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The Effect of an Adjacent Viscous Fluid on the Transmission of Torsional
Stress Waves in a Submerged Waveguide

Abstract
The effects of an adjacent fluid's viscosity and density on the characteristics of torsional stress waves
transmitted in a waveguide with a circular cross section are studied theoretically and experimentally.
Expressions for the torsional waves speed, dispersion relations, and attenuation are obtained as functions of
the adjacent fluid's viscosity and density. The theoretical results are compared with experimental observations.
It is demonstrated that a devices similar to the one described herein can be used as a rugged, real-time, on-
lines sensor for measuring the viscosity of a fluid with a known density. Such a sensor can measure the
viscosity of fluids with a density viscosity product (ρfμ) greater than 100kg2/m4s to a precision of 1% or better
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The effect of an adjacent viscous fluid on the transmission 
of torsional stress waves in a submerged waveguide 

Jin O. Kim, Yuzhou Wang, and Haim H. Bau 
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 
Pennsylvania 19104-6315 

(Received 15 September 1989; accepted for publication 9 October 1990) 

The effects of an adjacent fluid's viscosity and density on the characteristics of torsional stress 
waves transmitted in a waveguide with a circular cross section are studied theoretically and 
experimentally. Expressions for the torsional wave speed, dispersion relations, and attenuation 
are obtained as functions of the adjacent fluid's viscosity and density. The theoretical results 
are compared with experimental observations. It is demonstrated that a device similar to the 
one described herein can be used as a rugged, real-time, on-line sensor for measuring the 
viscosity of a fluid with a known density. Such a sensor can measure the viscosity of fluids with 
a density viscosity product (p/p) greater than 100 kg•-/m 4 s to a precision of 1% or better. 
PACS numbers: 43.85.Dj, 43.20.Mv, 43.20.Tb, 43.40.At 

INTRODUCTION 

The speed and attenuation of stress waves transmitted in 
submerged waveguides are affected by the viscosity and den- 
sity of the surrounding fluid. When a stress wave travels in a 
solid, it causes deformation of the solid-fluid interface, 
which in turn induces fluid motion. The coupling mecha- 
nism between the motion in the solid and the fluid depends 
on the geometry of the waveguide and the type of stress wave 
employed. For example, when the solid's deformation is par- 
allel to the solid-fluid interface, the coupling is solely due to 
viscous drag. When the deformation is normal to the surface, 
then the coupling results from a combination of both pres- 
sure and viscous drags. The former arises when shear waves 
are transmitted in a strip or torsional stress waves are trans- 
mitted in a circular cylinder, • while the latter occurs when 
torsional stress waves are transmitted in waveguides with a 
noncircular cross section. 2'3 Thus, by measuring the speed 
and the attenuation of stress waves in submerged solid wave- 
guides, one can obtain information on various rheological 
properties of a fluid such as its viscosity and/or density. 

The idea of correlating the rheological properties of 
fluids with the characteristics of stress waves transmitted in 

submerged solid waveguides is not new. Roth and Rich • sug- 
gested obtaining a fluid's viscosity by measuring the attenu- 
ation of shear waves transmitted in a strip waveguide sub- 
merged in fluids of known density. They advanced an 
approximate theory to correlate the speed and the attenu- 
ation of the stress wavc with the fluid's viscosity density 
product (pl/•) and employed their device to measure the 
viscosity of various viscoelastic fluids. 

For many applications, it also may be desired to mea- 
sure the liquid's density. To this end, Lynnworth 2 employed 
torsional stress waves in waveguides with noncircular cross 
sections. In such situations, the fluid affects the stress waves 
primarily via "pressure drag." By transmitting torsional 
stress waves in waveguides with circular and noncircular 
cross sections, one can measure both fluid's viscosity and its 
density. 4 

This paper has been inspired by our attempts at measur- 
ing the viscosity of NewtonJan liquids by transmitting tor- 
sional stress waves in submerged waveguides with circular 
cross sections. In order to achieve a deeper understanding of 
the sensor's operation as well as to obtain suggestions for 
possible improvements of its sensitivity, we formulated a 
mathematical model somewhat more rigorous than the ones 
previously employed (i.e., Ref. 1 ). The model and the solu- 
tion of the governing equations are presented in the first part 
of the paper. The exact solution of the equations leads to a 
transcendental, complex equation which allows one to cal- 
culate both the speed and attenuation of the stress wave. 
Since the exact solution consists of an implicit relation be- 
tween the various quantities of interest, we also proceeded to 
develop a more convenient, explicit, asymptotic relation val- 
id for relatively low viscosity fluids. A comparison of the 
exact and asymptotic solutions reveals that the asymptotic 
solution is useful for a wide range of applications. In the 
second part of the paper, we report a few experimental re- 
sults and compare them with the theoretical predictions. 
Finally, we suggest various ways to improve the sensor's 
sensitivity. The results reported herein may also be useful for 
the design of delay lines. 

