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Abstract. Cross stream migration and stable orientations of elliptic particles falling in an

Oldroyd-B fluid in a channel are studied. We show that the normal component of the

extra stress on a rigid body vanishes; lateral forces and torques are determined by the

pressure. Inertia turns the longside of the ellipse across the stream and elasticity turns it

along the stream; tilted off-center falling is unstable. There are two critical numbers;

elasticity and Mach numbers. When the elasticity number is smaller than critical the fluid

is essentially Newtonian with broadside-on falling at the centerline of the channel. For

larger elasticity numbers the settling turns the longside of the particle along the stream in

the channel center for all velocities below a critical one, identified with a critical Mach

number of order one. For larger Mach numbers the ellipse flips into broadside-on falling

again. The critical numbers are functions of the channel blockage ratio, the particle aspect

ratio and the retardation/relaxation time ratio of the fluid. Two ellipses falling nearby,

attract, line-up and straighten-out in a long chain of ellipses with longside vertical, all in a

row. Stable, off-center tilting is found for ellipses falling in shear thinning fluids and for

cylinders with flat ends in which particles tend align their longest diameter with gravity.

___________________________________________________________________

1. Introduction

Direct simulation uses the full power of computers to obtain exact solutions of initial-

boundary value problems for the motion of dispersed particles, here rigid solids, in a
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liquid. Of course, such solutions can be no more exact than the numerical methods, but

they are faithful to the underlying dynamics in which rigid bodies move under Newton’s

laws impelled by hydrodynamic forces arising from the solutions of the fluid equations at

each nodal point in the fluid. The solutions of initial value problems for thousands of

particles in three dimensions is not a dream for the future, but is an immediate goal

towards which this paper takes one small step. Already Hu (1996) has reported

simulations of sedimenting and shear flows of 400 spherical particles (discs in 2D) and

simulations of thousands of these discs in Newtonian fluids and hundreds in viscoelastic

fluids will be reported soon (see Direct simulation of particles in flowing liquids: NSF

Grand Challenge Project: http://www.aem.umn.edu/Solid-Liquid_Flows/ for more

information and video animations.)

The solution of initial value problems is the goal of analysis of dynamical systems

leading to understanding of how systems dynamics depend on initial conditions, the

nature of transients and the characterizing features of sets of permanent solutions which

evolve after transients decay.

Direct two-dimensional simulations of the sedimentation of spherical particles (discs)

in a vertical channel filled with an Oldroyd-B fluid were done by Feng, Huang and

Joseph (1996) emphasizing wall-particle interactions. Using the same scheme, Huang,

Feng, Hu and Joseph (1996) studied the motion of spherical particles in Couette and

Poiseuille Flows. A video animation of direct simulation of groups of sedimenting

spherical discs by Hu and Joseph (1997) can be seen on our web page; there chains of

spheres (discs) line up with gravity and it is natural to ask what holds the chains together

and how are the chains stabilized (see figure 2)? The existence of aggregated chains of

spheres in viscoelastic fluids contrasts with the dispersed arrays of spheres which line up

across the stream in Newtonian fluids. What are the underlying mechanisms which lead

to such a large difference in the arrangement of spheres sedimenting in Newtonian and

viscoelastic fluids?
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It is surprising at first sight that turning couples on long bodies determine the stable

configurations of suspensions of spherical bodies. A long body is an ellipsoid or a

cylinder; a broad body is a flat plate. When such bodies are dropped in Newtonian fluids,

they turn and put their long or broadside perpendicular to the stream. This is an effect of

inertia which is usually explained by turning couples at points of stagnation. Milne-

Thompson (1968, page 530) notes that

There are many well-known phenomena which are explained in principle
by this remark. Thus a ship has to be kept on her course by the helmsman;
an elongated airship requires similar attention. A sailing ship will not sail
permanently before the wind with the helm lashed, but tends to set itself at
right angles to the wind. A body sinking in liquid tends to sink with its
longest dimension horizontal.

It is not possible to get long particles to turn broadside in a Stokes flow; bodies in an

infinite fluid with fore-aft symmetry do not experience torques. The settling orientation is

indeterminate in Stokes flow; however, no matter how small the Reynolds number may

be, the body will turn its broadside to the stream; inertia will eventually have its way.

When the same long bodies fall slowly in a viscoelastic liquid, they need not put their

broadside perpendicular to the steam; they can do the opposite, aligning the long side

parallel to the stream.

The flow-induced anisotropy of a sedimenting or fluidized suspension of spheres is

determined by the pair interactions between neighboring spheres. The principle

interactions can be described as drafting, kissing and tumbling in Newtonian liquids and

as drafting, kissing and chaining in viscoelastic liquids. The drafting and kissing

scenarios are surely different, despite appearances. Kissing spheres align with the stream;

they are then momentarily long bodies.

The long bodies momentarily formed by kissing spheres are unstable in Newtonian

liquids to the same turning couples that turn long bodies broadside-on. Therefore, they

tumble. This is a local mechanism which implies that globally, the only stable

configuration is the one in which the most probable orientation between any pair of
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neighboring spheres is across the stream. The consequence of this microstructural

property is a flow-induced anisotropy, which leads ubiquitously to lines of spheres across

the stream; these are always in evidence in two-dimensional fluidized beds of finite size

spheres. Though they are less stable, planes of spheres in three-dimensional beds can also

be found by anyone who cares to look. The long bodies formed by kissing spheres in

viscoelastic fluids are stable to turning couples whenever long bodies aligned along the

stream are stable.

θθθθ
αααα
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y
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s

c

c

g

Figure 1. Slow flow around an elliptic particle. θ is the tilt angle of the major axis and the horizontal. α is

the angle of a typical surface node of the particle. There are two stagnation points s where the shear stress

vanishes and two other points c where the streamlines are most crowded. The shear stresses and normal

stresses are strongest at c. The nonlinear contribution of the normal stresses in slow flow at each point on

the ellipse is given by − Ψ1(0) Ý γ 2   where Ψ1 (0) > 0 is the coefficient of the first normal stress difference

and Ýγ  is the shear rate. These normal stresses are compressive and give rise to “high pressure” at points

near where the flow is fast, opposing the high pressure at points s which turn the ellipse broadside-on

(θ=180o) (Joseph & Feng, 1996). If the normal stresses at points c dominate at all θ, the major axis of the

ellipse will align with gravity (θ=90o).
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Joseph & Feng (1996) and Joseph (1996) did analysis of the forces that move

particles in slow plane flow of a second-order fluid; a model that applies to our

simulations when the Reynolds and Deborah numbers are small. Their analysis can be

used to set the stage for our simulations. They showed that the normal component of the

non-linear elastic part of the normal stress is always compressive and turns long bodies

into the stream (see figure 1). Joseph (1996) presented a heuristic argument that normal

stresses are amplified by shear thinning at points of high shear. Effects of this

amplification by shear thinning are demonstrated in the simulation of Huang, Feng, Hu

and Joseph (1996) and in section §12 here.

