
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2009

A Compositional Framework for Avionics (ARINC-653) Systems A Compositional Framework for Avionics (ARINC-653) Systems

Arvind Easwaran
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Steve Vestal
Honeywell International Inc.

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Arvind Easwaran, Insup Lee, Oleg Sokolsky, and Steve Vestal, "A Compositional Framework for Avionics
(ARINC-653) Systems", . January 2009.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-09-04

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/898
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76364468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/898
mailto:repository@pobox.upenn.edu

A Compositional Framework for Avionics (ARINC-653) Systems A Compositional Framework for Avionics (ARINC-653) Systems

Abstract Abstract
Cyber-physical systems (CPSs) are becoming all-pervasive, and due to increasing complexity they are
designed using component-based approaches. Temporal constraints of such complex CPSs can then be
modeled using hierarchical scheduling frameworks. In this paper, we consider one such avionics CPS
described by ARINC specification 653-2. The real-time workload in this system comprises of partitions,
where each partition consists of one or more processes. Processes incur blocking and preemption
overheads, and can communicate with other processes in the system. In this work, we develop
techniques for automated scheduling of such partitions. At present, system designers manually schedule
partitions based on interactions they have with application vendors. This approach is not only time
consuming, but can also result in under utilization of resources. Hence, in this work we propose
compositional analysis based scheduling techniques for partitions.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-09-04

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/898

https://repository.upenn.edu/cis_reports/898

A Compositional Scheduling Framework for Digital Avionics Systems

Arvind Easwaran∗
CISTER/IPP-HURRAY

Polytechnic Institute of Porto
Portugal

aen@isep.ipp.pt

Insup Lee, Oleg Sokolsky
Department of CIS

University of Pennsylvania
PA, 19104, USA

{lee,sokolsky}@cis.upenn.edu

Steve Vestal
Boston Scientific
MN 55112, USA

stephen.vestal@bsci.com

Abstract

ARINC specification 653-2 describes the interface between
application software and underlying middleware in a dis-
tributed real-time avionics system. The real-time workload in
this system comprises of partitions, where each partition con-
sists of one or more processes. Processes incur blocking and
preemption overheads, and can communicate with other pro-
cesses in the system. In this work, we develop compositional
techniques for automated scheduling of such partitions and
processes. At present, system designers manually schedule
partitions based on interactions they have with the partition
vendors. This approach is not only time consuming, but can
also result in under utilization of resources.

1 Introduction

ARINC standards, developed and adopted by the Engi-
neering Standards for Avionics and Cabin Systems commit-
tee, deliver substantial benefits to airlines and aviation in-
dustry by promoting competition, providing inter changeabil-
ity, and reducing life-cycle costs for avionics and cabin sys-
tems. In particular, the 600 series ARINC specifications and
reports define enabling technologies that provide a design
foundation for digital avionics systems. Within the 600 se-
ries, this work deals with ARINC specification 653-2, part
I [3] (henceforth referred to as ARINC-653), which defines a
general-purpose Application/Executive (APEX) software in-
terface between the operating system of an avionics computer
and the application software.

As described in ARINC-653, the real-time system of an
aircraft comprises of one or more core modules connected
with one another using switched Ethernet. Each core module
is a hardware platform that consists of one or more processors
among other things. They provide space and temporal par-
titioning for independent execution of avionics applications.
Each independent application is called a partition, and each
partition in turn is comprised of one or more processes rep-
resenting its real-time resource demand. The workload on a

∗Work done when author was a PhD student at the University of Pennsyl-
vania, USA, and a summer intern at Honeywell Inc., USA.

globalglobal

local local

Communication chain (end−to−end latency bound)

local

Blocking (semaphore)

local

processorprocessor

P4P3

.

τ 3,1τ 3,2 τ 3,m3 τ 4,1τ 4,2 τ 4,m4

P2P1

.

τ 1,1τ 1,2 τ 1,m1 τ 2,1τ 2,2 τ 2,m2

Figure 1. Scheduling hierarchy for partitions

single processor in a core module can therefore be described
as a two-level hierarchical real-time system. Each partition
comprises of one or more processes that are scheduled among
themselves using a (local) partition specific scheduler. All
the partitions that are allocated to the same processor are then
scheduled among themselves using a (global) partition level
scheduler. For example, Figure 1 shows two such systems,
where partitions P1 and P2 are scheduled together under a
global scheduler on one processor, and partitions P3 and P4

are scheduled together under a global scheduler on another
processor. Each partition Pi in turn is comprised of processes
τ i,1, . . . , τ i,mi , scheduled under a local scheduler1. Processes
are periodic tasks that communicate with each other. Se-
quences of such communicating processes form dependency
chains, and designers can specify end-to-end latency bounds
for them. For example, Figure 1 shows one such chain be-
tween tasks τ1,1, τ2,2, and τ3,2. Processes within a partition
can block each other using semaphores for access to shared
data, giving rise to blocking overhead (tasks τ4,2 and τ4,m4

in the figure). Further, processes and partitions can also be
preempted by higher priority processes and partitions, respec-
tively, resulting in preemption overheads.

There are several problems related to the hierarchical sys-
tem described above that must be addressed. For schedul-

1The local scheduler can be different from the global scheduler and each
of the other local schedulers.

1

ing partitions, it is desirable to abstract the communication
dependencies between processes using parameters like off-
sets, jitter, and constrained deadlines. This simplifies a global
processor and network scheduling problem into several local
single processor scheduling problems. The process deadlines
must also guarantee satisfaction of end-to-end latency bounds
specified by the designer. Given such processes we must
then generate scheduling parameters for partitions, to be used
by the global scheduler. The resulting global schedule must
provide sufficient processor capacity to schedule processes
within partitions. Furthermore, these scheduling parameters
must also account for blocking and preemption overheads in-
curred by processes and partitions.

This avionics system frequently interacts with the physi-
cal world, and hence is subject to stringent government reg-
ulations. Then, to help with system certification, it is desir-
able to develop schedulability analysis techniques for such
hierarchical systems. Furthermore, these analysis techniques
must account for resource overheads arising from preemp-
tions, blocking, and communication. In order to protect the
intellectual property rights of partition vendors, it is also de-
sirable to support partition isolation; only so much informa-
tion about partitions must be exposed as is required for global
scheduling and the corresponding analysis. We therefore con-
sider compositional techniques for partition scheduling, i.e.,
we schedule partitions and check their schedulability by com-
posing interfaces, which abstractly represent the resource de-
mand of processes within partitions.

Partition workloads can be abstracted into interfaces using
existing compositional techniques [17, 11, 23, 9]. These tech-
niques use resource models as interfaces, which are models
characterizing resource supply from higher level schedulers.
In the context of ARINC-653, these resource model based in-
terfaces can be viewed as abstract resource supplies from the
global scheduler to each partition. Various resource models
like periodic [17, 23], bounded-delay [11], and EDP [9] have
been proposed in the past. However, before we can use these
techniques, we must modify them to handle ARINC-653 spe-
cific issues like communication dependencies, and blocking
and preemption overheads. In this paper, we assume that com-
munication dependencies and end-to-end latency bounds are
abstracted using existing techniques into process parameters
like offset, jitter, and constrained deadline (see [24, 21]). Note
that although we do not present solutions to this problem, it
is however important, because it motivates the inclusion of
aforementioned process parameters.

Contributions. In this paper we model ARINC-653 as
a two-level hierarchical system, and develop compositional
analysis techniques for the same. This is a principled ap-
proach for scheduling ARINC-653 partitions that provides
separation of concerns among different partition vendors, and
therefore should facilitate system integration. In particular,
our contributions can be summarized as follows:

1. We extend and improve existing periodic [17] and
EDP [9] resource model based compositional analysis

techniques to take into account (a) process communi-
cations modeled as offsets, jitter, and constrained dead-
lines, and (b) process preemption and blocking over-
heads. Section 3 presents this solution, and illustrates its
effectiveness using actual workloads from avionics sys-
tems.

