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Stability of a Core-Annular Flow in a Rotating Pipe

Abstract

The linear stability of core-annular flow in rotating pipes is analyzed. Attention is focused on the effects of
rotating the pipe and the difference in density of the two fluids. Both axisymmetric and nonaxisymmetric
disturbances are considered. Major effects of the viscosity ratio, interfacial tension, radius ratio, and Reynolds
number are included. It is found that for two fluids of equal density the rotation of the pipe stabilizes the
axisymmetric (n=0) modes of disturbances and destabilizes the nonaxisymmetric modes. Except for small
script R sign, where the axisymmetric capillary instability is dominant, the first azimuthal mode of disturbance
|| = 1 is the most unstable. When the heavier fluid is outside centripetal acceleration of the fluid in the
rotating pipe is stabilizing; there exists a critical rotating speed above which the flow is stabilized against
capillary instability for certain range of small script R sign. When the lighter fluid is outside the flow is always
unstable.
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Stability of core-annular flow in a rotating pipe

Howard H. Hu and Daniel D. Joseph
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis,
Minnesota 55455

(Received 3 February 1989; accepted 16 June 1989)

The linear stability of core-annular flow in rotating pipes is analyzed. Attention is focused on
the effects of rotating the pipe and the difference in density of the two fluids. Both
axisymmetric and nonaxisymmetric disturbances are considered. Major effects of the viscosity
ratio, interfacial tension, radius ratio, and Reynolds number are included. It is found that for
two fluids of equal density the rotation of the pipe stabilizes the axisymmetric (n = 0) modes
of disturbances and destabilizes the nonaxisymmetric modes. Except for small 7, where the
axisymmetric capillary instability is dominant, the first azimuthal mode of disturbance |n| = 1

is the most unstable. When the heavier fluid is outside centripetal acceleration of the fluid in
the rotating pipe is stabilizing; there exists a critical rotating speed above which the flow is
stabilized against capillary instability for certain range of small . When the lighter fluid is

outside the flow is always unstable.

I. INTRODUCTION

This paper is a further study on the linear stability of
core-annular flow (CAF). In the previous works on the sta-
bility of CAF, Joseph, Renardy, and Renardy (JRR'), Pre-
ziosi, Chen, and Joseph (PCJ?), Hu and Joseph (HJ?), and
recently Chen, Bai, and Joseph,* the pipe does not rotate.
PCJ? and HJ? calculated growth rates and neutral curves.
HJ’ also carried out an energy analysis of small distur-
bances. By comparing with experiments, the linear theory
can be correlated with the flow regimes that arise in practice:
bubbles and slugs of oil and water, bubbly mixtures of oil and
water, stable CAF, wavy core flow, and emulsions of water
in oil. Flow regimes, wavelengths, and wave speeds seem to
be predicted with fair accuracy by linear theory. This appar-
ent success of the linear theory may eventually be shown to
be fortuitous, but perhaps not more fortuitous than Ray-
leigh’s celebrated criterion for the size of bubbles arising
from capillary instability. In all the previous works it was
found that the most unstable disturbance is axisymmetric
(n = 0). In this paper we are going to study the situation of
core-annular flow in a rotating pipe.

Linear stability theory for the rapid rotation of Poi-
seuille flow on one fluid in a pipe was studied by Pédley.*®
Joseph and Carmi’ did a nonlinear energy analysis that ap-
plies to the same flow and found a nearly identical result (see
Joseph®). They found that the flow is unstable to nonaxisym-
metric disturbances for Reynolds number greater than 82.9.
This instability has been confirmed for slow rotation both
numerically and experimentally by Mackrodt.” Later, Cot-
ton and Salwen'" did extensive numerical computations on
the problem. They all found the most unstable disturbance is
nonaxisymmetric (|n] = 1).

il. BASIC FLOW

Consider two immiscible liquids flowing down a circu-
lar pipe in a concentric configuration with the inner layer
(core) occupied by liquid 1 and outer layer (annulus) by
liquid 2, the pipe is rotating with a constant angular velocity
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. The interface between the liquids is at » = r,(6,2,¢), where
(r,0,z) are cylindrical coordinates and ¢ is time. Let
U = (u,,uy,u,) be the velocity, p the pressure, u,, p, the
viscosity and density of liquid 1, and u, and p, the viscosity
and density of liquid 2.

