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Kelvin-Helmhotz Instability for Parallel Flow in Porous Media: A Linear
Theory

Abstract

Two fluid layers in fully-saturated porous media are considered. The lighter fluid is above the heavier one so
that in the absence of motion the arrangement is stable and the interface is flat. It is shown that when the fluids
are moving parallel to each other at different velocities, the interface may become unstable (the Kelvin-
Helmbholtz instability). The corresponding conditions for marginal stability are derived for Darcian and non-
Darcian flows. In both cases, the velocities should exceed some critical values in order for the instability to
manifest itself. In the case of Darcy's flow, however, an additional condition, involving the fluids' viscosity and
density ratios, is required.
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Kelvin-Helmholtz instability for parallel flow in porous media: A linear theory

Haim H. Bau

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,

Pennsylvania 19104
(Received 6 April 1982; accepted 14 June 1982)

Two fluid layers in fully-saturated porous media are considered. The lighter fluid is above the
heavier one so that in the absence of motion the arrangement is stable and the interface is flat. It is
shown that when the fluids are moving parallel to each other at different velocities, the interface
may become unstable (the Kelvin—-Helmholtz instability). The corresponding conditions for
marginal stability are derived for Darcian and non-Darcian flows. In both cases, the velocities
should exceed some critical values in order for the instability to manifest itself. In the case of
Darcy’s flow, however, an additional condition, involving the fluids’ viscosity and density ratios,

is required.

I. INTRODUCTION

Many technological processes involve the parallel flow
of fluids of different viscosity and density through porous
media. Such parallel flows exist in packed bed reactors in the
chemical industry, in petroleum production engineering, in
boiling in porous media {countercurrent flow of liquid and
vapor), and in many other processes as well. Should the in-
terface between the two fluids become unstable, a substantial
increase in the resistance to the flow will result. This increase
in resistance, in turn, may cause flooding in countercurrent
packed chemical reactors and dryout in boiling in porous
media. In the same vein, in petroleum production engineer-
ing, such instabilities may lead to emulsion formation.
Hence, knowledge of the conditions for the onset of instabil-
ity will enable us to predict the limiting operating conditions
of the above processes. The purpose of this paper is to estab-
lish the condition for the onset of instability.

In the comparable case of parallel flow of continuum
fluids (not through porous media), an instability of the inter-
face may arise when the two fluids are in relative motion.
This is known as the Kelvin—-Helmholtz (KH) instability.
The KH instability has been studied extensively for contin-
uum, inviscid flows. A review of the classical work, which
states conditions for marginal stability, is given in Chandra-
sekhar.! More recent contributions by Nayfeh? and Drazin®
include the study of nonlinear effects.

In contrast, the KH instability for flow in porous media
has attracted little attention in the scientific literature.
Raghaven and Mardsen® have studied this problem for
Darcy-type flow. They used linear stability analysis to obtain
a characteristic equation for the the growth rate of the dis-
turbance and then solved this equation numerically. They
concluded that KH instability is possible only if the heavier
fluid is overlying the light one (statically unstable situation).

This paper focuses on a statically stable case in which
the lighter fluid is above the heavier one. We begin by analyz-
ing the stability of a Darcy type flow (Sec. II). In contrast to
Raghaven and Marsden®, we obtain a closed form expression
for the marginal stability, which indicates that KH instabil-
ity may develop under certain conditions. The critical veloc-
ity predicted herein may be, however, somewhat high and
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above the range of validity of Darcy’s law. Therefore, we
extend the analysis (Sec. ITI) to non-Darcian flows by using
the Forchheimer’s equation,® which includes a term propor-
tional to the velocity square. It is shown that this additional
term has a destabilizing effect.

Il. DARCY FLOW

Consider parallel flow of two immiscible fluids in an
infinite, fully saturated, uniform, homogeneous and isotrop-
ic porous media with both constant porosity (¢ ) and constant
permeability {4 ). The two fluids are incompressible and have
constant properties. The interface between the fluids is as-
sumed to be well-defined and initially flat. In fact, a sharp
interface between the two fluids may not exist. Rather, there
is an ill-defined transition region in which the two fluids
intermix. The width of this transition zone is usually small
compared with the other characteristic length of the motion;
hence, for the purposes of the mathematical analysis, we
shall assume that the fluids are separated by a sharp inter-
face. The interface between the two fluids forms angle a with
the horizontal, and both fluids have uniform velocities U,
U, parallel to the interface (Fig. 1). Assuming that Darcy’s
law is valid, we obtain the following continuity and momen-
tum equations:

v'qi =0, (1)
ap; pi 94, M .