2. We develop techniques to schedule partitions using their
interfaces, taking into account preemption overheads in-
curred by partitions. Specifically, in Section 4, we
present a technique to count the exact number of pre-
emptions incurred by partitions in the global schedule.

2 System model and related work

Partitions and processes. Each partition has an asso-
ciated period that identifies the frequency with which it exe-
cutes, i.e., it represents the partition interface period. Typi-
cally, this period is derived from the periods of processes that
form the partition. In this work, we assume that partitions
are scheduled among themselves using deadline-monotonic
(DM) scheduler [16]. This enables us to generate a static par-
tition level schedule at design time (hyper-period schedule),
as required by the specification. Processes within a partition
are assumed to be periodic tasks2. ARINC-653 allows pro-
cesses to be scheduled using preemptive, fixed priority sched-
ulers, and hence we assume that each partition also uses DM
to schedule processes in its workload.

As discussed in the introduction, we assume that commu-
nication dependencies and end-to-end latency requirements
are modeled with process offsets, jitter, and constrained dead-
lines. Hence, each process can be specified as a constrained
deadline periodic task τ = (O, J,T,C,D), where O is offset,
J is jitter, T is period, C is worst case execution time, and
D(≤ T) is deadline. Jobs of this process are dispatched at
time instants xT + O for every non-negative integer x, and
each job will be released for execution at any time in the in-
terval [xT + O, xT + O + J]. For such a process it is rea-
sonable to assume that O ≤ D [24]. Furthermore, we denote
as 〈{τ1, . . . , τn}, DM〉, a partition P comprising of processes
τ1, . . . , τn and using scheduler DM. Without loss of general-
ity we assume that τ i has higher priority than τ j for all i < j
under DM.

In addition to the restrictions specified so far, we make the
following assumptions for the system described herein. These
assumptions have been verified to exist in avionics systems.
(1) The processes within a partition, and hence the partition
itself, cannot be distributed over multiple processors. (2) Peri-
ods of partitions that are scheduled on the same processor are
harmonic3. Note that this assumption does not prevent pro-
cesses from having non-harmonic periods. (3) Processes in a
partition cannot block processes in another partition. This is

2Partitions with aperiodic processes also exist in avionics systems, but
they are scheduled as background workload. Hence, we ignore them.

3A set of numbers {T1, . . . , Tn} is harmonic if and only if, for all i and
j, either Ti divides Tj or Tj divides Ti.

2

because mutual exclusion based on semaphores require use of
shared memory which can only happen within a partition.

Related work. Traditionally, the partition scheduling
problem has been addressed in an ad-hoc fashion based on
interactions between the system designer and vendors who
provide the partitions. Although many different ARINC-653
platforms exist (see [1, 2]), there is little work on automatic
scheduling of partitions [14, 15, 20]. Kinnan et. al. [14]
only provide preliminary heuristic guidance, and the other
studies [15, 20] use constraint-based approaches to look at
combined network and processor scheduling. In contrast to
this high-complexity holistic analysis, we present an efficient
compositional analysis technique that also protects intellec-
tual property through partition isolation.

Resource models based on periodic resource allocations,
and compositional analysis techniques using them, have been
developed in the past [23, 9, 17]. However, these studies
do not consider dependencies between and within partitions.
But, such dependencies in hierarchical systems have been ad-
dressed in other studies [4, 7, 19, 8, 5, 12]. Almeida and Pe-
dreiras [4] have presented compositional analysis techniques
for the case when processes in partition workload have jit-
ter in their releases. Davis and Burns [7] have extended
this technique to consider release jitter as well as preemption
overheads. Various resource-sharing protocols (HSRP [8],
SIRAP [5], BROE [12]) that bound the maximum resource
blocking time for dependent partitions have also been pro-
posed in the past. However, all these approaches do not con-
sider process offsets, which are used to model communication
dependencies. Although these techniques can still be used for
processes being considered in this paper, the analysis will be
pessimistic in general. In this work, we address this issue by
developing exact schedulability conditions for processes with
offsets.

Matic and Henzinger [19] have also developed composi-
tional analysis techniques in the presence of partition depen-
dencies. They assume dependencies are modeled using one
of the following two semantics: Real-time workshop (RTW),
and Logical execution time. Although RTW semantics is sim-
ilar to the dependency constraints that we consider in our case
study, it is more restrictive in that periods of dependent pro-
cesses are required to be harmonic.

Mataix et. al. [6] compute the number of preemptions
when partitions are scheduled under a fixed priority scheduler.
However, unlike our technique which counts the preemptions
exactly, they only present an upper bound.

3 Partition interface generation

In this section we propose techniques to compute a peri-
odic or EDP resource model based interface for a partition
P = 〈{τ1, . . . , τn}, DM〉. We assume that ΠP denotes the
interface period specified by system designer for P . We first
briefly discuss shortcomings of existing resource model based
analysis, and then develop techniques that overcome these

shortcomings.

3.1 Inadequacy of existing analysis

A periodic process such as the one described earlier, con-
sists of an infinite set of real-time jobs that are required to
meet temporal deadlines. The resource request bound func-
tion of a process upper bounds the amount of computational
resource required to meet all its temporal deadlines (rbf :
< → <). Similarly, the request bound function of a parti-
tion is the worst-case amount of resource requested by all the
processes in the partition. We denote by rbfP,i(t), the request
bound function of process τ i in partition P for a time interval
length t. Then, Equation (1) gives rbfP,i assuming that jitter
and offset for all processes is zero [23].

rbfP,i(t) =

iX
j=1

‰
t

Tj

ı
Cj (1)

When processes have non-zero jitter but zero offset, Tin-
dell and Clark have derived a critical arrival pattern which
can be used to compute rbf [25]. In this arrival pattern each
higher priority process is released simultaneously with the
process under consideration, incurring maximum possible jit-
ter. All future instances of these higher priority processes are
released as soon as possible, i.e., they incur zero jitter. Fur-
thermore, the process under consideration itself is assumed to
incur maximum possible jitter. Thus, for a process τ i with
zero offset but non-zero jitter, rbfP,i can be specified as

rbfP,i(t) =

iX
j=1

„‰
t+ Jj

Tj

ı
Cj

«
(2)

To satisfy the demand of a process or partition, the core
module processor must supply sufficient computational re-
sources. A resource model is a model for specifying the
timing properties of this resource supply. For example, a
resource supply that provides Θ units of resource every Π
units of time can be represented using the periodic resource
model φ = 〈Π,Θ〉 [23]. Similarly, a resource supply that pro-
vides Θ units of resource within ∆ units of time, with this
pattern repeating every Π time units can be represented us-
ing the explicit deadline periodic (EDP) resource model η =
〈Π,Θ,∆〉 [9]. In both these models, Θ

Π represents resource
bandwidth; average processor supply used over time. The
supply bound function of a resource model lower bounds the
amount of resource that the model supplies (sbf : < → <).
Given a resource model R and time interval length t, sbfR(t)
gives the minimum amount of resource that R is guaranteed
to supply in any time interval of length t. sbf for periodic
(Equation (3)) and EDP (Equation (4)) resource models are
reproduced below. In these equations x1 = 2(Π−Θ), y1 =⌊
t−(Π−Θ)

Π

⌋
, x2 = Π + ∆−2 Θ, and y2 =

⌊
t−(∆−Θ)

Π

⌋
,

where x1 and x2 are called blackout intervals for periodic and
EDP models, respectively.

sbfφ(t) =

(
max {0, t− x1 − y1 Π}+ y1 Θ t ≥ Π−Θ

0 Otherwise
(3)

3

sbfη(t) =

(
max {0, t− x2 − y2 Π}+ y2 Θ t ≥ ∆−Θ

0 Otherwise
(4)

When processes in a partition have zero offset and jitter
values, conditions for schedulability of the partition using a
periodic or EDP resource model have been proposed in the
past [23, 9]. These conditions can be easily extended for pro-
cesses with non-zero jitter, and is presented below.

