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Active Control of Convection

Abstract
It is demonstrated theoretically that active (feedback) control can be used to alter the characteristics of
thermal convection in a toroidal, vertical loop heated from below and cooled from above. As the temperature
difference between the heated and cooled sections of the loop increases,t he flow in the uncontrolled loop
changes from no motion to steady; time independent motion to temporally oscillatory, chaotic motion. With
the use of a feedback controller effecting small perturbations in the boundary conditions, one can maintain
the no-motion state at significantly higher temperature differences than the critical one corresponding to the
onset of convection in the uncontrolled system. Alternatively, one can maintain steady, time-independent flow
under conditions in which the flow would otherwise be chaotic. That is, the controller can be used to suppress
chaos. Likewise, it is possible to stabilize periodic nonstable orbits that exist in the chaotic regime of the
uncontrolled system. Finally, the controller also can be used to induce chaos in otherwise laminar (fully
predictable), nonchaotic flow.
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Active control of convection 
Jonathan Singer-and Haim H. Baua) 
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 
Pennsylvania 191046315 

(Received 16 April 1991; accepted 13 August 1991) 

It is demonstrated theoretically that active (feedback) control can be used to alter the 
characteristics of thermal convection in a toroidal, vertical loop heated from below and cooled 
from above. As the temperature difference between the heated and cooled sections of the loop 
increases, the flow in the uncontrolled loop changes from no motion to steady; time- 
independent motion to temporally oscillatory, chaotic motion. With the use of a feedback 
controller effecting small perturbations in the boundary conditions, one can maintain the no- 
motion state at significantly higher temperature differences than the critical one corresponding 
to the onset of convection in the uncontrolled system. Alternatively, one can maintain steady, 
time-independent flow under conditions in which the flow would otherwise be chaotic. That is, 
the controller can be used to suppress chaos. Likewise, it is possible to stabilize periodic 
nonstable orbits that exist in the chaotic regime of the uncontrolled system. Finally, the 
controller also can be used to induce chaos in otherwise laminar (fully predictable), 
nonchaotic flow. 

I. INTRODUCTION 
In recent years, active control has been successfully used 

in many engineering applications such as noise reduction 
and vibration suppression in automobiles and airplanes. The 
area of active control of convective processes is no less im- 
portant from a technological point of view. In some pro- 
cesses, it may be desirable to operate at Rayleigh numbers 
higher than the one at which convection occurs and yet have 
no convection. In other processes, it may be desirable to sup- 
press (Zaminarize’ ) chaotic or turbulent motions and main- 
tain a steady, time-independent flow in order to minimize 
flow unpredictability, remove. temperature oscillations 
which may exceed safe operational conditions, and/or re- 
duce drag. In still other processes, it may be advantageous to 
induce chaos under conditions at which it would not normal- 
ly occur, so as to enhance mixing, heat transport, or chemi- 
cal reactions. Despite the foregoing, the idea of using active 
(feedback) control to modify convective motion by sup- 
pressing or enhancing naturally occurring disturbances in 
the flow seems to have attracted little attention. 

In recent work,l we have demonstrated experimentally 
that one can use active (feedback) control to suppress the 
naturally occurring chaotic motion in a thermal convection 
loop. The experimental apparatus used was similar to the 
one employed by Creveling et al.’ and Gorman et aL4 The 
apparatus consisted of a tube bent into a torus and positioned 
in the vertical plane. The lower and upper halves of the loop 
were heated and cooled, respectively, with the thermal boun- 
dary conditions being nominally time-independent and sym- 
metric with respect to the loop’s axis that is parallel to the 
gravity vector. For the uncontrolled loop, we observed that 
for relatively low heating rates the flow was time indepen- 
dent. For heating rates above some critical value, the flow 
became time dependent with oscillations in the flow rate and 

a) All correspondence should be directed to this author. 

occasional reversals in the flow direction. We showed that 
with the use of a controller, it is possible to maintain time- 
independent motion in conditions under which the flow in 
the uncontrolled system is chaotic. The control strategy con- 
sisted of sensing the temperature at a number of points inside 
the tluid and modifying slightly the wall temperature in pro- 
portion to the deviations of the measured quantities from 
prescribed values. 

