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Torsional Sensor Applications in Two-Phase Fluids

Abstract
A solid corrosion-resistant torsional waveguide of diamond cross section has been developed to sense on-line
and in real-time the characteristics of the liquid in which it is submerged. The sensor can measure, among
other things, the liquid content of a bubbly medium; the density of adjacent pure liquids; the equivalent
density of liquid-vapor mixtures or particulate suspensions; a suspension's concentration; and the liquid level.
The sensor exploits the phenomenon that the speed of propagation of a torsional stress wave in a submerged
waveguide with a noncircular cross section is inversely proportional to the equivalent density of the liquid in
which the waveguide is submerged. The sensor may be used to conduct measurements along distances ranging
from 20 mm to 20 m and over a wide range of temperatures and pressures, e.g., from the cryogenic
temperature of liquid nitrogen, -196°C, up to hot pressurized water at 300°C and 7 MPa. A self-calibrating
three-zone sensor and associated electronics have also been developed to compensate for any sensor
inaccuracies due to operation over a wide range of temperature. In some of the water experiments at room
temperature, unexpected attenuation of the guided torsional waves was observed. This excess attenuation
depends in part on the waveguide's surface finish. It appears to be caused by air microbubbles adhering to the
waveguide, imposing one of the practical limits on the maximum sensor length in nondegassed or aerated
water.
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Torsional Sensor Applications in  Two-Phase Fluids 
Jin 0. Kim, Haim H. Bau, Yi Liu, Member, IEEE, Lawrence C. Lynnworth, Fellow, 
IEEE, Steven A. Lynnworth, Kimberly A. Hall,  Saul A. Jacobson, Member, IEEE, 

James A. Korba, Robert J. Murphy, Michael A. Strauch,  and Kyle G. King 

Abstruct- A solid corrosion-resistant  torsional  waveguide of 
diamond  cross section has been  developed to  sense on-line and in 
real-time  the  characteristics of the  liquid in  which it is submerged. 
The  sensor  can  measure,  among  other  things,  the  liquid  content 
of a bubbly  medium;  the  density of adjacent  pure  liquids;  the 
equivalent  density of liquid-vapor mixtures  or  particulate sus- 
pensions;  a  suspension's concentration;  and  the  liquid level. The 
sensor exploits the  phenomenon  that  the  speed of propagation of a 
torsional  stress wave in a submerged  waveguide with a noncircu- 
lar  cross section is inversely proportional  to  the  equivalent  density 
of the  liquid in which the  waveguide is submerged.  The  sensor 
may  be  used  to  conduct  measurements  along  distances  ranging 
from 20 mm  to 20 m and  over a wide range of temperatures  and 
pressures, e.g., from  the  cryogenic  temperature of liquid  nitrogen, 
-196"C, up to hot pressurized  water  at 300°C and 7 MPa. A self- 
calibrating  three-zone  sensor  and  associated  electronics  have  also 
been  developed to  compensate  for  any  sensor  inaccuracies  due  to 
operation  over a  wide range of temperature.  In  some of the  water 
experiments  at  room  temperature,  unexpected  attenuation of the 
guided  torsional waves was observed.  This excess attenuation 
depends  in  part on the waveguide's surface finish. It appears to be 
caused by air  microbubbles  adhering  to  the waveguide, imposing 
one of the  practical limits on  the  maximum  sensor  length  in 
nondegassed  or  aerated  water. 

I. INTRODUCTION 

T HE idea that an ultrasonic wave propagating in a  solid 
structure can sense the presence and nature of the adjacent 

medium is not new. Looking back twenty  or  more  years, 
one finds that many of the early  "sensor"  aspects of guided 
ultrasound were amplitude-  or  attenuation-related. By 1945, 
for example, it had already been  demonstrated by Firestone  and 
Ling [7] that  a Rayleigh wave could. be damped by touching 
the path with one's finger.  Transmission of longitudinal and 
shea- waves from  solids  into  liquids was also familiar to 
Firestone and Ling, who  observed and analyzed the trans- 
mission coefficients  for these waves as a  function of angle 
171. Early amplitude-  or  attenuation-related  sensor examples 
include the viscosity or  viscosity*density  extensional-wave 
sensor of Roth and Rich (1953) [31 J and the Rayleigh, 
shear  and  longitudinal liquid level  sensor  concepts of  Van 
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Valkenburg (1957, 1962) [33], [34], and his  co-worker  Mongan 
(1961) [27]. In the past ten years or so, amplitude-based Lamb 
wave  sensor  developments  include the work of Gillespie et al. 
[S], Dieulesaint er al. [6], and White and co-workers,  some of 
which is  contained in [29]. 