Theorem 1 A partition P = 〈〈τ1 =
(0, J1,T1,C1,D1), . . . , τn = (0, Jn,Tn,Cn,Dn)〉, DM〉,
where τ j has higher priority than τk for all j < k, is
schedulable over a periodic or EDP resource model R iff

∀i, 1 ≤ i ≤ n,∃ti ∈ (0,Di− Ji] s.t. rbfP,i(ti) ≤ sbfR(ti),

where rbfP,i is as defined in Equation (2).

Periodic or EDP resource model based interface for parti-
tion P can be generated using Theorem 1. For this purpose,
we assume that the period of resource modelR is equal to ΠP .
If R is a periodic resource model, then techniques presented
in [23] can be used to develop a periodic model based inter-
face. Since we are interested in minimizing processor usage
(and hence resource bandwidth), we must compute the small-
est Θ that satisfies this theorem. Hence, for each process τ i,
we solve for different values of ti and choose the smallest Θ
among them. Θ for modelR is then given by the largest value
of Θ among all processes in P . Similarly, if R is an EDP
resource model then Easwaran et. al. [9] have presented a
technique that uses this theorem to compute a resource model
having smallest bandwidth. However, as described in the in-
troduction, processes can be more accurately modeled using
non-zero offset values. Then, a major drawback in using the
aforementioned techniques is that Theorem 1 only gives suffi-
cient schedulability conditions. This follows from the fact that
the critical arrival pattern used by Equation (2) is pessimistic
for processes with non-zero offset. Additionally, these tech-
niques do not take into account preemption and blocking over-
heads incurred by processes.

In the following sections we extend Theorem 1 to accom-
modate processes with non-zero offsets, as well as to account
for blocking and preemption overheads. Recollect from Sec-
tion 2 that all the partitions scheduled on a processor are as-
sumed to have harmonic interface periods. This observation
leads to a tighter supply bound function for periodic resource
models when compared to the general case. Therefore, we
first present a new sbf for periodic resource models, and then
extend Theorem 1.

3.2 sbf under harmonic interface periods

In the technique described in [23], a periodic interface φ =
〈Π,Θ〉 is transformed into a periodic task τφ = (Π,Θ,Π),
before it is presented to the global scheduler. Note that the
period of model φ and task τφ are identical, and period (Π) of

Process deadline

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Process release

τ 1

τ 2

τ 1 = (2, 1, 2)

τ 3 = (4, 1, 4)

τ 3

τ 1 τ 1τ 1

τ 2

τ 3

τ 2 = (4, 1, 4)

Figure 2. Tasks with harmonic periods

task τφ is identical to its relative deadline. For the ARINC-
653 partitions, this means that partitions scheduled on a pro-
cessor are abstracted into periodic tasks with harmonic peri-
ods. When such implicit deadline4 periodic tasks are sched-
uled under DM, every job of a task is scheduled in the same
time instants within its execution window. This follows from
the observation that whenever a job of a task is released, all
the higher priority tasks also release a job at the same time.
For example, Figure 2 shows the schedule for a periodic task
set {τ1 = (2, 1, 2), τ2 = (4, 1, 4), τ3 = (4, 1, 4)}. It can be
seen that every job of τ3 is scheduled in an identical manner
within its execution window.

Whenever task τφ is executing, the resource is available
for use by periodic model φ. This means that resource sup-
ply allocations for φ also occur in an identical manner within
intervals (nΠ, (n + 1) Π], for all n ≥ 0. In other words, the
blackout interval x1 in sbfφ can never exceed Π−Θ. For the
example shown in Figure 2, assuming task τ3 is transformed
from a periodic resource model φ3 = 〈4, 1〉, the blackout in-
terval for φ3 can never exceed 3. Therefore, the general sbf
for periodic models given in Equation (3) is pessimistic for
our case. Improved sbfφ is defined as follows.

sbfφ(t) =

—
t

Π

�
Θ + max

0, t− (Π−Θ)−

—
t

Π

�
Π

ff
(5)

For a EDP resource model η = 〈Π,Θ,∆〉, the blackout
interval in sbfη is Π + ∆−2 Θ [9]. Since ∆ ≥ Θ is a nec-
essary condition, this blackout interval can never be smaller
than Π−Θ. Then, there will be no advantage in using EDP
models for partition interfaces over periodic models. There-
fore, we focus on periodic models in the remainder of this
paper.

3.3 Schedulability condition for partitions

Request function. When processes have non-zero off-
sets, identifying the critical arrival pattern to compute rbf is
a non-trivial task. It has been shown that this arrival pattern
could occur anywhere in the interval [0,LCM], where LCM

4Tasks with D = T.

4

denotes least common multiple of process periods (see [13]).
As a result, no closed form expression for rbf is known in
this case 5. Therefore, we now introduce the request function
(rf : < × < → <), which for a given time interval gives the
maximum possible amount of resource requested by the par-
tition in that interval. Since rf computes the resource request
for a specific time interval as opposed to an interval length, it
can be computed without knowledge of the critical arrival pat-
tern. When processes have non-zero jitter in addition to non-
zero offsets, we must compute rfP,i assuming an arrival pat-
tern that results in the maximum higher priority interference
for τ i. The following definition gives this arrival pattern for a
job of τ i with latest release time t, where t = Oi + Ji +xTi
for some non-negative integer x.

Definition 1 (Arrival pattern with jitter [24]) Recall that a
job of process τ = 〈O, J,T,C,D〉 is dispatched at time
instant xT + O for some non-negative integer x, and
can be released for execution at any time in the interval
[xT + O, xT + O + J]. Then, a job of τ i with latest release
time t, incurs maximum interference from higher priority pro-
cesses in P whenever, (1) all higher priority processes with
dispatch time before t are released at or before t with maxi-
mum jitter, and (2) all higher priority processes with dispatch
time at or after t are released with zero jitter.

The request function for processes with non-zero offset and
jitter values is then given by the following equation.

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj (6)

Schedulability conditions. The following theorem
presents exact schedulability conditions for partition P under
periodic resource model φ.

Theorem 2 Let T = {τ1, . . . , τn} denote a set of pro-
cesses, where for each i, τ i = (Oi, Ji,Ti,Ci,Di). Partition
P = 〈T , DM〉 is schedulable using a periodic resource model
φ = 〈Π,Θ〉 iff ∀i : 1 ≤ i ≤ n,∀tx s.t. tx + Di−Oi− Ji <
LCMP and tx = Oi + Ji +xTi for some non-negative inte-
ger x, ∃t ∈ (tx, tx + Di−Oi− Ji] such that

rfP,i(0, t) ≤ sbfφ(t) and rfP,i(tx, t) ≤ sbfφ(t− tx) (7)

rfP,i is given by Equation (6) and sbfφ is given by Equa-
tion (5). Also, LCMP denotes the least common multiple of
process periods T1, . . . ,Tn.

Proof To prove that these conditions are sufficient for
schedulability of P , we must validate the following state-
ments: (1) it is sufficient to check schedulability of all jobs
whose deadlines lie in the interval [0,LCMP], and (2) Equa-
tion (7) guarantees that the job of τ i with latest release time
tx, is schedulable using periodic resource model φ.

Since Di ≤ Ti and Oi ≤ Di for all i, no process released
before LCMP can execute beyond LCMP without violating

5rbfP,i defined in Equation (2) is only an upper bound.

its deadline. Furthermore, dispatch pattern of processes in P
is periodic with period LCMP . Therefore, it is sufficient to
check the schedulability of all jobs in the interval [0,LCMP].

