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Controlling a Chaotic System

Abstract
Using both experimental and theoretical results, this Letter describes how low-energy, feedback control
signals can be successfully utilized to suppress (laminarize) chaotic flow in a thermal convection loop.
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Using both experimental and theoretical results, this Letter describes how low-energy, feedback con-
trol signals can be successfully utilized to suppress (laminarize) chaotic flow in a thermal convection

loop.

PACS numbers: 05.45.+b

Chaotic behavior is abundant both in nature and in
man-made devices. On occasion, chaos is a beneficial
feature as it enhances mixing and chemical reactions and
provides a vigorous mechanism for transporting heat
and/or mass. However, in many other situations, chaos
is an undesirable phenomenon which may lead to vibra-
tions, irregular operation, and fatigue failure in mechani-
cal systems, temperature oscillations which may exceed
safe operational conditions in thermal systems, and in-
creased drag in flow systems. Also, since chaotic behav-
ior cannot be predicted in detail, it may be detrimental
to the operation of various devices. Clearly, the ability
to control chaos (i.e., promote or eliminate it) is of much
practical importance. Although the topic of enhancing
chaos has attracted some attention in the scientific litera-
ture,! there are, indeed, very few theoretical publica-
tions®>? and even fewer experimental works which ad-
dress the probably more difficult topic of chaos suppres-
sion.

In the first part of this Letter, we describe an experi-
ment conducted with a thermal convection loop, in which
for heating rates exceeding a certain threshold value the
flow exhibited chaotic behavior. By making small ad-
justments to the heating rate in response to events
detected inside the loop (feedback control), we succeed-
ed in suppressing the chaotic behavior and “laminariz-
ing” the flow. In order to achieve a better understanding
as to how our controller operates, we applied a similar
control strategy to a simplified mathematical model cap-
able of qualitatively describing the flow in the loop. This
theoretical investigation is described in the second part
of the Letter. The success of our effort gives hope that it
may be possible to suppress chaos in more complicated
systems.

The experimental apparatus consists of a pipe of diam-
eter d (=0.030' m) bent into a torus of diameter D
(=0.760 m) containing liquid (i.e., water). The ap-
paratus stands in the vertical plane. The lower half of
the apparatus is heated with a uniform-heat-flux resis-
tance heater while the upper half is submerged in a jack-
et containing flowing coolant so as to approximate a uni-
form wall temperature (Fig. 1). The apparatus is similar
to the one employed by Creveling et al.* and Gorman,

Widmann, and Robins,®> who have described it in detail.
We measured the temperature differences between posi-
tions 3 and 9 o’clock and between 6 and 12 o’clock
around the loop as functions of time. The heating (cool-
ing) of the lower (upper) half causes temperature gra-
dients within the liquid which under certain conditions
may cause fluid motion inside the loop.

For low heating rates (Q < 190 W), the flow inside the
loop is steady and unidirectional. That is, depending on
initial conditions, the fluid flows in either the counter-
clockwise or the clockwise direction. Above a certain
critical heating rate (about 190 W in our experiment),
the steady motion loses its stability and the flow becomes
chaotic. The chaotic flow appears as irregular oscilla-
tions in the flow rate and occasional reversals in the
direction of the flow. For example, in Fig. 2, we depict
the experimentally obtained temperature difference be-
tween positions 3 and 9 o’clock as a function of time for
the heating rate of 600 W. The corresponding Rayleigh
number is 3.16 times its value at the onset of chaos. Pos-
itive (negative) values of the temperature difference in
Fig. 2 indicate flow in the counterclockwise (clockwise)
direction. Witness the relatively high temperature oscil-
lations associated with the chaotic flow.

Our objective is to suppress the oscillations so as to
make the flow approximately steady. That is, we wish to
retain the steady unidirectional flow as it existed before
the onset of chaos (albeit with higher cross-sectionally

Cooling
Jacket

Water — Water
Inlet Exit
—— Heater

FIG. 1. Schematic description of the thermal convection
loop. The lower half of the loop is heated with a uniform-flux
resistance heater. The upper half is cooled by passing water
through the jacket.
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FIG. 2. The experimentally obtained temperature difference
between positions 3 and 9 o’clock around the loop as a function
of time for a heating rate of 600 W without a controller. The
change in sign indicates a change in the direction of the flow.

averaged velocity, reflecting the higher heating rate). To
accomplish this objective, we adopted a relatively simple
control strategy. We change the heating rate by a rela-
tively small increment as a function of the low-pass-
filtered temperature difference between positions 6 and
12 o’clock around the loop. When the above tempera-
ture difference exceeds or drops below some average
value, the heating rate is increased or decreased by a
preset increment (i.e., 25 W in Fig. 3) after a time delay
of a few seconds. The results of this strategy are depict-
ed in Fig. 3 where we show the temperature difference
between positions 3 and 9 o’clock depicted as a function
of time. Initially, the flow was uncontrolled and we ob-
served similar oscillations to the ones depicted in Fig. 2.
The controller was activated 12.5 min into the run in
Fig. 3. The transition from the chaotic flow into a rela-
tively steady, laminar flow is self-evident. We ran the
experiment for over 15 h maintaining the type of steady
flow shown in Fig. 3. The controller also succeeded in
overcoming finite-amplitude disturbances purposely in-
troduced into the loop. It is likely that the magnitude of
the control signal could be further reduced by adopting a
more sophisticated control strategy than the one reported
here.