In this paper, we develop a theory that explains how a 
feedback controller can modify the flow regimes in the loop. 
In the first part of the paper, we demonstrate that through 
the use of the controller one can stabilize the no-motion 
state. That is, no motion can be sustained well beyond the 
critical Rayleigh number associated with the onset of con- 
vection in the uncontrolled system. In the second part of the 
paper, we demonstrate how time-independent flow can be 
maintained in conditions under which flow in the uncon- 
trolled system is chaotic. We also show that, if desired, the 
controller can be used to destabilize the flow. In the last part 
of the paper, we follow up on ideas articulated by Ott et al.’ 
and demonstrate that with an adequate control strategy one 
can obtain still other flow structures in the loop. Unfortuna- 
tely, since our experimental apparatus is not sufficiently re- 
fined, many of the ideas presented here still await experimen- 
tal confirmation. Nevertheless, the success we reported in 
Singer et aZ.’ suggests that at least some of these ideas can 
actually be implemented. 

Our main reason for choosing the thermal convection 
loop for study is that the convective motion in the loop can 
be described by a relatively simple mathematical model 
which still maintains much of the physics of the process. We 
hope that the insights we gain from this study can be applied 
to more complicated processes such as Benard convection. 
In any case, the system chosen for study is relevant to many 
technological processes since thermal convection loops pro- 
vide a means for circulating fluid without the use of pumps. 
Such loops are of interest for solar heaters, emergency reac- 
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tor:core cooling, and process industries. They also are of 
interest for understanding warm springs, seawater circula- 
tion in the oceanic crust, and formation_of ore deposits. For a 
general review of applications and analyses of these loops, 
see the paper by Metro1 and Greia and the literature cited 
therein. 

II. MATHEMATICAL MODEL 
Consider a thermal convection loop constructed from a 

pipe bent into a torus and standing in the vertical plane as 
depicted in Fig. 1. The diameter of the pipe is d, the diameter 
of the torus is D, and 13 is the angular location of a point on 
the torus. The prescribed wall temperature of the pipe 
T, ( BJ) may vary both with the angular location B and time 
f. Variations in the wall temperature may cause a tempera- 
ture gradient to form inside the fluid. This, in turn, may 
induce fluid motion in the loop under appropriate condi- 
tions. 

We analyze the motion in the loop within the framework 
of Boussinesq’s approximation using a one-dimensional mo- 
del consisting of mass, momentum, and energy balances? 

u-u(t), (1) 

ir= -!- Ra P Tcos(B)dB - Pu, 
-IT P 

(2) 

and 

$-= .-&Z.+jj dZT 
a0 aB+t [~,~e,t) - T].’ (3) 

The fluid is assumed to be incompressible and Newtonian. In 
the ?above, all quantities are nondimensional. Here, 
Ra = gfiATr ‘/D? is the loop’s Rayleigh number; fl is the 
thermal expansion coefficient; g is the gravitational accelera- 
tfon;’ and AT is the averaged wafl temperature difference 
between the loop’s bottom and top. The time scale is 
r =pO C,d /(4h), wherep, is the fluid’s average density, Cp 
is the thermal capacity, and h (which we assume to be con- 
stant) is the heat transfer coefficient between the fluid and 
the pipe’s wall. Here P = 32w/d a = 8 Pr/Nu is the loop’s 
Prandtl number, where 2’ is the kinematic viscosity; 
Pr = v/a and Nu = hd /k are the conventional Prandtl and 
Nusselt numbers, respectively; ar and k are the fluid’s ther- 

Cooling 
Socket 

Coolirig-J 
Water 
inlet 

Temperature 
Heating 

FIG. 1. Schematic description of the experimental apparatus. 

ma1 diffusivity and conductivity; and B = (d ID) ‘/Nu is the 
Biot number. The length scale is the torus’ radius D /2. 

In addition to the aforementioned Boussinesq approxi- 
mation, the mathematical model presented here assumes im- 
plicitly that the friction and heat transfer laws are similar to 
those of laminar, fully_developed, Poiseuille pipe flow. One 
would expect and we did, in fact, observe in the experiments 
the deveIopment of secondary circulation which may signifi- 
cantly modify both the friction and heat transfer laws (but 
has the positive effect of improving temperature uniformity 
at each cross section of the loop). Unfortunately, more rea- 
listic friction and heat transfer laws are not a priori known. 
To obtain these correlations, one may need to solve a spatial- 
ly three-dimensional model or conduct experiments. Wejus- 
tify the use of the simpler correlations above on the grounds 
that the model still provides a qualitatively correct picture as 
has been confirmed by our own experiments’ and those of 
others’ as well as by theoretical studies by Hart lo and Yorke 
etai.,” in which more complicated heat transfer and friction 
factor correlations were used. 

