in order to reach consensus

despite the quantized nature of the interactions. The proposed

solutions range from using gossip-type algorithms (where an

agent randomly contacts a neighbor and then they bring their

values as close together as possible) [11], to incorporating

quantization steps into (otherwise) linear update strategies

for each agent [10]. Along similar lines, the topic of logical

consensus (where agents are expected to reach agreement

on certain Boolean functions of various Boolean inputs) has

been studied in [13].

In contrast to the above works that focus on quantized

consensus, we examine the problem of controlling a multi-

agent system where the state-space of each agent is assumed

to lie in a discrete and finite set (e.g., as would be the case

with a finite number of quantization levels). We provide

a novel solution to this problem by showing that multi-

agent systems with discrete and finite state-spaces can be

conveniently modeled as linear systems over finite fields. We

then develop a characterization of the controllability of linear

systems over finite fields based on a graph representation of

the system. We use this to show that as long as each agent

has a sufficiently large number of states that it can be in, and

as long as the leader has a path to every node in the network,

the leader will be able to put all agents in any desired state

via a set of linear nearest neighbor rules.

II. NOTATION AND BACKGROUND

We use ei,l to denote the column vector of length l with

a “1” in its i-th position and “0” elsewhere. The symbol

1l denotes the column vector of length l with all entries

equal to “1”, and IN denotes the N × N identity matrix.

We will also denote the cardinality of a set S by |S|, and

use the notation diag (·) to indicate a square matrix with

the quantities inside the brackets on the diagonal, and zeros

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

WeB07.1

978-1-4244-7427-1/10/$26.00 ©2010 AACC 1003



elsewhere. The transpose of matrix A is denoted by A
′. The

set of nonnegative integers is denoted by N.

Graph Theory: A graph is an ordered pair G = {X , E},

where X = {x1, . . . , xN} is a set of vertices, and E is a set

of ordered pairs of different vertices, called directed edges.

The nodes in the set Ni = {xj|(xj , xi) ∈ E} are said to be

neighbors of node xi, and the in-degree of node xi is denoted

by degi = |Ni|. A subgraph of G is a graph H = {X̄ , Ē},

with X̄ ⊆ X and Ē ⊆ E (where all edges in Ē are between

vertices in X̄ ).

A path P from vertex xi0 to vertex xit
is a sequence of

vertices xi0xi1 · · ·xit
such that (xij

, xij+1
) ∈ E for 0 ≤ j ≤

t−1. A path is called a cycle if its start vertex and end vertex

are the same, and no other vertex appears more than once in

the path. A graph is called acyclic if it contains no cycles. A

graph G is a spanning tree originating at xi if it is an acyclic

graph where every node in the graph has a path from xi, and

every node except xi has in-degree exactly equal to 1. The

set of nodes that have no outgoing edges are called the leaves

of the tree. A branch of the tree is a subtree originating at

one of the neighbors of xi. Examples of spanning trees are

shown in Figure 1. Further background on graph theory can

be found in standard texts, such as [14].

x1x1

x2x2

x3

x3

x4

x4 x5

x5 x6x6 x7 x8

(a) (b)

Fig. 1. (a) Spanning tree originating at x1. Nodes x2, x5, x6, x7 and x8

are the leaves of the tree. The tree has three branches, consisting of the
nodes {x2}, {x3, x5, x6, x7} and {x4, x8}. (b) Spanning tree originating
at x1 with two branches, both of which are paths.

Finite Fields: A field F is a set of elements, together with

the operations of addition and multiplication defined over

those elements. These operations are associative, commu-

tative, and satisfy the distributive laws. Addition is invert-

ible with identity “0”, and multiplication is invertible with

identity “1” (if the additive identity “0” is excluded). Fields

are closed, meaning that addition or multiplication of two

elements produces another element in that field. The number

of elements in a field can be infinite (such as in the field

of complex numbers), or finite. However, finite fields only

come in sizes that are powers of a prime, i.e., of the form

q = pn for some prime p and positive integer n. The finite

field of size q is unique (up to isomorphism) and is denoted

by Fq.