In order to gain physical insight into how the controll-
er operates, it is useful to briefly describe the mechanism
responsible for the chaotic, oscillatory behavior of the
flow in the loop.® To this end, imagine that a small dis-
turbance causes the flow to slow down below the steady-
state flow rate. As a result, the fluid spends more time in
the heater (cooler) section, gains (loses) more (less) heat
than usual, and emerges from the heater (cooler) with a
temperature higher (lower) than usual. This, in turn,
causes an increase in the buoyancy force with a corre-
sponding increase in the fluid’s velocity. Once the fluid
velocity increases, the reverse effect occurs with a subse-
quent reduction in the fluid velocity. Under appropriate
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FIG. 3. The experimentally obtained temperature difference
between positions 3 and 9 o’clock around the loop as a function
of time for a heating rate of 600 W. The controller is turned
on 12.5 min into the run, “laminarizing” the flow.

conditions, in the absence of a control mechanism, these
oscillations amplify and eventually lead to the chaotic
behavior depicted in Fig. 2. The controller detects the
appearance of disturbances by monitoring deviations in
the temperature difference between top and bottom from
the corresponding steady-state value (z—zy). Once such
a deviation is detected, the controller takes action to
counteract the effect of this deviation. For instance, if
the deviation tends to accelerate (decelerate) the flow,
the heating rate is increased (decreased) to counteract
this effect. As the controller applies only relatively small
perturbations to the input power, it will be able to coun-
teract only small oscillations. Consequently, when the
controller is applied to a chaotic flow, it may take some
time before the temperature oscillations become small
enough for the controller to take effect. This amount of
time will decrease as the magnitude of the control signal
increases. Ott, Grebogi, and Yorke® argue that this
length of time is proportional, on the average, to a nega-
tive power of the control signal. Once the controller
succeeds in laminarizing the flow, it will prevent the os-
cillations from increasing beyond the controllable magni-
tude. It should be noted that, due to the presence of
noise in the system, it is necessary to maintain the con-
trol signal above some minimal value.

To attain further insight into how the controller
operates, we examined a simple mathematical model
based on the Lorenz equations.”® The solutions of the
Lorenz equations provide a good qualitative resemblance
to the observed flow in the loop.>!® The solutions of
these equations, depending on the magnitude of the Ray-
leigh number (which in our case is proportional to the
heating rate), include a no-motion state, two steady flow
states (consisting of flows in the counterclockwise and
clockwise directions), and chaotic flow of the type de-
picted in Fig. 2. The model also predicts periodic win-
dows within the chaotic regime, but these have not yet
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been observed in experiments. The variables (x,y,z) in
the equations below correspond, respectively, to the
cross-sectionally averaged velocity in the loop, the tem-
perature difference between positions 3 and 9 o’clock,
and the temperature difference between positions 12 and
6 o’clock. The Lorenz equations with the on-off controll-
er are

4% o y—x), E=— o
4 PO, =Xy

1)
%Zt_=xy—z—[R+esgn(z—20)]~

As in the experiment, the controller reacts to deviations
of z from some preset, average value and modifies the
magnitude of the Rayleigh number (R) which is propor-
tional to the heating rate in the experiment. In the
above, p is the Prandtl number, ¢ represents the magni-
tude of the control signal (in the classical Lorenz equa-
tions €=0), and sgn corresponds to the sign of z—z.
We carried out numerical experiments to observe the
effect of the controller on the behavior of the flow. The
results of our numerical experiments are depicted in Fig.
4, where we show the controlled (uncontrolled) signals
with thick (light) lines. In Fig. 4, the controller has been
switched on at a nondimensional time ¢t =9. Comparing
Figs. 4 and 3, we observe that the physical and simulated
controller cause a similar effect.

In order to analyze the controller’s action, it is con-
venient to construct the Lyapunov functional for the con-
trolled system. To this end, we define a new set of
dependent variables {X,Y,Z}={x—+VR—-1,y—VR—1,
z+1}, where the fixed point {X,Y,Z}=1{0,0,0} corre-
sponds to a steady-state-motion solution of the Lorenz
system (1). We focus on R values for which this solution
is nonstable. The Lyapunov functional

E=5X*4pY?+pZ?) =0 )
satisfies
LAE - _(x-y)2-2z2?
p dt
+[VR—1X—esgn(Z2)1Z . 3

For stability, we require that (3) be negative. This can
be satisfied provided that X is sufficiently small. Thus,
there is a domain of attraction in phase space {x,v,z}
in the vicinity of the fixed point {0,0,0}. In other words,
once the system enters into this domain of attraction
(and eventually it would), it will stay in it as long as
externally imposed perturbations are not too large. The
Lyapunov functional presented above, although not op-
timal, demonstrates the effect of the controller on the
stability characteristics of the loop.

We note in passing that the chaotic attractor includes,
in addition to the nonstable time-independent flow, also
an assortment of nonstable periodic and quasiperiodic or-
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FIG. 4. The numerically generated temperature difference
between positions 3 and 9 o’clock around the loop as a function
of time. The uncontrolled and controlled signals are shown in
light and thick lines, respectively.

—20.5

bits. Ott, Grebogi, and Yorke?? argue that it might be
possible to stabilize any of the aforementioned orbits. In
numerical experiments, using a controller, we indeed
succeeded in obtaining a stable periodic flow in the nomi-
nally chaotic regime.

In conclusion, we have demonstrated experimentally
and theoretically that a simple control strategy can be
effectively used to suppress chaos in a simple dynamical
system. It is our hope that similar control strategies can
be successfully implemented for more complicated situa-
tions.

This work was supported, in part, by the National Sci-
ence Foundation through Grant No. CBT 83-51658.
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