Time  or  time-related  sensor  responses  include the reduction 
in resonant  frequency of a rorsionally vibrating  crystal due to 
the loading by the  adjacent  liquid, e.g., Mason (1947) [23]. 
The phase-shifting  effect of a complex  impedance load is 
utilized in an  oblique  incidence reflection coefficient viscosity 
sensor  described by Mason er al. (1949) [24] and  McSkimin 
(1960) [25]. An alternate form,  at normal  incidence,  is  shown 
in Moore  and  McSkimin (1970) [28]. In 1960, Ageeva [ l ]  
demonstrated the slowing  down of jle,xur-ul waves in an A1 
strip  upon  immersion in water,  an  effect  explained by Landau 
and Lifshitz [15]. Solie  and Tonning (1972, unpubl.; in [18, 
p.4351) showed by their  calculations that the sound speed of a 
Rayleigh  wave, cn, depends  on the presence of water and its 
direction of flow. In 1990, Varadan et al. [35] demonstrated 
the use of SAW devices to  measure  skin  friction  associated 
with turbulent  flows,  a C R  effect. 

The  slowing down of extensional waves was demonstrated 
by one of the  authors by immersing a solid waveguide  that  had 
been threaded  [16]. He later  demonstrated  the  slowing  down 
of torsional waves in a  submerged  waveguide with noncircular 
(rectangular)  cross  section [ 171. For a rectangular  stainless 
steel (SS) cross  section of aspect  ratio = 3, immersion in water 
decreases the torsional  sound  speed c by some 5% compared 
to its value in air  or  vacuum:  sensitivity 5'. = lAc/cJ M 5%. 

Although a number of torsional  slow  wave  sensors were 
built between 1977 and 1985 to  sense  density [16], liquid 
level [17], and void fraction [2], a  quantitative  explanation of 
their  response to the adjacent  liquid's  density was not reported 
until 1986  [3]. The diamond-shaped  optimization of the  sensor 
cross  section was not reported until 1989 [IO], [l  l], allowing 
a  three-fold  improvement in sensitivity S over the rectangular 
1977 design  for the same aspect  ratio,  i.e., S, M 15% for 
b / d  = 3, for a SS sensor. 

The initial 1977 experiments  were  motivated by a  require- 
ment to  sense water density  during flow  at high  temperature 
and high pressure,  including  conditions  where  single  phase 
would not  prevail. Tests on  the  early  sensors  immediately 
disclosed that they also  responded to liquid level, not just 
density, and to viscosity if the liquid were sufficiently viscous 
(e.g.,  cold  glycerine).  Density  and  viscosity  effects can now be 
separated and measured  simultaneously by using  waveguides 
with  different  cross-sectional  geometries  (Kim et al., [ 121). 

0885-3010/93$03,00 0 1993  IEEE 
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Fig. l. Two-phase fluid whose "collapsed" or equivalent level H ,  is to be determined. Three-zone torsional sensor is the primary approach discussed in this 
paper for this application. (a) Schematic in which H f ,  = level at top of foam, H b  = level at foam bottom, and H ,  = collapsed level. (b) Concept of three 
(separate) torsionally interrogated zones. two of which are reference zones. (c)  Three zones contained along one waveguide, as in the present paper. 

Kim's work [ IO]  led to the diamond  cross section  being 
preferred for density  and/or  liquid  level  applications,  while  a 
different  sensor cross  section (e.g., a  threaded  tube) is needed 
if one wants to separate density from viscosity  effects. 

In the  Applications section,  one particular  problem,  that of 
measuring the  equivalent  height of a fluid column ("collapsed" 
liquid level) is discussed in some detail. This  measurement is 
needed  in order  to  operate steam generator  power plants effi- 
ciently and  safely, especially during depressurization  transients 
when two-phase  conditions occur. At all  times, during transient 
as well as  during steady-state conditions, it is important 
to be able to calculate  the  water mass available for heat 
transfer.  Until now, this determination  has generally  been 
derived  from liquid  level, which in  turn is obtained from 
differential  pressure (AP)  sensors comprised of a  pressure 
transmitting  diaphragm/bellows  and  displacement detectors 
(Weldon  and Lyman, 1981 [36]). The AP systems currently 
in use in  pressurized and boiling  water  reactors ((PWR's) and 
(BWR's)), respectively sense pressure in a  "variable" leg and 
in a  "reference" leg. Over time, gas may diffuse, convect or 
by other  means migrate into  the reference leg's water column 
and  dissolve.  When there is rapid  pressure  release,  the gas 

suddenly comes out of solution,  forcing  some of the reference 
water up and  out of the  reservoir atop the reference  column 
(see Fig.  1, especially Fig. I(e), top). This translates to  an 
erroneously  high  computation of water  level  available for heat 
transfer  in  the  variable leg.  (One remedy  already in use  is  to 
continuously  resupply  gas-free  water to  the  reference leg.) 