Assume that the pipe is infinitely long with axis at r = 0,
the mean value of r,(6,z,t) over 6 (0<0<27), and
z( — L<z<L,L— ) is R, a constant that can be deter-
mined by prescribing the volume of each fluid in the linear
theory of stability. We also assume that gravity can be ne-
glected.

We scale the length with the pipe radius R,, the velocity
with the centerline velocity of basic flow W,, pressure with
W3, time with R,/W,, and we use the same symbols for
dimensional and dimensionless variables.

The basic flow with constant pressure gradient
JdP /dz = — Fand rigid rotation of the pipe is

U=(0,F(r), W(r))and p = P. %))
The tangential velocity is given by
V(r) =er, ’E[O,l], (2)

the axial velocity is given by

[1_772+m(772—’2)]//4, ’E[Or”]:

W =
=10 =Py, retn1),
and the pressure is determined by
apP
— =,V (r/r), (4)
oar

where {, = 1 or { corresponding to flows in the core or in the
annulus,

A=1—9"+my’, (5)
p=R gt p=fr =R (6)
R, 1 P Wo
and the centerline velocity is given by
W,= (F/4u,)(mR} + R} —R}). (7

© 1989 American institute of Physics 1677



lil. PERTURBATION EQUATIONS AND NORMAL
MODES

w7z

we perlurD lnc L()rc*dn"uldr IIUW Uy Wllllllg \u U w,p)
for the nprturh,\tlnnc in the velocities and pressure and & for

e vanen viiOL: canac o

the perturbatlon in the interface radius, dnd we introduce the
dimensionless parameters

99=p|WoRz/ﬂn J'=TR2P|/,U%, (8)

where T is the coefficient of interfacial tension.
We use the normal mode decomposition of solutions:

[upw,p](r,0,2,t) = [iupwpl(riexplin + iB(z —ct) ]
and
6(6.z,t) = Sexplind + iB(z —cN) ], 9)

where u(r), v(r), w(r), and p(r) are complex-valued func-
tions and é is a complex constant.
The linearized equations of motion are

EALBW — ) + nelu + 2ev}

_ o, im, [_d_( d (m))
P==7 ar\Far

2
—(ﬂ2+%)u——2r—g—v], (10)
¢EAB(W —¢) + nelv + 2eu}
__r _im, i( d (ru))
IR R s
2
—(ﬁ2+%)v—27"u], (11)
EABW —c¢) + nelw+ W'u}
_ g dm, 1 d( dw zn_)]
= —h R rdr( dr) (B +r2w'
(12)
d
-—(ru)+—v+/3w - 0, (13)

rdr
where W' =dW/dr, m, =(1,m), &, = (1), /=12
indicates the flow in core and in annulus.

The boundary conditions are

u=v=w=0 atr=1, (14)
u,v,w,p, and their derivatives
are finite at r = (). (15)
The lincarized interface conditions at r = 7 are
u(n) = [B(W —c) + nels, (16)
[u] = [v] =0, (17)
[w] + [W']6 -0, (18)
[m,(=Pu+w)]=0, (19)
[mA—= (nu+0v)/r+0)] =0, (20)
Pl — QitA)[mu') = — [€(1 - ) + (J*/7% %)

X (1 —=n" -9'B)186, (2n

where | | = ( ), - ( ),isjumpacross r = 1.
When we compare with the work of HJ,* where the rigid
rotation of the pipe was not considered, we see that the dif-
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ferences of the linearized equations and interfacial condi-
tions are as follows: all B(W — ¢) in HJ* are to be replaced
by B(W — ¢) 4+ ne; there are two more terms in (10) and
(11), 2ev and 2eu, which couple the variables « and v; and
there is an additional term €7 (1 — £) in the interfacial con-
dition (21) resulting from the rotation of the pipe times the
density difference of the fluids.