Since viscosity measurement is important in a variety of 
industrial processes, it is not surprising that a considerable 
amount of effort has been invested in the development of 
various viscosity measurement devices. Due to space con- 
straints, we will not review the entire field here. Rather we 
mention only the devices which are most closely related to 
the one described here. These devices involve observing the 
period and decay (damping) constant of torsional oscilla- 
tions of an axially symmetric body, such as a disk, s'6 a 
cup, 7'8 a sphere, ø or a cylinder, m suspended from an elastic 
strand and submerged in the measured fluid. The device de- 
scribed in this paper is likely to be less accurate than the 
aforementioned devices but it has the advantage of being 
rugged, having no moving components, and enabling one to 
measure viscosity on line and in real time. These attributes 
may make such a device attractive to industrial users. 
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I. THE APPARATUS 

The apparatus consists of a waveguide, made of an elas- 
tic material of density p,, with a uniform circular cross sec- 
tion, submerged in a fluid of density p/and viscosity )t. The 
waveguide is subjected to a torsional pulse which is conve- 
niently induced utilizing the magnetostrictive phenomenon. 
Briefly, one end of a delay line, made of a magnetostrictive 
material, is soldered or glued to the waveguide while a coil is 
placed around its other end, as shown in Fig. 1. The delay 
line is electrically polarized so as to develop a circumferen- 
tial, permanent magnetic field inside the magnetostrictive 
wire. The introduction of a current pulse in a coil causes a 
time varying axial magnetic field to develop. The interaction 
between the two aforementioned magnetic fields leads to a 
twisting force on the magnetostrictive wire and the genera- 
tion of a torsional pulse. This is known as the Wiedemann 
effect." The resulting torsional stress wave travels in the 
magnetostrictive wire. Part of the wave is reflected at the 
magnetostrictive wire-waveguide interface. The other part 
travels through the waveguide and is reflected from its other 
end. The reflected waves cause electromotive forces in the 

coil which now acts as a receiver (the inverse Wiedemann 

effect). The signal can be viewed on an oscilloscope's screen. 
By measuring the time which elapses between the two signals 
and their amplitudes, one can calculate the speed and attenu- 
ation of the torsional stress wave in a waveguide of known 
length. In our experiments, the time span is measured peak 
to peak with a precision of 5 ns using a digital oscilloscope. 
As we shall show later, this time span (or the wave speed) 
depends, among other things, on the waveguide's and the 
adjacent fluid's densities, on the fluid's viscosity, and on the 
waveguide's geometry. 

In our experiments, we typically employ waveguides 
made of solid and hollow aluminum rods (density p, 
= 2.70X103 kg/m 3, and shear modulus G= 2.593( 10 m 
N/m2). •2 The outer radius of the solid and hollow wave- 
guides ro = 1.22 mm and their length L = 306 mm. The in- 
ner radius of the hollow waveguide r,. = 0.78 mm. The mea- 
sured speeds of the torsional stress wave in solid and hollow 

- Transducer 

-- Delay line 

-- Naveguide 

FIG. 1. Schematic description of the torsional wave sensor. 

waveguides in air at 25 øC are, respectively, 3014 and 3019 
m/s, which agree within 3% with the corresponding speed 
calculated from nominal material properties (G/p• )'/:. We 
also report results for a threaded (NF-UNF 3-56) hollow 
waveguide having similar ro, ri, and L to the aforemen- 
tioned ones. The dominant frequency is estimated as 90 kHz. 
The delay line is made of Remendur (Fe-Co-V-Mn) of 
length about 1000 mm. The reflectivity of the delay line- 
waveguide interface can be controlled by controlling the me- 
chanical impedance mismatch at the interface. This is typi- 
cally done by soldering a small ring around the waveguide. 