A  different approach  to solving  this problem would be  to 
avoid the  reference  leg  entirely, i.e., sense  the  actual level 
nearer to where  heat  transfer is most  important,  without relying 
on a remote reference. The torsional sensor  discussed  here after 
further  development and  qualification for  nuclear  service might 
be appropriate for that  measurement. The torsional sensor 
might  also  complement the existing pressure sensor in the 
reference  leg,  to  provide a  more  accurate collapsed reference 
level during transients  and/or after  an overflow, or  whenever 
an unexpected or potentially  unsafe condition is indicated by 
a A P  sensor. 

Certain features of the present sensor  design  for  sensing 
the equivalent level,  such as rugged mode  conversion  joints, 
reflectionless  splitting of a waveguide, self-calibration zones, 
and the  nearly  reflectionless  transducer feedthrough  which 
isolates  the  magnetostrictive element  from  the  high-pressure 
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(d) 

Fig. 1. (Conrinued) (d) General arrangement and some details of an actual torsional wave sensor utilizing the three-zone elements of (b) and (c). For 
comparison with noninvasive (flexural or bending wave) alternative, refer to  (e). 

corrosive environment, might be usable elsewhere, not just 
for steam generator collapsed liquid level applications. The 
torsional sensor of the noncircular cross section being devel- 
oped for that application is fundamentally similar to  one  that 
has been  used  in the laboratory for several density applications 
such as the measurement of the density of pure liquids, liquid 
+ vapor bubbles, or liquid + undissolved solids. The one- 
dimensional analysis of a straight waveguide [lo] allows 
one to predict the Ac/c response of toroidal sensors too, 
when the toroid radius is greater than or comparable to the 
torsional wavelength. The toroid has been studied with respect 
to potential applications in aircraft fuel mass gaging in wing 
tanks. 

One of the unexpected results of this work  was  the dis- 
covery during what should have been a mundane experiment 
at room temperature, of  an attenuation term for torsionally 
guided waves  that appears to correspond to air microbubbles 
adhering to  the noncircular portion of the waveguide. This 
time-dependent effect is less apparent at 50 kHz than at 100 
kHz, less in polished than  in unpolished waveguides, and 
enhanced if air is bubbled through  the  water  and absent if the 
water is deaerated. This effect imposes one of  the practical 
limits on  the maximum immersed length of the noncircular 

cross section torsional sensor length, for a waveguide of a 
particular surface condition. 

11. THEORY 
The speed of propagation of a torsional stress wave traveling 

in a waveguide of uniform cross section is affected by the 
characteristics of the medium  in  which  the waveguide is 
submerged. As the torsional wave travels through the  wave- 
guide, the  solid/fluid interface is alternately accelerated and 
decelerated. If the waveguide’s cross section is not circular, the 
fluid’s  motion is induced  via  the generation of both a pressure 
field  and a drag force. The pressure field  is generated when 
the  motion of the solid’s surface induces a velocity component 
normal to the surface. The drag force results from the viscous 
effect. Consequently, the torsional wave  needs  to overcome the 
combined inertia of the solid waveguide (Is) and  the adjacent 
fluid ( I f ) .  To the first-order approximation (see Bau [3], Kim, 
[lo], and  Kim  and  Bau [ l  l ]  for details), the torsional wave 
speed (c )  in a straight waveguide is: 
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Fig. 1. (Continued) (e)  Proposed  application  of flexural or bending  waves,  generated  and  detected with clamp-on  transducers.  This  clamp-on  alternative to 
the torsional sensor of d also  can use magnetostrictive  transducers  external to the pressure  boundary.  However. in  this clamp-on  schematic, the normally 
incident  extensional waves are  mode  converted not to  torsion but to flexure (or a  bending  wave) in the pipe. In a thick-wall pipe such  as  l-in  schedule 
160 (6-mm wall thickness),  the  sensitivity S H ~ ~  = ( A t / A H ) R , ,  is only about 25% of that for the torsional  sensor of (d).  However, this may still 
suffice for  some  applications  in  a AI‘ reference  leg.  Graph ( i )  demonstrates flexural wave transit time  calibration in liquids of different density.  Graph 
(ii)  shows  increase in tfleX as  water  height  increases. 

where c. = K(G/P, ) ’ /~  is the  torsional wave  speed  for 
a  waveguide in vacuum, G is the solid’s  shear  modulus, 
K = ( D / I s )  is a “shape”  factor, D is the  cross  section’s 
torsional  rigidity,  and ps and ,of are, respectively, the solid’s 
and  adjacent  medium’s densities. 

