
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

2009

Embedded Virtual Machines for Robust Wireless
Control Systems
Rahul Mangharam
University of Pennsylvania, rahulm@seas.upenn.edu

Miroslav Pajic
University of Pennsylvania, pajic@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical
and Computer Engineering Commons

Suggested Citatin:
Mangharam, R. and M. Pajic. “Embedded Virtual Machines for Robust Wireless Control Systems”. Proc. of the 29th IEEE International Conference on
Distributed Computing Systems Workshops. 2009.

©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

See more from the mLAB in ScholarlyCommons at Real-Time and Embedded Systems Lab (mLAB)

Recommended Citation
Rahul Mangharam and Miroslav Pajic, "Embedded Virtual Machines for Robust Wireless Control Systems", . January 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76364525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mlab_papers/

Embedded Virtual Machines for Robust Wireless Control Systems

Abstract
Embedded wireless networks have largely focused on open loop sensing and monitoring. To address actuation
in closed loop wireless control systems there is a strong need to re-think the communication architectures and
protocols for reliability, coordination and control. As the links, nodes and topology of wireless systems are
inherently unreliable, such time-critical and safety-critical applications require programming abstractions
where the tasks are assigned to the sensors, actuators and controllers as a single component rather than
statically mapping a set of tasks to a specific physical node at design time. To this end, we introduce the
Embedded Virtual Machine (EVM), a powerful and flexible programming abstraction where virtual
components and their properties are maintained across node boundaries. In the context of process and
discrete control, an EVM is the distributed runtime system that dynamically selects primary-backup sets of
controllers to guarantee QoS given spatial and temporal constraints of the underlying wireless network. The
EVM architecture defines explicit mechanisms for control, data and fault communication within the virtual
component. EVM-based algorithms introduce new capabilities such as predictable outcomes and provably
minimal graceful degradation during sensor/actuator failure, adaptation to mode changes and runtime
optimization of resource consumption. Through the design of a natural gas process plant hardware-in-loop
simulation we aim to demonstrate the preliminary capabilities of EVM-based wireless networks.

Keywords
control engineering computing, control system synthesis, discrete systems, embedded systems, monitoring,
object-oriented programming, optimising compilers, protocols, quality of service, robust control, system
monitoring, systems analysis, telecommunication computing, telecommunication control,
telecommunication network reliability, telecommunication network topology, virtual machines, wireless
sensor networks, QoS, design time, discrete control, distributed runtime system, embedded virtual machine,
open loop monitoring, open loop sensing, quality-of-service, reliability protocol, robust wireless control
system, runtime optimization, software programming abstraction, virtual component, wireless sensor
network, wireless system topology, Real-time systems, embedded systems, virtual machines, wireless sensor
networks

Disciplines
Computer Engineering | Computer Sciences | Electrical and Computer Engineering

Comments
Suggested Citatin:
Mangharam, R. and M. Pajic. “Embedded Virtual Machines for Robust Wireless Control Systems”. Proc. of the
29th IEEE International Conference on Distributed Computing Systems Workshops. 2009.

©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

See more from the mLAB in ScholarlyCommons at Real-Time and Embedded Systems Lab (mLAB)

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/528

http://repository.upenn.edu/mlab_papers/
http://repository.upenn.edu/ese_papers/528?utm_source=repository.upenn.edu%2Fese_papers%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages

Embedded Virtual Machines for Robust Wireless Control Systems

Rahul Mangharam and Miroslav Pajic
Dept. of Electrical & Systems Engineering

University of Pennsylvania, U.S.A.
{rahulm, pajic}@seas.upenn.edu

Abstract

Embedded wireless networks have largely focused on open-
loop sensing and monitoring. To address actuation in closed-
loop wireless control systems there is a strong need to re-think
the communication architectures and protocols for reliability,
coordination and control. As the links, nodes and topology of
wireless systems are inherently unreliable, such time-critical
and safety-critical applications require programming abstrac-
tions where the tasks are assigned to the sensors, actuators and
controllers as a single component rather than statically map-
ping a set of tasks to a specific physical node at design time. To
this end, we introduce the Embedded Virtual Machine (EVM),
a powerful and flexible programming abstraction where virtual
components and their properties are maintained across node
boundaries. In the context of process and discrete control, an
EVM is the distributed runtime system that dynamically selects
primary-backup sets of controllers to guarantee QoS given
spatial and temporal constraints of the underlying wireless
network. The EVM architecture defines explicit mechanisms
for control, data and fault communication within the virtual
component. EVM-based algorithms introduce new capabil-
ities such as predictable outcomes and provably minimal
graceful degradation during sensor/actuator failure, adapta-
tion to mode changes and runtime optimization of resource
consumption. Through the design of a natural gas process
plant hardware-in-loop simulation we aim to demonstrate the
preliminary capabilities of EVM-based wireless networks.