In all our arguments we suppose that the normal stresses due to viscoelasticity (near c

in figure 1) dominate inertial effects (near s in figure 1) which are strongest near

stagnation points. Later, we shall argue that these stresses come to dominate when the

elasticity number is larger than some critical value.

The cartoons shown in figure 2 show how the migrations and orientations of particles

are controlled in slow flows by compressive normal stresses −Ψ1 (0) Ý γ 2  which are large

where the shear rates are large (indicated by the length of arrows). In general these

compressive stresses cause particle to line up, straighten out and aggregate.
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Figure 2. The orientation and migrations of particles in slow flow of a fluid dominated by viscoelasticity

can be determined from Stokes flow around that body, with large normal stresses where the shear rates on

the body are large, near the places where the streamlines are crowded (see figure 1) (a) There are two

symmetric orientations with respect to gravity for a falling square (cube); the one with flat faces

perpendicular is unstable; the stable orientation is when the line between vertices is parallel to gravity; (b) a
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rectangle or cylinder with flat ends (Joseph and Liu 1993) tends to line up with the longest line in the body

parallel to gravity. Falling bodies tilt when the longest line in the body is not an axis of symmetry; this is

called shape tilting; (c) Falling ellipses tend to straighten out, line up and chain; (d) Perturbed chains

straighten out.

In this paper we are going to focus our attention on the migration and stable terminal

orientation of long bodies settling in viscoelastic fluids. The fluid is assumed to be

Oldroyd-B, computing for two cases: Maxwell models in which the ratio of retardation

time/relaxation time is zero and when it is 1/8. The Oldroyd-B models have no second

normal stress and we shall prove that the normal component of the extra stress vanishes

on the boundary of a rigid solid. This means that the effects of inertia and viscoelasticity

are to be found only in the reaction pressure evaluated on the body.

Hu, Joseph and Crochet (1992), Feng, Hu and Joseph (1994) and Huang, Feng and

Joseph (1994) have shown that an ellipse sedimenting in a Newtonian fluid turns

broadside-on but at high Reynolds numbers vortex shedding will make it oscillate.

The orientation of long particles in viscoelastic fluids are broadside-on when inertia

dominates and along the stream when viscoelasticity dominates and shape and wall

effects are not important. Leal (1975) studied slender cylinders falling slowly in glycerin

and in a 0.5% aqueous solution of polyacrylamide (AP-30). He observed that the cylinder

rotated into a vertical orientation in the AP-30 solution regardless of the initial

orientation. Chiba, Song & Horikawa (1986) studied the motion of a slender body falling

in quiescent polymer solutions and in water. They demonstrated that a slender body

falling in Newtonian fluids rotates into a horizontal orientation, whereas in viscoelastic

fluids it rotates into a vertical orientation; for less concentrated solutions it tilts away

from vertical and moves sideways as it falls. Liu & Joseph (1993) reported that the

orientation of a long body settling in a viscoelastic fluid is determined by a competition

between inertia and viscoelasticity. They concluded that viscoelasticity dominates when

inertia is small and the particles settle with their broadside parallel to the direction of fall;
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the same particles settle with their broadside perpendicular to the direction of fall when

the inertia is large.

An interpretation of these experiments, analysis and this simulation may be framed in

terms of a competition between inertia and normal stresses. The ellipse turns its long side

perpendicular to the fall when inertia dominates and parallel to the fall when normal

stresses dominate. Tilted orientations of long bodies, neither horizontal or vertical, which

are definitely observed in experiments and the numerical simulations reported here will

be interpreted as transient effects arising from walls, as an effect of shear thinning (see

section §12) or from shape tilting in which the normal stresses tend to line up bodies so

that the longest line in the body is turned parallel to the fall; a square body then settles

along a line between vertices whereas an ellipse lines its long axis parallel to the flow.

The scenario just described is best framed as a stability hypothesis for two steady

states; the ellipse falls with its long axis either vertical or horizontal at a terminal velocity

determined by a balance between buoyant weight and drag. A model for this stability

hypothesis can be found in Kirchoff’s theory of motion of solid ellipsoids through liquids

in potential flow in which the principal axes of the ellipsoid are directions of permanent

translation such that if the solid is set moving along one of them without rotation, it will

continue to move so. In our two-dimensional problem there are two such directions, one

perpendicular and the other parallel to the long side of the ellipse. The solution with long

side parallel is unstable to inertia, to couples associated with high pressure at stagnation

points as shown in figure 1. We have already noted that viscous effects change many

features of the motion of bodies profoundly, but the turning couples from high pressures

near stagnation points at the front of a falling ellipse dominate and again turn it across the

stream.

Viscoelastic fluids are different from viscous fluids because normal stresses arise both

from inertia proportional to the square of the velocity and from elasticity proportional to

the square of the shear-rate Ý γ 2 . The normal stress from inertia is strongest where the flow
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is slow and the normal stress from viscoelasticity is strongest where the flow is fast

(points c in figure 1). The competition between these two normal stresses, one due to

inertia and the other to viscoelasticity could be resolved in angle of tilt in which turning

from the two are balanced or they could be unbalanced leading to broadside-on settling

when inertia dominates and broadside-along settling when viscoelasticity dominates.

In the case of inviscid and viscous liquids, the steady solution with major axis aligned

with gravity or tilted is always unstable; hence only steady solutions with major axis

across gravity can be observed. There are no critical stability parameters. But in

viscoelastic solutions, long bodies line up with or across the stream, depending on

conditions which ought to be described in mathematical terms by critical parameters.