To the  first-order approximation, the fluid’s  apparent  inertia 
( I f )  can be  taken as a sum of the  inviscid ( I f , i )  and  viscous 
(If,,) contributions. I,,i = 2AJs, where A 1  is a constant of 
order one. A1 depends only on the  cross section’s geometry. 
For  example,  for a diamond-shaped  cross section of aspect 
ratio 3, A1 - 1.4 [ l l ] .  For a circular  cross section, A 1  = 0. 

The  viscous apparent  inertia I f ,u  z A 2 1 s ( v / ~ u z ) 1 / 2 ,  where 
( a )  is a  characteristic dimension of the cross section, v = b / p f  
is the  kinematic  viscosity, f is the  wave’s frequency, W = 27r f ,  
and A2 is a geometry-dependent  constant.  For  example,  for a 
waveguide with characteristic  cross-sectional dimension ( L  = 5 
mm, operating in water at room  temperature and ai a frequency 

of 50 kHz, ( Y / W U ~ ) ~ / ~  - 2 x and If,t, < 0.011f. 
For  a similar waveguide operating in glycerin under  the same 
conditions, ( Y / w u ~ ) ~ / ’  - 2 x and - 0.1If. For 
more detailed discussion of viscous  effects, consult Kim [IO] 
and Kim et al. [ 121. Since  most of the results  presented in this 
paper  pertain to low viscosity fluids such as water, hereafter we 
shall  neglect the viscous  contribution to the apparent  inertia. 

Since typically (pfIf)/(psI,) << 1 ,  (1)  suggests,  to a  good 
approximation, the linear relationship 

- = I - -  c P f I f  N 1 Pf (2) 
c0 2 P S I S  P S  

in which  the  torsional wave speed  depends explicitly on the 
adjacent medium’s density  and  implicitly on the  temperature 
(through CO’s dependence on temperature).  Note  that  the 
adjacent medium’s density  need not be constant  along the 
waveguide. If the density  varies slowly  as a  function of axial 
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length, the  wave speed will also vary as  a function of axial 
location. 

Equation ( 2 )  suggests that through the measurement of the 
torsional wave speed in a submerged waveguide, one can ob- 
tain information on the characteristics of the adjacent medium. 
This dependence creates the opportunity for a variety of 
rugged, on-line, real-time sensors. Since typically the torsional 
wavelength is purposely  made long compared to the cross- 
sectional dimensions of the sensor {to avoid dispersion), and 
since most applications so far involve temperatures well  below 
the recrystallization temperature of the waveguide metal, at 
least in vacuum  the attenuation coefficient of  the torsional 
wave is small  (e.g., at 100 kHz, a < 1 dB/m). Accordingly, 
the sensing can  be done along or near the remote end of paths 
ranging up to some 20 m in length. The shortest practical sen- 
sor for use  with pulse echo or through transmission electronic 
intervalometry equipment depends on sensor sensitivity to a 
particular measurand (e.g., p f )  and the electronics' resolution 
of transit time. In a waveguide sensor length L of 10 cm, for 
a SS316 density sensor of aspect ratio b / d  = 3, ps resolution 
of 1 m&m3 is achievable if transit time can be resolved to 
10 ns, i.e., density resolution of 0.1% for fluid densities near 
that of water. 

In the following, we describe a few possible applications. 
Then, in the next section, we give the details of relevant 
experimental results. 

A.  Density Measurement of a Homogeneous Fluid 
The most obvious application of the torsional wave sensor 

is the measurement of the adjacent liquid's density. The liquid 
need not be simple. As we report later, we have measured  the 
equivalent density of suspensions and liquid vapor mixtures. 
If a known length of the waveguide is submerged in its 
entirety in a liquid medium, then  the effect of the liquid on 
the transmission time of the torsional stress wave is: 

where t o  and At are, respectively, the transmission time when 
the waveguide is submerged in  vacuum  and  the difference 
between the transmission time in  the  medium of interest and 
in vacuum. 

B. Measurement of Equivalent Density 
of a Variable Densig Liquid 

When  the adjacent medium's density varies  as a function of 
location along the  length of the waveguide, one can  measure 
the average density along the waveguide's length: 

Since 

we have 

Such a measurement may  be of interest, for example, when 
one  wishes to measure the  liquid content of a liquid-vapor 
mixture in which  the vapor content varies  along  the length of 
the waveguide. 

