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A Framework for Validation of Implantable Medical Devices

Abstract
Designing bug-free medical device software is difficult, especially in complex implantable devices used for
rhythm management of the cardiac or the neurological system. There is currently no formal methodology or
open experimental platform to validate the correct operation of implantable medical device software. We
describe our recent work on heart modeling for the validation and verification of artificial cardiac pacemakers.
As we extend this platform to more complex devices such as cardioverter-defibrillators, there are several
significant challenges in the modeling of biological systems and their patient-specific response to external
stimulus. Our goal over the longer term is to explore the methodologies for experimental evaluation,
modeling for validation and verification of implantable devices within the context of the underlying biological
system. We present our early and promising results for simplified models and propose steps toward an
integrated platform for validation of medical device systems.
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Abstract

Designing bug-free medical device software is difficult,
especially in complex implantable devices used for rhythm
management of the cardiac or the neurological system.
There is currently no formal methodology or open exper-
imental platform to validate the correct operation of im-
plantable medical device software. We describe our recent
work on heart modeling for the validation and verification
of artificial cardiac pacemakers. As we extend this platform
to more complex devices such as cardioverter-defibrillators,
there are several significant challenges in the modeling of
biological systems and their patient-specific response to ex-
ternal stimulus. Our goal over the longer term is to explore
the methodologies for experimental evaluation, modeling
for validation and verification of implantable devices within
the context of the underlying biological system. We present
our early and promising results for simplified models and
propose steps toward an integrated platform for validation
of medical device systems.

1 Introduction

The use of artificial implantable devices has grown sig-
nificantly over the recent decades. Rhythm management de-
vices such as pacemakers and cardioverter-defibrillators are
currently widely used, while others like neurostimulators
are transitioning from clinical trials to mainstream treat-
ment for several neurological disorders such as intractable
epilepsy, movement disorders and migraine. Although these
devices have demonstrated more than 99% of efficacy for
the heart and over 50% for the brain, in the last 20 years fail-
ures of medical devices caused more than 30,000 deaths and
almost 600,000 injuries [1]. Safety recalls of pacemakers
and implantable cardioverter defibrillators due to firmware
problems between 1990 and 2000 affected over 200,000 de-
vices, comprising 41% of the devices recalled and are in-
creasing in frequency [2]. There is, therefore, a need for
a rigorous approach toward validation and verification of

medical devices as is currently done in the automotive and
avionics domains.

Medical Device Software and Systems (MDSS) are in-
herently Cyber-Physical Systems (CPS) where the control
and computation within the device is tightly coupled with
the sensing and actuation of the biological physical sub-
strate (i.e. the heart and brain). It is therefore essential
to model the functioning of the device within the physi-
cal environment, where actions performed by the device are
determined with the sensed state of the environment. We
focus on implantable MDSS that interact only with the hu-
man heart and neurological system, since behavior of these
systems is a direct result of the underlying electrical ac-
tivity. The cardiac and the neurological systems’ response
to a stimulus produced by the device is better understood
than other interactions between invasive treatment and a pa-
tient. For example, a pharmacological effect of an admin-
istered drug is much harder to match to a normal pattern
than that of an electrical stimuli produced in the heart by an
artificial pacemaker. Currently, the cardiac system is better
understood for normal and abnormal conditions within the
purview of rhythm management systems.

The modeling of the closed-loop interaction between
the cardiac or neurological system and an implantable de-
vice is challenging and problematic as the relation be-
tween the physical state and the device state is largely non-
deterministic, interactive and cannot be fully captured by
computation models. The modeling of the physical sub-
strate must therefore be restricted to specific cases and con-
ditions of operation. Thus, the validation and verification
observations are only valid for those specific cases.

2 Rhythm Management Devices

The goal of this research is to build a framework that
will allow validation and verification of rhythm manage-
ment devices (RMD), which use different types of ther-
apies to eliminate derangements in the normal heart and
neuro signal rhythms. Rhythm management therapies for
the heart include demand pacing, cardioversion and defib-
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Figure 2. Structure of the VHM platform

rillation, while responsive therapies for the brain are de-
signed to deliver preprogrammed waveforms upon detec-
tion of discrete events [3]. We describe below our early
efforts to model the heart and basic modes of a pacemaker
in a closed-loop platform. Following this, we discuss the
challenges and possible approaches to incrementally intro-
duce non-determinism, interactivity and complexity of the
physical model.