We now prove statement (2). Consider the job of τ i with
latest release time tx. For this job to be schedulable under
resource model φ, higher priority interference encountered by
the job in interval [tx, tx + t) must be satisfied by resource
model φ. This higher priority interference arises from pro-
cesses released before tx, as well as from those released at or
after tx. Condition rfP,i(tx, t) ≤ sbfφ(t− tx) guarantees that
φ provides enough supply to satisfy the interference from pro-
cesses released at or after tx. To account for the interference
from processes released before tx, we have the second con-
dition, i.e., rfP,i(0, t) ≤ sbfφ(t). This condition ensures that
the minimum resource provided by φ in an interval of length
t, is at least as much as the total higher priority interference
up to time t. This proves that these conditions are sufficient
for schedulability of partition P .

We now prove that these conditions are also necessary
for schedulability of P . For this purpose, observe that
rfP,i(0, t) ≤ sbfφ(t) is a necessary condition to guarantee
that resource model φ satisfies the higher priority interference
in interval [0, t). Furthermore, this condition alone is not suffi-
cient, because it does not guarantee that φwill provide enough
resource in interval [tx, t). The second condition ensures this
property. 2

Periodic resource model based interface for partition P
can be generated using Theorem 2. Assuming period Π is
equal to ΠP , we can use this theorem to compute the small-
est capacity Θ that guarantees schedulability of P . When
compared to Theorem 1, this theorem represents a compu-
tationally expensive (exponential versus pseudo-polynomial),
but more accurate interface generation technique. In fact, for
many avionics systems we expect this technique to be com-
putationally efficient as well. For instance, if process peri-
ods are harmonic as in many avionics systems, then LCMP
is simply the largest process period, and our technique has
pseudo-polynomial complexity in this case.

Although Theorem 2 presents an exact schedulability con-
dition forP , it ignores the preemption and blocking overheads
incurred by processes in P . Hence, in the following section,
we extend our definition of rf to account for these overheads.

Blocking and preemption overheads. Recollect that
processes incur blocking overhead because of mutual exclu-
sion requirements modeled using semaphores. Blocking oc-
curs when a lower priority process is executing in a critical
section, and a higher priority process cannot preempt this
lower priority process. In this case the higher priority process
is said to be blocked by the lower priority process, resulting
in blocking overheads. Assuming critical sections span entire
process executions, two properties of this overhead can be de-
rived immediately: (1) this overhead varies with each job of
a process, and (2) any job of a process can be blocked by at
most one lower priority process.

5

����
����
����

����
����
����

����������
����������
����������

����������
����������
����������

������
������
������
������

����
����
����

����
����
����

process release process deadline

time instant t

τ i+2

τ i+1

τ i

τ l

τ l

τ i+2 τ i+1τ l

Figure 3. Illustrative example for BOP,l,i(t)

Consider a process set T = {τ1, . . . , τn} and partition
P = 〈T , DM〉. We now present an approach to bound the
blocking overhead for a job of process τ l released at time t.
Specifically, we compute the bound when this job is blocked
by some process having priority lower than that of τ i, for
some i ≥ l. We assume that all processes with priority lower
than τ i can potentially block this job of τ l. Our bound is given
as

BOP,l,i(t) = max
k∈[i+1,...,n]

{min {Ik,Ck}} , (8)

where Ik is defined as

Ik =

8<:0
j

t
Tk

k
Tk + Ok ≥ t or

j
t

Tk

k
Tk + Dk ≤ tj

t
Tk

k
Tk + Dk −t Otherwise

For each process τk, we compute its largest interference
on the job of τ l released at time t, and then choose the max-
imum over all τk that have priority lower than τ i. Any such
τk released at or before t can block this job of τ l, and this
blocking overhead is at most its worst case execution time.
Equation (8) uses this observation to compute the interference
from τk. Figure 3 gives an illustrative example for this block-
ing overhead. Let the worst case execution requirement of
processes τ i+1 and τ i+2, shown in the figure, be 5 time units.
Since the deadline of process τ i+1 is t + 8, its interference
on the job of τ l released at t is at most 8. However, its worst
case execution requirement is 5, and hence its interference is
at most 5 time units. On the other hand, the deadline of pro-
cess τ i+2 is t+3, and hence its maximum interference on this
job of τ l is 3 time units.

Note that Equation (8) only gives an upper bound, because
the execution of processes τ j , with j ≤ i, could be such that
no τk is able to execute before t. The following equation
presents a quantity BOP,l,i(t1, t2), which bounds the block-
ing overhead incurred by all jobs of τ l released in the interval
[t1, t2).

BOP,l,i(t1, t2) =
X

t:t∈[t1,t2) and τl released at t
BOP,l,i(t) (9)

When a higher priority process preempts a lower prior-
ity process, the context of the lower priority process must be
stored for later use. When the lower priority process resumes
its execution at some later time instant, this context must be

restored. Thus, every preemption results in an execution over-
head associated with storing and restoring of process con-
texts. Many different techniques for bounding this preemp-
tion overhead have been proposed in the past (see [22, 10]).
Ramaprasad and Mueller [22] have proposed a preemption
upper bound for processes scheduled under Rate Monotonic
scheduler (RM), and their technique can be extended to other
fixed priority schedulers. However, they only present an al-
gorithm to bound the preemptions, but do not give any closed
form equations. Easwaran et. al. [10] have proposed an an-
alytical upper bound for the number of preemptions under
fixed priority schedulers. They presented these bounds for
processes with non-zero offset values and zero jitter. These
equations can be easily extended to account for jitter in pro-
cess releases, as well as for blocking overheads. We assume
that an upper bound on the number of preemptions is ob-
tained using one such existing technique. Furthermore, we let
POP,i(t1, t2) denote this upper bound in the interval [t1, t2),
for preemptions incurred by processes that have priority at
least as much as τ i. Assuming δp denotes the execution over-
head incurred by processes for each preemption, request func-
tion with blocking and preemption overheads is given as

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj

+ δp × POP,i(t1, t2) +

iX
j=1

BOP,j,i(t1, t2) (10)

3.4 Interface generation for sample workloads

We now demonstrate the effectiveness of our proposed
technique using sanitized data sets obtained from an avionics
system. These data sets are specified in Appendix A. There
are 7 workloads, where each workload represents a set of par-
titions scheduled on a single processor. We consider two types
of workloads; workloads in which tasks have non-zero off-
sets but zero jitter (workloads 1 and 2 in Appendix A.1), and
workloads in which tasks have non-zero jitter but zero offsets
(workloads 3 thru 7 in Appendix A.2).

Each workload is specified using a xml schema, which
can be described as follows. The top level tag <system os-
scheduler=”DM”> identifies the system level scheduler un-
der which the entire workload is scheduled. The next level tag
<component max-period=”” min-period=”” scheduler=””
name=”” vmips=””> identifies a partition in the workload.
min-period and max-period define the range of values for
interface period, scheduler defines the scheduling algorithm
used by this partition, and name defines the name of the par-
tition (vmips is described below). The last level tag < task
offset=”” jitter=”” period=”” capacity=”” deadline=”” />
defines a periodic process τ = (O, J,T,C,D). For work-
loads 1 and 2, Table 1 in Section 3.4.1 specifies the total re-
source utilization of individual partitions (

∑
C
T). For work-

loads 3 thru 7, Table 2 in Section 3.4.2 specifies the re-
source bandwidth reservations for individual partitions, in ad-
dition to total resource utilization. This bandwidth reserva-
tion is computed using the vmips field of the component tag

6

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 45 50

B
an

dw
id

th

 20 25 30 35 40
Period

 0

φ5

φ1

φ2

φ3

φ4

(a) Using Theorem 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th

Period

 0

φ5

φ1

φ2

φ3

φ4

(b) Using approach in [23]

Figure 4. Interfaces for partitions P1, . . . , P5

in those workload specifications. Given a vmips value of x,
the amount of resource bandwidth reserved is equal to x

17.76 .
These reservations were used by system designers to allocate
processor supply to partitions.