Keywords: Real-time systems, embedded systems, wireless
sensor networks, virtual machines.

1.. Introduction

Automation control systems form the basis for significant
pieces of our nation’s critical infrastructure. Time-critical and
safety-critical automation systems are at the heart of essen-
tial infrastructures such as oil refineries, automated factories,
logistics and power generation systems. Discrete and process
control represent an important domain for real-time embedded
systems with over a trillion dollars in installed systems and
$90 billion in projected revenues for 2008 [1].

In order to meet the reliability requirements, automation
systems are traditionally severely constrained along three

dimensions, namely, operating resources, scalability of in-
terconnected systems and flexibility to mode changes. Oil
refineries, for example, are built to operate without interruption
for over 25 years and can never be shutdown for preventive
maintenance or upgrades. They are built with rigid ranges of
operating throughput and require a significant re-haul to adapt
to changing market conditions. This rigidity has resulted in
proprietary systems with limited scope for re-appropriation of
resources during faults and retooling to match design changes
on-demand. For example, automotive assembly lines lose an
average of $22,000 per minute of downtime [2] during system
faults. This has created a culture where the operating engineer
is forced to patch a faulty unit in an ad hoc manner which often
necessitates masking certain sensor inputs to let the operation
proceed. This process of unsystematic alteration to the system
exacerbates the problem and makes the assembly line difficult
and expensive to operate, maintain and modify.

Embedded Wireless Sensor-Actuator-Controller (WSAC)
networks are emerging as a practical means to monitor and
operate automation systems with lower setup/maintenance
costs. While the physical benefits of wireless, in terms of cable
replacement, are apparent, automation manufacturers and plant
owners have increasing interest in the logical benefits.

With multi-hop WSAC networks, it is possible to build
modular systems which can be swapped out for off-line main-
tenance during faults. Modular systems can be dynamically
assigned to be primary or backup on the basis of available
resources or availability of the desired calibration. Modularity
allows for incremental expansion of the plant and is a ma-
jor consideration in emerging economies. WSAC networks
allow for runtime configuration where resources can be re-
appropriated on-demand, for example when throughput targets
change due to lower price electricity during off-peak hours or
due to seasonal changes in end-to-end demand.

While WSAC networks facilitate both planned and un-
planned mode changes, runtime programmable WSAC net-
works allow for flexible item-by-item process customization.
For example, a high demand for fuel-efficient Toyota Prius’
will require major retooling of a traditional wired factory
that is designed for the Toyota Camry chassis. With re-
programmable WSAC, the assembly line stations can adapt to
a schedule where every 3 Camrys are interleaved with 2 Prius’
with synchronized changes in operation modes and assembly
line operations.

Figure 1. (a) A wireless sensor, actuator and controller network. (b) Algorithm assignment to a set of controllers, each mapped to the
respective nodes. (c) Three Virtual Components, each composed of several network elements

1.1.. Embedded Virtual Machines

The current generation of embedded wireless systems has
largely focused on open-loop sensing and monitoring appli-
cations. To address actuation in closed-loop wireless control
systems there is a strong need to re-think the communication
architectures and protocols for reliability, coordination and
control. As the links, nodes and topology of wireless systems
are inherently unreliable, such time-critical and safety-critical
applications require programming abstractions where the tasks
are assigned to the sensors, actuators and controllers as a single
component rather than statically mapping a set of tasks to a
specific physical node at design time. Such wireless controller
grids are composed of many wireless nodes, each of which
share a common sense of the control application but without
regard to physical node boundaries.