II. MATHEMATICAL MODEL 

Consider a torsional stress wave traveling in a uniform 
circular tube of length L, shear modulus G, and outer and 
inner radii r o and r•, respectively. The tube is sufficiently 
long (L/% >> 1) to render end effects negligible. It is sub- 
merged in a fluid ofviscositykt. As the torsional wave travels 
through the waveguide, the solid-liquid interface is alter- 
nately accelerated and decelerated. As a result of viscous 
drag, motion is induced in the fluid. 

The circumferential displacement Uo of the solid (see, 
for example, Reft 13) and the circumferential velocity v o of 
the fluid (see, for example, Reft 14) satisfy, respectively, the 
conservation equations 

02u o 02u o 1 Ouo uo 02u o 
& 2 O? + ' + r Or r- Oz 2' 

o? + '+ ' r Or r- Oz 2 J 

ri<r<l, 

(1) 

l<r< 

(2) 

with the boundary and interfacial conditions 

OUo uo 
----0, atr=r,., (3) 

Or r 

OUo u__o_p___(SVo ;o), atr= 1, (4) Or r R \ Or 

vo-- , atr=l, (5) 
Ot 

rolO, as r•oo. (6) 

Above, all quantities are in nondimensional form. Here, r is 
the radial distance, and r• is the inner radius of the tube. The 
length scale is the tube's outer radius %. The velocity scale is 
% = (G/p,) ,/2. We shall present our results in terms of the 
two nondimensional parameters: the density ratio 
(p = ps/p.• ) and R = psroco/la. Note that R is inversely pro- 
portional to the viscosity. 

We seek solutions of the form 

uo(r,z,t) = U(r)exp{ - hz + iw[ (z/c) -- t ]}, (7) 
vo(r,z,t) = V(r)exp{ -- hz + ko[ (z/c) --t]}, (8) 

where w, c, and h are, respectively, the wave's frequency, 
speed, and attenuation. 

In the next section, we shall develop an exact solution 
for Eqs. ( 1 )-(6), while in Sec. IV, we shall employ a pertur- 
bation approach to obtain explicit relations between c and h 
on the one hand, and R and p on the other hand. 
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III. EXACT SOLUTION 

Equations (1) and (2) admit solutions in terms of Bes- 
sel functions with complex arguments of the form 

U(r) = CJ•(A,r) + C2K•(A,r) (9) 

and 

V(r) = C3I,(A/r) + CnK•(A/r), (10) 
where I and K are modified Bessel functions of the first and 
second kind: 

A s = •(o)/c + [h) 2 - to 2 (11) 
and 

A,• = •(co/c + ih ) 2 - ioR . (12) 
Upon invoking the boundary and interfacial conditions 

in Eqs. ( 3 )- (6), we obtain the eigenvalue problem for h and 
½: 

F(h,c) = • ' \I•(A,r,) K•-•A.,r•)'] 
P A K•(Ai) [ I•(As) ! =0. K•(A•) • 

(13) 

When the waveguide is solid (r• = 0), Eq. (13) reduces to 

F(h,c) =IA, I=(A,) P Aœ K=(A/) =0. (14) 
•uations (13) and (14) are complex equations, and 

they provide implicit relationships between h and c on the 
one hand, andp, R, •, and r, on the other hand. That is, upon 
finding the roots of •. (13), one can obtain the explicit 
relations c • c(p,R,o,r• ) and h = h (p,R,o,r• ). To this end, 
we employ Newton's technique. Briefly, we start with an 
initial guess, c• and h•, which may fail to satisfy •. (13). 
Next, we priced to calculate as co•ection, Ac and Ah, so as 
to satisfy •. (13). This leads to the complex equation 

8F 8F 
F(c+&e,h+&e)•F(e,h)+ &e+ &h=0. (15) 

8c 8h 

U•n separation into real and imagina• pa•s, •. (15) 
yields two algebraic equations that allow one to calculate •c 
and •h. Now, the corr•ted values c•+• = c• + •c and 
h•+ • = h• + •h play the role of the new initial guesses. The 
pro•ss is repeated until the d•ir• convergence conditions 
are satisfied. In addition to developing our own routine, we 
also used, with similar r•ults, the r•tfinder function avail- 
aNe in Reft 15. A successful •a•h necessitate, however, a 

good initial gu•s. We provided such an initial gu•s by uti- 
lizing t•e implicit function t•e0rem. BNefly, suppose c• and 
h• satisfy •. (13) for given values ofR,p, and o. We pr•ict 
the new values ei+• =ci + (Sc/SR)XdR and hi+• = h• 
+ (Sh/SR) XdR co•esponding to R + dR by computing 
the pa•ial derivatives 8c/8R and 8h/SR from the complex 
•uation 