Next, we expand the wall C T,,, ) and fluid ( T) tempera- 
tures in Fourier series in terms of the angle 0 with the sine 
and cosine terms corresponding; respectively, to symmetric 
and asymmetric temperature distributions with respect to 
the loop’s axis that is parallel to the gravity vector: 

‘w((Q) = W,(t) + 2 F7f,(t) sin(&) n-1 

and 
+ K 0) cos(ne), (41 

T(#,t) = C,Co + 2, S,(t) sin(n@) + C,(t) cos(ne). 
n-ti 

(51 
Upon substituting the series (4) and (S) into the go- 

verning equations (l)-(3) and requiring that these equa- 
tions are satisfied in the sense of weighted residuals, we ob- 
tain an infinite set of ordinary differential equations. Three 
equations which are similar to the celebrated Lorenz equa- 
tions” decouple from the rest of the set (with exact closure) 
and can be solved independently of the other equations with- 
out need of truncation. *’ The full dynamics of the problem 
can be described by these three equations: 

it/P-C-t& (6) 
2= --us-- e-t-Ra Yl, 17) 
$==ac-s+Ra Wl. (8) 
In the above, we removed the dependence on the Biot 

number B via the simple, algebraic transformation {u, c, s, 
Ra, P, 6)+1/(1 +B) {u, RaC,, RaS,, RaiCl -t-B), P, 
t( 1 f B)2}. Roughly speaking, the quantities c ands are pro- 
portional, respectively, to the temperature differences 
between positions 3 and 9 and 6 and 12 o’clock around the 
loop. 

Ill. THE UNCONTROLLED FLOW-A SUMMARY 

In this section, we review briefly the flow regimes ob- 
served in a loop in which the heating and cooling boundary 
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conditions are fixed in time and symmetric with respect to 
the loop’s axis that is parallel to the gravity vector. The re- 
quired symmetry is obtained in Eqs. (6)-(g) by setting 
V, = 0. Also, without loss of generality, we set W, = - 1. 
Equations (6)-( 8) with the aforementioned modifications 
are the celebrated Lorenz equations and have been investi- 
gated exhaustively in the literature.14 The equations possess 
a number of nontransient solutions: 

(A) no-motionstate (u=c=O,s= -Ra); 
(B) time-independent motion either in the clockwise 

(denoted BK ) or counterclockwise (denoted B + ) direc- 
tion (u==c= -&JEG-i,s= - 1); 

(C) chaotic motion; 
(1)) periodic motions of various periodicities. 
These various solutions and their stability characteris- 

tics are shown in the bifurcation diagram depicted in Fig. 2 
for a loop Prandtl number P = 4 which we estimate to ap- 
proximate the loop Prandtl number of our experimental ap- 
paratus. In the figure, we denote stable and nonstable solu- 
tions by solid and dashed lines, respectively. Briefly, if one 
were to follow the chain of events as the Rayleigh number 
(Ra) increases, one would observe no net motion in the loop 
for Ra < 1. At Ra = 1, the no-motion solution loses its stabi- 
lity through a supercritical pitchfork bifurcation and is re- 
placed by time-independent motion. Depending on random 
disturbances, this motion may be either in the clockwise 
(B _ 9 or counterclockwise (B + ) direction. The motion so- 
lutionisstablefoi l<Ra<Ra,(P) =P(P-+49/(P-X2), 
where Ra, (4) = 16. At this point, the steady solution loses 
stability through a subcritical Hopf bifurcation. The result- 
ing limit cycle is nonstable and its period increases to infinity 
as the Rayleigh number decreases to Ra,,,, (P). At 
Rahom (4) -7.378, the periodic orbit (known as an homo- 
clinic orbit) passes through the no-motion state (A). At the 

Y 

Homoclimic Unstable 

Ras1.0 R--7.378 Rq-15.9il4 Ran=l&O 

FIG. 2. An unscaled bifurcation diagram depicting various possible solu- 
tions as the Rayleigh number is increased (P = 4 j . Stable and nonstable 
solutions are denoted by solid and dashed lines, respectively. The dark re- 
gion represents the appearance of the strange attractor which exists for 
Ra>Ra,,. 