To this end, we introduce the Embedded Virtual Machine
(EVM), a powerful and flexible programming abstraction
where virtual components and their properties are maintained
across node boundaries. EVMs differ from classical virtual
machines (VM). In the enterprise or on PCs, one (powerful)
physical machine may be partitioned to host multiple virtual
machines for higher resource utilization. On the other hand, in
the embedded domain, an EVM is composed across multiple
physical nodes with a goal to maintain correct and high-fidelity
operation even under changes in the physical composition of
the network. The goal of the EVM is to maintain a set of
functional invariants, such as a control law and para-functional
invariants such as timeliness constraints, fault tolerance and
safety standards across a set of controllers given the spatio-
temporal changes in the physical network.

By incorporating EVMs in existing and future wireless
automation systems, our aim is to realize:

1. Predictable outcomes in the presence of controller fail-
ure. During node or link faults, EVM algorithms determine
if and when tasks should be reassigned and provide the
mechanisms for timely state migration.

2. Provably minimal QoS degradation without violating
safety. In the case of (unplanned) topology changes of the
wireless control network, potential safety violations are routine
occurrences and hence the EVM must reorganize resources and
task assignments to suit the current resource availability (i.e.

link bandwidth, available processing capacity, memory usage,
sensor inputs, etc.).

3. Composable and reconfigurable runtime system through
synthesis In the EVM approach, a collection of sensors,
actuators and controllers make a Virtual Component as shown
in Fig. 1. A Virtual Component is a composition of inter-
connected communicating physical components defined by
object transfer relationships. At runtime, nodes determine (via
centralized or distributed algorithms) the task-set and operating
points of different controllers in the Virtual Component. This
machine-to-machine coordination require task-set generation,
task migration and remote algorithm activation which are
executed via synthesis at runtime.

4. Adaptive Resource Re-appropriation and Optimization
for dynamic changes in service. For planned system changes
such as a factory shift, increase in output or retooling for a
different chassis, nodes are required to be re-scheduled in
a timely and work conserving manner. For example, if an
assembly line is to process two types of units, red units and
blue units, it must ensure that the additional processing time
required for blue units does not violate the processing of red
units along the shared conveyor belt.

1.2.. Research Challenges
While there has been considerable research in the general

area of wireless sensor networks, a majority of the work has
been on open-loop and non-real time monitoring application.
As we extend the existing programming paradigm to closed-
loop control applications with tight timeliness and safety
requirements, we identify five primary challenges with the
design, analysis and deployment of extending such networks:

1. Programming motes in the event-triggered paradigm
is tedious for control networks. It is hard to provide any
analytical bounds on the response time, stability and timeliness
of tasks in an event-driven regime [3], [4]. Real-time tasks
are time-triggered while sensor inputs are event-triggered. It
is generally easier to incorporate sporadic tasks in a time-
triggered regime than vice versa.

2. Programming of sensor networks is currently at the
physical node-level where the tasks are bound to the node at
compile-time. This makes it non-trivial to decompose a large
control problem into defining components and applications for

each mote. In the case of sensor network virtual machines
such as Mate [4], Scylla [5] and SwissQM [6] and runtime
programming frameworks such as SOS [7] and Contiki [8],
the interaction is assumed to be between an end-user and a
single isolated node in a network and not among the nodes
themselves.

3. Design of systems with flexible topologies is hard
with physical node-level programming as the set of tasks (or
responsibility) is associated with the physical node. Thus, a
change in the link capacity, node energy level or connectivity
in the current topology will render the application useless. It
is necessary to associate a logical mapping of tasks to nodes
and incorporate mechanisms to transfer responsibilities during
physical and environmental changes in the network.

4. Fault diagnostics, repair and recovery are manual and
template-driven for a majority of networked control systems.
Approximately 30% of the code in automation systems is
dedicated to fault detection and recovery. In the case of
WSAC networks, it is not plausable to exhaustively capture
all possible faults at design time and thus provisions must be
made for runtime diagnostics and recovery.

5. Template-driven Safety: A majority of automation
systems use ‘if-then’ template-driven statements to detect
safety. With frequent code patches, it is hard to provide
safety guarantees. Any change in topology or the number
of associated nodes may violate the fixed safety rules which
are determined at design-time. Nodes must operate in tandem
where the performance and operational safety of one node is
continuously monitored by others and vice versa.