C .  Measurement of Liquid Level 
Another application of the torsional wave sensor is the 

measurement of liquid level. Consider a waveguide of total 
length L with a part of its length, L,,, submerged  in a liquid 
of  known density. If  we assume that  the transmission time 
in the exposed part  is approximately the same as in vacuum, 
then 

L ,  - 1 P S  at 
L A1 Pf t o  . (7 ) 

I )  Reflection Coejj'icient: At a liquid/vapor interface, the 
torsional wave  in a noncircular cross section experiences an 
impedance discontinuity. Let 22 and 21 denote, respectively, 
the torsional impedance of a waveguide submerged  in  vacuum 
(or gas) and liquid. Then 

and so 

111. APPLICATIONS 

A.  "Collapsed" or "Equivalent" Liquid Level 
The equivalent level application requires measurement in a 

multiphase fluid column of the collapsed or equivalent water 
level H, at  high temperature and high pressure (Fig. 1 (a)-(e)). 
This application arose because a need exists, motivated in part 
by heat transfer considerations, to measure H,, but not H h ,  
nor Hft. ( H h  is the  bottom  foam interface between  foam  and 
"solid" water. H,, is the  top  foam interface between foam 
and vapor.) A further need exists to measure H ,  more  reliably 
than  has  been experienced with conventional diaphragm-based 
hydrostatic pressure sensors. By "collapsed" water level we 
mean  the  level of  an equivalent column of liquid water  whose 
mass per unit area equals that of the actual multiphase fluid. 

One way to increase power  plant reliability is to improve 
the existing methods of determining water level in a steam 
generator. Existing measurement methods  rely on differential 
pressure between a fixed height reference column and a tap on 
the  secondary  side  to determine steam generator water level. 
The requirements for a potentially improved system included 
the ability to operate in a high temperature, high pressure 
environment, self-compensation for temperature variations, 
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and most importantly, the  ability to  determine water mass 
available  for heat  transfer.  During  intentional or unintentional 
depressurization  situations, the  measurement  environment in 
the  variable  leg and in the reference  leg is a dynamic turbulent 
two-phase  mixture where no distinct  and  precise  "level"  exists. 
Pressure  equilibrium  may not exist. Following  a  literature 
search and  conceptual  design  review by the  sponsor of this 
work, the  torsional wave  sensor  concept  was selected for 
further development at  Panametrics.  The initial  application 
was  for standpipe or  reference leg  use,  with  a  possibility 
of eventually  using it in the variable leg, if justified by its 
performance  in reference leg tests. 

The three-zone sensing  concept with separate vapor  and 
liquid  reference zones is shown in Fig.  1 (b), which is a tor- 
sional  adaptation of the  zig-zag shear wave  liquid  level sensor 
of Lynnworth,  Seger and Bradshaw [19].  A  more  practical 
arrangement  combines the  three  torsionally  interrogated zones 
into  one waveguide, Fig. 1 (c).  Here  the  sensor consists of 
a diamond  cross section  torsional  waveguide  with an overall 
length of 1.75 m (69  in).  The waveguide is  divided into  three 
zones. The bottom  152 mm (6  in) is always immersed in 
water  and is  called the liquid reference zone.  The  top 152 
mm (6 in.) is always in  the  vapor  phase and  is called  the 
vapor reference zone.  The middle 1.45 m (57  in) may  be 
partially  immersed  in  the  liquid and/or a  liquid/vapor  two- 
phase medium and is called  the mixed zone. Extensional 
mode  magnetostrictive  transducers are  connected  to the  lead- 
in and lead-out  waveguides. The  extensional waveguides drive 
two mode conversion points - one at the junction of the 
liquid  and  mixed zones and one at  the junction of the  vapor 
and mixed  zones. The  mode  conversion points convert the 
extensional wave to a  torsional wave and vice versa, in a 
manner  similar  to  the Scarrott-Naylor mode  converter used 
in  wire delay lines [ 5 ] .  In the  actual device, Fig. I (d),  the 
vapor/mixed mode  conversion point is driven by a couple 
consisting of two  extensional waveguides driven by a pair of 
magnetostrictive  transducers connected electrically in parallel. 
The liquid/mixed mode  conversion point is  also  driven by 
a couple, here  consisting of a  "split" extensional waveguide 
driven by  a  single  magnetostrictive  transducer.  For  simplicity 
in this explanation,  the schematic  in Fig. 1 (c)  shows  only a 
single magnetostrictive  transducer driving a single  extensional 
waveguide  for  each  mode  conversion point. Some  further 
details are given in Fig. 1 (d). We would have preferred 
to use  torsional  (Wiedemann  effect)  transducers  at  the top, 
rather than extensional.  However,  we were  unable to find a 
practical way to retain  the  Wiedemann  effect at or  near the 
maximum  temperature of this  application. A second problem, 
much  more difficult for torsional  than for  extensional  waves,  is 
that of achieving nearly  reflectionless  transmission  through  the 
pressure boundary.  The extensional  "solution"  presented  here 
is not totally  satisfactory. One  drawback,  for  example,  is the 
large  stillwell diameter required to  accommodate  the lead-in 
and  lead-out  mode  conversion  loops, especially  at  the  top. 