We have developed a tool set that takes as input hierarchi-
cal systems specified using the aforementioned xml schema,
and generates as output resource model based interfaces for
them. In the following two sections we present the results
generated using this tool set.

3.4.1 Workloads with non-zero offsets

Partition Utilization Partition Utilization
P1 0.134 P6 0.12
P2 0.056 P7 0.1345
P3 0.028 P8 0.165
P4 0.1265 P9 0.006
P5 0.0335 P10 0.038

P11 0.048

Table 1. Workloads 1 and 2

In this section, we consider workloads 1 and 2 specified in
Appendix A.1. Firstly, we compare our proposed approach
with the existing well known compositional analysis tech-
nique based on periodic resource models [23]. We assume
that this technique uses Theorem 1 to generate periodic re-
source model based partition interfaces, and therefore ignores
process offsets. This approach does not account for preemp-
tion and blocking overheads incurred by processes. Hence to
ensure a fair comparison, we ignore these overheads when
computing interfaces using our approach as well. In Fig-
ures 4(a) and 5(a), we have plotted the resource bandwidths
of interfaces obtained using our approach (Theorem 2). We

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th

Period

 0

φ11

φ6

φ7

φ8

φ9

φ10

(a) Using Theorem 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th

Period

 0

φ11

φ6

φ7

φ8

φ9

φ10

(b) Using approach in [23]

Figure 5. Interfaces for partitions P6, . . . , P11

have plotted these bandwidths for period values 1 and mul-
tiples of 5 up to 50. Note that since sbfφ defined in Equa-
tion (5) is a linear function of capacity Θ, there is no need
to use a linear lower bound like the one used in [23]. Sim-
ilarly, we also obtained partition interfaces using Theorem 1
as discussed above, and their resource bandwidths are plotted
in Figures 4(b) and 5(b).

As can be seen from these plots, interfaces obtained using
our approach have a much smaller resource bandwidth when
compared to those obtained using the existing technique. This
gain in efficiency is because of two reasons: (1) we use a
tighter sbf in Theorem 2 when compared to existing approach,
and (2) existing approach ignores process offsets, and hence
generates pessimistic interfaces. Although this is only an il-
lustrative example, it is easy to see that the advantages of our
interface generation technique hold in general. From the plots
in Figures 4(a) and 5(a) we can also see that for some period
values, bandwidths of our periodic resource models are equal
to the utilization of corresponding partitions. Since utilization
of a partition is the minimum possible bandwidth of a resource
model that can schedule the partition, our approach generates
optimal resource models for these periods. In these plots it can
also be observed that the bandwidth increases sharply beyond
a certain period. For interfaces φ1, φ4, and φ8 correspond-
ing to partitions P1,P4, and P8, respectively, the bandwidth
increases sharply beyond period 25. This increase can be at-
tributed to the fact that in these partitions the smallest process
period is also 25. In our examples, since smallest process
period corresponds to the earliest deadline in a partition, re-
source models with periods greater than this smallest value
require larger bandwidth to schedule the partition.

Finally, we also generated partition interfaces using The-
orem 2, taking into account preemption and blocking over-
heads. The resource bandwidth of these interfaces are plotted

7

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th

Period

 0

φ5φ2

φ1

φ3

φ4

(a) Partitions P1, . . . , P5

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th

Period

 0

φ11

φ6

φ7

φ9

φ10

φ8

(b) Partitions P6, . . . , P11

Figure 6. Partition interfaces with blocking and
preemption overheads

in Figures 6(a) and 6(b). For preemption overhead we as-
sumed that the overhead for each preemption δp is 0.1, and
that every job of a process preempts some lower priority pro-
cess. Blocking overhead was computed using the upper bound
given in Equation (9). As expected, resource bandwidths of
these interfaces are significantly higher in comparison to the
bandwidths in Figures 4(a) and 5(a) 6. Since our preemption
and blocking overheads are only upper bounds and not neces-
sarily tight, the minimum bandwidths of resource models that
can schedule these partitions lie somewhere in between the
two plots.

3.4.2 Workloads with non-zero jitter

In this section, we consider workloads 3 thru 7 specified in
Appendix A.2. Since these workloads have zero offsets, we
used Theorem 1 to generate periodic resource model based
partition interfaces. In this theorem, we used sbf given by
Equation (5), and interface periods are as specified by the
min-period and max-period fields of component tags 7. For
preemption overheads we assumed that the overhead for each
preemption δp is 0.1, and that every job of a process pre-
empts some lower priority process. For blocking overheads
we assumed that every lower priority process can block the
process under consideration, up to its worst case execution
time. Consider the process set T = {τ1, . . . , τn} and parti-
tion P = 〈T , DM〉. Then, for a process τ l ∈ T , its blocking
overhead is equal to maxk>l{Ck}.

6Y-axis in Figures 6(a) and 6(b) ranges from 0 to 1, whereas in Fig-
ures 4(a) and 5(a) it ranges from 0 to 0.45.

7Note that min-period = max-period in all the component tags in work-
loads 3 thru 7.

Partition name Utilization Reserved Computed Overhead
Workload 3

PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART29 ID=29 0.199415 0.37669 0.3735 0.9%
PART35 ID=35 0.05168 0.22185 0.0717 209.4%
PART20 ID=20 0.035125 0.09798 0.0589 66.3%
PART32 ID=32 0.033315 0.08164 0.0781 4.5%
PART36 ID=36 0.045 0.11036 0.12 −8%
PART33 ID=33 0.0379 0.09178 0.0579 58.5%
PART34 ID=34 0.04764 0.10755 0.0676 59.1%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART31 ID=31 0.00684 0.01689 0.0137 23.3%

Workload 4
PART30 ID=30 0.11225 0.23086 0.169 36.6%
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART20 ID=20 0.035125 0.09797 0.0589 66.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART26 ID=26 0.13496 0.44932 0.2538 77%
PART27 ID=27 0.02784 0.06869 0.0478 43.7%
PART28 ID=28 0.0552 0.12106 0.0752 61%

Workload 5
PART15 ID=15 0.5208 0 0.5224
PART13 ID=13 0.01126 0.03378 0.0163 107.2%
PART12 ID=12 0.0050 0.01126 0.02 −43.7%

Workload 6
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART19 ID=19 0.14008 0.32939 0.2284 44.2%
PART21 ID=21 0.12751 0.30011 0.2667 12.5%
PART22 ID=22 0.13477 0.31137 0.2631 18.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%

Workload 7
PART45 ID=45 0.00325 0.02815 0.01 181.5%

Table 2. Bandwidths for workloads 3 thru 7

We now compare the bandwidth of generated interfaces
with the reserved bandwidth specified by vmips field of com-
ponent tags. Table 2 lists the following four parameters for
each partition in workloads 3 thru 7: (1) Total utilization of
the partition (

∑
C
T), (2) Reserved bandwidth (vmips17.76), (3) In-

terface bandwidth computed as described above, and (4) Per-

centage increase in bandwidth (reserved − computed
computed × 100).

As can be seen from this table, bandwidths of partition inter-
faces generated using our technique are significantly smaller
than reserved bandwidths of partitions. However, when gen-
erating partition interfaces, we ignore the resource require-
ments of aperiodic processes in partitions. These aperiodic
processes are identified by a period field equal to zero in the
task tag. For example, they are present in partition ”PART26
ID=26” of workload 4 and partition ”PART22 ID=22” of
workload 6. Since the workloads do not specify any deadlines
for these processes (they execute as background processes in
ARINC-653), we cannot determine the resource utilization of
these processes. Then, one may argue that the difference in re-
served bandwidth and bandwidth computed by our technique,
is in fact used by aperiodic processes. Although this can be
true, our results show that even for partitions with no aperi-
odic processes, there are significant savings using our tech-
nique.