2.. Background and Preliminary Work
The EVM architecture and algorithms are built on a

modified version of the FireFly sensor network platform [9]
and nano-RK sensor real-time operating system (RTOS) [10].
The EVM is implemented in the form of a virtual machine
abstraction layer on top of the RTOS and executes as a special
task within nano-RK. As a special task, the EVM has both
parametric and programmable control of the entire operating
system and hardware resources. We describe below the current
developments and experiences of the FireFly platform and
nano-RK RTOS and also the preliminary investigations with
the EVM.

2.1.. Embedded Network Platforms for Time
Synchronized Communication

Several platforms, such as Mica2, MicaZ, Telos, ExS-
cale and TinyNode [11], that have enabled sensor networks
are available. Many of these platforms are based on the
component-based, event-triggered operating system and appli-
cation framework called TinyOS [3]. While this framework
is flexible, timing predictability and fine-grained deterministic
resource control were not its primary design objectives.

We use the FireFly platform [9] which is designed to
support real-time sensor networking applications [12], [13].
The FireFly node shown in Fig. 2 is a low-cost, low-power,
platform that is based on the Atmel ATmega1281 8-bit micro-
controller with 8KB of RAM and 128KB of ROM along with

Figure 2. FireFly node with sensors & AM time sync

a Chipcon CC2420 IEEE 802.15.4 standard-compliant radio
transceiver. A FireFly node can also operate with a solar cell
driven by ambient light. Each node supports and expansion
card with light, temperature, audio, passive infrared motion,
dual axis acceleration and voltage sensors.

The primary reason we use FireFly for EVMs is for its
ability to support tight global hardware-based time synchro-
nization for real-time TDMA-based communication with the
RT-Link protocol [12]. FireFly nodes are able to achieve sub-
150µs jitter by using a passive AM radio receiver. Through
the tight time synchronization of RT-Link, it has been demon-
strated to have an effective battery lifetime of 1.8 years with a
5% duty cycle. RT-Link outperforms asynchronous protocols
such as B-MAC [14] and loosely synchronous protocols such
as S-MAC [15] across all duty cycles and event rates. We have
demonstrated real-time two-way interactive voice streaming
across multiple FireFly nodes using the RT-Link protocol [13].
With RT-Link, communication for real-time applications is
collision-free and is scheduled in well-defined TDMA slots
that ensures timely communication between nodes within an
EVM’s Virtual Component.

2.2.. Real-Time Sensor Operating System as a
basis for the EVM

To address the need for timing precision, priority scheduling
and fine-grained resource management the nano-RK resource
kernel [10] was developed with timeliness as a first-class
concern. nano-RK is a fully preemptive RTOS with multi-hop
networking support that runs on a variety of sensor network
platforms (8-bit Atmel-AVR, 16-bit TI-MSP430, Crossbow
motes, FireFly). It supports fixed-priority preemptive schedul-
ing for ensuring that task deadlines are met, along with
support for and enforcement of CPU and network bandwidth
reservations. Tasks can specify their resource demands and
the operating system provides timely, guaranteed and con-
trolled access to CPU cycles and network packets in resource-
constrained embedded sensor environments. It also supports
the concept of virtual energy reservations that allows the
OS to enforce energy budgets associated with a sensing task
by controlling resource accesses. nano-RK provides various
medium access control and networking protocols including a
low-power-listen CSMA protocol called B-MAC, an implicit
tree routing protocol and RT-Link.

For networked control systems, it is essential that the
underlying sensor operating system expose precision timing,
scheduled tasks and synchronized networking so that the trade-
offs between energy-consumption (node lifetime), reliability

and responsiveness are specifiable and enforceable both at
design-time and runtime. Support for the above services is
required for low-duty cycle and energy-constrained sensor
networks too because the computation and communication are
packed into a short duration so all nodes may maximize their
common sleep time. As shown in Fig. 3, the EVM is built
upon nano-RK and adds the capability for a suite of runtime
services with parametric and programmable control.

3.. EVM Architecture and Algorithms
The system under consideration includes a number of wire-

less sensors, actuators and controllers composed into a Virtual
Component. The Virtual Component acts as a single entity for
the control algorithm execution. The EVM provides a flexible
programming abstraction to share state and responsibilities
across physical nodes and allows multiple EVM-enabled nodes
to be composed into a single logical entity.