To identify critical parameters, consider the case of an ellipse settling under gravity in

an upper convected Maxwell fluid. The fluid dynamics of such a flow is described by the

aspect ratio a/b of the ellipse and two fluid parameters:

Re = ρ fUa η (Reynolds number)

De = Uλ 1 a (Deborah number)

where ρf is the density of the fluid, U is the terminal velocity of the ellipse which is

determined by a balance buoyant weight and density, a is the major radius of the ellipse,

λ1 is the relaxation time and η is the viscosity of the fluid. Obviously, these two

parameters are independent and any other composition of these two would be just as

good; the product

ReDe = U η λ 1ρ f ====
def

M (Mach number)

and the ratio

De / Re = λ1η ρ f a2 =
def

E (Elasticity number)

are even better. The Mach number is the ratio of the terminal velocity to the shear wave

speed c = η λ 1ρ f . The elasticity number depends on material parameters and particle

size but is independent of flow. It is the ratio of the elastic and inertia forces in the fluid.
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In previous works (Liu and Joseph 1993, Joseph and Liu 1993, Joseph 1996) which

addressed the change in orientation of falling cylinders of the same size and shape but

different weights falling in each of many viscoelastic fluids in terms of the Mach and

Reynolds numbers. The light cylinders lined up with the flow, but the heavy cylinders

turned broadside-on. This change from vertical to horizontal falling occurs when the

stagnation pressures at the front of the falling body are dominated by inertia. For this to

happen, the body must fall faster than diffusion U > η ρ f a  (hence Re>1) and faster than

shear waves (hence M>1).

The previous results allowed for a range of Mach and Reynolds numbers of order one

in which the competition of inertia and viscoelasticity could be resolved by a tilt angle in

which the terminal orientation of the long side is tilted, neither vertical or horizontal (see

Feng, Joseph, Glowinski & Pan, 1995). In studying the results of the simulation reported

here, we have come to believe that the observed tilt is most probably due to wall effects

and is either transient or is stabilized by shear thinning. This observation, and a review of

the experiments, led Joseph to reformulate  the explanations of the observations in terms

of the stability of the vertical or horizontal orientation with tilt disallowed. Here we shall

promote an explanation of stability framed in terms of the elasticity and Mach numbers.

These parameters were advocated as a canonical basis for problems of flow past bodies

which change their type, in Chapter 6 of Joseph’s book (Joseph, 1990).

In the reformulated explanation there are two critical numbers; a critical elasticity and

a critical Mach number. Both numbers mark borders in which the balance between inertia

and viscoelasticity changes. For elasticity numbers smaller than critical the ellipse falling

in an unbounded fluid will turn its long side across the fall, broadside-on, for all speeds,

large or small. The critical elasticity number marks the border between effectively

Newtonian and effectively viscoelastic behavior. The ellipse turns broadside-on as in a

Newtonian fluid when viscoelastic effects measured by the Deborah number are no larger

than a certain measure of inertia involving the Reynolds number; this is expressed
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precisely by requiring that E = De Re  be smaller than a critical value which we find by

simulation. When this ratio is larger than critical, the orientation of the ellipse is reversed,

the horizontal orientation is unstable, and the vertical orientation of the long side is

stable; it is a dramatic change in stability. Experiments corresponding to changes in the

elasticity number were carried out by Chiba, Song & Horikawa (1986) who studied the

settling of one cylinder in an aqueous solution as a function of concentration, with

broadside-on turning for dilute solutions and along the stream turning for concentrated

solutions. At intermediate concentration tilted cylinders with side drift were observed.

The critical Mach number represents a different physics, corresponding to the

experiments of Liu and Joseph (1993) and Joseph and Liu (1993) in which the fluid, size

and shape of particles is fixed and the weight of the particle is varied. Now we focus our

attention on effectively viscoelastic fluids in which the elasticity number is greater than

critical. In our simulation, described in section §7, we may take the critical E as three and

consider along the stream falling with De / Re = 4 . This means the Deborah number will

be four times the Reynolds number no matter what the value of the velocity. The terminal

velocity is increased by changing the weight of the particles and when the particle is

heavy enough so the M pass some number near one, the particle flips falling broadside

on. In this case the critical M near one is a border marking the place at which the fall

velocity is larger than the propagation speeds of signals, and is again dominated by

pressures in an effectively potential  flow at the front of the body. If this border is at

M = ReDe = 1 and De = 4Re , the transition to broadside on turning would occur when

Re=0.5.

2. Governing equations

An incompressible fluid is bounded in a two-dimensional region Ωt with boundary Γt

formed from fixed walls and N rigid particles which can move freely in the fluid. The
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velocity field u(x,t) and pressure field p(x,t) in the fluid is governed by the equations of

motion:
∇ ⋅ u = 0

ρ
f
( ∂u

∂ t
+ u ⋅ ∇ u) = −∇ p + ∇ ⋅ T = ∇ ⋅ σσσσ

� 
� 
� 

(1)

where ρf is the density of the fluid, σσσσ = −p1 + T  and T is the extra stress tensor. For an

Oldroyd-B fluid, the extra stress tensor is given by the constitutive equation:

T + λ1 T
∇

= η (A + λ2 A
∇

) (2)

where A = ( ∇ u + ∇ uT )  is the strain-rate tensor; λ1 and λ2 are constant relaxation and

retardation times; η is the viscosity of the fluid. The fluid reduces to an upper convected

Maxwell model when λ2=0. The triangle denotes the upper-convected time-derivative:

T
∇

=
∂T
∂t

+ u ⋅ ∇ T − L ⋅ T − T ⋅ LT (3)

where L ij = ∂ui / ∂xj  is the velocity gradient tensor. Shear-thinning can be easily

incorporated to the Oldroyd-B model by using the Carreau-Bird viscosity law:

η − η∞

η0 − η∞

= 1+ λ 3
Ý γ ( )2[ ]

n −1
2 (4)

where Ýγ  is the strain-rate defined in terms of the second invariant of A and 0<n≤1. The

motion of solid particles satisfies the Newton’s law:

M dU p

dt
= F p + Gp

dX p

dt
= Up

� 

� 
� 

� 
� 

, p=1,2,...N (5)

where M is the generalized mass matrix of the particle, X and U are the generalized

position and velocity vectors of the particle, F is the generalized force vector imposed on

the particle by the fluid and G is the body force exerted by external fields such as gravity.

The mass matrix M and the vectors can be written explicitly as:
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M =
m 0 0
0 m 0
0 0 I

� 

� 

� 
� 

� 

� 

� 
� 

, X =
X
Y
θ

� 

� 

� 
� 

� 

� 

� 
� 
, U =

U
V
Ω

� 

� 

� 
� 

� 

� 

� 
� 

,

and F =
Fx

Fy

Fm

� 

� 

� 
� 

� 

� 

� 
� 
, G = (ρs − ρ f )gπab

1
0
0

� 

� 

� 
� 

� 

� 

� 
� 
,

where m = ρsπab  and I =
1
4

(a2 + b2 )ρsπab  are the mass per unit length and the polar

moment per unit length of inertia of the elliptic particle. The force and the torque

imposed on a solid particle by the fluid is given by:

Fx, Fy[ ]= (−p1 + T) ⋅ ˆ n dΓ
Γ p

�

Fm = (x − X p ) × (− p1 + T) ⋅ ˆ n dΓ
Γ p

�

� 

� 
� 

� � 
(6)

where Γp is the surface of the particle, ˆ n  is the outward unit normal vector on the surface

of particles (figure 3).