8

, Execution chunks = 5

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

����
����
����
����

���
���
���
���Execution chunk

Context switches = 5

τ i

Preemptions (Ni) = 4

τ i

Figure 7. Preemption count terminology

4 Partition scheduling

Let the partition setP1, . . . ,Pn be scheduled on an unipro-
cessor platform under DM scheduler. Furthermore, let each
partition Pi be represented by a periodic resource model
based interface φi = 〈Πi,Θi〉 as described in Section 3.
Without loss of generality we assume that Π1 ≤ . . . ≤ Πn.
To schedule these interfaces on the uniprocessor platform, we
must transform each resource model into a task that the higher
level DM scheduler can use. For this purpose, we use the
transformation which for interface φi generates the process
τ i = (0, 0,Πi,Θi,Πi). It has been shown that this transfor-
mation is both necessary and sufficient w.r.t. resource require-
ments of φi [23].

If each partition interface is transformed as above, then
processes in the resulting set (τ1, . . . , τn) have implicit dead-
lines, zero offset values, and harmonic periods (partition pe-
riods are harmonic). Liu and Layland have shown that DM
is an optimal scheduler for such processes [18]. In the fol-
lowing section we present a technique to count the number
of preemptions incurred by this process set. The partition
level schedule can then be generated after adjusting execution
requirements of τ1, . . . , τn to account for preemption over-
heads.

4.1 Partition level preemption overhead

Preemption overhead for partitions represented as pro-
cesses, can be computed using the upper bounds described
in Section 3. However, as described in the previous section,
these processes are scheduled under DM, and have harmonic
periods, implicit deadlines, and zero offset and jitter values.
For such a process set, it is easy to see that every job of each
process executes in the same time instants relative to its re-
lease time (see Figure 2). Therefore, every job of a process
is preempted an identical number of times. For this case,
we now develop an analytical technique to compute the ex-
act number of preemptions.

Consider the process set τ1, . . . , τn defined in the previ-
ous section. For each i, let Ni denote the number of pre-
emptions incurred by each job of τ i. We first give an up-
per bound for Ni, and later show how to tighten this bound.
For this upper bound, we assume that the number of preemp-
tions N1, . . . , Ni−1 for processes τ1, . . . , τ i−1, respectively,

are known. We also assume that the worst case execution
requirements of these processes are adjusted to account for
preemption overheads. Then, the following iterative equation
gives an upper bound for Ni.

N
(k)
i =

2666 Θ
(k)
i

Πi−1−
Pi−1
j=1

Πi−1
Πj

Θj

3777

Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj
Nj

!
− 1

(11)
In this equation we assume Θ(0)

i = Θi and Θ(k)
i =

Θi +N (k−1)
i δp+δp, where δp denotes the execution overhead

for each preemption. N (k)
i ignores the preemption incurred

by process τ i at the start of its execution, and hence the ad-
ditional δp in capacity adjustment (see Figure 7). Then, the
upper bound for Ni is given by that value of N (k)

i for which
N

(k)
i = N

(k−1)
i .

Theorem 3 LetN∗i denote the value ofN (k)
i in Equation (11)

such that N (k)
i = N

(k−1)
i . Then N∗i ≥ Ni.

Proof In the kth iteration, given Θ(k)
i , Equation (11) com-

putes the number of dispatches of process τ i−1 that occur be-
fore the execution of Θ(k)

i units of τ i. This computation is
done inside the ceiling function by taking into account higher
priority interference for τ i. We then determine the number
of preemptions incurred by τ i within the execution window
of each these dispatches of τ i−1. Since every job of a pro-
cess executes in the same time instants relative to its release
time, this number of preemptions is the same in each of these
execution windows, except the first and last one. In the first
window it is smaller by one because we ignore preemption at
the start of execution of τ i. In the last window it is smaller
because execution of τ i can terminate before the end of the
window. Use of ceiling function implies that the first and last
windows are treated similar to other execution windows, and
this is one factor for the upper bound.

To determine the number of preemptions within each exe-
cution window of τ i−1, Equation (11) computes the number
of execution chunks of τ i in each window. Each set of consec-
utive execution units of a process in a schedule is a single exe-
cution chunk (see Figure 7)8. The maximum possible number
of chunks is given by Πi−1

Π1
. However, since higher priority

processes also execute in this window, τ i does not necessarily
have so many execution chunks. To get a tighter estimate for
Ni, we subtract the execution chunks of higher priority pro-
cesses from this maximum possible number. For each higher
priority process τ j ,

Πi−1
Πj

gives the number of jobs of τ j in the
current execution window, and Nj gives the number of pre-
emptions incurred by each of those jobs. Then, the number of
execution chunks of τ j in the entire window is (Nj + 1)Πi−1

Πj
.

However, all of these execution chunks of τ j cannot be al-
ways discarded; specifically the last one. Since the response
time of τ j need not necessarily coincide with a release of τ1,

8Note that the number of execution chunks is always one more than the
number of preemptions encountered by the process.

9

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

Πi−1

Π1
= 4, Nj = 1

τ 1 τ 1

τ 1

τ j

τ 1

τ i−1

τ 1

τ j

τ i−1

τ j

τ 1

τ j

Possible execution chunk of τ i

Figure 8. Execution chunks of process τ j

τ i could potentially continue its execution immediately after
the last execution chunk of τ j . For example, in Figure 8, τ j’s
response time does not coincide with the release of τ1, and
hence τ i can potentially execute in the marked time intervals.
In Equation (11) we always use Nj for the number of exe-
cution chunks of τ j , and hence the result is an upper bound.
Finally, we subtract one from the entire number to discount
the preemption at the start of execution of τ i. 2

Since Θ(k)
i is non-decreasing and cannot be greater than

Πi, this iterative computation must terminate and has pseudo-
polynomial complexity. This computation only gives an up-
per bound for Ni due to two reasons: (1) the ceiling func-
tion, and (2) use of Nj as the count for execution chunks
of process τ j . In fact, Equation (11) cannot be used to up-
per bound Ni, because it assumes knowledge of preemption
counts N1, . . . , Ni−1. We now present a technique that over-
comes these shortcomings. In particular, we modify Equa-
tion (11) as follows:

• We replace ceiling with the floor function, and add a sep-
arate expression that counts preemptions in the last exe-
cution window of τ i−1.

• We replace Nj in the equation with a quantity Ij , which
is either Nj + 1 or Nj , depending on whether the re-
sponse time of τ j coincides with a release of τ1.

LetN (k)′

i denote the preemption count for τ i in the last execu-
tion window of τ i−1, when Θ(k)

i is the execution requirement
of τ i. Then, Ni is given by the following iterative equation.

N
(k)
i =

66664 Θ
(k)
i

Πi−1−
Pi−1

j=1
Πi−1

Πj
Θj

77775
0@ Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj

Ij

1A+N
(k)′
i −1

(12)

In this equation we assume Θ(0)
i = Θi and Θ(k)

i =
Θi +N (k−1)

i δp + δp. Also, Ni is given by that value of N (k)
i

for which N (k)
i = N

(k−1)
i . We now give equations to com-

pute the two unknown quantities, Ij and N (k)′

i in the above
equation.

Ij =

(
Nj + 1

l
Rj

Π1

m
=
j

Rj

Π1

k
Nj Otherwise

Here Rj denotes the worst case response time of process τ j .
Since j ∈ [1, . . . , i−1], Nj is known and therefore Rj can be
computed. N (k)′

i is given by the following equation.

N
(k)′

i =

&
R

(k)
i −T

(k)
i−1

Π1

’
−

i−1X
j=2

&
R

(k)
i −T

(k)
i−1

Πj

’
Ij (13)

In this equation R(k)
i denotes the response time of τ i with

execution requirement Θ(k)
i , and T (k)

i−1 is the time of last dis-

patch of τ i−1. R(k)
i −T (k)

i−1 gives the total time taken by τ i to
execute in the last execution window of τ i−1. This, along
with the higher priority interference in the window, gives
N

(k)′

i . The following theorem then observes that the preemp-
tion count generated using Equation (12) is equal to Ni.