Control algorithms are automatically distributed across
physical nodes based on computing load and proximity to the
corresponding sensors and actuators. Multiple copies of each
algorithm are present on the physical nodes and state is shared
either passively or actively to enable fault tolerance. Control
algorithms ’spawn’ automatically proliferating to nodes capa-
ble of executing them and maintain a common state at all
times. If one of the nodes executing a control algorithm fails,
another node capable of performing the same control function
takes over control execution. Algorithm migration from one
physical node to another is a key feature of this system. Control
algorithm execution by one node is passively observed by
other nodes capable of executing the same algorithm. Control
algorithm failure is detected by backup observers and a new
master is selected based on an arbitration algorithm.

3.1.. EVM Architecture

We now consider the design of the EVM within the nano-
RK RTOS framework. The EVM describes its own instruction
set for efficient control, task and fault management between
nodes. As with Mate, the EVM is based on a FORTH-
like interpreter. The interpreter runs within nano-RK as a
super task. However, unlike Mate, the EVMs instruction set

 State
Migration

Task

Motor
Control

Task

Overload
Detection

Task

Focus of EVM work

A
pp

s
K

er
ne

l
H

ar
dw

ar
e

Task
Management

Peripheral
Drivers

 Microcontroller

Real-Time Scheduler

Reservations

Reserves Reserves Reserves

Adaptive Virtual Machine
Runtime S

802.15.4 Radio

 Time Sync RX Power Control

RX Buffer

TX Buffer

RT-Link

Network
Management ystem

Parametric Control

Task Partitioning

Scheduleability Analysis

Software Attestation

Algorithm Activation

Protocol Adaptation

Policy Negotiation

Data Migration

Online Fault Diagnosis

Figure 3. nano-RK sensor RTOS with interfaces to the EVM.
EVM includes parametric and programmable control algo-
rithms for runtime logical-task to physical-node mapping.

is extensible at runtime. Furthermore, EVM instructions are
focused on node-to-node communication and control rather
than PC-to-node control. We describe two main architectural
components within the EVM - EVM node-specific operations
and object transfers for efficient node-to-node communication.
3.1.1.. EVM Node-specific Operations. The EVM is re-
sponsible for the following core node-specific operations. The
parametric control has been implemented as an EVM library
for core pre-defined instructions. The programmable control
will be implemented as a runtime service and requires hooks
within the kernel, device drivers and link layer.

1. Runtime Task Management This includes basic task
allocation, assignment and manipulation. The specific opera-
tions supported by the EVM are task assignment to a particular
node, task migration from one node to another, task partition
from one node to another and itself and finally task replication
where an instance of a task is also invoked on another node
(using the same state information, stack and register settings).

2. Runtime Resource allocation This operation facilitates
allocation or re-allocation of a task control block and reserva-
tion with the scheduler and network for a new task or for an
existing task on the local node.

3. Scheduling and schedulability analysis This operation
is invoked when there has been a change to the scheduler or
task-set on a node. The new task-set or schedule will only
be activated if the schedulability test is passed. This ensures
that all tasks are schedulable within the scheduler’s utilization
bounds even after a new task is added.

4. Priority assignment This parametric control operation
allows a node to re-prioritize its tasks upon the admission of
a new task or change in operating conditions.

5. Fault/failure detection and adaptation This handler is
activated when a fault message is received by the kernel and
the desired action is carried out. An example of this would be
when a fault message informs the kernel that the battery is out
of energy and the kernel activates a task migration operation
to move operations to a more able node.

6. Node membership and data migration The mem-
bership of a Virtual Component is not fixed. If new nodes
are present they are admitted to the Virtual Component.
This operator ensures that the requirements of new nodes or
the network state of surviving nodes is stable. Furthermore,
this operator invokes the optimization sub-routine if more
resources are added to the Virtual Component’s resource pool.

7. Run-time optimization This operation executes opti-
mization of resource allocation and task assignment at run-
time. We use Binary Quadratic Programming for fixed-point
optimization for functional and para-functional requirements
across controller nodes. Due to space limitation we will not
discuss this in detail.

8. Software attestation When new code or data is received
by a node from another node, the node executes a basic
attestation test to ensure the code/data is not corrupted and
passes the schedulability test.

While the above operations are not exhaustive, we will
select the ones that matter the most in our case studies and test
them under changing conditions with large dynamic ranges.