Every element of the finite field Fpn can be represented

by a polynomial of degree n−1, with coefficients taking on

one of p different values (which we denote by the integers

{0, 1, 2, . . . , p−1}). Addition or subtraction of two elements

from the field can be performed by adding or subtracting

their polynomial representations, and reducing each of the

coefficients modulo p. Multiplication of elements can be

performed by multiplying their polynomials, and then taking

the remainder modulo an irreducible polynomial over that

field; the details can be found in texts such as [15]. Note

that when n = 1, addition and multiplication in Fp reduce

to simply adding or multiplying integers modulo p.

III. MULTI-AGENT COORDINATION VIA NEAREST

NEIGHBOR RULES

Consider a network of agents modeled by the directed

graph G = {X , E}, where X = {x1, . . . , xN} is the set of

agents and the directed edge (xj , xi) ∈ E indicates that agent

xi can receive information from agent xj . Each agent xi has

a certain discrete and finite set of states that it can be in, and

we will denote these states by the set {0, 1, . . . , q − 1}. For

now, we will assume that q is of the form pn for some prime

p and positive integer n, and thus treat the discrete states as

elements of the finite field Fq; we will discuss generalizations

of this later in the paper. We will assume that the possible

state-space for all agents is identical, and that the network

is fixed. At each time-step k, each agent in the network is

allowed to update its state as a function of its previous state

and those of its neighbors. The agent x1 is taken to be the

leader in the network (without loss of generality), and it

can update its state in arbitrary ways (within the confines

of the discrete state-space) in order to make all of the other

agents achieve a certain configuration. We will assume a

single leader in this paper to maintain clarity, but the ideas

can be extended to multiple leaders acting cooperatively in

order to control the network.

We will investigate linear nearest neighbor rules of the

form

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k],

where xi[k] is the state of agent xi at time-step k, and the

wij ’s are a set of weights (constant elements) from the field

Fq. Due to the closure property of a finite field, this update

rule guarantees that the state xi[k + 1] will be in the set

{0, 1, . . . , q−1}. Since the leader agent is allowed to modify

its state in arbitrary ways, we can model this by simply

including an “input” term1 for x1, i.e.,

x1[k + 1] = w11x1[k] +
∑

j∈N1

w1jxj [k] + u[k] .

For ease of analysis, the states of all nodes at time-

step k can be aggregated into the state vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, so that

x[k + 1] = Wx[k] + e1,Nu[k] (1)

for k ∈ N, where the (i, j) entry of W is the weight wij if

xj ∈ Ni, and zero otherwise.

Problem Formulation: Find conditions on the network

topology, a set of weights wij ∈ Fq (with wij = 0 if xj /∈

1We leave the nearest neighbor rule in the update for the leader without
loss of generality, because it can effectively be canceled out by choosing
u[k] appropriately.
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Ni), and a set of updates u[k] ∈ Fq, k ∈ N, so that the state

of the agents x[k] at some time-step k achieves some desired

state x̄ ∈ FN
q , starting from any given initial state x[0].

The above problem statement is evocative of the issue of

controllability in multi-agent systems (and, more generally,

linear systems), with the salient difference being that we are

working with systems over finite fields. We will explore the

implications of this in the next few sections.

IV. LINEAR SYSTEMS OVER FINITE FIELDS

Consider a linear system of the form

x[k + 1] = Ax[k] + Bu[k] , (2)

with state vector x ∈ FN and input u ∈ Fm (for some field

F). The matrices A and B (of appropriate sizes) have entries

from the field F. Starting at some initial state x[0], the state

of the system at time-step L (for some positive integer L) is

given by

x[L] = A
L
x[0] +

[
B AB · · · A

L−1
B

]

︸ ︷︷ ︸

CL−1








u[L − 1]
u[L − 2]

...

u[0]








︸ ︷︷ ︸

u[0:L−1]

.

If one wishes the state x[L] to be any arbitrary vector in

F
N , then one must ensure that the matrix CL−1 has full

rank; in this case the system is said to be controllable.