—_ = L Tl g sina, 2
ox 3 o 7 9 +pgsna (2)

where ¢, ; denotes the x component of the Darcian velocity
vector q;, p the pressure, x a coordinate parallel to the inter-
face (Fig. 1), p the density, ¢ the time, u the viscosity, and g
the gravitational acceleration. The suffix / designates the up-
per (i = 1) and the lower (i = 2) fluids.

We note in passing that the convective term, which ap-
pears in the Navier-Stokes equations g-Vq is absent in Eq.
(2). This is because of the averaging process through which
Darcy’s equation (2) has been derived.® Indeed, Beck’ shows
that the inclusion of such a convective term is inconsistent
with the slip boundary condition. It appears that if any non-
linear inertia term should be included at all, it will be of the
form |g|q (i.e., Irmay®). For low Reynolds number flows 0(1),
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FIG. 1. Schematic statement of the problem.

the nonlinear term can be neglected. For higher Reynolds
numbers, this term should be included as, in fact, we do in
Sec. I11.

The arrangement discussed herein is statically stable
with the lighter fluid overlying the heavier one (p, < p,).
Also, the interface is initially stationary. That is, the pressure
gradients are the same on both sides of the interface. This
condition yields:

Ui, — Uy =4 (p, —pilgsina. (3)
Next, we assume that there is an irrotational perturbation of

the base flow (U,, U,), which causes an elevation of the inter-
face to a new position y = 7(x, ¢ ), so that the velocity

¢ =VUx+®) (i=1fory>n,i=2fory<n). (4)
The perturbation velocity potential (@,) satisfies
V2P, =0, (5)
V&, —0 asy—F w. {6)

The kinematic and dynamic boundary conditions at the in-
terface are:

n ( 5¢.~)877 P,
1 U. - = — = , 7
¢8t+ R % (y=m) (7)
1 9 #1)45 ( 2 d ,uz)
Lt Gl — 4+ b
<¢ o Y \g o :
Uﬁ%@ —g(pr—pimcosa=0

(y=m), (8)
where ¢ is the interfacial surface tension, and subscript x in
Eq. (8) designates a derivative with respect to x.

We consider only disturbances parallel to the basic flow
since we assume that, as in the case of Squire’s theorem,
these disturbances will grow most rapidly.

In order to reduce the interfacial conditions at y = 7 to
those at y = 0, we introduce (Drazin®) the operator

79 7 a?
—+ . 9
Q= I ay 2' 8y 3t gy? ®l
thereby getting
oD,
_ 9% 49y
dy ot ox
a9, an aP,;
— _ “7 1 — =0), 10
Qay 8x(+Q)3x (y=0) (10)
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=2 (PP = pa) 4 1P, — )
+ 07 —g(pz—pl)n cos
3, 15
= U”’lxx('z— N — ?ﬂx + )
_Q<_i(/71¢ P2¢7)+‘1—(#1¢1 ‘#2‘1)2))
é 9 2T
=0 (11)

The linearized terms have been put on the left-hand side
of Egs. (10) and (11). When the nonlinear terms are neglect-
ed, Egs. (10) and (11) become:

9P, an an _ _
- GG Ug=0 p=0, (12)
L9 (oo, pr) + L (1@, — 1)
¢ ot A

+ 0N —8lp2—pimcosa=0, (y=0). (13)

The general solution of linearized equations (5), (6), (12},
and (13) for a typical normal mode of wavenumber & in the x
direction is the real part of

kU
Mo —¢a) +

@, = — -

explikx — ky + wt), y>0,

D, =1, explikx + ky + wt),

f“%’“’z y<0, (14)

7N = 1, explikx + wt),
where 7, is the amplitude of the disturbance and o is the
growth rate. That is, if the real part of w is positive, the
disturbances will grow in time and the base flow (U, U,) will
be unstable. On the other hand, if the real part of  is nega-
tive, the disturbances will decay and the base flow (U, U,)
will be stable.