8F 8F 8c 8F 8h 
f • • • --0. (16) 

8R 8e 8R 8h 8R 

On• we have calculated the Oave speed c and the attenu- 
ation h, we can proceed and calculate the group vel•ity 

i i r 

$ 7 

FIO. 2. Velocity profile of the solid and the fluid when o = 1.0, p = 0.1, and 
R = 0.2. The vertical dashed line denotes the location of the solid-fluid in- 
terface. 

c e = dco/dk by differentiating Eq. (13) with respect to the 
wave number k. 

A sample of our results for a solid cylinder and for the 
fundamental torsional mode is depicted in Figs. 2-4. Addi- 
tional results are available in ReL 16. In Fig. 2, we depict the 
instantaneous velocity field in the solid (SUo/St) and the 
surrounding fluid (%) as functions of the radial distance (r) 
from the waveguido's center. The vertical dashed line in Fig. 
2 denotes the location of the solid-fluid interface. The veloc- 

ity field is shown for a relatively high-viscosity liquid 
(R = 0.2). Thus we have a relatively thick boundary layer in 
the fluid. 

In Fig. 3(a) and (b), we use symbols to depict the de- 
pendence of the attenuation [ Fig. 3 (a) ] and the phase veloc- 
ity [Fig. 3(b) ] on the fluid's viscosity (R) for three density 
ratios p = 0.1, 1.0, and 5.0. The solid lines in Fig. 3 corre- 
spond to asymptotic solutions which we shall describe in the 
next section. In the range of R values considered, as expect- 
ed, the attenuation [Fig. 3(a)] increases monotonically 
with decreasing R. In other words, as the fluid viscosity in- 
creases, so does the damping. The same is not true for the 
phase velocity. For relatively large R values, the phase speed 
decreases as R decreases [ Fig. 3 (b) ]. This is expected, since 
as R decreases, the thickness of the fluid's boundary layer 
increases (i.e., a larger mass of fluid is engaged in the mo- 
tion) which, in turn, implies that the stress wave encounters 
larger inertia and thus there is a slowdown in speed. As R is 
further decreased, we observe that the phase speed attains a 
minima and then increases again. In order to explain this 
change in trend, it is useful to examine the effect of R on the 
shape of the displacement field in the solid. To this end, we 
depict in Fig. 4, the displacement uo in the solid as a function 
of the radial distance r for various R values. For comparison 
purposes, all the curves in Fig. 4 have the same slope at the 
origin. For relatively large values of R (i.e., R> 10), the dis- 
placement (Fig. 4) is almost proportional to the radial dis- 
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1o 

I-C ]if; 

(b) 

•6 

FIG. 3. (a) The attenuation h depicted as a function of R for w = 1.0 and 
variousp. The solid lines denote the asymptotic solutions while the symbols 
denote the exact solution. (b) The phase speed c depicted as a function err 
for •o = 1.0 and various p. The solid lines denote the asymptotic solutions 
while the symbols denote the exact solution. 

tance resembling the fundamental mode in the classical tor- 
sion problem. l? As R decreases, the displacement curve 
starts bending until, eventually, a nodal point is attained. 
The displacement field for smaller values err (i.e., R<0.2) 
resembles somewhat the second torsional mode in the classi- 

cal torsion problem. Since the second torsional mode has a 
higher phase speed than the fundamental one, this explains 
the increase in the wave speed as R decreases below a certain 
value (Fig. 4). 

We also calculated the group velocity (the results are 
not shown here, for details see Reft 18) and found it to be 
slightly higher than the phase velocity. 