A dimensionless set of governing equations can be obtained from the equations just

given by introducing scales:

a (semi major axis) for length,

U velocity,

a / U time,

ηU a stress and pressure.

� 

� 
� � 

� 
� 
� 

When written in terms of dimensionless variables, using the same symbols for both, we

have
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∇ ⋅ u = 0

Re(∂u
∂t

+ u ⋅ ∇ u) = −∇ p + ∇ ⋅ T = ∇ ⋅ σσσσ

σσσσ = −p1 + T

T + De T
∇

= A + λ 2

λ 1

DeA
∇

F = ˆ n ⋅ σσσσdΓ
Γ
�

Fm = (x − X) × σσσσ ⋅ ˆ n dΓ
Γ
�

πa
b

ρs

ρ f

Re dU
dt

= F +
(ρs − ρ f )πabg

ηU
ex

1
4

(1 + b2

a2 )πb
a

ρs

ρ f

Re dΩ
dt

= Fm

� 

� 

� 
� 
� 
� 
� 
� � 

� 

� 
� 
� 
� 
� 
� 
� 

(7)

The semi-major axis of the dimensionless ellipse is one and the semi-minor axis is

b a . The side walls are at x = 0  and x = W a .

We choose the velocity scale to simplify equation (7):

U = (ρs − ρ f )πabg η . (8)

The set of dimensionless parameters which control all possible dynamics of the falling

ellipse are

R a >1 blockage ratio,

a b ≥1 aspect ratio,

ρs ρ f density ratio,

Re = ρ fUa η Reynolds number,

De = Uλ 1 a Deborah number,

λ 2 λ 1 ≤ 1 retardation / relaxation time ratio.

� 

� 

� 
� 
� 

� 

� 
� 
� 

(9)

The viscosity ratio form for shear thinning given by equation (4) is dimensionless.
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In our simulation (
ρs

ρ f

−1) ≥ 0 is small and 
ρs

ρ f

 on the left side of equation (7) could

be put to one without loss of accuracy. However the difference (ρs −ρ f )  is the main

control parameter used to control velocity.

3. Normal stress at the boundary of a rigid body

Caswell (1967) claims to have proved that all flows become viscometric at a solid

surface at rest. Here we consider moving bodies. We find that the turning couples on long

bodies and the cross stream migrations of solid particles are controlled mainly by the

pressure. This is no accident; it follows from the fact that the normal component of the

extra stress on the boundary of a rigid body vanishes in all incompressible Oldroyd-B

fluids. To simplify the demonstration, consider the motion of solid body in two

dimensions and pick a generic point on the boundary, calling the direction tangent to the

boundary at this point x and the outward normal direction y. Tangential derivatives of

velocity vanish along the boundary of a rigid solid even as it moves, and the continuity

equation then requires that the normal derivative of normal velocity also vanish. Then, at

this boundary point

L =
0 Ý γ 
0 0
� 
� � 

� 
� � 
, A =

0 Ý γ 
Ý γ 0

� 
� � 

� 
� � 

, T =
τ x τ xy

τ xy τ y

� 

� � 
� 

� � 
(10)

The stress is given by

σσσσ = −p1 + T (11)

where T is the extra stress. For Newtonian fluids T = ηA  and τ x = τy = 0 ; hence

σyy = σ xx = −p (12)

at every boundary point. For Oldroyd-B fluids we have

τ y + λ(
∂τ y

∂t
+U

∂τ y

∂x
+ V

∂τ y

∂y
) = 0 (13)

or
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τ n + λ (
∂τ n

∂t
+ U ⋅ ∇ τ n ) = 0 (14)

where τ n = τy  and U=(U,V) is the velocity on the surface of the solid due to rigid body

motion. We conclude that τ n = 0 and

σnn = −p (15)

at every point of the boundary of the solid. All the results just given will still hold in

three-dimensions.

In general, pressure can not be given a priori, but it can be given for potential flows

(Joseph & Liao, 1994) through Bernoulli’s equation and in the case of second order fluids

in two dimensions (Tanner, 1966) and in three dimensions when the normal stress

coefficients satisfy the condition Ψ1 = −2Ψ2  (Giesekus, 1963). Joseph (1996) and Joseph

& Feng (1996) used this result for second order fluids to obtain an explicit a priori

expression for σnn  in which the viscoelastic contribution is always compressive and

given by −
Ψ1

2
Ý γ 2  where Ýγ  is the shear rate at the boundary. The normal component of

the extra stress τ n = 0 and σnn = −p  at all points of the boundary if and only if the

coefficient Ψ2  of the second normal stress difference vanishes, as it does in Oldroyd-B

fluids.

4. Numerical method

Direct simulation of the motion of particles has been carried out by using a two-

dimensional generalized Galerkin finite element method which incorporates both the

fluid and particle equations of motion into a single coupled variational equation. An

arbitrary Lagrangian-Eulerian (ALE) moving mesh technique was used to compute the

motion of the particles. The modified code with EVSS (Elastic-Viscous-Split-Stress)

scheme for solving transient Navier-Stokes equations together with a moving finite

element mesh can be used to simulate the unsteady motion of the viscoelastic fluid and

the solid particles directly. In our implementation, the nodes on the particle surface are

assumed to move with the particle. The nodes in the interior of the fluid are computed
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using Laplace’s equation, to guarantee a smoothly varying distribution. At each time step,

the grid is updated according to the motion of the particles and checked for element

degeneration. If unacceptable element distortion is detected, a new finite element grid is

generated and the flow fields are projected from the old grid to the new grid. The fluid is

at rest initially and the particles are positioned in the fluid with zero velocity. The

particles are then released and the motion of the combined system of viscoelastic fluid

and solid particles is computed. In this scheme, the positions of the particles and grid

nodes are updated explicitly, while the velocities of the fluid and the solid particles are

determined implicitly. In our computations, the elliptic particles at rest initially, are

heavier than the fluid (ρ f = 1.0g cm3
) and settle under gravity (figure 3). The inflow

boundary of the computational domain is placed 30a ahead of the elliptic particle and the

outflow boundary is 40a behind of the particle. We use an unstructured mesh triangular

elements. A typical mesh used for R/a=10 has 2286 elements and 4688 nodes.

x
W=2R

2a

y

Y

θ

U

X

g

Figure 3. Sedimentation of an elliptic particle in a 2-D channel. W is the width of the channel. (X, Y) is the

position of the center of the elliptic particle. θ is the orientation of its major axis.