homoclinic point, there is a bifurcation (the homoclinic ex- 
plosion) that results in an assortment of nonstable periodic 
and nonperiodic orbits known collectively as the nonwan- 
dering set.~ As the Rayleigh number is further increased 
beyond Ra, (P) <Ra, (P), where Ra, (4) - 15.984, the 
nonwandering set becomes a strange (the Lorenz) attractor. 
The chaotic regime exists for Ra > Ra, with occasional win- 
dows of periodic behavior. In the chaotic regime, the motion 
in the loop consists of irregular oscillations with occasional 
reversals in the direction of the flow as shown, for example, 
in Fig. 3 for P = 4 and Ra = 3Rau (4). In Figs. 3(a) and 
3 (b) , we depict, respectively, the temperature differences 
between positions 3 and 9 o’clock (c) and positions 12 and 6 
o’clock (s) as functions of time. The positive and negative 
values in Fig. 3 (a) correspond to flow in the counterclock- 
wise and clockwise directions, respectively. Qualitatively si- 
milar behavior was observed in our experiments. 

IV. STABILIZATION OF THE NO-MOTION STATE 

In this section, we examine the feasibility of using active 
control to affect the stability of the no-motion state. We as- 
sume that one can measure in an experiment the temperature 
difference (c) between positions 3 and 9 olclock around the 
loop and/or the fluid velocity (u) . In the no-motion state, 
we wish to maintain the above two quantities at a zero value 
(i.e., u = c = 0). That is, we shall attempt to suppress any 

18 
12 

6 

0 
0 

-6 

-12 

-18 

-24 

-3OL"""""""". t * '- 
0 2 4 6 8 10 12 14 16 18 20 

rime 

0 2 4 6 8 10 12 14 16 18 20 

Time 

FIG. 3. The temperature difference between positions 3 and 9 o’clock (a) 
and 6 and 12 o’clock (b) is depicted. as a function of time for 
Ra- 3Ran = 48. 
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disturbances which lead to deviations from these desired va- 
lues. This can be done, for example, by applying asymmetric 
perturbations to the wall temperature in proportion to the 
deviations of u and c from their desired magnitudes. To this 
end, we set the controller to provide 
VI = fK,u + KCc)/Ra, where K,, and Kc are the con- 
troller’s gains. It turns out that the no-motion state cannot 
be stabilized by applying similar disturbances symmetrically 
with respect to the loop’s axis that is parallel to the gravity 
vector. The equations for the controlled system are 

li/P=c-u, (99 
~=~--zfRau--+KK,~+K,c, (109 
i=uc-z, (11) 

where z = s + Ra, and, without loss of generality, we set 
W, = - 1 in Eq. (8). The controlled system (9)-( 11) ad- 
mits the no-motion solution (A) u = c = z = 0 which is 
identical to the no-motion solution of the uncontrolled sys- 
tem and the two time-independent motion solutions 
(u=c= f Ra+K,+K=--l,z=Ra$K~+KC-1) 
corresponding to counterclockwise and clockwise circula- 
tion in the loop. 

Stability analysis reveals that the no-mot.ion state is Jin- 
early stable for Ra < Ra, = 1: - K= - Kc and gIobally sta- 
bleforRa<Ra,=Min(l-KU---2KC,l-K,).Thatis, 
negative gains stabilize the no-motion state while positive 
gains destabilize it. For illustration purposes, we show in 
Fig. 4 (where Ra = 5 j the velocity (u) in the loop as a func- 
tion of time for the controlled system (Ku = Kc =: - 2.5, 
heavy line) and the uncontrolled system (K, = Kc = 0, dot- 
ted line 9. In the controlled system, the velocity decays- to a 
zero value for all initial conditions. Recall that for the un- 
controlled system, the no-motion state can be maintained 
onlyforRa< 1. 

To illustrate the controller’s effect from a physical point 
of view, let us briefly recall why the no-motion state becomes 
unstable in the uncontrolled system. In the no-motion state, 
the fluid’s temperature is at equilibrium with the wall tem- 
perature. In a loop heated from below and cooled from above 
(Ra> 09, we have cold (heavier) fluid overlaying hotter 
(lighter 9 fluid. This arrangement is gravitationally unstable. 