IV. ASYMPTOTIC SOLUTION FOR LARGE R 

The exact procedure developed in Sec. III suffers from 
the disadvantage that c and h are not expressed explicitly in 
terms of the parameters R and p. In many applications, how- 
ever, R is fairly large. For example, for a circular waveguide 
of outer radius r o = 1.22 mm submerged in glycerin at room 
temperature, R is 2270. Thus it may be useful to obtain an 
asymptotic solution for large R. To this end, we introduce 
the parameter e = R-•/2 and employ for the fluid the 

stretched coordinate r/= (r-1)/e. Upon rescaling, the 
governing Eqs. ( 1 )-(6) accept the form 

U"(r) + (l/r) U'(r) 

ß k•(--•'•)•--•l•' ---0, 

v" (•l) + 

(1 

U'(r) - (l/r) U(r) = 0 

U'(r) 1 U(r)=p(eV'(•]) 
atr=l and r/=0, 

V(*I) = -koU(r) atr=0 

V(r/) -,0 as V'-' o•. 

ri •r< 1, 

(17) 

e v'(v)+ to,+ 1 +e•l 

e• Iv(r/)=0, O<V<• ß -{- ET]) 2 ' 
at r = F i, 

d 1 

and •7 = 0, 

18) 

19) 

(20) 

(21) 

(22) 

The case of R• oo (e-•O) corresponds to the classical tor- 
sional problem in a circular cylinder submerged in inviscid 
fluid. In what follows, we shall develop a solution that, in the 
limit err -, o•, reduces to the fundamental mode of the clas- 
sical case. A similar procedure may be used for other modes. 

We seek series solutions in the form 

U(r) = •or + • e"u. (r), (23) 

V(r/) = •] E"V,r/), (24) 
rt=0 

c = 1 + i e"c,,, (25) 

h = • e"h,,. (26) 

Next, we substitute the series of Eqs. (23)-(26) into 
Eqs. (17)-(22) and equate coefficients of like powers in e. 
As a result, we obtain a sequence of boundary value prob- 
lems which can be solved recursively to obtain the explicit 
expressions for c and h and the group velocity Cg in the form 

c=l _ P 2 1 1 • 1 r• + R (1 -rt) 2 o, 
1 

•k (•/•) 3/ 
(27) 

2 I -- r, 6 2 2 1 + r/4 p2o,2 3 ( 1 -- r•) 3 p o, + ( 1 -- d) 2 

1 p 2• + •--(--2 r,?(1- 2) - ,t -- 

2 

( 1 - ri4) 2 p2 + -- 3) 1 -¾"+ (28) 
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I 1 p 1 I p• 
cg=l- 

• 1-r• 2x• R (1-r•)*- 20 

In principle, the procedure could be continued indefi- 
nitely. Due to the increasing length of the expressions in- 
volved, we calculated only the first three terms in the series. 
Since Eqs. (27)-(29) represent a truncated Taylor series, 
they are likely to be valid only for a limited range err values. 
We can estimate the range of validity of the asymptotic series 
by utilizing only the first two terms in the series, and using 
the third term as an estimate of the truncation errorß Alter- 

natively, the range of validity can be determined by compar- 
ing the approximate results of Eqs. (27)-(29) with the exact 
ones (Sec. liD. To this end, we depict the results of the 
perturbation analysis as solid lines in Fig. 3. It is clear from 
Fig. 3 that for a wide range of R values, the approximate 
solution is in excellent agreement with the exact one. In Ta- 
ble I, we list the smallest R value as a function of the wave 

number k and the density ratiop, above which the deviation 
of the asymptotic solution from the exact one is smaller than 
1%. 

We note in passing that the O(E) terms in Eqs. (27)- 
(29) are identical to what one obtains when one assumes 
that the fluid's drag does not affect the deformation field in 
the solid. That is, the flow field in the fluid is identical to the 
one generated by a flat, infinite plate submerged in viscous 
fluid and oscillating in its own plane. •ø For large R, we can 
neglect the curvature of the circular cross section due to the 
extremely small thickness of the viscous boundary layerß The 
higher-order terms reflect the effect of the viscous drag on 
the deformation fieldß Figure 4 shows that this effect be- 
comes significant only for relatively small values of R. This 
explains why the approximate technique is so successful over 
a wide range of R valuesß 

V. COMPARISON WITH EXPERIMENTS 

In our experiments, we measured the time (Dt) elapsing 
between reflections from the delay line-waveguide interface 
and the waveguide's end, as well as the corresponding ampli- 
tudes of the reflected signals, which we denoted as.4 and B, 
respectively. Since the length of (he waveguide is known, we 
can readily calculate the speed of the wave. The standard 
deviation for the speed measurement is smaller than 0.2%. 
The attenuation can be computed from our knowledge of 
amplitudes A and B. However, to perform such a calcula- 

TABLE I. Approximate smallest values of R for various wave number k 
and density ratio p, below which the deviation of the asymptotic solution 
from the exact numerical results becomes larger than 1.0%. 