IV. ENERGY ANALYSIS

The linearized energy equation is obtained by multiply-
ing (10), (11), and (12) by u., v., and w., the complex
conjugates of u, v, and w, and integrating the sum of these
three equations over r = [0,1], exactly asin HJ.” The energy

halas 2728
vaiaiicc cquauuu lb

E=1-D+B, (22)
where
. 2
E = fc, ZJ P+ 0+ wh)rdr,
odn,

& W im{uw. }rdr,
i) G (&)
0 m,[( rdr + rdr + dr

2
+ (ﬂz + .',%)(u2 + 0 4w + ﬁrg—Re{uU.}]r dr

-3

A Jn,

1
+ —';2— (ufzo; + U(I(n IR (23)
= lm” — pru. L om (d(ru)
A rdr
d(rv) dw )”
+ —rv. +—rw. ,
rdr dr
where  Q,=107), Q= (1], and ¥ =uu.,
v? = v'v.,... . Here Eis the rate of change of kinetic energy of

the perturbed flow, /is the rate at which energy is transferred
from the basic flow to the perturbed flow through the Reyn-
olds stress, — D is the rate of viscous dissipation of the per-
turbed flow, and B is the rate at which energy is being sup-
plied at the interface.

In this case, the interfacial energy B can be written as

B=B1+B2+ B3, (24)
where
J* 1 —n*— 9B 2
Bl:(ﬁc,) = > 7u-( )1
B A W) —c+ne/BI1° !
B2 — 2(_1;__& [03(1;) - Re(nu'(v' Ju. (1)
1]2(2‘—’") : 2
ALW(y) = c+ ne/B | o
’IIJm ' 1
+ w'(n ' u. (1 ))]
AB W () — ¢ + ne/B . , ’
(25)
and
2.2 a
3= (Be) o LUy,

B IW(n) - c+ ne/B 1’
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The interfacial energy B 1 is due to surface tension, B2 is
due to the difference of viscosity of two fluids, and the new
term B 3 is due to the difference of density of two fluids and
the rotation of the pipe. Obviously if £ > 1 (the heavier fluid
is centrifuged), this new term B3 is stabilizing (B 3 <0),
whileif § < 1 (the lighter fluid is in annulus), B 3 is a destabi-
lizing (B3>0).

Since the amplitude of velocities u, v, w (or eigenfunc-
tions) is arbitrary, the value of each term of energy is nor-
malized with D = 1.

V. NUMERICAL METHOD

Following HJ,? the coupled eigenvalue equations (10)—
(13) with boundary and interface conditions (14)-(21) are
solved using a finite element method. We again take the Her-
mite polynomials as the interpolation functions for » and the
Lagrange polynomials for v, since the governing equation for
u after eliminating w is fourth order while the equation for v
is second order.

After discretization, we obtain an eigenvalue system

Ax = (¢ — ne/B)Bx, (26)

where ¢ = ¢, + ic; is an eigenvalue introduced in (9), A and
B are the global matrices and

[ (du du du T
X=lu, _dr I,v,,uz, -——dr 2,02,...,11”, _dr WOnN ]|
N

N is the total number of nodes.

The eigensystem (26) is solved with the IMSL routine
EIGZC on the Cray 2.

Since r = 0 is a singular point, precaution for the inte-
grations over the first element is needed. We find this espe-
cially important for the cases in which ¢ is large. We did the
exact integration over [r,A] for the first elemental matrices,
where A is the length of the first element and r tends to zero.
In this way we also find the proper boundary conditions at
origin, which are the same as those derived in PCJ.2

Equations (10)-(13) with conditions (14)~(21) show
that we cover all possibilities when increasing z is the direc-
tion of flow and % > 0 while the parameters (€,n,3) can be
either positive or negative. To determine the symmetries of
these equations we changeeto — €, nto —nandvto — v
and verify that Egs. (10)-(21) are unchanged. This symme-
try implies that the growth rate B¢, is unchanged under the
change of these signs, or changing € to — € is equivalent to
changing n to — n. Similarly, if we take the complex conju-
gates of these equations and conditions, we find that chang-
ing nto — n is equivalent to changing 8 to — 3; therefore
changing the sign of any two of the three parameters (¢€,n,/3)
leaves the growth rate B¢, invariant. This argument shows
that all cases are realized in the set of # >0, n>0, €0, and
Bel — w,]. If either n =0 or € = 0, all possible growth
rates are contained in a set of parameters in which 0.

In our computation a new parameter

is introduced. This parameter can be more easily controlled
in experiments than e.

For the results given in this paper, 30 elements are used
(15 in core + 15 in annulus). The size of the element is not

1679 Phys. Fluids A, Vol. 1, No. 10, October 1989

uniform; smaller elements are used for regions near the pipe
wall and the interface, taking into account effects of the
boundary layer in these regions. In some cases 25 + 25 ele-
ments were used to check our results. The results were al-
most the same.