,$ 
.F :- 

‘1 :- 

.-.. 2 . . *I ‘, ....... ..-.- f._,_..,... . ..f . . . . . . ~ .,... -.-- . . .._............................. ,’ 
i I, . . . . . 

ii .-..A _ / ‘ 
IJ z 4 6 a In.- 1’; I4 ih- ii3 :?o 

lime 

Small, asymmetric thermal disturbances naturally occur- 
ring in the fluid will tend to give rise to a buoyancy force and 
to fluid motion either in the clockwise or the counterclock- 
wise direction. Ironically, in the absence of such fluid mo- 
tion, these disturbances eventually would disappear due to 
dissipation and heat exchange with the pipe’s walls. Kow- 
ever, with the onset of fluid motion, the temperature differ- 
ence between the ascending and descending fluid tends to 
increase, thus providing a further increase in the buoyancy 
force and a mechanism for the disturbance to manifest itself. 
In the uncontrolled system, these two effects are of equal 
importance at the critical Rayleigh number for the onset of 
convection (Ra = 1). In the controlled system, when a dis- 
turbance occurs, the feedback control adjusts the wall tem- 
perature so as to enhance the disturbance dissipation pro- 
cess, thus shifting the balance between disturbance 
dissipation and amplification to higher Rayleigh numbers 
and, in effect, stabilizing the no-motion state. 

It should be noted that the control strategy we have 
described above is not the only possible one, nor is it neces- 
sarily the best. A different control strategy might include, for 
example, the application ofangular acceleration to the loop. 

V. CHAOS SUPPRESSION OR ENHANCEMENT 
In the uncontrolled, symmetrically heated system 

i v, = 0), the time-independent motion solution loses its 
stability at Ran through a subcritical Mopf bifurcation. For 
Ra > Ra, , the time-independent convection is replaced by 
oscillatory, chaotic motion. In this section, we examine the 
possibility of using active control to stabilize or destabilize 
the steady-state solution (3 c j. We begin by trying to obtain 
steady, nonoscillatory Row under conditions in which the 
uncontrolled ilow is nominally chaotic (Ra > Ra, ) . Later, 
we examine the possibility of obtaining chaotic motion for 
Ra<Ra,. 

In the experimental apparatus, we measure the tempera- 
ture difference between locations 6 and 42 o’clock (s) 
around the loop and we adjust the loop’s wall temperature by 
varying the power input- to our heater. Thus, we use this 
temperature difference was the controlling signal and the 
power input as the controlled~signal. 

For the time-independent solution at Ra, 
s(t) = Z - - 1. For Ra > Ra,, this solution is nominally 
nonstable and s(f) varies as a function of time in a rather 
complicated way [see Fig. 3 (b) for an example]. We wish to 
modify the wall temperature so as to retain s(t) = I To this 
end, we use proportional control. The wall temperature is 
chansed in proportion to the deviation of s(t) from the de- 
sired value 5. We set TV, 5 - [ 1 f (K,,JRa j (s + 1) ] and 
the equations of motion assume the form 

ir/P=C-Z4tt, (121 
&,G=- -&yg-“c , (131 
r4=uc----Ra-Kk;(sf i), (14) 

FIG. 4. Stabilization of the no-motion state. The velocity a in the controlled 
system (solid line) decays to zero as a function of time for Ra = 5 and 
li, = KC = - 2.5. In contrast, the velocity in the uncontrokd system 
(dashed line) attains the value of 2 after initial transients die out. 

where KS is the controller’s gain. N&e that Eq. (129-t 14) 
maintain the same invariance as the Lorenz equations. Thus 
we may expect that the controller wiII have a similar effect 
on both the counterclockwise motion (B + j and the clock- 
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wise motion (B _ >. A somewhat similar control strategy 
was employed by Vincent and Yut5 to stabilize the B + orbit 
of the Lorenz equations. 

The time-independent solutions of the controlled sys- 
tem (12) and (13) include the no-motion solution, 
[u=c=O,s= - (Ra+K,)/(l +K,)],andthetwomo- 
tion solutions, (B f : u = c = fia - 1, s = - 1). The lat- 
ter are identical to the motion solutions of the uncontrolled 
system. Note that the effective Rayleigh number for the no- 
motion solution Ra,, = (Ra+K,)/(l +K,) andthatthis 
solution is stable for Ra,, < 1. Thus the stability characteris- 
tics of the no-motion solution are not altered by the action of 
the controller. 