2.1 Case Study: Pacemaker Validation and Veri-
fication

In [4, 5] we have presented early efforts toward the devel-
opment of a real-time Virtual Heart Model (VHM) to eval-
uate the electrophysiological operation of the functioning
(i.e. during normal sinus rhythm) and malfunctioning (i.e.
during arrhythmia) heart. A Real-Time (RT) view of the
heart naturally mimics the electrophysiological (EP) view
of the heart in terms of intrinsic and artificial synchroniza-
tion and re-synchronization. The design the VHM, shown in
Fig. 1 and Fig. 2, exposes functional and formal interfaces
derived from the common kernel, which can be utilized for
validation and verification of implantable cardiac devices.

The kernel models the cardiac action potential which is
a principal phenomena of the heart’s conduction system.
This allows us to model the heart as a network of nodes,
which are abstractions of localized electrically active tissue.
Conduction between nodes is modeled by paths with know

propagation and timing behavior. The functional model
emulates the behavior of the heart and enables validation
through simulation and black-box testing of the implantable
devices. The kernel was designed using the timed-automata
approach as the timing of the heart’s electrical system is
fundamental to the cardiac function [6].

To model the heart we considered the electrical signals
that pass through the heart, stimulating all triggered heart
cells. The behavior of the tissue is described using the to-
tal refractory period, which can be defined as the amount
of time it takes for an excited cell to be ready for a sec-
ond stimulus once it returns to its resting state. The period
can be divided into two time periods, the effective refrac-
tory period (ERP) and relative refractory period (RRP). The
cell cannot be activated by an electrical stimulus in the ERP,
which acts as a blocking interval. In the RRP, the cell can
be activated again, but this causes changes in the action po-
tential morphology.

A simplified state transitions of the node and path au-
tomatas are shown in Fig. 1(c) and Fig. 1(d)). In the node
automata, the refractoriness is modeled with ERP, RRP and
Rest states, where state durations are determined by appro-
priate timers (Terp, Trrp, and Trest). The refractory param-
eters are tuned relative to the true refractory periods mea-
sured in clinical EP studies [7], thus enabling an extraction
of clinically-relevant results. In the path automata, the con-
duction properties are modeled using the following states:
1) no conduction state (Idle); 2) antegrade or forward con-
duction state (Ante); 3) retrograde or backward conduction
state (Retro); 4) both directions conduction state (Double);
and 5) conflict state (Conflict). In addition, the conduction
delays are modeled by the timers Tante and Tretro.

Fig. 3(a) shows the simulation GUI we developed in
Matlab which allows users to view electrograms and deliver
programmed pacing in real-time. Fig. 3(b) shows the elec-
trograms measured from the probes placed in the model. In
our previous work [4], we presented a methodology to ex-
tract timing properties of the heart, in order to construct the
timed-automata model which corresponds to specific heart
conditions. The electrogram signals have been validated to
be clinically-relevant by an electrophysiologist for a spe-

(a)

High Right Atrium (HRA)

Coronary Sinus (CS)
His Bundle (His)
Right Ventricular Apex (RVA)

(b)

* With changes in ERP and conduction speed of paths 
connecting to the node

(c)

Idle

Ante Retro

Double

Conflict

(d)

Figure 1. (a) The basic physiology and electrical conduction system of the heart; (b) Corresponding setup of nodes (dots), paths
(lines) and probes (shapes) in our heart model; (c)Node automata. (d)Path automata
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(a) Simulation environment along with the Pace panel (b) Synthetic electrogram

Figure 3. Graphical user interace

cific set of common arrhythmias.

2.2 Complex Rhythm Management Devices

Following the simpler VHM, we now move our fo-
cus to more complex RMD which include implantable
cardioverter-defibrillators (ICD) and neurostimulators.
Modeling an ICD is the next step in understanding im-
plantable medical devices and how they interact with the
heart. An ICD is used for patients at risk of developing
ventricular tachycardia, a dangerous arrhythmia, and ven-
tricular fibrillation, a life-threatening arrhythmia. To treat
these problems, the ICD must be able to diagnose these
arrhythmias and deliver a high-voltage shock to the heart.
Arrhythmia detection utilizes more complicated algorithms
than simple threshold detection used in a pacemaker. This
makes modeling of the ICD a more difficult task, but also
increases the need of a VHM for device certification before
its use on a real patient.

In order to accommodate closed-loop implementations
of the heart model with an ICD, we must consider the me-
chanical interactions between the heart and the device. The
high voltages and mechanical fixation mechanism used by
the ICD can injure the muscle tissue of the heart. The heart
model must be able to interpret this tissue damage and al-
ter its timing parameters accordingly. In order to extract the
affected timing parameters, the mechanical injury must be
mapped to the tissue, down to the cellular and molecular
level. Problems arise due to the complexity of this injury
issue. Saxonhouse et al. [8] have investigated injury due

to fixation of the lead into the heart muscle, but few have
been able to quantify this injury or conclude a cause-and-
effect relationship between the ICD shocks and progres-
sive muscle injury. The challenge is to incorporate these
injury-timing parameters into our VHM while maintaining
the complexity of the original model.