As a further check of our code we compared our results
with some neutral stability data given in Cotton and Sal-
wen'? (Table 1) for rotating Hagen—Poiseuille flow of one
fluid, the comparison is listed in Table I. The results for low
# are almost the same; for high & our results are slightly
lower than theirs but the discrepancy is within 1.8%. Thus
we are confident about our code.

VI.{=1, TWO FLUIDS OF EQUAL DENSITY

In this paper, we consider the case m < 1, a viscous core
with lubricating annulus, for example, an oil core with water
annulus. As a typical situation we choose parameters

* = 1000, 7 = 0.8, and m = 0.1 and basically study the ef-
fects of () (rotational speed), £ (the density ratio), and
n (the azimuthal wavenumber). Results exhibited in the pa-
persof JRR,' PCJ,? and HJ? show that for Q = 0Othe axisym-
metric disturbances of core-annular flow are most danger-
ous. On the other hand, the most unstable disturbance of the
rotating Poiseuille flow of one fluid is not axisymmetric and
has a n = 1 azimuthal periodicity. In this paper we studied
both modes, n =0 and n = 1. We find that when #£0,
n =1 is especially important.

First we consider the case of { = |; the two fluids have
the same density.

Figure 1 presents the neutral curves for J* = 1000,
7 =0.8, m=0.1, and n = 0 with {2 = 0, 50, 100, and 200.
When ) = 0, the neutral curve has nicely separated upper
branch and lower branch, typical for CAF. We see clearly
that the rotation of the pipe stabilizes the upper branch (lifts
the branch higher). The effect of rotation on the lower
branch depends on the value of €): for small (2, the rotation
compresses the unstable region in the bottom left-hand cor-
ner, so it is stabilizing; as 2 increases, this margin of stability
is raised and the rotation is destabilizing. This shows that
fast rotation can supress the effects of shear stabilization of
capillary instability. It is in this range of () that we find n = 0

TABLE 1. Comparison of neutral stability data with data given by Cotton
and Salwen'” for rotating Hagen—Poiseuille flow of one fluid, when n, 8, and
Q are given and # corresponding to neutral stability is computed.

n B Q 4 in Ref. 10 A (present result)
1 —-0.1 415 83.1 83.11
1 - 1.0 51.8 109 109.3
1 —2.0 835 2810 2791
2 - 0.1 909 91.2 91.37
2 —1.0 106 108 107.7
2 -20 972 1840 1808
3 -0.1 1650 110 110.5
3 - 1.0 186 125 124.8
3 -20 1560 2020 1995
5 - 1.0 438 176 175.7

10 - 1.0 1780 356 356.5

15 - 1.0 4500 600 600.5

30 - 1.0 25 100 1680 1681.3

H. H. Hu and D. D. Joseph 1679
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FIG. 1. Neutral curves for the axisymmetric mode (# = 0) when two fluids
are of equal density { = 1. Increasing the rotational speed € of the pipe
stabilizes the upper branch and at first stabilizes, then destabilizes, the lower
branch. B: §) = 0; §: {1 = 50; A: § = 100; + : §) = 200.

* 8

(a)

s n=0
® Nl

200

®)

FIG. 2. Neutral curves for the first mode of azimuthal periodicity (n -
(b) 2 = 50; (¢) & = 100; and (d) © = 200. At 50, n
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1 is more unstable at left plance (

is not the most unstable mode; the » = 1 mode comes into
play.
In Fig. 2 we have displayed tt

the neutira
with parameters at the values set in

neutral curves for n =0 for comparison. We see that for
() = 0 the neutral curve in the (:#, — f3) plane is just the
reflection of the curve in the (:#,3) plane. This symmetry
was established by the argument given in Sec. V. The neutrai

e for n = 1 Lie¢ wi
CUrve ior n = 1 1es wi

more unstable in this case, a result that we obtained in pre-
vious papers. As () increases, the neutral curve for n = 1
loses symmetry with respect to 8. For positive # the neutral
curve ’W([)’) moves up as {} increases; while for negative 3

Feaval Anwn (Aactalils
D UUWII \UC\LdUllll‘

other !ll;'l’l
(3041w 1184

— N < — N
inthecurveforn=0,s0n=0is

ing thc ow) as {) increases. B

In Fig. 2 we cannot see clearly how the neutral curve for
the n = 1 mode moves as ) increases, so we present curves
for 1 =0, 10, 25, and 50 in Fig. 3. From this figure it is clear
how asymmetry develops as {} increases.