The matrix CN−1 is termed the controllability matrix for the

pair (A,B). Note that the rank of CL−1 is a nondecreasing

function of L, and bounded above by N . The above concepts

and terminology are all completely identical to the case

when the underlying field is F = C (i.e., the field of

complex numbers) that is commonly studied in linear system

theory [16]. However, when one considers arbitrary fields,

some of the further theory that has been developed to test

controllability of linear systems over the complex field will

no longer hold. For example, consider the commonly used

Popov-Belevitch-Hautus (PBH) test (e.g., see [16]).

Theorem 1 (PBH Test): The pair (A,B) (over the field

of complex numbers) is controllable if and only if

rank
[
λIN − A B

]
= N for all λ ∈ C.

One might expect that the above theorem will also apply

to linear systems over finite fields, perhaps by taking the

scalar λ to be an element of that field and then evaluating

the rank of the resulting matrix over the field. However, as

the following example illustrates, this is not the case.

Example 1: Consider the linear system operating over the

finite field F2 = {0, 1}, with system matrices A =
[

1 1 0
1 0 0
0 0 1

]

,

B = e3,3. The controllability matrix for this system is

CN−1 =
[

0 0 0
0 0 0
1 1 1

]

, which only has rank 1 over the field

F2 (recall that multiplications and additions are performed

modulo 2 in this field). However, the PBH matrix for this

system is given by
[
λIN − A B

]
=

[
λ+1 1 0 0

1 λ 0 0
0 0 λ+1 1

]

; note

that −1 = 1 in F2. One can readily verify that the above

matrix has full row rank (equal to 3) for any λ ∈ {0, 1},

but the system is clearly not controllable. The reason for

the test failing in this case is that finite fields are not

algebraically closed, which means that not every polynomial

with coefficients from a finite field will have a root in that

field (this also implies that not all N ×N matrices in a finite

field will have N eigenvalues) [17].

Since this PBH test is not sufficient to characterize linear

systems over finite fields, we will start in the next section by

applying a first-principles approach to the problem of multi-

agent controllability.

V. CONTROLLABILITY OF STRUCTURED SYSTEMS OVER

FINITE FIELDS

The field of structured system theory deals with analyzing

system properties based solely on the zero-nonzero structure

of the system matrices. Specifically, a linear system of the

form (2) is said to be structured if every entry in the system

matrices is either zero or an independent free parameter

(traditionally taken to be real-valued) [18]. A property is

said to hold structurally for the system if that property holds

for at least one choice of free parameters. In fact, for real-

valued parameters (with the underlying field of operation

taken as the field of complex numbers), structural properties

will hold generically (i.e., the set of parameters for which the

property does not hold has Lebesgue measure zero); this is

the situation that is commonly considered in the literature

on structured systems [18]. With this assumption, these

previous works rely on tests such as the PBH condition to

determine properties of real-valued matrix sets [18]; however,

these proof techniques do not extend to the case where the

parameters in the matrices are chosen from finite fields (as

discussed in Section IV).

Here, we will investigate structural controllability of ma-

trix pairs of the form (A, e1,N ) over a finite field F, where A

is an N × N matrix, and e1,N is a column-vector of length

N with a 1 in its first position and zeros elsewhere. Our

analysis will be based on a graph representation of matrix

A, denoted by H, which we obtain as follows. The vertex

set of H is X = {x1, x2, . . . , xN}, and the edge set is given

by E = {(xj , xi) | Aij 6= 0}. The weight on edge (xj , xi)
is set to the value of Aij .

Theorem 2: Consider the matrix pair (A, e1,N ), where A

is an N × N matrix with elements from a field F of size at

least N . Suppose that the following two conditions hold:

• The graph H associated with A is a spanning tree

originating at x1, augmented with self-loops on every

node.

• The weights on the self-loops are different elements of

F for every node, and the weights on the edges between

different nodes are equal to 1.

Then the pair (A, e1,N ) is controllable over the field F.

Proof: Since the graph associated with A is a spanning

tree originating at x1, there exists a numbering2 of the nodes

2This renumbering simply corresponds to performing a similarity trans-
formation on A with a permutation matrix, and thus does not change the
eigenvalues of the matrix.
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such that the A matrix is lower-triangular, with the self-

loop weights on the diagonal [14]. Denote the self-loop

weight on node xi by λi. Since all of the self-loop weights

are different, this matrix will have N distinct eigenvalues

(given by λ1, λ2, . . . , λN ), with N corresponding linearly

independent eigenvectors [19].