Figure 4. Unisim model for a natural gas process plant

3.1.2.. EVM Object Transfers. We now describe the mech-
anisms used to communicate control, data and fault infor-
mation between controllers within a virtual component. Five
elementary object transfer types are included in the EVM de-
sign. These include: disjoint, bi-directional transfers, temporal-
conditional transfers, causal-conditional transfers and health
assessment.

A disjoint relation between two nodes indicates that the
nodes may operate concurrently in both temporal and spa-
tial domains without any shared state. Directional and bi-
directional transfers define relationships such as master-slave,
publish-subscribe and producer-consumer. This is the basic
transfer type for all active controllers within a virtual com-
ponent. Temporal and causal transfers define the type of
relationship between inter-connected controllers and enforce
a set of restrictions between the controllers. Finally, health
assessment transfers are used for monitoring and tracking and
define which node is the primary or backup and the nature
of response to faults such as trigger alert, trigger backup, halt
and local fail-safe operation.

4.. EVM Evaluation
We have implemented the parametric control capability of

the EVM on the FireFly nodes over the nano-RK sensor RTOS.
This allows remote runtime triggering of individual sensor
drivers, modification of task reservations and network time-
slot assignment. Through a process control case study, we
evaluate the programmable control, more specifically the fault
tolerant capability, of the EVM. We employ the Honeywell
Unisim plant simulator with hardware-in-loop via a a set of

UniSim Process

Sensors Actuators

Controller A
Task A.1
Task A.2
Task A.3

S1

S2

S3

A2

A1

Controller B
Task B.1

Controller C
Task C.1
Task C.2

Figure 5. EVM evaluation with wireless networked hardware-
in-loop simulation

six interconnected FireFly nodes, as shown in Fig. 5. Each
sensor, controller and actuator node interfaces with a gateway
node via RT-Link. The gateway communicates with Unisim
(on the workstation) via ModBus. The controllers operate on
information generated by the plant simulation and sensor I/O
for a realistic closed-loop WSAC evaluation. This allows us
to evaluate the network with large dynamic input ranges and
dramatic topology changes.

Our focus is on the fault-tolerance of controllers only, all of
which are connected with wireless connections to each other
and to the physical sensors and actuators that interface to
Unisim. When a particular backup controller detects a series
of faults in the primary controller, it triggers a task migration
operation to the backup controller. This operation includes
a capabilities check and the migration of the task control
block, stack, data and timing/precedence-related metadata.
The backup controller is activated and the primary controller
switches to a passive ‘indicator’ mode.

4.1.. Natural Gas Plant Model
We employed a Unisim model for a natural gas processing

application. This case study models a natural gas processing
facility that uses propane refrigeration to condense liquids
from the raw natural gas feed and a distillation tower to process
the liquids. The flowsheet for this process is in Fig. 4. In this
plant, a raw natural gas stream containing N2, CO2, and C1

through n-C4 is processed in a refrigeration system in order to
remove the heavier hydrocarbons. The liquids removed from
the input stream yield to a liquid product that has the desired
propane content.

As shown in Fig. 4, multiple input raw natural gas feed
streams are combined before entering the Inlet Separator
(InletSep) that removes free liquids from them. Overhead
gas from the Inlet Separator is combined in the gas/gas
exchanger with already cooled gas in order to decrease its
temperature. The cold stream from chiller is introduced to the
Low-Temperature Separator (LTS), which separates the heavy
hydrocarbon liquid from its input stream, while remaining gas
is fed back to the gas/gas exchanger. Liquid output of LTS is
mixed with free liquids from the Inlet Separator, InletSep.
These liquids are then processed at the Depropanizer column
to produce a low-propane-content bottoms product.

4.2.. Fault-Tolerant Wireless Controllers
The plant model has several control loops (presented with

light green connections). In the application, 8 different con-

(a) (b)
Figure 6. (a)Primary and backup controllers for the Low Temperature Separator. (b)Process control outputs during primary controller
failure (300s), recovery (600s) and activation of backup controller (at 601s). Legend: LTS-Liquid Percent Level (solid red), SepLiq-Molar
Flow (dashed blue), LTSLiq-Molar Flow(dash-dotted magenta), TowerFeed-Molar Flow(dotted green)

trollers are used (4 in top-level system and 4 in DePropanizer).
These controller algorithms are implemented using EVM
across multiple physical nodes.