R 

p k = 0.1 k = 1.0 k = 10,0 

O. 1 45.0 3.0 8.0 

1.0 100.0 30.0 80.0 

5.0 10 000.0 700.0 750.0 

tion, knowledge of the reflection coefficient Cs at the delay 
line-waveguide interface is necessary. We assume that, to 
the first approximation, the reflection coefficient is indepen- 
dent of the fluid's viscosity, and obtain its value from mea- 
surements conducted while the waveguide is submerged in 
air (attenuation is assumed to be negligibly small). Thus we 
find 2ø 

+4. (30) 
Once Cs is known, we can calculate the nondimensional 
attenuation h from the equation 

(_; h= rø log . (31) 

The standard deviation for the measured attenuation is esti- 
mated to be smaller than 1%. 

We carried out our experiments with Cannon viscosity 
standard liquids: S6, S60, S600, and N 1002• at temperatures 
20, 25, 40, and 50 øC. The range of viscosities and densities 
covered was 7-2000X10 -3 kg/m s and 0.8-1.2X103 
kg/m a, respectively. The corresponding ranges of R and p 
values were 2270•432 000 and 0.28--0.44. The standard 

liquids were contained in a constant, uniform (within 
0.5 øC) temperature chamberß 

Ihe theoretically predicted and measured h and c are 
shown in Figsß 5 and 6 as functions of the product (p//_t) 
Experimental results are shown for smooth solid waveguides 
(solid circles); smooth hollow waveguides (open circles 
with a central dot); and threaded hollow waveguides (open 
circles). The dashed lines represent a linear least-squares fit 
through the experimental points. Theoretical results are giv- 
en only for the smooth solid (solid line) and smooth hollow 
(dash-dot line) waveguides. For the range err values con- 
sidered, both the experimental and theory show essentially 
linear dependence between the wave speed and the attenu- 

u 

1.0 • 
R--0.5 

FIG. 4. The deformation field associated with the fundamental mode de- 

picted as a function of the radial distance ß for various R when co ---- 1.0 and 
p-- 0.1. 
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FIG. 5. The attenuation coefficient displayed as a function of (p/It) '/:. The 
solid lines represent the theoretical solution. The circles and the dashed 
lines represent the experimental results and the linear least-squares fit ob- 
tained from these results. 

ation on the one hand and (p/fi)•/2 on the other hand. The 
agreement between the predicted and the measured attenu- 
ation (h) in Fig. 5 is better than 1%. 

The agreement between the predicted wave speed and 
the measured one in Fig. 6 is not always as good. For the 
solid waveguide, we obtain good agreement between the ex- 
periment and theory for (p//•)•/2<20. But, for 
(pfl. t) •/2 > 20, there is about a 10% discrepancy between ex- 
periment and theory. For the hollow waveguide, the discrep- 
ancy between theory and experiment is even larger (about a 
factor of 1.5). In the next section, we shall discuss a few 
possible reasons for these discrepancies. 

Vl. CONCLUSIONS AND DISCUSSION 

In this paper, we considered theoretically and experi- 
mentally the effect of an adjacent fluid's viscosity on the 
characteristics of a torsional stress wave transmitted in a 

waveguide with a circular cross section. The results may be 
useful for the design ofa viscosimeter. The advantage of the 
sensor described here is that it can be positioned permanent- 
ly in line to provide real time viscosity measurement. 

The theory developed here allows one to correlate a 
stress wave's wave speed and attenuation with the adjacent 
fluid's characteristics. The theory is more rigorous than any 
heretofore available since it accounts for the fluid effect on 

the deformation field in the solid. The theory is not conven- 
ient to use since it requires the solution of transcendental 
equations and does not lead to an explicit relationship be- 
tween the quantities of interest. This shortcoming is partially 
alleviated by developing asymptotic express!ohs for the 
wave's speed and attenuation. The approximate expressions 
are in good agreement with the exact ones for a wide range of 
parameter values. 

The theoretical results were compared with experimen- 
tal observation. For the wave attenuation, we obtained a fa- 
vorable agreement between theory and experiment (Fig. 5). 