Consider the eigenvalue λi. Let xl be any leaf node in the

graph such that the path from x1 to xl passes through xi (if

xi is a leaf node, we can take xl = xi). Let ri denote the

number of nodes in this path, and reorder the nodes (leaving

x1 unchanged) so that all nodes on the path from x1 to xl

come first in the ordering, and all other nodes come next.

Let Pi denote the permutation matrix that corresponds to

this reordering, and note that

PiAP
′
i =

[
Ji 0

Ā1 Ā2

]

, (3)

for some matrices Ā1 and Ā2. The matrix Ji has the form

Ji = diag(λ1, λ2, · · · , λri
) + Sri

, where λ1, λ2, . . . , λri
are

different elements of F, and Sri
is an ri × ri square matrix

with ones on the main subdiagonal and zeros everywhere

else. The matrix Ji has ri distinct eigenvalues (given by the

λt’s) in the field F, and thus the matrix has ri eigenvectors

over F. Note that there exists some t ∈ {1, 2, . . . , ri} such

that λt = λi (where λi is the eigenvalue that we are

considering in matrix A). It is easy to verify that the left-

eigenvector vt of Ji associated with the eigenvalue λt is

given by

vt =
[
1 (λt − λ1) (λt − λ1)(λt − λ2) · · ·

· · ·
∏t−1

s=1(λt − λs) 0 · · · 0
]

,

and thus the left-eigenvector corresponding to eigenvalue λt

for the matrix PiAP
′
i in Equation (3) is given by wt =

[
vt 0

]
. Next, note that the left-eigenvector corresponding

to eigenvalue λt (or equivalently, λi) for matrix A will

be given by wtPi. Since Pi is a permutation matrix, and

node x1 was left unchanged during the permutation, the first

column of Pi is given by the vector e1,N . This means that

the first element of the eigenvector wtPi will be “1” (based

on the vectors wt and vt shown above). Since the above

analysis holds for any eigenvalue λi, we can conclude that

all left-eigenvectors for the matrix A will have a “1” as their

first element. Let V be the matrix whose rows are these

left-eigenvectors (so that each entry in the first column of

V is “1”); since the eigenvectors are linearly independent,

this matrix will be invertible over the field F. We thus

have VAV
−1 = Λ, where Λ = diag(λ1, λ2, . . . , λN ), and

furthermore, Ve1,N = 1N . The controllability matrix for

the pair (Λ,1N) is a Vandermonde matrix in the parameters

λ1, λ2, . . . , λN [20]. Such matrices are invertible over a field

F if and only if all of the parameters are distinct elements

of that field [20], and thus the above controllability matrix

has rank N over F. This means that the pair (A, e1,N ) will

also be controllable (since a similarity transformation does

not affect the controllability of the system).

Corollary 1: Consider the matrix pair (A, e1,N ), where A

is an N×N structured matrix (i.e., every entry of A is either

a fixed zero or an independent free parameter from a field F).

Suppose the graph H associated with the matrix A contains

a path from x1 to every other node, and furthermore, every

node has a self-loop (i.e., the diagonal elements of A are

free parameters). Then if F has size at least N , there exists

a choice of parameters from F such that the pair (A, e1,N )
is controllable over that field.

Proof: Since H contains a path from x1 to every other

node, it contains a subgraph that is a spanning tree originat-

ing from x1. Set the values of all parameters corresponding

to edges that are not in this spanning tree to zero, and set

the values of all parameters corresponding to edges between

different nodes in the spanning tree to “1”. Finally, select the

values of the parameters corresponding to self-loops to be

such that no two nodes have the same value (this is possible

since the size of the field is at least N ). This produces a

matrix A satisfying the conditions in Theorem 2, and thus

the resulting pair (A, e1,N ) is controllable.

VI. DESIGN OF NEAREST NEIGHBOR RULES AND

CONTROL LAW

Based on our analysis in the previous few sections, we are

in place to prove the following result.