As shown in  the Theory section,  the  increase in transit time 
of the  torsional  wave is proportional to the amount  (height) and 
density of the medium  surrounding  the torsional  waveguide. 
The transducers  used in different  configurations  (pulse echo, 

through transmission) allow the instrument to measure the 
transit times in all  three of the  zones. The transit  times 
measured  in the liquid and vapor  zones compensate  for the 
effects of temperature  and fluid density  provided  that  the fluid 
surrounding  the  torsional  waveguide is isothermal. The transit 
time  measured in the  mixed zone is then used to calculate  the 
collapsed  level of the  water. In some respects  this is analogous 
to  determining  the liquid/solid  interface in a  solidifying steel 
ingot from the  through  transmission  transit  time [9],  except in 
that case  the sound speeds in the  two phases  were  taken  as 
constants, not  measured dynamically during an experiment. 

An  earlier version of the  device  described  herein was tested 
by  Miller et  al. [26]. The present device  enjoys threefold 
improvement in sensitivity. It utilizes a > 0.5-mm  thick 
diaphragm,  more than  ten  times  the  thickness of the 50-pm 
diaphragm of the 1980  design, to isolate  the transducers  from 
the steam generator's hostile environment while transmitting 
over  95% of the  energy in the  incident  extensional  wave. 
The transducer  housing employs a conventional feedthrough 
as a  secondary  seal. Furthermore, the present  device  utilizes 
transducers  which  can  operate at 300°C (higher than  the 
maximum temperature to be encountered in this application) 
and  incorporates  automatic temperature compensation  (as long 
as the  sensor is isothermal).  Another  improvement  includes 
housing  the entire  sensor to make it easier  to install from  the 
top of a  vertical standpipe. In the  present paper, temperature 
compensation utilized  the fact that the standpipe is sufficiently 
well insulated so that the temperature is uniform, top to 
bottom, at any given  time. This allowed temperature  compen- 
sation  to be achieved differently from the way it was done in 
1980. Wetted parts of the sensor can be made of a 600-series 
Inconel  alloy to better  withstand  the corrosive  environment. A 
prototype  anti-vibration  restraint system  consisting of support 
elements secured to the  stillwell has been designed, that 
introduces no significant echoes at support  points  along  the 
diamond  sensor, lead-in or lead-out elements. Finally.  a new 
two-port  instrument (denoted Model C582R) was  developed 
to interrogate  three zones  rapidly, to measure the  transit  times 
of 100-kHz pulses  to 10 ns,  and to  compute the  collapsed level 
H,  based on torsional  transit  times in these  three  zones. The 
pulsing,  timing.  and computing functions of that instrument 
were  recently  incorporated into a  special  version of a  portable 
commercial instrument (Model  PT868S). 

l )  Suspensions and Coatings (Oil Residue;  Microhuhhles): 
In future long-term  tests (>6  months), where  the sensor will 
be  continuously exposed  to  high-temperature, high-pressure 
water, it is our intent to  provide  equipment  to  determine 
whether any significant deposits build up on the sensor. If 
they do,"blowdown"  is a  possible remedy.  "Blowdown" is one 
remedy used in  boiler systems, to essentially  steam  clean  the 
hardware  as a  periodic maintenance procedure. 

Independent of the  equivalent  level  application as outlined 
previously. during 1991 we  also investigated  the  potential 
application of the  torsional sensor  to measuring  the  level of 
sump water containing small amounts of oil mixed in or  as a 
film floating on  top of the  water. In some  cases, this  application 
involves  a change in  water  level of several  meters, in a  region 
some  10  to  20 m  below  the  point where it is most  convenient 
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Fig. 2. Schematic of 17-m long (57-ft) diamond waveguide test, including 
acoustic isolation from walls of simulated <tillwell. 