Actually ) = 50is not a big number. Consider an exper-
iment with oil and water. Assume that the viscosity ratio is

n=0
net
(c)
5
600
o n=0
R * nai
500 |
400
300+
200
100r s
()]
° v s
-5
p
1) compared with the neutral curves for the asymmetric mode (# = 0). (a) Q = (

fplanc). Wn O, @:n 1.
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400

300

001

FIG. 3. Neutral curves for disturbance with n = 1 when Q is from 0-50.
This figure clearly shows how the curves move when () increases. l: ) = 0;
®: Q= 10; A: Q=25 x: = 50.

L /oy = 0.1, density is nearly matched and the diameter
of the pipe is 1 in., then

N =p,0R3/n,; =1420.

Q = 50 corresponds tow = 3.5sec™'
ing speed is not too fast.

If we examine Figs. 2 and 3 more carefully, we see that
for negative B the neutral curve for n = 1 has a valley near
3 = 0. This valley is related to another mode of instability,
interfacial friction associated with the viscosity difference.
This will be clear when we study the energy budget. We also
note that there is a small unstable region 3> 0 near 5 =0,
this is also associated with instability resulting from interfa-
cial friction; the growth rates in this region are smaller than
those either in the unstable region of the (.2, — ) when
n =1 or those in the unstable region when /% is small and
n = 0. These changes of the neutral curves with {2 show that
rotation of the pipe induces instability because of interfacial
friction.

Figure 4 shows the variation of wavenumber f of maxi-
mum growth and corresponding growth rate 7 =B, B)
with Reynolds number /% for {} = 0. There is a stable region
corresponding to the gap between the upper branch and low-
er branch of the neutral curve.

Figures 5 and 6 present the maximum growth rate o and
corresponding wavenumber B for © = 50 and 200, respec-
tively. Since changing the sign of n is equivalent to changing
the sign of B, we may restrict our attention to 8>0 and
change the sign of n. It is clear that except for small %7, where
the growth rate & for n = 0 is larger, the n = — 1 mode is
always more unstable. The regions that are stable to axisym-
metric disturbances are destabilized by the azimuthal mode
with n = — 1. We also draw attention to the jump in the
curves in Figs. 5(b) and 6(b) at # about 90. This jump is
associated with a switch in the mode of disturbance, which is
most destabilizing.

We know for HJ* that the energy analysis for small per-
turbances is very useful in this situation; it helps to diagnose

or 33.7 rpm, the rotat-
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FIG. 4. The wavenumber # of maximum growth and the corresponding
growth rate & as a function of .7 when 1 = 0. B: 3, §: 4.
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FIG. 5. The maximum growth rate & (a) and corresponding wavenumber 3
(b) for n=0 and n= — 1 when £ = 50. The mode corresponding to
n = - 1is more unstable than n = 0 when :# is not 100 small. The wave-
number f3 of the most dangerous disturbance with n = — 1 jumps at a cer-
tain .%7 because of a switch in the modes of most destabilizing. B: n = 0; §:
n= —1.
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n=0
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0 100 200 300 400 r 500 600
3
n=0
® Ne-1i
p \
2

(b)

0 100 200 300 400 g 500 600

FIG. 6. The maximum growth rate o (a) and corresponding wavenumber /3
(b)forn  Oandn TwhenQ 200.8:n O, ¢:n 1

the sources of instability. At small %, we know that the flow
is unstable to the n = 0 mode mainly because of the interfa-
cial tension B 1 producing capillary instability. In Fig. 7 we
plotted each of the terms in the energy equation for n = —
as afunction of .7 when (a) 2 = 50and (b) {2 = 200, at the
wavenumber of maximum growth . In the present case,
since the fluids have the same density, B3 = (), and the encr-
gy equation (22) reduces to

E=U-1)+B1+B2

In Fig. 7(a) we see that B 1 (interfacial tension) is almost
zero for all /7; it does not play an important role here. The
two main sources of instability are (/ — 1) and B 2. At small
A (not so small when n = 0 is the most unstable mode),
interfacial friction B 2 is dominant. Since we know from the
comparison with experiments in HJ' that this interfacial
friction instability correlates with interfacial waves, we
might see spiral waves at the interface. As 7 isincreased, B2
decreases but / — 1increases. At a certain Reynolds number
B 2 has a sudden decrease and / - 1 has a sudden increase.