Next, we establish the stability characteristics of the 
time-independent motion solutions. To this end, we carry 
out linear stability analysis around the solutions B, . The 
characteristic equation for the growth rate of small distur- 
bances (a) is 

+2P(Ra- 1) =O. (15) 
One of the roots of (15) is always real and negative. The 
other two roots are a complex conjugate pair with their real 
part being negative for Ra < RaH(P,KS), where 

Ra*(P,K, > 
KS(2+K,+P)(l+P)P(4+KS+P) = 

P-2-K, 
(16) 

and da/d Ra > 0. Thus the loss of stability occurs through a 
Hopf bifurcation. We did not calculate directly the resulting 
limit cycle; but since the bifurcation is subcritical16 for 
K, = 0, we also expect it to be subcritical and therefore non- 
stable for small KS values. 

The marginal stability limits for the time-independent 
motion solution are depicted in Fig. 5. Clearly, positive va- 
lues of KS stabilize the motion solution and delay the Hopf 
bifurcation while negative values of KS destabilize the same 
solution. The effect of KS on the root locus of Eq. (15) is 
depicted in Figs. 6(a) (K,>O) and 6(b) (KS ~0) for 
Ra = 50 and 5, respectively. For Ra = 50 and KS = 0, the 
complex pair has a positive real part. As KS increases, the 
real part of g decreases and crosses the imaginary axis at 

FIG. 5. Stability characteristics of the time-independent, motion solution 
under proportional control. The critical Rayleigh number is depicted as a 
function of the controller’s gain (K,). 
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FIG. 6. The eigenvalues of Eq. (15) are depicted in the complex plane as 
functions of the controller’s gain for (a) K, > 0, Ra = 50 and (b) I& < 0,5, 
respectively; P = 4. 

KS - 0.774. For higher values of the gain KS, the time-inde- 
pendent motion solution becomes stable. As the imaginary 
part of (T decreases to zero, the controller will tend to damp 
any oscillatory motion. 

The effect of the controller on the system is illustrated in 
Fig. 7, where we depict u as a function of time for both the 
uncontrolled (KS = 0, dashed line) and controlled (K, = 2, 
solid line) systems and for Ra = 50. The impact of the con- 
troller is fairly dramatic. While the uncontrolled system ex- 
hibits chaotic behavior, the controlled system behaves in a 
time-independent fashion. 

The bifurcation diagram for the controlled system 
(K, > 0) is similar to the one depicted in Fig. 2 for the uncon- 
trolled system. As K, increases, the Hopf bifurcation point 
Ra, moves to the right and so does the point Ra, at which 
the nonwandering set becomes a strange attractor. Numeri- 
cal experiments reveal, however, that Ra, moves to the 
right faster than Ra, . Thus, there will be an interval in pa- 
rameter space (wider than in the uncontrolled system) in 
which both the chaotic attractor and the time-independent 
motion solutions coexist. For example, for Ra = 26, 
Ra* = 33.5, and KS = 0.5, depending on initial conditions, 
we observed either time-independent or chaotic motion. In 
such an interval, the time-independent solution has a basin 
of attraction that extends up to the nonstable periodic orbit 
generated at the Hopf bifurcation point. In practical terms, 
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FIG. 7. The temperature difference between position 3 and 9 o’clock is de- 
picted for Ra = SO and P = 4 as a function of t ime for the controlled 
(KS = 2, solid line) and the uncontrolled (K, = 0, dashed lime) systems.- 

this implies that the controller can stabilize the time-inde- 
pendent  solution only i fapphed when the system’s trajectory 
in phase space is inside the aforementioned basin of attrac- 
tion. Alternatively, if condit ions permit, one  may apply the 
controller at Ra < Ra, and  keep it active while increasing 
the Rayleigh number,  thus assuring that system trajectories 
are always within the basin of attraction of the solution we 
wish to control. 

To  ihustrate how the controller operates, we briefly de- 
scribe the mechanism responsible for the chaotic, oscillatory 
behavior of the flow in the 10op.r~ To  this end, imagine that a  
small disturbance causes the flow to slow down below the 
steady-state flow rate. As a  result, the fluid spends more time  
in the heater/cooler section, gains/loses more/less heat than 
usual and  emerges from the heater/cooler with a  tempera- 
ture higher/lower than usual. This, in turn, causes an  in- 
crease in the buoyancy force with a  corresponding increase 
in the fluid’s velocity. Once the Auid velocity increases, the 
reverse of this process occurs with asubsequent  reduction in 
the fluid velocity. Under appropriate conditions, these oscil- 
lations amp lify and  eventually lead to the chaotic behavior 
depicted in F ig. 3. W ith the controller, this transition to 
chaos may be  avoided. The  controller detects the appearance 
of disturbances by mon itoring deviations in the temperature 
difference s(t) -E Once a  deviation is detected, the con- 
troller takes action to counteract the effect of this deviation. 