The resulting equation for o is obtained by substituting
Eq. (14) into Egs. (12) and (13):

iwk
o p, + pa) +5’3§(u1 )+ S (p\U + pal)

+ ik /A ) Uy + ppUy)
+ k?[ok + (1/k )g( p,

Equation (15) is slightly more general than the charac-
teristic equation obtained by Raghavan and Marsden.*
Raghavan and Marsden investigate the root locus of this
equation numerically. In contrast, we establish the condi-
tions for marginal stability analytically. Equation (15) can be
rewritten in a somewhat more compact form as:

w?4 + oB + iwkC + ikD + k*E =0, (16)

where the significance of the coefficients 4, B, C, D, and E is
clear from the context, and @ in general is the complex num-
ber wg + iw,.

There are various ways to investigate the locus of the
roots of Eq. (16). Probably the simplest method consists of
decomposing Eq. (16) into real and imaginary parts and then
constructing a fourth-order equation for wy in the form:

—pyjcos a] =0. (15)
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44°0% + 842Bo’, + 0 (5AB? + k2AC? + 44 2Ek ?)

+ wg(B®+ BC?k?* + 44BEk?)

— k*AD? - BDC — B*E)=0. (17)
For w, to be always negative, the condition

(4D? —BDC —B*E)/44° <0 (18)

should be satisfied.® In terms of the physical parameters of
our system, the stability criteria become:

ak+g(p2—pl)cosa 5Pt wU + U,

k ¢? B+l
X()ulUl +u.Us  pyU +P2U2)
| Al 2 P11+ P2
(19)

where U, and U, satisfy Eq. (3).

Before proceeding any further, it is convenient to intro-
duce nondimensional variables. We use [0/g( p, — p,)]'/? as
alengthscaleand {4 *[ go{ p, — p,)/(p1 + p2)]} "/ * asa veloc-
ity scale. As will be shown later, this length scale corre-
sponds to the most dangerous wave length. Additionally, we
definey = u,/p, andp = p,/p, < 1 as the viscosity and den-
sity ratios, respectively. Equation (19) in nondimensional
form becomes:

gy cosa (p —pUT-U)uUt+ U3

+ >
k* (1+ 2P +p)

where the nondimensional variables are identified by a su-
perscript star (*). Clearly, the gravity and the surface tension
[the left-hand side of Eq. (20)] have a stabilizing effect. It is
not clear, however, whether the flow may become unstable.
If the right-hand side of Eq. (20) were negative, the flow
would be unconditionally stable regardless of the magnitude
of the velocity (assuming that Darcy’s law is still valid). For
example, for U > U% >0, we need 1> p. Hence, for the
instability to grow, the fluid properties have to meet certain
conditions. To investigate this point more closely, let us fo-
cus on the special case of a horizontal interface (@ = 0). Sub-
stitution of Eq. (3) into Eq. (20) yields the stability criteria

12U p(p—pll —u)

» (20)

k*+—> @=0. (21
k* (14 pf(1 +p)
Clearly, in order for an unstable wave to develop, we need
p<p<l  (a=0) (22)

Similar conditions can be derived for ¢ #0. We conclude
that for KH instability to develop in a Darcian flow, the fluid
properties must meet certain conditions [i.e., Eq. (22)]. In
this respect, the KH instability for flow in porous media
differs from the instability in continuum flow where the oc-
currence of the instability depends on the magnitude of the
velocities alone. This difference apparently arises because of
the important role the viscosity plays in our case, whereas
the classical continuum model assumes inviscid fluids.

We note also that, in the case of a horizontal interface
(@ = 0) and a homogeneous medium, the marginal stability
condition is independent of the medium permeability.