Theorem 3: Consider a multi-agent system with N agents

given by the set X = {x1, x2, . . . , xN} and with fixed

interconnections described by the graph G = {X , E}. Let

x1 be a leader agent, and suppose that each agent in the

network can be in one of q discrete states, where q = pn for

some prime p and positive integer n. Then, if there is a path

from x1 to every other agent in the network and q ≥ N ,

there exists a set of weights wij ∈ Fq, j ∈ Ni and a set

of updates u[k] ∈ Fq, k = 0, 1, . . . , N − 1 such that the

state x[N ] of the agents achieves any desired value x̄ ∈ FN
q

starting from any initial condition x[0] when using the linear

nearest neighbor updates provided by (1).

Proof: First, note that the weight matrix W in (1) is

a structured matrix (since every element is either identically

zero or an independent free parameter). Since the network

contains a path from x1 to every other node, and the diagonal

elements of W are free parameters, we can appeal to Corol-

lary 1. If the number of discrete states for each agent satisfies

q ≥ N , all of the conditions in this corollary are satisfied, and

thus there exists a specific assignment of weights from Fq

such that the pair (W, e1,N ) in (1) is controllable over that

field. Then, we have x[N ] = W
N
x[0] + CN−1u[0 : N − 1],

and since we have shown that the matrix CN−1 is invertible

over the field Fq , the updates for the leader agent are

u[0 : N − 1] = C−1
N−1

(
x̄ − W

N
x[0]

)
, (4)

where x̄ is the desired vector in FN
q .

A. Controlling Agents When q < N

In this section, we show that networks with a certain

topological structure are controllable using finite fields of

any size.

Theorem 4: Consider a multi-agent system with N agents

given by the set X = {x1, x2, . . . , xN} and with fixed
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interconnections described by the graph G = {X , E}. Let

x1 be a leader agent, and suppose that each agent in the

network can be in one of q discrete states, where q = pn for

some prime p and positive integer n. Suppose G contains a

subgraph that is a spanning tree originating at x1 that has at

most two branches, and each branch is a path. Then, there

is a set of weights wij ∈ Fq, j ∈ Ni and a set of updates

u[k] ∈ Fq, k = 0, 1, . . . , N − 1 such that the state of the

agents x[N ] achieves any desired value x̄ ∈ FN
q starting from

any initial condition x[0] when using the nearest neighbor

updates provided by (1).

Note that the difference between Theorem 3 and Theo-

rem 4 is that the latter focuses on graphs that contain a

particular kind of spanning tree, but does not require the

condition q ≥ N . An example of the type of spanning tree

discussed in the above theorem is shown in Fig. 1(b).
Proof: [Theorem 4] Consider the subgraph of G that is

a spanning tree originating at x1 with at most two outgoing

branches, both of which are paths. Set all of the weights

corresponding to edges that are not in this spanning tree to

zero, and set all edges between nodes in this spanning tree

to 1. We will now describe how to choose the self-weights

for the nodes.

Let r − 1 denote the number of nodes in the first branch,

and renumber the non-leader nodes so that the nodes in the

first branch are x2, x3, . . . , xr , and the nodes in the second

branch are xr+1, xr+2, . . . , xN . Set the self-weight wii for

all nodes in the first branch (including x1) to be 0, and the

self-weight for all nodes in the second branch to be 1. The

weight matrix W in (1) then has the form W =
[
J0 0

F J1

]
,

where F =
[
e1,N−r 0

]
, J0 = Sr, J1 = IN−r + SN−r,

and Sj is a j × j matrix with ones on the main subdiagonal

and zeros elsewhere.

Consider the matrix P =
[
Ir 0

F J1

]
; note that this matrix

is invertible over Fq since the matrix J1 is invertible over

that field (it has determinant equal to 1). Also note that

FJ0 = 0 (from the definition of these matrices given

above). If we perform a similarity transformation on the

pair (W, e1,N ) with P, we obtain PWP
−1 =

[
J0 0

0 J1

]
and

Pe1,N =
[
e
′
1,r e

′
1,N−r

]′
. The controllability matrix for this

transformed pair is
[

e1,r J0e1,r J
2
0e1,r · · · J

N−1
0 e1,r

e1,N−r J1e1,N−r J
2
1e1,N−r · · · J

N−1
1 e1,N−r

]

.