5. Critical Reynolds number for horizontal turning of an ellipse falling in a

Newtonian fluid between close walls
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Here we shall show that an ellipse which settles in a Newtonian fluid will turn

vertical when the Reynolds number is below a critical value, as shown in figure 4.

Formerly we thought that inertia would always turns a long particle settling in a

Newtonian fluid horizontal at any Reynolds number greater than zero. The only literature

we know on the subject is the numerical study of Huang, Feng & Joseph (1994) where

the blockage ratio was small (R/a=4) but the Reynolds number is so large (Re≈56) that

only horizontal turning could occur.
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Figure 4. Orientation θ and trajectory Y/W of an ellipse (a/b=1.5) settling in a Newtonian fluid (De=0)

between close walls (R/a=5). At Re=0.31, the ellipse turns vertical and executes a damped oscillation as it

drifts to the channel center; at Re=0.82, the ellipse turns horizontal as it migrates to the channel center.
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(a)
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Figure 5. (a) A plastic long particle with round ends used in the experiment; (b) the long particle turns its

longside parallel to the stream under the effects of lubrication in a Newtonian fluid when the channel is

very narrow and the settling is very slow.

Since the numerical result of figure 4 is new and unexpected we did an experiment to

see if vertical turning for slow settling between close walls could occur. A cylindrical

particle with round ends (see figure 5(a)) was dropped in a vertical channel. The

Newtonian fluid used in the experiment was pure glycerin, with density ρf=1.26 g cm3

and viscosity µf=13.0 g cm ⋅ s . The solid particle is made of plastic of density ρs=1.36

g cm3 . The length of the particle is 2a=1.32 cm and the diameter is 2b=0.635 cm. The

sedimentation channel has a square section with its width W=2R=2.2 cm. The terminal

mean sedimenting velocity of the particle is about V=0.2 cm s . The controlling

dimensionless parameters in the experiment are: the blockage ratio R/a=1.7, the aspect
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ratio a/b=2.1 and the Reynolds number Re = ρ fVa µ f = 0.013. A cartoon of the settling

of the solid particle is shown in figure 5(b). The particle oscillates before it turns to its

equilibrium vertical orientation at the centerline of the channel, as in our numerical

computation. When a heavier particle with the same shape and size is dropped, it turns

horizontal.

The explanation of vertical turning of an ellipse in a narrow channel is probably

found in lubrication forces at low Reynolds number which would tend to produce high

pressures in the converging gap between the walls at the top and bottom of the tilted

ellipse. These pressures give rise to torques at both ends of the ellipse turning the ellipse

vertical. The lubrication pressure is linearly proportional to the velocity of the settlement.

At higher speeds, stagnation pressures which turn the ellipse horizontal come to

dominate.

6. Universal features of equilibrium orientation and positions of an elliptical particle

Many experiments cited in this paper and our simulations live in a range of

parameters leading to steady sedimentation so that unsteadiness is transient. After

transients decay the ellipse will enter into motion with a permanent character. By an

equilibrium we mean steady permanent motions, with a final terminal velocity,

orientation and no lateral migration. The equilibrium orientation of the ellipse is

perpendicular or parallel to the fall when the final position of the particle center is at the

center of the channel, and vice versa. This correlation holds for channels of blockage

ratio larger than R a =1 (that we tested), independent of a b , λ 2 λ1 , ρs ρ f , De or Re.

The turning couples on an ellipse are due to inertia and the viscoelastic normal

stresses. Since these couples have opposite signs, with magnitudes that vary with the tilt

angle, it is possible that tilted zero torque solutions exist off center, stabilized by wall

effects. Such solutions can be found but they all appear to be unstable to small

perturbations leading again to symmetric orientations at the channel center.
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Assuming now that symmetric orientations at the channel center are the only stable

equilibria, it remains to determine the conditions under which these equilibria are vertical

or horizontal. We find critical elasticity, critical Mach and apparently critical blockage

numbers to distinguish between stable vertical and horizontal orientations. When the

elasticity number is smaller than critical, the ellipse turns broadside on; above this

number stable vertical orientations are found in all cases for which the viscoelastic Mach

number is less than a critical Mach number of order unity (see figures 6 and 7). The effect

of the blockage ratio is more complicated; we find that the critical elasticity number E is

a monotonically increasing function of the blockage ratio R/a with an asymptotic value of

E for large R/a and a finite intercept R/a for E=0 (see figure 8).

The critical Mach numbers are associated with the speed of falling particles in the

cases in which the elasticity number is greater than critical. In such cases, as we have

already mentioned, the ellipse turns vertical apparently at all Mach number less than a

critical value of order one; at Mach number greater than this, the ellipse ultimately turns

horizontal, just the opposite. Unfortunately, we can play only at the margins of this

condition because our simulations fail at high Deborah numbers; the results at this margin

are totally consistent with the experiments of Liu & Joseph (1993) and Joseph & Liu

(1993).
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Figure 6. The orientation θ and trajectory Y/W of an ellipse of ratio a/b=1.5 falling in a Maxwell fluid in a channel with blockage ratio R/a=5 at Reynolds

numbers: (A) E=0.2, Re=1.00, De=0.50, M=0.71. The ellipse migrates to the center and turns horizontal. (B) E=0.5, Re=0.82, De=0.16, M=0.37. The ellipse

migrates to the center and turns vertical.
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Figure 7. The orientation θ and trajectory Y/W of an ellipse of ratio a/b=1.5 falling in a Maxwell fluid in a channel with blockage ratio R/a=30 at Reynolds

numbers: (A) E=2.0, Re=0.59, De=1.18, M=0.84. The ellipse migrates to the center and turns horizontal. (B) E=4.0, Re=0.59, De=2.36, M=1.18. The ellipse

migrates to the center and turns vertical.



25

7. Critical values of elasticity number for Maxwell models (λλλλ 2 = 0)

Graphs of the evolution of the orientation and trajectory of an ellipse with a/b=1.5

falling in a Maxwell fluid (λ 2 = 0 ) in channels with blockage ratios R/a= 5, and 30 for

values of E above and below the critical value separating vertical from horizontal

orientations are shown in figures 6 and 7. We did repeat testing for the critical values and

found that the terminal orientation is always vertical or horizontal; tilted orientations are

unstable. A summary of these kind of calculations is shown in figure 8. The critical value

of E is an increasing function of the blockage ratio R/a with an asymptotic critical value

of E slightly larger than three for large R/a and E=0 for all positive values of R/a smaller

than a critical value slightly less than R/a=4.