To show performance of the designed EVM we will focus
on the controller for the valve at liquid flow from LTS output
and TowerInlet (Fig. 6(a)). In the presented configuration, 2
physical controllers, Ctrl-A and Ctrl-B implement the control
algorithm as primary and backup controllers, respectively.
The liquid’s percentage level in LTS is used as an input to
the controllers, which perform second order filtering with a
PID regulator. The operation switch, OS-1, determines which
controller’s output should be connected to the valve.

To demonstrate fault-tolerant operation with the EVM, the
scenario in Fig. 6(b) is used. Before time T1 = 300s, Ctrl-
A is in the Active mode and actually controls the valve
output level. This configuration is valid till T1 when, due
to a failure, Ctrl-A sets a wrong valve output level (75%
instead of 11.48%). This is seen in the rapid drop of the
liquid percent level and variation of the liquid level in the
separator. After the node Ctrl-B (which is in the Backup mode)
determines inappropriate outputs from Ctrl-A and informs
the head of the Virtual Component, at the time instance
T2 = 600s the Virtual Component sets Ctrl-B in Active
mode, while Ctrl-A goes to Backup mode. Finally, at the
end of this transition (T3 = 800s), the Ctrl-A node is set
to the Dormant mode. After the stable system configuration is
restored with the introduction of Ctrl-B output, liquid level in
LTS starts to recover slowly. During the on set of the fault, the
rapid increase in LTS valve output level introduced significant
changes in molar flows of the LTS, Separator and Tower Feed
liquids. But after system reconfiguration these values were
restored to the previous (’stable’) values. While the changes
in the process are along relatively long time intervals (100s
of seconds), our goal is to demonstrate the flexible logical
to physical mapping of tasks and the runtime adaptation to
system, network and environmental changes. As future work
we aim to implement a suite of programmable control runtime
capabilities for distributed fault-tolerance and reconfiguration.

In summary, the specific objectives of this effort are:
1. Ability to deploy control algorithms in a virtual compo-

nent defined over a grid of wireless controllers.
2. On-line capacity expansion where more controllers can

be added to share the load and trigger re-distribution of tasks.
3. Algorithm replication to a set of nodes capable of per-

forming the same control function for throughput adaptation.
4. Fault tolerance to node and communication failures.
5. Control algorithm execution with high-speed operation

(1/4 second or less control cycle) and with a small latency
(≤1/3 of the control cycle).

References

[1] Frost and Sullivan, North American Sensor Markets, Technical
Report A-761-32, 2004.

[2] Nielsen Research, Downtime Costs Auto Industry, March 2006.
[3] J. Hill et. al. System architecture directions for network sensors.

ASPLOS, 2000.
[4] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor

networks . ACM ASPLOS-X , 2002.
[5] P. Marbell and L. Iftode. Scylla: A smart virtual machine for

mobile embedded systems. In WMCSA, 2000.
[6] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for

sensor networks. In ACM EuroSys, 2007.
[7] S. Han et. al. SOS : A Dynamic Operating System for Sensor

Nodes. ACM Mobisys, 2005.
[8] A. Dunkels and N. Finne and J. Eriksson and T. Voigt. Run-time

dynamic linking for reprogramming wireless sensor networks.
ACM SenSys, 2006.

[9] R. Mangharam, A. Rowe, and R. Rajkumar. FireFly: A Cross-
layer Platform for Real-time Embedded Wireless Networks.
Real-Time System Journal, 2007.

[10] nano-rk sensor rtos. http://nanork.org.
[11] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. Platforms

enabling wireless sensor networks. Communications of the
ACM, 47(6):41-46, 2004.

[12] A. Rowe, R. Mangharam, and R. Rajkumar. RT-Link: A Time-
Synchronized Link Protocol for Energy-Constrained Multi-hop
Wireless Networks. IEEE SECON, 2006.

[13] R. Mangharam, A. Rowe, and R. Rajkumar. Voice over Sensor
Networks. RTSS, 2006.

[14] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media
Access for Wireless Sensor Networks. ACM SenSys, 2005.

[15] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC
Protocol for Wireless Sensor Networks. INFOCOM, June 2002.

	University of Pennsylvania
	ScholarlyCommons
	2009

	Embedded Virtual Machines for Robust Wireless Control Systems
	Rahul Mangharam
	Miroslav Pajic
	Recommended Citation

	Embedded Virtual Machines for Robust Wireless Control Systems
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1265851039.pdf.wIUzI