One can readily verify that for J0 as given above, we

have
[
e1,r J0e1,r J

2
0e1,r · · · J

r−1
0 e1,r

]
= Ir and

J
k
0e1,r = 0 for k ≥ r. Thus, the above controllability

matrix has the form
[
Ir 0

∗ T

]
, where ∗ represents unimportant

quantities and

T =
[

J
r
1e1,N−r J

r+1
1 e1,N−r · · · J

N−1
1 e1,N−r

]

= J
r
1

[

e1,N−r J1e1,N−r · · · J
N−r−1
1 e1,N−r

]

︸ ︷︷ ︸

T̄

.

The matrix J
r
1 is full rank (since J1 has determinant 1 over

any field). One can also readily verify that the matrix T̄ is

upper-triangular, with all diagonal entries equal to 1, and

thus also has full rank over any field. Thus, the matrix T

is invertible over the field Fq , which means that the pair

(W, e1,N ) is controllable over that field.

Note that the above theorem encompasses topologies

where the nodes are simply arranged in a path or a ring

(or more generally, any network that contains a Hamiltonian

path [14]). For such networks, the above result indicates that

one only needs a field with elements “0” and “1” in order

to ensure controllability from any node – one simply finds

the appropriate spanning tree, and assigns the self-weights

on one side of the tree to be the field element “1”, and

the self-weights on the other side to be the field element

“0”. Note that by assigning the self-weights in this way,

we are effectively breaking any symmetries in the graph

from the perspective of the leader agent. In other words, we

allow different nodes to use different weights in their update

(based on where they are in the network). This is in contrast

to the previous works that have studied uncontrollability of

path topologies in the continuous-state setting [6], [8], [9].

The nearest neighbor rules in those papers are based on the

Laplacian of the graph, and have the benefit of being uniform

for all agents in the network, but consequently do not break

symmetries in the network topology.

While we have been able to show that certain graph

topologies can be controlled with finite fields of size smaller

than N , the characterization of the smallest size required for

controllability of arbitrary graphs is an open problem.

B. Controlling Agents when q 6= pn

To demonstrate how one can apply this finite-field frame-

work to handle multi-agents systems where q is not of the

form pn for some prime p, consider the following example.

Suppose that we have four agents arranged as x3 ↔ x2 ↔
x1 ↔ x4, and suppose that each agent can be in one of q = 6
states (denoted by the set {0, 1, . . . , 5}). The initial state of

the agents is x[0] =
[
3 4 2 4

]′
. The leader x1 would

like to obtain a final state of x[T ] =
[
0 4 2 5

]′
for some

T . We will achieve this objective by applying two phases

of the nearest neighbor rule (1) (i.e., wih T = 2N = 8).

Define 0̄ , {0, 1, 2} and 1̄ , {3, 4, 5}. During the first

phase, whenever an agent is in one of the states {0, 1, 2},

the agent (and its neighbors) will just map it to the meta-

state 0̄, and analogously for the states {3, 4, 5} and the meta-

state 1̄. Now, the leader treats this as a multi-agent system

with just two states {0̄, 1̄}, and changes its objective (for

now) to place itself in meta-state 0̄ (since 0 ∈ 0̄), and agents

x2, x3, x4 in meta-states 1̄, 0̄, 1̄, respectively (because their

final desired real states lie within those meta-states). This

can be done via the nearest neighbor rule (1) and Theorem 4

(since this topology is a tree consisting of two branches,

each of which is a path). Specifically, following the proof

of Theorem 4, we choose the self-weights on nodes x1, x2

and x3 to be the element 0̄, and the self-weight on x4 to be

1̄. We set the other weights to 1̄ or 0̄ as needed to obtain

a spanning tree originating at x1. This produces the weight

matrix W =

[
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄

]

. The controllability matrix for the
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pair (W, e1,4) (over the field F2) is given by C3 =