Figure 8. Critical elasticity number Ec vs. blockage ratio R/a for ellipses of aspect ratio a/b=1.5 falling in

Maxwell fluids. When E is less than critical, inertia dominates as in a Newtonian fluid and the ellipse

ultimately falls with its long axis horizontal for all values of the velocity however lager; when E is greater

than critical the ellipse ultimately falls with its long axis vertical for all Mach numbers less than the critical

one.
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8. Critical values of Mach number for Maxwell models (λλλλ 2 = 0)

The critical Mach number is also a border between vertical and horizontal turning, we

fix the elasticity number above critical so that we are dealing with an effectively

viscoelastic fluid for which the terminal orientation of a falling ellipse is vertical for all

fall velocities smaller than a critical one corresponding to some critical Mach number. To

test for the critical Mach number we choose a particle, fluid and sedimentation column

fixing E. Then we drop particles of the same size and shape but of different weight. The

heavier particles fall faster and at the critical speed the ellipse flips from vertical to

horizontal.

Critical speeds were measured in the experiments of Liu & Joseph (1993) and Joseph

& Liu (1993) and they correspond to Mach numbers of order one. The number M=1 is a

critical value for which the vorticity equation in steady flow over a body will change

from elliptic to hyperbolic (Joseph, 1990); this means that the supercritical flow before a

body falling faster than the propagation speed of shear waves is uniform and the forces

then are the same pressure forces that turn long bodies broadside on in Newtonian fluids.

Hence, theory and experiments suggest that inertial forces will again dominate effectively

viscoelastic fluids with E greater than critical when the viscoelastic Mach number is

greater than a critical value of order one.

Our study of supercritical transitions by numerical methods is presently impeded by

the fact that our code does not converge well for high Deborah numbers (De larger than

two or three, depending on the Reynolds number). If Ec is the critical elasticity number,

then De = Ec M  so that our numerical study of supercritical transitions must be

restricted to smaller Ec which we get between close walls.
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Figure 9. The orientation θ and trajectory Y/W of an ellipse of aspect ratio a/b=1.5 falling in a Maxwell

fluid in a channel with blockage R/a=10 for E = De / Re =1.6  and different M. M=0.62 (Re=0.49,

De=0.78) is subcritical; M=1.34 (Re=1.06, De=1.70) is supercritical; M=1.03 (Re=0.81, De=1.30) is

marginally supercritical (see section 9).

In figure 9 we study the supercritical transition produced by changing the fall speed

of a falling ellipse, a/b=1.5, in a Maxwell fluid in a channel of blockage ratio R a =10  at



28

a value E=1.6 for which the fluid is effectively viscoelastic (see figure 8). The flow with

M=0.62 is subcritical; the ellipse migrates to the channel center and falls finally with its

long side vertical. The flow with M=1.34 is supercritical; the ellipse migrates to the

channel center and falls finally with its long side horizontal.

E

E c

cM  -1 M

Figure 10. Transition diagram for a given blockage ratio R a =10 .

The flow with M=1.03 in figure 9 requires further study; it appears to be a

supercritical case in which the evolution toward broadside-on turning is very slow (this

slow turning is studied in section §9). Assuming now a sharp transition at some critical

Mach number near one for a given blocakge ratio R a =10 , we propose the flow diagram

shown in figure 10.

9. Unstable tilted equilibria

The slow evolution toward supercritical broadside-on turning at M=1.03

demonstrated in figure 9 is associated with the existence of an unstable tilted equilibrium.

we have already noted in the introduction that the torques due to inertia and

viscoelasticity have different signs so that a zero sum might be generated as the fall
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velocity is increased through supercritical values for particular angles of tilt; this is why

tilted equilibria occur (see Feng, Joseph, Glowinski & Pan, 1995).

To study tilted equilibria we first carry out a static rather than dynamic calculation.

These can be carried out for an ellipse fixed in space immersed in a flow in which a

uniform velocity U is prescribed at the inlet of the domain and on both sidewalls. The

torque on the ellipse can tell us how it will turn when the constraints are removed.
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θo
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Figure 11. Torque on a fixed ellipse of aspect ratio a/b=1.5 in a uniform stream of Maxwell fluid as a

function of the orientation of the ellipse for an off-center (Y/W=0.58) and on center position (Y/W=0.50) in

a channel with blockage R/a=10 and E=1.6, M=1.03, Re=0.81, De=1.30. There are two zeros for tilted

angles in the off-center case, but the only zero torque positions at the channel center are for 90o (vertical)

and 180o (horizontal).

Now we fix our attention on the case M=1.03 in figure 9. At the end of the calculation

of the slowly evolving trajectory has reached the value Y/W=0.58, off center, with an

orientation θ=148o. Figure 11 gives the value of the total torque for all the orientation

angles θo. For the Y/W=0.58 we get a zero total torque at two positions, θ=98o and
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θ=140o. These two positions are candidates for a tilted equilibrium and the one at θ=140o

could be an attractor for the trajectory belonging to M=1.03.
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R/a=10, Re=0.81, De=1.30, E=1.6, M=1.03

Figure 12. The orientation θ and trajectory Y/W of an ellipse of aspect ratio a/b=1.5 falling from two

different initial conditions in a Maxwell fluid. R/a=10, E=1.6, Re=0.81, De=1.30 and M=1.03. The ellipse

is initially at rest.
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Figure 13. Perturbed orientation θ and trajectory Y/W of the ellipse in figure 12 starting from rest near the

proposed equilibrium at θ=148o and Y/W=0.58. The starting conditions are θ=148o and Y/W=0.58. The

particle migrates to the center and turns broadside on.

Figure 12 gives the dynamic simulations of the ellipse of aspect ratio a/b=1.5 falling

from two different initial conditions (θo=135o and θo=185o at the centerline) in a
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Maxwell fluid. The numerical results show that the particle turns to have an equilibrium

tilted orientation (θ=148o) with an off-center position (Y/W=0.58). However, the results

are definitely indecisive since the positions and orientation angles are still changing. In

fact, for this type of discrimination our numerical work is indecisive; numerical

inaccuracy in the computations is cumulative and long time results have to be interpreted

with care.

Fortunately, numerical methods can be used effectively to test the stability of

equilibria. Proposing then that θ=148o and Y/W=0.58 is a tilted equilibria, we may test for

stability by considering the evolution of a small perturbation of this equilibrium. In the

present case, we drop an ellipse from rest at Y/W=0.58 with θ0=148o and see how the

evolution evolves. The result is shown in figure 13; the perturbed trajectory migrates to

the centerline and the perturbed orientation to broadside-on. Returning now to the static

calculation we may verify that the only zero torque orientations at the channel center are

vertical and horizontal. The broadside-on position is stable to small perturbations when

M=1.03 and the vertical θ=90o at the channel center is unstable. We conclude that

M=1.03 is supercritical with respect to broadside-on turning of an ellipse which is stable

in the vertical position at E=1.6 when the Mach number is less than some critical value

near M=1.