Theorem 4 LetN∗i denote the value ofN (k)
i in Equation (12)

such that N (k)
i = N

(k−1)
i . Then N∗i = Ni.

In this iterative procedure as well, Θ(k)
i is non-decreasing

and cannot be greater than Πi. Therefore, the computation is
of pseudo-polynomial complexity in the worst case. One may
argue that the exact preemption count can also be obtained by
simulating the execution of processes. Since process periods
are harmonic, LCM is simply the largest process period, and
therefore the simulation also runs in pseudo-polynomial time.
However, in safety critical systems such as avionics, it is often
required that we provide analytical guarantees for correctness.
The iterative computation presented here serves this purpose.

Thus, each process τ i can be modified to account
for preemption overhead and is specified as τ i =
(0, 0,Πi,Θi +(Ni + 1)δp,Πi). If the resulting process set
{τ1, . . . , τn} is schedulable9, then using Theorems 2 and 4
we get that the underlying partitions can schedule their work-
loads.

5 Conclusions

In this paper we presented ARINC-653 standards for
avionics real-time OS, and modeled it as a two level hierarchi-
cal system. We extended existing resource model based tech-
niques to handle processes with non-zero offset values. We
then used these techniques to generate partition level sched-
ules. Design of real-time systems in modern day air-crafts is
done manually through interactions between application ven-
dors and system designers. Techniques presented in this pa-
per serve as a platform for principled design of partition level
schedules. They also provide analytical correctness guaran-
tees, which can be used in system certification.

References

[1] Green Hills Software, ARINC 653 partition scheduler. In
www.ghs.com/products/safety critical/arinc653.html.

9Liu and Layland have given response time based schedulability condi-
tions for this case [18].

10

[2] Windriver, platform for ARINC 653. In
www.windriver.com/products/platforms/safety critical/.

[3] Avionics application software standard interface: Part 1 - re-
quired services (arinc specification 653-2). Technical report,
Avionics Electronic Engineering Committee (ARINC), March
2006.

[4] L. Almeida and P. Pedreiras. Scheduling within temporal par-
titions: response-time analysis and server design. In EMSOFT,
2004.

[5] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A syn-
chronization protocol for hierarchical resource sharing in real-
time open systems. In EMSOFT, 2007.

[6] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Using harmonic task-sets to increase the schedu-
lable utilization of cache-based preemptive real-time systems.
In RTCSA, 1996.

[7] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In RTSS, 2005.

[8] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. In RTSS, 2006.

[9] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using edp resource models. In RTSS, 2007.

[10] A. Easwaran, I. Shin, I. Lee, and O. Sokolsky. Bounding pre-
emptions under EDF and RM schedulers. Technical Report
MS–CIS–06–06, University of Pennsylvania, USA, 2006.

[11] X. Feng and A. Mok. A model of hierarchical real-time virtual
resources. In RTSS, 2002.

[12] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-
scheduled resource-sharing open environment. In RTSS, 2007.

[13] J. Goossens. Scheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset Constraints. PhD
thesis, Universit Libre de Bruxelles, 1999.

[14] L. Kinnan, J. Wlad, and P. Rogers. Porting applications to an
arinc 653 compliant ima platform using vxworks as an exam-
ple. In Proceedings of the 23rd Digital Avionics Systems Con-
ference, 2004.

[15] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou. Scheduling tool
and algorithm for integrated modular avionics systems. In Pro-
ceedings of 19th Digital Avionics Systems Conference, 2000.

[16] J. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evalua-
tion, pages 237–250, 1982.

[17] G. Lipari and E. Bini. Resource partitioning among real-time
applications. In ECRTS, 2003.

[18] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1):46 – 61, 1973.

[19] S. Matic and T. A. Henzinger. Trading end-to-end latency for
composability. In RTSS, 2005.

[20] A. K. Mok, D.-C. Tsou, and R. C. M. de Rooij. The msp.rtl
real-time scheduler synthesis tool. In RTSS, 1996.

[21] M. D. Natale and J. Stankovic. Dynamic end-to-end guarantees
in distributed real-time systems. In RTSS, 1994.

[22] H. Ramaprasad and F. Mueller. Tightening the bounds on fea-
sible preemption points. In RTSS, 2006.

[23] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In RTSS, 2003.

[24] K. Tindell. Adding time-offsets to schedulability analysis.
Technical Report: YCS 221, Dept. of Computer Science, Uni-
versity of York, York, England, January 1994.

[25] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and Mi-
croprogramming, 40:171–134, 1994.

11

A ARINC-653 workloads

A.1 Workloads with non-zero offset

Workload 1:

<system os-scheduler="DM" >
<component max-period="25" min-period="25" scheduler="DM" name=’’P1’’ >
<task offset="2" jitter=’’0" period="25" capacity="1.4" deadline="25" />
<task offset="3" jitter=’’0" period="50" capacity="3.9" deadline="50" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P2’’ >
<task offset="0" jitter=’’0" period="50" capacity="2.8" deadline="50" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P3’’ >
<task offset="0" jitter=’’0" period="50" capacity="1.4" deadline="50" />

</component>
<component max-period="25" min-period="25" scheduler="DM" name=’’P4’’ >
<task offset="3" jitter=’’0" period="25" capacity="1.1" deadline="25" />
<task offset="5" jitter=’’0" period="50" capacity="1.8" deadline="50" />
<task offset="11" jitter=’’0" period="100" capacity="2" deadline="100" />
<task offset="13" jitter=’’0" period="200" capacity="5.3" deadline="200" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P5’’ >
<task offset="2" jitter=’’0" period="50" capacity="1.3" deadline="50" />
<task offset="14" jitter=’’0" period="200" capacity="1.5" deadline="200" />

</component>
</system>

Workload 2:

<system os-scheduler="DM" >
<component max-period="50" min-period="50" scheduler="DM" name=’’P6’’ >
<task offset="3" jitter=’’0" period="50" capacity="5.4" deadline="50" />
<task offset="15" jitter=’’0" period="200" capacity="2.4" deadline="200" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P7’’ >
<task offset="1" jitter=’’0" period="50" capacity="3.7" deadline="50" />
<task offset="3" jitter=’’0" period="100" capacity="1.8" deadline="100" />
<task offset="4" jitter=’’0" period="200" capacity="8.5" deadline="200" />

</component>
<component max-period="25" min-period="25" scheduler="DM" name=’’P8’’ >
<task offset="2" jitter=’’0" period="25" capacity="2.3" deadline="25" />
<task offset="7" jitter=’’0" period="100" capacity="4.8" deadline="100" />
<task offset="9" jitter=’’0" period="200" capacity="5" deadline="200" />

</component>
<component max-period="100" min-period="100" scheduler="DM" name=’’P9’’ >
<task offset="0" jitter=’’0" period="100" capacity="0.6" deadline="100" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P10’’ >
<task offset="0" jitter=’’0" period="50" capacity="1.9" deadline="50" />

</component>
<component max-period="50" min-period="50" scheduler="DM" name=’’P11’’ >
<task offset="0" jitter=’’0" period="50" capacity="2.4" deadline="50" />

</component>
</system>

A.2 Workloads with non-zero jitter

Workload 3:

<system os-scheduler="DM" >
<component max-period="200000" min-period="200000" scheduler="DM" name="PART16 ID=16" vmips="0.8" >
<task offset="0" jitter="1000" period="200000" capacity="282" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="863" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="701" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="106" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1370" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="607" deadline="200000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART29 ID=29" vmips="6.69" >
<task offset="0" jitter="1000" period="25000" capacity="2260" deadline="25000" />
<task offset="0" jitter="1000" period="200000" capacity="1643" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1158" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1108" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1108" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1108" deadline="200000" />