1682 Phys. Fluids A, Vol. 1, No. 10, October 1989
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FIG. 7. Variation of terms of cnergy EmB 1:4;7/~ 1:A;and B2: X inthe
cnergy balance equation following the wavenumber of maximum growth
forn= — 1, (a) Q = 50 and (b) () =: 200.

This shows that the mode of instability jumps from interfa-
cial friction to the Reynolds stress. At large 4, I — 1 domi-
nates and the flow is unstable by virtue of the production of
energy in the bulk fluid with negligible contributions from
the interfacial terms B 1 and B 2. In many of the cases dis-
cussed in HJ* this instability profile correlates with observed
flows in which small drops of water emulsify into oil. In Fig.
7(b) the decrease of B2 is quite gradual but the increase of
I — 11s still sharp at certain value of /4. This mode jump is
different from the one in Fig. 7(a), it is just the switching
between different modes of instability resulting from interfa-
cial friction.

In this section we have seen that the rotation of the pipe
stabilizes the n -+ 0 mode and destabilizes the n = 1 mode,
except for small %, where capillary instability is dominant.
This means that if the pipe rotates, or perhaps if the flow has
a small azimuthal component, the flow will be unstable to
the n = | mode leading to spiral waves at interface instead of
stable core annular flow.
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VIL. > 1, HEAVIER FLUID OUTSIDE

The configuration, with heavy fluid ouside £ > 1, is sta-
bly stratified. The stabilizing effect of centripetal accelera-
tion in this case was already shown in the energy analyses of
Sec. IV, B3 <0 (stabilizing) for ¢ > 1. Actually, even the
problem of rigid rotation of two fluids without axial flow is
very complicated and very nonlinear, with stability possible
even with { < 1, provided that the stable configuration is tak-
en closer to a rotating drop than to a perfect circular annulus
(see Joseph and Preziosi'').

Figures 8-10 present neutral curves for { = 1.2, 2, and
10, respectively, where (a) is for n =0 and (b) is for
n = — 1. First we consider the case {2 = 0. As { increases,
the upper branch of the neutral curve moves down to small
% and the lower branch is depressed. The flow becomes
increasingly prey to instability on the upper branch and is
stabilized with respect to capillary instability on the lower
branch by making the lubricating fluid heavier. From Fig.

600
B 0
R u * Q=100
A =200
500 x 050
400
300 b
200 [
100 |
S
el " (@
0 A N . L N
0 1 2 3 4 s 6

400

300

200

100 |

)

FI1G. 8. Neutral curves for ¢ 1.2 when @ = 0, 50, 100, and 200. (a) # = 0,
(b) n 1. Rotation of the pipe stabilizes the flow. For §2 other than 0,
then - I modc is more unstable. The upper branch of neutral curve for
Q- S0is not presented here. At§) - 100 the lower branch disappears, thus
itis possible to have stable continuous CAF in certain range of small .7 if
the rotating speed is Targe. B: Q0 - O; Q= 50; @: 2 = 100, A: 2 = 200.
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8(a), we see that the rotation of the pipe greatly lifts the
upper branch of the curve (as we saw already in Fig. 1) and
depresses the lower branch. Actually there exists a critical
value () = (), above which there is no capillary instability
(the lower branch of neutral curve disappears). We can de-
termine this value of ) = (), analytically as follows.

The energy balance E= (I — D) + B1+ B2+ B3 is
considered when % < 1. We know that E and I are not relat-
ed explicitly to %2, D and B 2 are proportional to 1/%, and
B1 and B3 are proportional to 1/#? (since in B3,
€ = /). Thus for % €1 we could neglect the lower-order
terms and whatisleftis B 1 + B 3, interfacial tension plus the
term that is proportional to the density difference.

Substituting (25) for B 1 and B 3, we have

B1+ B3

= (Be) AW () /AB A I W(n) — ¢+ ne/B 1Y,
(28)

where
A=J*(1 —n’ — 9B /n— (& —1). (29)
Thus we know that for /%7 €1 if A > 0 flow is unstable (capil-
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lary instability), and if A < 0 CAF is stable, at neutral state
A =0, thatis

W =J* —n*— B/ (& —1). (30)
Therefore
Q2 =J*(1—n’)/p' &= 1) 31

We see that for |n|>1 the flow is always stable to capillary
instability, for n = O there exists a critical rotating speed of
the pipe (1, above which the flow is stable to capillary insta-
bility. In the cases we presented in Figs. 8-10, 2. ({ = 1.2)
=98.8, Q. ({=2) =44.2,and 1, ({ = 10) = 14.7.