For the wave speed (Fig. 6) in solid waveguides sub- 
merged in relatively low viscosity liquids (p•fi) •/2 < 20, we 
observe good agreement between the experiment and theory. 
For solid waveguides submerged in high viscosity liquids 
[ (p/fi)•/2> 20] and hollow waveguides submerged in any 
liquid, the experimental results deviate significantly from 
the theoretical predictions. The measured speed is consider- 
ably slower than the predicted one. We do not have a com- 
plete explanation for this discrepancy. Below, we briefly dis- 
cuss a few possible reasons. The fact that the observed speed 
is lower than the predicted one implies that the theory may 
be underestimating the apparent inertia of the fluid. Such an 
underestimation could occur if secondary fluid motion 
(which was not included in our theory) were present. In- 
deed, researchers have observed secondary flows in the case 
of oscillating cylinders 22 when the Taylor number 
T= 2u• (20) 1/2/(roVi/2) > 164. However, such secondary 
flows are not likely to be present in our experiments as typi- 
cally the Taylor number T• 1. Another possible reason for 
the discrepancy is that the theory assumes an essentially mo- 
nochromatic wave while, in actuality, we are dealing with a 
broadband of frequencies. Also, especially in the case of the 
hollow cylinder, it is possible that in addition to the torsional 
oscillations other modes of vibrations such as angular Lamb 
waves are included. The simple theory we have presented 
here does not account for this possibility. Clearly, in the case 
of the hollow waveguide, there is a need to develop a more 
complete theory than the one presented here. In any event, 
given these discrepancies, if viscosity were to be inferred 
from wave speed, it would be necessary to calibrate the sen- 
sor rather than rely on the theoretical correlation. Given the 
linear relationship between the wave speed and (p•fi) •/2, this 
should not be a formidable task. 

In this work we showed that a torsional wave sensor can 

be used to measure the (p/u)•/2 of Newtonian fluids. Thus 
one can obtain a fluid's viscosity if its density is known. Of- 
ten, it is desired to measure both density and viscosity inde- 
pendently. In theory, one could obtain both the viscosity and 
density from the attenuation and speed measurements. 
However, Eqs. ( 27 )- (29) suggest that the functional differ- 
ence in the effect of viscosity and density on wave speed and 
attenuation is a second-order effect. Thus it may not be prac- 
tical to obtain both p and fi from a single sensor. If the mea- 
surement of both density and viscosity is required, one might 
consider transmitting torsional stress waves in two wave- 
guides: one with a circular cross section and the other with a 
noncircular cross section (see, for example, Refs. 4 and 23). 

Finally, an issue of considerable interest is how to im- 
prove the sensor's sensitivity. In this paper, we report results 
pertaining to solid and hollow waveguides. Clearly, hollow 
waveguides outperform their solid counterparts (Figs. 5 and 
6). The thinner the wall thickness, the better. For example, if 
we measure wave speed/attenuation, the hollow waveguide 
used by us is 70%/20% more sensitive than the solid one. 
Additional gains in sensitivity can be obtained by increasing 
the surface area of the waveguide in contact with the fluid so 
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as to increase the fiuid's apparent inertia. This can be accom- 
plished by corrugating or threading the waveguide's surface. 
For example, the threaded hollow waveguide we used im- 
proved sensitivity for speed/attenuation measurements by 
an additional 60%/50% (Figs. 5 and 6) compared with the 
smooth hollow waveguide. Further increases in sensitivity 
are possible by using external confinement. For example, the 
viscous fluid could be enclosed between the waveguide and 
an external coaxial tube. Indeed, such a confinement may be 
desired to provide a mechanical protection for the wave- 
guide. We report some theoretical results on the effect of 
external confinement in the Appendix. Here, we note only 
that for such an arrangement to be effective, the gap between 
the external tube and the waveguide should be pretty small, 
typically less than 10% of the waveguide's radius. Such a 
small gap may be feasible only in applications involving rela- 
tively clean fluids. 
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APPENDIX: THE EFFECT OF EXTERNAL 
CONFINEMENT ON THE SPEED AND ATTENUATION OF 
TORSIONAL STRESS WAVES 

In this Appendix, we consider the effect of external con- 
finement on the sensor's performance. Our objectives are 
twofold. First, since external confinement may be employed 
in applications to provide a mechanical protection for the 
sensor, it is desired to establish whether such a protection 
will affect the sensor's performance. Second, we wish to ex- 
amine if the sensor's sensitivity can be increased by deploy- 
ing such a confinement. 