The fluid velocity U, (k ) at marginal stability can be rea-
dily calculated from Eq. (21): '
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~ 14 ( [k* + (176 %)(1 + p) |2
U*k)=

) 1/7( ull —u)u—p) )
(p<pu<l,a=0). (23)

The most dangerous case is for k* =1 {or in dimensional
form k = [ g( p, — p,)/01'/?}. The corresponding critical ve-
locity

_ 1 172
Ut =+u(——EL )" -0,y
ull —p)p —p)

The marginally stable wave in the linear problem is not
steady; rather it is a progressive wave with phase velocity:

21_=/.t1U1+/12U2 (25)

v= — .
k &y + 1)

Hence, at conditions close to the marginal stability, the

disturbances have the form:

7 = 7o(t Jcos k (x — vt),

D, =t ) U, [(1 —p)/(1 +p)] e Psink (x —ovt) (y>0),

D, = ot ) Uy [(1 — p)/(1 + p)] €sin k (x —vt) (y<O),
(26)

where U, and U,, are the critical velocities at the marginal

stability.

Next, we calculate the magnitude of the critical velocity
for a particular case, say, e.g. if 0 =30xX10"> N/m,
p.= 100 kg/m* p=0.1,u = 0.5, =0, and ¢ = 0.3, then
U, =0.18m/s.

We see that the magnitude of the critical velocity may
be quite high and may exceed the range of validity of Darcy’s
law. Therefore, we turn now to the investigation of the influ-
ence of non-Darcian effects.

11l. NON-DARCIAN FLOW

In this section we investigate the effects of deviations
from Darcy’s law on the KH instability. The motion of high-
er velocity fluids in porous medium can be described by
Forchheimer’s equation (Irmay’):
ap; _ _ (l_’;_ 09, M

bp, ) .
Ix ¢ It + 7 Gx.i + T Iqqu,i +ng S a.
(27)

The Forchheimer’s parameter b is either evaluated experi-
mentally or calculated approximately (Ergun®) from
b~0.012d /(1 — ¢ ), where d is the grain size. The condition
(3) for an initially steady interface becomes:

(12Us + b po| Up|Uy) — (U + b p) | UL UY)
=A(p,—pilgsina. (28)
Assuming that both velocities U;, U, > 0, the derivation pro-

ceeds in similar manner to Sec. L.
The stability criteria (19) becomes

ak+&pzk_—pl)cosa

S Litp U +u.U;, +b(p,UT +p,U3)
¢2 1+ py +b(p U +pUy)
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X(.uIUl +p,U, + b (p, U3 +p,U3)
1+ +b(p U+ prU,)
- ethtpals), (29)
P1t+p2

Also here, the marginally stable wave is traveling with
phase velocity

= iUy + U, + b(p,UT +p,U3)

[t + 2+ 6(p Uy + p,Un)]

Note that the expression the the square brackets on the right-
hand side of Eq. (29) can always be made positive given a
sufficiently high velocity. Hence, for non-Darcian flow the
instability may always occur. This compares favorably to the
case of continuum flow but contrasts with that of Darcian
flow (Sec. II) where the fluids’ properties have to satisfy spe-
cial conditions [i.e., Eq. (22)] in order to allow the instability
to develop.

To amplify this point, let us focus on the special case of a
horizontal interface (@ = 0) with sufficiently high velocities
U, and U, so that viscous effects can be neglected. Under
these conditions, Eqs. (28) and (29) yield the marginal stabil-
ity criteria

(30)

% plpz(\/—’;_‘/;—l)z (31)

(p1V P2+ P2V p))
through which we can observe that instability always may
occur for sufficiently high velocity U,.

ak_{_.g.(_@k_"/’_l)}zpl(/

IV. CONCLUSION

Herein we demonstrate that KH instability may deve-
lop in the parallel flow of two statically stable fluids through
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porous media. The Darcian formulation allows for the insta-
bility to develop only if the viscosity ratio of the two fluids
satisfies some special conditions. The critical velocities pre-
dicted in this case are relatively high and may be beyond the
range of validity of Darcy’s law. Consequently, we extend
the analysis to include non-Darcian effects and we show that
KH instability may always develop given sufficiently high
velocities.

The derivation of the characteristic Eq. {15) is similar to
that of Raghavan and Marsden.* However, Raghavan and
Marsden* investigate the root-locus of Eq. (15) numerically.
Naturally, the numerical work is limited to a finite number
of parameters and, therefore, their work does not reveal the
instability discussed in this paper.

To date there is no experimental evidence of the KH
instability in porous media. The natural extension of the
work reported here is the procural of such evidence.
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