In Fig. 8(a) we plotted the lower branch of the neutral
curve for ) = 50, we see that the lower branch starts at
B = 1.078, as predicted in (30), and at other values of {} this
branch disappears.

Now look at Figs. 8(b), 9(b), and 10(b) in which{ > 1,
comparing with the neutral curves for { = 1 presented in
Fig. 2(b)~(d). When ¢ > 1 the effect of increasing (1 is stabi-
lizing, the upper branch of the neutral curves is raised. It is
important to notice that for ) other than zero, the neutral
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curves for n = 0 lie within the corresponding neutral curves
forn = — 1. This implies that when § > 1 and {2 > O the first
azimuthal mode n = — 1 is most dangerous.

Therefore, when the heavier fluid is outside, and
Q1> (1., stable continuous CAF is possible for a certain
range of small 2 because of the stabilizing effects of rota-
tion.

VIll. § <1, LIGHTER FLUID OUTSIDE

When the fluid in the annulus is lighter, { < 1. Energy
analysis then shows that the new term B3 is destabilizing.
We call this centripetal instability, the centripetal accelera-
tion throws heavier fluid in core outward. We shall see that
this arrangement of fluids is alway unstable, as in Rayleigh—
Taylor instability, when heavy fluid is above.

Figures 11 and 12 show neutral curves for { = 0.8 and
0.5 with £} = 0, 100, and 200. The flow is always unstable to

the n = — 1 mode when {1 is not zero. At small /2, the flow
is unstable to the n = 0 mode as is the case when § = 1. At
large 4, the n = — 1 mode is more unstable. When n =0
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FIG. 11. Neutral curves for { = 0.8 when (1 = 0, 100, and 200. (a) n =0,

(b) n== — 1.The flow is always unstable. At :# €1, n = 0 mode is unstable
to interfacial tension B | and centripetal 8 3 instabilities; n = — 1 mode is
solcly unstable to the centripetal instability B 3. Athigh:#, n = — lismore

unstable than n = 0 mode. B: ) == 0; §: @ = 100; A: 2 = 200.
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and Q@ = 0, the upper and lower branch of neutral curve join
and no stable region exists. Rotation of the pipe lifts the
upper branch (cf. Fig. 1). Fig. 11(a) shows that there is a
stable region when (0 is large. As ) increases or £ decreases,
the term B 3 associated with centripetal instability increases
and the unstable region enclosed in the lower part of neutral
curve grows. This leads to the situation shown in Fig. 12(a)
in which the interval of stability has disappeared. When
# 41, following our discussion in Sec. VII, we find again
using (29), that A is always positive for small 8 (long
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waves) when n = 0. Thus at small % when n = 0, there are
two sources of instability, interfacial tension (B 1) and the
centripetal instability (B 3). When n#0 the only source of
instability is the centripetal instability resulting from B 3. In-
terfacial tension B 1 leads to stability and there exists a criti-
cal rotational speed Q, given by (31), below which CAF is
stable. At large %, instability is due to the Reynolds stress.
The sharp corners of the neutral curves in Fig. 11(b) and
Fig. 12(b) are the result of mode switching between cen-
tripetal instability to Reynolds stress instability.

IX. CONCLUSIONS

In this paper we have studied the linear stability of core-
annular flow in a rotating pipe emphasizing the effects of
rotation and the difference in the density of two fluids.

For two fluids of equal density, rotation stabilizes the
axisymmetric (n = 0) mode and destabilizes the nonaxi-
symmetric ({n| = 1) mode. Except for small 72, where ca-
pillary instability is dominant, the azimuthal mode n =1 is
the most unstable. With even rather slow rotation the flow
will be unstable to the n = 1 mode. In this case we may ob-
serve spiral waves at interface instead of stable core-annular
flow. In fact, we have observed such spiral waves in nonlin-
ear regimes of wavy core flow in which shearing stresses give
rise to a turning torque.

If the heavier fluid is outside, the rotation of the pipe
stabilizes the flow, and there exists a critical rotating speed
Q,, above which the flow is stable for certain range of small
77, If the lighter fluid is outside the flow is always unstable.
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