10. Effects of the retardation and relaxation time ratio

Now we shall compare the response of an Oldroyd-B fluid with λ 2 λ 1 = 1 8 with an

upper convected Maxwell model λ 2 = 0 . ηλ 2  can be interpreted as an effective

Newtonian contribution to the total viscosity (Joseph 1990, chapter 18). To get positive

normal stresses and other physical properties from an Oldroyd-B fluid, λ 2 ≤ λ1 . The fluid

is Newtonian when λ 2 = λ1  and is most elastic when λ 2 = 0 . Inertia alone enters when

λ 2 = λ1 ; hence it ought to be and is true that inertial effects become more important as
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λ 2 λ1  is increased from 0 to 1. The effect of increasing the retardation time λ2 at a fixed

value of λ1 is to make the fluid more Newtonian.

The value λ 2 λ 1 = 1 8 is commonly used in numerical studies for historical reasons

only. No one knows how to measure λ2 and there is no single real fluid for which it can

be said that λ 2 λ 1 = 1 8. Many rheologists think that they can put ηλ 2  equal to the

solvent viscosity in a polymeric solution as was done by Rouse. This doubtful proposition

has no foundation in experiments and in any case λ 2 λ 1 ≠ 1 8. Joseph (1990) has argued

that the effective Newtonian viscosity ηλ 2  is a permanent memory relaxed elastic

modes.

Some comparisons of Oldroyd-B fluids with λ 2 λ 1 = 1 8 and λ 2 = 0  are exhibited in

figure 14. Figure 14(a) shows E=1.2 is above the critical elasticity number when λ 2 = 0

and is below the critical E when λ 2 λ 1 = 1 8. The critical E appears to be an increasing

function of λ 2 λ1 ; there is more broadside turning when the fluid is closer to Newtonian;

hence E=1.2 is below the critical E when R/a=10 and λ 2 λ 1 = 1 8. Figure 14(b) shows

that inertia turns a long particle broadside to the stream even in a Maxwell fluid when the

effect of elasticity is not large enough (E=0.8). If we eliminate inertia by putting the

Reynolds number Re to zero so E goes to infinity, the long particle rotates rapidly into a

vertical orientation. Without inertia, the normal stresses produce a torque which rotates

the particle straight-down.
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θ

θ

Figure 14. Comparison of the orientation of falling ellipses in a Maxwell fluid λ2=0 to an Oldroyd-B fluid

with λ2/λ1=1/8. (R/a=10, a/b=1.5). Here M is much less than one and vertical and horizontal orientations

depend on the critical elasticity number which is higher when λ2/λ1=1/8. (a) The particle settles with its

longside vertical when E is above the critical ; (b) the same particle rotates to horizontal when E is below

critical but to vertical when inertia is suppressed (E=∞).
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Figure 15. Orientation angle and trajectory of an ellipse as a function of fall distance for different elasticity
number corresponding to a fixed Reynolds number (Re≈0.47) in an Oldroyd-B fluid with λ2/λ1=1/8 when

R/a=10 and a/b=1.5.
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11. Sedimentation of ellipses when λλλλ 2 λλλλ 1 = 1 8

We did a rather large number of computations for this case before taking up the case

λ 2 λ 1 = 0 . Here we shall summarize the results of this early study.

11.1. Critical elasticity number E

In figure 15 we plotted the orientation and trajectory of subcritical sedimentation of

an ellipse of aspect ratio a/b=1.5 in the case specified in the caption of that figure. We

kept Re fixed and changed De by changing the relaxation time λ1. This figure suggests

that the critical E for R/a=10 when λ 2 λ 1 = 1 8 is between 1.20 and 1.28. This is a value

slightly larger than when λ 2 λ 1 = 0 . The elliptic partilces eventually turn vertical or

horizontal; this can be shown by stability studies of the type described in section 9. The

critical M for broadside-on falling is expected to be larger than for the Maxwell model.

11.2. Streamlines and dynamics of turning ellipses

Streamlines in a coordinate system on the ellipse under conditions specified in figure

15 are shown in figures 16 and 17. Figure 16 is for a high De=1.85 and E=4.0; figure

16(a) shows the particle turning to the vertical equilibrium shown in figure 16(b). Clearly

the shear rates are large where the flow is fast, producing “high pressures” there, as

shown in figure 1. The normal stresses give rise to a large negative torque which turns the

ellipse clockwise, against the high pressure at the front stagnation point.
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X/W=1.375 
Y/W=0.532
θ=108.6 o

X/W=14.32 
Y/W=0.501
θ=90.1 o

(a) (b)

Figure 16. Streamlines for the flow around an elliptic particle in an Oldroyd-B fluid under conditions

specified in figure 15, R/a=10, a/b=1.5, Re=0.46, De=1.85, E=4.0, M=0.92. (a) The particle is turning

clockwise; (b) the particle has reached an equilibrium in which the major axis is along the stream.

Figure 17 is for a smaller De=0.18 and E=0.40, the ellipse turns counter-clockwise

toward a horizontal equilibrium shown in figure 17(b). The high shear regions are now

located much closer to the two points on the major axis of the ellipse (figure 17(a)); the

compressive normal stresses generate a smaller negative torque on the particle and the

front stagnation pressure controls the turning, rotating the particle counter-clockwise.
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X/W=1.38 
Y/W=0.56
θ=161.7 o

(a)
X/W=34.6 
Y/W=0.502
θ=179.3 o

(b)

Figure 17. Streamlines for the flow around an elliptic particle in an Oldroyd-B fluid under conditions

specified in figure 15, R/a=10, a/b=1.5, Re=0.44, De=0.18, E=0.40, M=0.08. (a) The particle is turning

counter-clockwise; (b) the particle has reached an equilibrium in which the major axis is across the stream.