Neurosimulators are used for management of nervous
system disorders, mostly for recording and localizing neu-
ral signals along with closed-loop control of specific net-
works to treat (or prevent) specific disease states [3]. The
idea of closed-loop control first appeared in [9]. The au-
thors in [3] propose a fine-grained feedback control laws,
where states are translated into control actions, which au-
tomatically desynchronize or hypersynchronize, at will, the
model of neural synchronization.

3 Integrated Validation and Verification
According to the Food and Drug Administration (FDA)

Quality System Requirements, the validation is defined as
’confirmation by examination and provision of objective ev-
idence that the particular requirements for a specific in-
tended use can be consistently fulfilled’. Also FDA defines
verification as confirmation by examination and provision
of objective evidence that specified requirements have been
fulfilled.

Validation of the VHM is done by comparing the behav-
ior of the VHM to the common arrhythmias seen in real
patients as a result of failure of impulse generation and/or
propagation. While the clinical relevance of the model elec-
trogram outputs have been validated by an electrophysiolo-
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gist, there is no practical means to formally prove any of
the heart properties. Since we have validated the VHM on
several cases of normal and abnormal heart rhythms, we are
able to use it in a closed-loop operation for validation and
verification of specific cases and conditions of implantable
medical devices’ operation.

Validation of the implantable devices is usually done us-
ing exhaustive testing. In [4] we have shown its use in a
case of pacemaker design validation/verification. By con-
necting the VHM to a pacemaker model, we were able to
pace and synchronize the heart during the onset of irregu-
lar heart rhythms. The existence of the functional interface
enables an emulation of the heart behavior and the use of
simulation with black-box testing for devices validation.

An important class of implantable cardiac devices in-
cludes devices designed with the event-triggered architec-
ture. We propose an approach that can be used for their
verification in a closed-loop, in cases when only interaction
between a patient and the device includes event triggering.
In this case, a procedure is proposed that can be used to
derive a formal description of the VHM as a composition
of synchronous components, from which a UPPAAL model
[10] of the system is extracted. Also, after the patient model
is translated into UPPAAL model, the composition of these
models can be used for the formal system verification.

To describe the technique we consider a closed-loop sys-
tem where a pacemaker is used to control the heart rhythm.
Verification of the artificial pacemakers can be significantly
simplified since pacemakers are implemented in the event
driven manner. Since the VHM was designed in Simulink
using timed-automatas, we propose a simple technique that
can be used to extract formal description of the model. Here
we would like to emphasize that we only consider a transla-
tion of the blocks used to model the VHM and not to design
general case translation procedure from Simulink to UP-
PAAL. The VHM design exposes two interfaces, formal and
functional, which allows separation of the timed-automata
sub-components that can be used for to extract the formal
description of the VHM with the respect to closed-loop in-
teraction with a pacemaker. Composition of this description
with the pacemaker model enables a translation of the VHM
and pacemaker models into UPPAAL, therefore allowing a
closed-loop system verification using UPPAAL built-in ver-
ification procedures.

4 Research Challenges and Outlook

The primary challenge in verification of closed-loop sys-
tems with implantable medical devices is due to the fact
that more complex devices, such as ICDs and neurostimula-
tors, do not use threshold-based and event-driven reactions
to the sensed-state of the physical environment. ICDs use a
specialized algorithms to detect arrhythmias using previous
electrogram recordings. This is the case even for more com-

plex pacemaker model, which utilizes rate-adaptive pacing
[7]. Unlike the approach employed in cardiac devices, neu-
rosimulators use a control design where stimulation value is
determined on the fly, at every discrete time instant, based
on the evolving state variables estimated from sensed Elec-
troencephalography (EEG) during an epileptiform event
[3].

For these cases, the basic formal interface, as one cur-
rently used in VHM, is not sufficient for formal verification,
since there will exist a significant discrepancy between the
formal interface and the functional interface. Thus, we con-
sider a translation of the VHM to Linear Hybrid Systems
(LHS) in order to use a symbolic analysis framework pro-
posed in [11].

Currently we are in the process of evolving the VHM in
order to include patient-specific morphological description
of muscle tissue. Therefore, the updated VHM has to incor-
porate an increased level of non-determinism to try to cover
all possible changes in timing parameters due to mechani-
cal injuries of the muscle tissue. In addition, we plan to fur-
ther investigate this integrated approach to functional and
formal modeling with the incremental introduction of more
non-determinism and complexity in the patient and device
models.
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