Next, we examine the possibility of destabilizing the 
flow or, in other words, inducing chaos under  condit ions in 
whic& it would not normally occur. Our linear stability ana-  
lysis suggests that negative values oflC, destabilize the time-  
independent motion solution. W e  were abIe to obtain chaotic 
flows for nominal Rayleigh numbers as low as Ra I= 5  with 
K.==, - 0.7. See, for example, F ig. 8, where we depict the 
“es’” projection of phase space trajectories for P = 4. Recall 
that the transition to chaos in the uncontrol led system does 
not pccur until Ra = 16. 

VI. STABILIZATION OF OTHER MOTION SOLUTIONS 
The chaotic attractor includes an  assortment ofperiodic 

and  quasiperiodic orbits of various periodicities. Here we 
focus only on  the periodic orbits, W e  label the periodic orbits 
according to the number  of times their trajectories in phase 

-.-L_s-J 
-43 -6 -4 -2 0  t 8 

. . c 

PIG. 8. Destabilization of stable solutions. The “cs” projection af the attrac- 
tar’s phase portrait for Ra = 5, K, = f 0.7, and P = 4. 

space circle around the fixed points B + and  B _  . For exam- 
ple, the orbit of the periodic solution B + B _  circles once 
around B, and  once around B- i The  periodic solution 
B +B + B _  consists of two cycles around B .,. and  one 
around B _  . The  various periodic orbits can be  obtained by 
examining Poincare sections of the phase portrait generated 
either from trajectories obtained numerically or reconstruct- 
ed  from an  experimental time  series using the time  delay 
technique. l8 O tt efaZ.5 recently proposed a  technique to sta- 
bilize nonstable periodic orbits residing within the chaotic 
attractor. Inspired by their work, we apply a  somewhat dif- 
ferent technique below. ~~ 

W e  use a  proportional controller to stabilize a  B + B _ 
orbit. O ther orbits can be  stabilized in a  similar fashion. W e  
begin by identifying s(r) = +(t) with sT( f + 7’) = s,(f) 
values which correspond to the nonstable R + B orbit we 
wish to stabilize. Next, we change the wall temperature- 
IF* = - 1  c K(s _  sT) in proport ion to the deviation of s 
from its desired value (sT ) . As sr ( t) may be  known only in a  
numerical form, we store the values of sT in a  table. The  
results of this control strategy are depicted in F ig. B for- 
Ra = SO, P =;: 4, and  K = 5, where we show the projection of 
the periodic orbit on  the “c.? plane ofphase space. Light and  
heavy lines in F ig. 9  denote the transient and  stabilized per- 
iodic orbits, respectively. W e  note in passing that it may 
suffice to activate the controller just once within each period 
as has been successfully done by O tt et (21.’ in numerical 

FIG. 9. StabiIization ofan otherwise nonstable periodic orbit embedded in 
the chaotic attractor for Ra = 50, K, = 5, and P= 4. 
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experiments with the Henon map and by Ditto et ~1.‘~ in 
their experiments with a vibrating, magnetostrictive ribbon. 
VII. CONCLUSIONS 

In this paper, we demonstrated theoretically that active 
control can be used to significantly alter the flow character- 
istics of a simple convective system and allow one to obtain 
desired flow structures. Among other things, the incorpora- 
tion of the controller allows us to modify the route to chaos, 
which may ultimately provide us with a new experimental 
and mathematical means of investigating chaotic attractors. 

While we have been able to duplicate some of the ideas 
presented here in the laboratoryzS2’ using a rather crude ex- 
perimental apparatus, more rigorous verification of the 
theory awaits the construction of a more refined experimen- 
tal apparatus. The control techniques we employed here are 
not necessarily optimal. Better results from a control point 
of view possibly could be obtained with more sophisticated 
controllers. However, our major objective was to demon- 
strate that convection can be controlled by suppressing or 
enhancing naturally occurring disturbances in the flow. Ar- 
guably, the system we have studied is an extremely simple 
one. The challenge is to examine whether the ideas presented 
here or similar ones can be implemented in more complicat- 
ed situations, such as those involving BCnard convection. 
That is still an open question; but certainly, given the im- 
mense potential for applications, it is one that is worth pur- 
suing. 
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