11.3. Effects of the particle aspect ratio a/b

Long thin ellipses turn vertical more readily than short fat ellipses. This suggests that

the critical elasticity number is a decreasing function of a/b, viscoelastic effects are

amplified. To study effects of viscoelasticity, we change the aspect ratio of the particle

a/b , keeping the particle weight constant. The fall velocity changes only slightly under

these conditions but particle tilts strongly to the vertical (θ=90o) as the aspect (or

thinness) ratio changes from 1.3 to 2.0, as shown in figure 18.
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Figure 18. Orientation θ and trajectory Y/W of ellipses with different aspect ratios falling in an Oldroyd-B
fluid with λ2/λ1=1/8 (R/a=10, Re=0.61, De=0.97, E=1.58, M=0.769).
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11.4. Interaction of two ellipses

We compute two dynamic simulations of the settling of two elliptic particles a/b=1.5

in a channel R a =10  when ρf=1.0, ρs/ρf=1.0015, η=0.01, λ1=0.5 and λ 2 λ 1 = 1 8. In

one simulation in figure 19(a) the particles are dropped in tandem, in the other in figure

19(b) they are dropped side by side. The particles are distinguished by shading and equal

numbers are at equal time. Evidently, the particles wish to chain with their major axis

vertical. This is consistent with the notion that normal stresses are compressive and of

greatest strength where the shear stresses are greatest (see figure 1) as they are at

positions of the chain which are out of line, as in figure 19(b). A video animation of the

simulation shown in figure 19(b) can be seen on our web page. The simulation in figure

19(b) is terminated at number 15 because of collisions; the smallest distance between

particles becomes smaller than the elements in the mesh.
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Figure 19. The motion of two elliptic particles in an Oldroyd-B fluid (R/a=10, a/b=1.5, θο=90o). The

number on the particles shows different time step. (a) Particles are released one on top of the other; (b)

particles are released side by side.
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12. Shear thinning

Joseph (1996) has argued, and Huang, Feng, Hu & Joseph (1996) have shown that the

shear thinning amplifies the effects of normal stresses. If the wall shear stress

τw = η( Ý γ w )Ý γ w  is fixed at the places of high Ý γ w  (as at points c in figure 1) Ý γ w  goes up

when η( Ý γ w) decreases. Then, estimating the normal stress by

−Ψ1
Ý γ w

2 = −η( Ý γ w )(λ1 − λ 2) Ý γ w
2 = −τw

Ý γ w(λ 1 − λ 2 )

in an Oldroyd-B fluid we see that the normal stresses must be larger in the shear thinning

form of fluid.
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Figure 20. The effect of shear thinning on the turning of an elliptic particle in an Oldroyd-B fluid (R/a=10,
a/b=1.5, λ2/λ1=1/8, E=1.56).

Here we study shear thinning by using equation (4) with λ 3 λ 1 =1.0  and

η∞ η0 = 0.1, varying the shear thinning index n. Other parameters are R a =10 ,

a/b=1.5, λ 2 λ 1 = 1 / 8 and ρs/ρf=1.0022. We fixed the elasticity number near but less

than its critical value (E=1.56) so the effects of shear thinning can be seen clearly. For
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n=1.0, the ellipse migrates to the center and turns broadside on. For n=0.8 and n=0.5 the

ellipse drifts to an off-center equilibrium with a certain angle of tilt.
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Figure 21. Orientation θ and trajectory Y/W of an ellipse released with different initial positions and tilt

angles in an Oldroyd-B fluid with shear thinning. (λ 2 λ 1 = 1 8, R/a =10, a/b=1.5, Re=0.69, De=1.07,

E=1.56, M=0.86). The ellipse migrates to a stable equilibrium off-center with a certain tilt angle.
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When the fluid does not shear thin, tilted off-center equilibria are unstable to small

perturbations where the equilibria and evolution of perturbations are computed by direct

simulation (see figure 13). The tilted solutions for n=0.8 and n=0.5 shown in figure 20

are stable to these same perturbations, as shown in figure 21. We are then forced to

conclude that tilted equilibrium solutions can be stable if the fluid shear thins.

We have already mentioned that it is appropriate not to claim too much from

simulations whose accuracy for long time evolution of the orientation and trajectory of a

falling ellipse is not perfect. With this reservation, we imagine that the action which

produces these off-center solutions depends on the walls, if a particle is displaced from

the center, the shear, hence the viscosity, is not the same at the left and right side of the

particle. This anisotropy of viscosity could be the new feature which opens the possibility

of stable tilt. Here, in figure 21, we show that the broadside-on equilibrium which was

stable when n=1.0, is unstable when n=0.5.

13. Conclusions

••••  Normal stresses due to inertia turn long bodies across the stream. Normal stresses

due to viscoelasticity turn long bodies along the stream. The orientation is determined by

a competition of normal stresses to inertia and viscoelasticity.

••••  The normal stresses associated with the extra stresses on moving rigid bodies

vanish. The normal stresses on rigid bodies due to all causes are contained in the pressure

alone. It may be true that the normal stresses on rigid bodies associated with extra

stresses vanish in all fluids in which the second normal stress vanishes.

••••  An ellipse falling in an Oldroyd-B fluid between plane walls can evolve into a time

dependent motion or steady falling. Stable steady flows are at the channel center and are

not tilted.
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••••  A critical value of the elasticity number can be determined. For values of the

elasticity number below critical, the fluid is effectively Newtonian in the sense that the

final orientation is broadside on for all values of the fall velocity.

••••  For values of the elasticity number larger than critical, the ellipse finally settles with

its long axis vertical provided that it does not fall too fast.

••••  When the elasticity number is greater than critical, a critical Mach number can be

found. For Maxwell models the critical Mach number is close to one. When the fall

velocity is such that the Mach number is larger than critical, the ellipse falling vertically

will flip to horizontal.

••••  A non-zero critical elasticity number can be determined only for channels whose

walls are not too close. There is a critical blockage ratio (ratio of channel width to

particle diameter) below which no critical elasticity number can be determined. The

critical elasticity number is an increasing function of the blockage ratio R a  tending to

some finite value as the distance between channel walls is increased.

••••  When the channel walls are close together (small blockage ratio), an ellipse settling

slowly in a Newtonian fluid will settle with its long axis vertical. This numerical result

was verified in an experiment. At faster speeds the ellipse settling in a Newtonian turns

broadside on.

••••  Tilted equilibria can also be generated by shear thinning which generates variable

flow induced viscosity which is not symmetric with respect to the falling particle.

••••  The effects of elasticity are enhanced in thinner ellipses. The critical elasticity

number is a decreasing function of the aspect ratio a b .

••••  The effect of increasing the retardation/relaxation time ratio λ 2 λ1  is to make the

fluid more Newtonian; it is Newtonian when this ratio is one.

There is a tendency for particles which fall slowly in viscoelastic fluids above the

critical elasticity number to line up with the longest line in the body with gravity; for a

square body or cube this long line is from vertex to vertex. This effect, which causes
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cylinders with flat ends, or particles whose longest diameter is not centrally located, to tilt

is well documented in the experiments of Liu & Joseph (1993), of Joseph & Liu (1993)

and is explained theoretically by Joseph (1996). The sedimentations for these kinds of

particles have not yet computed by direct numerical simulation.
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