to  place the  transducer.  To  simulate  what  may  be  a “worst 
case” of oil  buildup, we coated a  vertical sensor with SAE 
30 motor oil  and  then  determined  in an  experiment with  the 
oiled  sensor fully  immersed  in water, the error in H when H 
was calculated as if the  liquid  were only water. In this  test, 
the sensor  read  low  by 5%. The  oil  (whose density is some 
15% less than water’s) in  effect  reduces the average density 
in  the  vicinity of the sensor.  To eliminate this error,  one  needs 
to  minimize  the oil buildup,  or  measure  the oil contribution. 
Fig. 2 illustrates  @-kHz one-way torsional  transmission  along 
a clean  dry SS diamond  cross section  waveguide of 18 m (57 
ft)  long, with the extensional  lead-out  long enough so both 
transducers  can be  located at  one  end. If lead-in and lead- 
out  are both  short,  and if frequency is lowered, still longer 
torsional  sensors may be  used: 

EXT’L I TORSION I EXT’L 

If a  long  sensor  were immersed,  some increase  in  attenuation 
is to be  expected if viscosity is nonzero.  Upon  immersion 
in freshly drawn  tap water, however,  an attenuation  effect 
is  observed, which is not due to viscosity but apparently 
is  due  to air in the  water that attaches  as  bubbles  to  the 
waveguide. The effect is preventable by removing the  air. The 
oscillogram  traces  in Fig. 3 shows  how the bubble attenuation 
can be  introduced  and  removed.  Polishing  the  waveguide 
and/or  reducing  the frequency  from 100 kHz  down  to 50 
kHz  reduces the  effect. One possible (but  as yet unproven) 
explanation  for the  increase  in a in aerated  water is that 
attached bubbles  are  compressed by the rotating  waveguide 
and  lose  heat to the  water. 

It remains  to be seen,  whether these observations,  perhaps 
combined with  suggestions due  to Kirkpatrick  and Kuzniak 
[l41 will be adaptable to  sensors  as  long  as 30 m,  as may  be 
required for  some of the  potential  collapsed  level  applications 

Fig. 3. Oscillographic traces depicting attenuation in a diamond cross section 
sensor apparently caused by air microbubbles adhering to its surface. 

in PWR’sBWR’s. On the other hand,  a  short  torsional sensor 
installed  inside  the top meter or so of the  reference  leg may 
suffice, to indicate  whether or not the reference leg is full,  and 
to indicate  the average density of the fluid near the  top of that 
leg. (A  clamp-on alternative to this  proposal is  suggested in 
Fig. 1 (e).) 

Although microbubbles  or oil buildup attenuate  the  signal in 
applications where the sensor is wetted, it will  be appreciated 
that if the sensor were  stretched or otherwise  centralized 
inside  a dry sealed  sheath.  these sources of attenuation are 
avoided. The  sensor then  could  be  used to measure average 
temperature and the  temperature profile. The torsional  velocity 
at  room  temperature in a SS diamond  cross section of aspect 
ratio 3 is about 1500 m/s, which is low compared  to the 
extensional  velocity of 5000 m/s. The torsional diamond 
cross section sensor of aspect  ratio 3 is  some 3.3 times as 
sensitive to T as  the extensional  sensor that  previously  might 
have  been proposed. Hot  zones as long as 100 m occur in 
bakery  ovens [21]. Such  temperature profiling applications 
have recently been identified,  in  which some of the collapsed 
level sensor technology might be  adapted. In particular, in 
applications where  cleanliness and/or safety is important,  the 
present feedthrough, which  separates  the  transducer  and  its 
coil  from  the  process, may  offer  advantages over  compet- 
ing thermometric  technologies. To be successful in the long 
baking oven  temperature sensing  application,  the  ultrasonic 
temperature  sensor  would have  to  prove itself as being more 
reliable, and  hence,  more  economical in the long  run than 
the presently  used thermocouples or resistance  temperature 
detectors (RTD’s),  without  sacrificing  accuracy. 

2) Design: The water  level H is given by 

H = H k  
LLLYtM - LhlLLt, 

Ll.tL - LLtl.’ + H0 (10) 

where 
L L  liquid  reference  zone  length, 
LLJ vapor  reference  zone length, 
L, z~  mixed zone length, 
t~ transit  time in liquid zone, 
tv transit time in  vapor zone 
t.k1 transit  time in mixed  zone. 
H, liquid  level  offset, 
HI, slope calibration  factor. 
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L L ,  Lv ,  and L,%{ are  programmed into the  electronic  console 
memory. 