C o -- 

c. Cxl • 

• t/2 kg 

FIG. 6. The wave speed displayed as a function of (p//z) •/2. The solid lines 
represent the theoretical solution. The circles and the dashed lines represent 
the experimental results and the linear least-squares fit obtained from these 
results. 
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-1 

FIG. A 1. The attenuation h depicted as a function of gap width for variousp 
when •o = 1.0 and R = 2000. The solid lines denote the asymptotic solu- 
tions, While the symbols denote the exact solution. 

We shall report here both exact and asymptotic results. 
For brevity's sake, we consider only the case of the smooth 
solid waveguide confined inside a concentric external tube of 
inner radius r2. To the first approximation, we assume that 
the external tube is rigid. We solve Eqs. (1)-(5) with Eq. 
(6) being replaced by the nonslip condition 

vo=O, at r=r 2. (A1) 

The resulting eigenvalue problem for the wave speed (c) and 
attenuation (h) is 

F(h,c)----1 A I2(A•)( I2(Af) K,(Aj) • 

R I•(A/r2) + K•(Afr2) 
where the significance of the various variables is given in the 
body of the paper. The corresponding asymptotic expres- 
sions for the wave speed and attenuation are 

I 1 • sinh(•,) -- sin(•2 ) 
• •Z cosh(•v2 ) cos(•v2) 

+ O(•), (A3) 

I P 2• •sinh( 2'•*/2)+sin(2'•r/2) (•--) h = x/• cosh(2•h) _ cos(2•r/2) t- O , 
(A4) 

where r/2 = x•-(r 2 -- l). Note that for r2--, oe, the expres- 

guide embedded in an infinite fluid. 

The attenuation and the wave spe•d are depicted as 
functions of the gap width (r: -- 1 ) in Figs. A 1 and A2 for 
various p when R = 2000, p ---- 0.3, and w = 1. The solid 
lines and the symbols correspond to the asymptotic and the 
exact solutions, respectively. The figures demonstrate that if 
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FIG. A2. The wave speed cdepicted as a function of gap width for variousp 
when •a = 1.0 and R = 2000. The solid lines denote the asymptotic solu- 
tions while the symbols denote the exact solution. 
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FIG. A3. The attenuation h depicted as a function err for various gap 
width whence = 1.0andp = 0.3. The solid lines denote theasymptoticsolu- 
tiens while the symbols denote the exact solution. 
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FIG. A4. The wave speed c depicted as a function of R for various gap 
width when co = 1.0 andp = 0.3. The solid lines denote the asymptotic solu- 
lions, while the symbols denote the exact solution. 

the gap thickness is larger than 10% ofthe waveguide's radi- 
us, the results are essentially identical to those ofthe uncon- 
fined case. Under this circumstance, the thickness of the 
fluid's boundary layer is smaller than the gap thickness and 
the external confinement has little or no effect. As the gap 
thickness decreases, the speed and the attenuation decrease 
slightly to obtain a minimum around r2- I = 0.05. A 
further decrease in the gap width causes an increase in the 
wave speed and attenuation. Thus the effects of external con- 
finement are felt only at small gap thicknesses. The afore- 
mentioned values for gap thickness depend on the fluid's 
characteristics and are likely to increase as the fluid viscosity 
increases. 

Next, we examine the effect of gap thickness on the sen- 
sor's sensitivity. To this end, we depict in Figs. A3 and A4 
the wave speed and attenuation as functions of R for various 
gap thicknesses when ca = 1.0 and p = 0.3. Note that the 
approximation in Eqs. (A 3 ) and (A4) adequately describes 
the behavior ofc and h as functions of R as long as the gap 
thickness is bigger than the thickness of the viscous bound- 
ary layer. That is, r 2 -- 1 > (caR) - t/2. For smaller gap thick- 
nesses, the asymptotic approximation is no longer valid. 
Within the range of validity of the asymptotic approxima- 
tion (R > 5)< 102 in Figs. A3 and A4), Eqs. (A3) and (A4) 
suggest, for small V2, that h-R - t, while in the unconfined 
case h-R - •/2 [Eq. (29) ]. Thus the sensor's sensitivity can 
be improved by closely confining the waveguide in an exter- 
nal tube. 
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