[
1̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄
0̄ 1̄ 1̄ 1̄

]

,

with inverse C−1
3 = C3 over the field F2 (note that all

additions and multiplications are performed modulo 2 in this

field). Let x̄[k] denote the vector of meta-states of the agents

at time-step k, so that x̄[0] =
[
1̄ 1̄ 0̄ 1̄

]′
. Using the

control law (4), we find that x̄[4] =
[
0̄ 1̄ 0̄ 1̄

]′
if x1

applies ū[0 : 3] =
[
0̄ 1̄ 0̄ 0̄

]′
. Note that at each time-

step k, each agent xi updates its meta-state x̄i[k] based on

its own meta-state and the meta-states of its neighbors (i.e.,

it does not care which of the real states comprising each

of the meta-states is occupied by each agent). Thus, if the

nearest neighbor rule specifies that an agent should move to

meta-state 0̄, it can move to any of the real states within that

meta-state; for convenience, we can assume that each agent

occupies the first real state in its meta-state (i.e., state 0 in

meta-state 0̄ and state 3 in meta-state 1̄).

At the conclusion of the first phase, each agent is in the

meta-state that contains its final desired state. Now, note that

each meta-state contains 3 real states. Since this is again a

prime number, one can apply the nearest neighbor rule (1) to

place each agent in their final desired state. From this point

on, the agents ignore the meta-state that is occupied by each

agent, and will instead only monitor the three real states

within each meta-state. Furthermore, each agent will only

move within the three real states that comprise its current

meta-state. Mapping the three real states in any meta-state

to the set {0̂, 1̂, 2̂}, and denoting the corresponding state of

each agent xi by x̂i[k], the leader agent’s objective is to

drive all agents to the state x̂[4] =
[

0̂ 1̂ 2̂ 2̂
]′

; these

values are obtained by noting that the real state 0 maps

to state 0̂ in meta-state 0̄, real state 4 maps to state 1̂ in

meta-state 1̄ and so forth. To do this, note that the weight

matrix considered above will also work over the field F3 (by

Theorem 4), except now all operations will be performed

modulo 3, and elements 0̄ and 1̄ will be replaced by 0̂ and 1̂
(to correspond to the representations of those elements in the

field of size 3). Once again, the controllability matrix for the

pair (W, e1,4) is full rank, but has inverse C−1
3 =

[
1̂ 0̂ 0̂ 0̂
0̂ 1̂ 0̂ 0̂
0̂ 0̂ 1̂ 0̂
0̂ 2̂ 2̂ 1̂

]

over F3. The initial states of all agents are taken to be

x̂[0] = 0 (under the assumption that each agent occupies the

first state inside its meta-state during the first phase of the

algorithm). Using (4), we find that by applying the inputs

û[0 : 3] =
[
0̂ 1̂ 2̂ 2̂

]′
, the leader can place all agents

into the desired final state x̂[4]. At the conclusion of the two

phases, we have x[8] =
[
0 4 2 5

]′
.

The above algorithm can be applied to any value3 of q
by first writing q = pn1

1 pn2

2 · · · pnr
r , where p1, p2, . . . , pr are

distinct primes and n1, n2, . . . , nr are positive integers. One

can then use r different phases of the nearest neighbor rule

(1) (as long as each pni

i is sufficiently large to allow the use

of Theorem 3 or Theorem 4) to have the leader place each

3This procedure can be avoided if one can design the system to have
q = pn; however, in practice the number of states q for each agent may be
given a priori, and cannot be changed to a more convenient form.

agent into increasingly refined regions. This idea is similar

to that of “zooming-in” with a quantizer in order to stabilize

systems with quantized measurements [21].

VII. SUMMARY

We showed how to formulate a set of nearest neighbor

rules for a network of quantized agents so that they can be put

into any desired configuration by a leader agent. We obtained

this result by viewing the discrete states of the agents as

elements of a finite field, and then developed a theory of

linear system controllability over these fields. For arbitrary

topologies, we showed that the system will be controllable

provided that the number of possible states for each agent is

large enough, and that the leader has a path to every agent.
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