12

<task offset="0" jitter="1000" period="200000" capacity="6078" deadline="200000" />
<task offset="0" jitter="1000" period="100000" capacity="4800" deadline="100000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART35 ID=35" vmips="3.94" >
<task offset="0" jitter="1000" period="50000" capacity="1202" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="390" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="992" deadline="50000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART20 ID=20" vmips="1.74" >
<task offset="0" jitter="1000" period="25000" capacity="290" deadline="25000" />
<task offset="0" jitter="1000" period="100000" capacity="640" deadline="100000" />
<task offset="0" jitter="1000" period="50000" capacity="675" deadline="50000" />
<task offset="0" jitter="1000" period="200000" capacity="725" deadline="200000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART32 ID=32" vmips="1.45" >
<task offset="0" jitter="1000" period="50000" capacity="1108" deadline="50000" />
<task offset="0" jitter="5000" period="50000" capacity="218" deadline="50000" />
<task offset="0" jitter="5000" period="200000" capacity="1359" deadline="200000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART36 ID=36" vmips="1.96" >
<task offset="0" jitter="1000" period="200000" capacity="1000" deadline="200000" />
<task offset="0" jitter="1000" period="25000" capacity="1000" deadline="25000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART33 ID=33" vmips="1.63" >
<task offset="0" jitter="1000" period="50000" capacity="406" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="1352" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="137" deadline="50000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART34 ID=34" vmips="1.91" >
<task offset="0" jitter="1000" period="50000" capacity="286" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="1870" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="226" deadline="50000" />

</component>
<component max-period="100000" min-period="100000" scheduler="DM" name="PART17 ID=17" vmips="0.2" >
<task offset="0" jitter="1000" period="100000" capacity="408" deadline="100000" />

</component>
<component max-period="100000" min-period="100000" scheduler="DM" name="PART31 ID=31" vmips="0.3" >
<task offset="0" jitter="1000" period="100000" capacity="684" deadline="100000" />

</component>
</system>

Workload 4:

<system os-scheduler="DM" >
<component max-period="50000" min-period="50000" scheduler="DM" name="PART30 ID=30" vmips="4.1" >
<task offset="0" jitter="1000" period="200000" capacity="2450" deadline="200000" />
<task offset="0" jitter="1000" period="50000" capacity="5000" deadline="50000" />

</component>
<component max-period="200000" min-period="200000" scheduler="DM" name="PART16 ID=16" vmips="0.8" >
<task offset="0" jitter="1000" period="200000" capacity="282" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="863" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="701" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="106" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1370" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="607" deadline="200000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART20 ID=20" vmips="1.74" >
<task offset="0" jitter="1000" period="25000" capacity="290" deadline="25000" />
<task offset="0" jitter="1000" period="100000" capacity="640" deadline="100000" />
<task offset="0" jitter="1000" period="50000" capacity="675" deadline="50000" />
<task offset="0" jitter="1000" period="200000" capacity="725" deadline="200000" />

</component>
<component max-period="100000" min-period="100000" scheduler="DM" name="PART17 ID=17" vmips="0.2" >
<task offset="0" jitter="1000" period="100000" capacity="408" deadline="100000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART26 ID=26" vmips="7.98" >
<task offset="0" jitter="1000" period="25000" capacity="1403" deadline="25000" />
<task offset="0" jitter="1000" period="0" capacity="14783" deadline="0" />
<task offset="0" jitter="1000" period="50000" capacity="3942" deadline="50000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART27 ID=27" vmips="1.22" >
<task offset="0" jitter="1000" period="50000" capacity="1391" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="1" deadline="50000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART28 ID=28" vmips="2.15" >
<task offset="0" jitter="1000" period="50000" capacity="2760" deadline="50000" />
<task offset="0" jitter="1000" period="200000" capacity="1" deadline="200000" />

</component>
</system>

Workload 5:

13

<system os-scheduler="DM" >
<component max-period="6250" min-period="6250" scheduler="DM" name="PART15 ID=15" vmips="0" >
<task offset="0" jitter="10" period="6250" capacity="3255" deadline="6250" />
<task offset="0" jitter="1000" period="200000" capacity="0" deadline="200000" />
<task offset="0" jitter="1000" period="100000" capacity="0" deadline="100000" />
<task offset="0" jitter="1000" period="25000" capacity="0" deadline="25000" />
<task offset="0" jitter="1000" period="50000" capacity="0" deadline="50000" />

</component>
<component max-period="200000" min-period="200000" scheduler="DM" name="PART13 ID=13" vmips="0.6" >
<task offset="0" jitter="1000" period="200000" capacity="282" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="863" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="500" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="607" deadline="200000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART12 ID=12" vmips="0.2" >
<task offset="0" jitter="1000" period="100000" capacity="500" deadline="100000" />
<task offset="0" jitter="1000" period="25000" capacity="0" deadline="25000" />

</component>
</system>

Workload 6:

<system os-scheduler="DM" >
<component max-period="200000" min-period="200000" scheduler="DM" name="PART16 ID=16" vmips="0.8" >
<task offset="0" jitter="1000" period="200000" capacity="282" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="863" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="701" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="106" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="1370" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="607" deadline="200000" />

</component>
<component max-period="12500" min-period="12500" scheduler="DM" name="PART19 ID=19" vmips="5.85" >
<task offset="0" jitter="1000" period="12500" capacity="645" deadline="12500" />
<task offset="0" jitter="1000" period="100000" capacity="1565" deadline="100000" />
<task offset="0" jitter="1000" period="50000" capacity="1440" deadline="50000" />
<task offset="0" jitter="1000" period="25000" capacity="1010" deadline="25000" />
<task offset="0" jitter="1000" period="200000" capacity="725" deadline="200000" />

</component>
<component max-period="25000" min-period="25000" scheduler="DM" name="PART21 ID=21" vmips="5.22" >
<task offset="0" jitter="1000" period="25000" capacity="217" deadline="25000" />
<task offset="0" jitter="100" period="25000" capacity="840" deadline="25000" />
<task offset="0" jitter="1000" period="50000" capacity="1944" deadline="50000" />
<task offset="0" jitter="1000" period="100000" capacity="1988" deadline="100000" />
<task offset="0" jitter="1000" period="200000" capacity="5294" deadline="200000" />

</component>
<component max-period="50000" min-period="50000" scheduler="DM" name="PART22 ID=22" vmips="5.53" >
<task offset="0" jitter="1000" period="50000" capacity="238" deadline="50000" />
<task offset="0" jitter="1000" period="50000" capacity="3450" deadline="50000" />
<task offset="0" jitter="1000" period="100000" capacity="1868" deadline="100000" />
<task offset="0" jitter="1000" period="200000" capacity="8466" deadline="200000" />
<task offset="0" jitter="1000" period="0" capacity="1855" deadline="0" />

</component>
<component max-period="100000" min-period="100000" scheduler="DM" name="PART17 ID=17" vmips="0.2" >
<task offset="0" jitter="1000" period="100000" capacity="408" deadline="100000" />

</component>
</system>

Workload 7:

<system os-scheduler="DM" >
<component max-period="50000" min-period="50000" scheduler="DM" name="PART45 ID=45" vmips="0.5" >
<task offset="0" jitter="1000" period="200000" capacity="400" deadline="200000" />
<task offset="0" jitter="1000" period="200000" capacity="50" deadline="200000" />
<task offset="0" jitter="1000" period="50000" capacity="50" deadline="50000" />

</component>
</system>

14

	A Compositional Framework for Avionics (ARINC-653) Systems
	Recommended Citation

	A Compositional Framework for Avionics (ARINC-653) Systems
	Abstract
	Comments

	tmp.1240333120.pdf.55O99