The  other parameters t , ~ , ~  t v ,  and t A f  are obtained by 
measuring the transit  times of the  three  zones  (see Fig. 1 (d)): 

t~ = ( ~ / ~ ) ( ~ F D E D F  - ~ P D F )  + TWr, ( 1  1) 
iIr = (1/2)(ta4BCB.4 - tAB.4)  + Tu)L7 (12) 
tM t i l B D F  - ( 1 / 2 ) ( t A B A  + t F D F )  + T w M .  (13) 

The parameters T w ~ .  Tw,r., and TWnl are  generally  small 
and  account  for  measurement errors  due  to variations in signal 
shape  and  tolerance of the zone  lengths. These values  are pro- 
grammed into the instrument,  usually during calibration. The 
transit times t F D E D F ,  ~ F D F ,  etc., are measured  parameters. 
Time t F D E D F  is the  time for an  ultrasonic  pulse to travel 
from point F at the transmitting  transducer (Fig. 1 d), through 
the lead-inlout  waveguide  to the mode  conversion point at 
D, then  through the reference  zone  waveguide  from D to E ,  
where it is reflected and  travels back to D and then  to F.  
At F the ultrasonic  pulse is received by the same transducer. 
Time t F D F  is the time for the ultrasonic  pulse  to travel from 
point F to the mode  conversion  point D, where part of the 
energy is reflected and  returns  to  point F .  Similar  paths  can 
be traced for tABCB,4 and t A 5 A .  The loops  at the top act as 
delay lines so that the vapor  reference zone can be torsionally 
interrogated without interference  from  extensional  echoes. 

In each of the above  cases, the same transducer is used 
to transmit and receive the ultrasonic  pulse, in "pulse echo" 
mode. An exception  is the "through  transmission"  measure- 
ment of ~ A B D F .  In this case the ultrasonic  pulse is transmitted 
from the transducer at point 4 ,  travels  to  the  mode  conversion 
point  at B, through  the  mixed  zone  to the second  mode 
conversion  at D ,  and then to point F ,  where it is received by 
the other transducer. The 100-kHz  pulse  center  frequency  is  a 
compromise.  Higher  frequency would allow  a  smaller  loop and 
better resolution of time, but would increase  attenuation  and 
dispersion for the present sensor's cross-sectional  dimensions. 
For long-path  transmission,  e.g., 20 m  (Fig. 2) the period of 
the  received  pulse  is 25 PS, the reciprocal of which  is 40 kHz. 
In  a test of the same elements but in  short lengths,  the period 
of the received  pulse  was 20 PS. In  other  words, long sensors 
act  like  low-pass filters. 

a )  Signal capture: The way we presently interrogate the 
sensor, at least three transmissions  are  required to determine 
all the transit times. One transmission is required  to  capture  the 
signals needed to determine both t ~ 3 . 4  and t , 4 ~ c ~ ~ .  Another 
transmission captures the signals needed to determine t F D F  

and ~ F D E D F .  A third transmission is required  to  capture  the 
signal  needed  to  determine ~ A B D F .  

In each  case the Model C582R instrument  sets a "window" 
straddling the expected amval times of the signal. The max- 
imum and minimum  arrival  times are determined  from the 
mechanical  sensor  geometry  and the extremes of  sound  speed 
due to temperature, fluid density,  and level variations. The 
instrument then searches  only  these  windows  for the received 
signal. 

h)  Signal  averaging: Two levels of averaging  are used - 
zone  averaging  and  global averaging. The two  reference zones, 
liquid and vapor,  are  always  immersed or "dry," respectively. 
The transit times in these  zones are, therefore,  fairly  constant 
over time. There will be some variation with temperature,  but 
this  occurs  relatively  slowly  compared  to the response  time of 
the C582R. The mixed  zone transit times  are  level  dependent 
and may change  rapidly.  The transit times in the reference 
zones  may,  therefore, be averaged over time to obtain  accurate 
and stable  measurements, without affecting  response time. 
Absolute  accuracy in the transit time  measurements for the 
reference  zones  is  more  critical  to  overall  accuracy  due  to 
their relatively short  lengths. 

The transit time  measurements  are  divided into the'lmeasure- 
ment cycles"  during which all three zones  are  interrogated  and 
a  level  calculation  completed  and  displayed. Each measure- 
ment  cycle takes  typically 0.3 s. 

The number of interrogations of each zone  is  set by the zone 
averaging  factor, TL, which  is  programmed  independently for 
each zone. (The number of interrogations = 2".) Typically, in 
each  measurement cycle,  the C582R dwells  most of the time 
on the through  transmission  measurement of the mixed zone 
and only  a  relatively  short  time on each of the two pulse- 
echo measurements of the reference  zones. The  number of 
interrogations  is usually programmed to 32 (n = 5) for the 
mixed  zone  versus X (n = 3)  for  each of the  reference  zones. 
The zone  averages are  calculated by averaging  the  transit times 
from these interrogations to obtain the averages for t,4~.4, 

~ABCBA,  t F D F ,  etc. The zone transit times are calculated 
using (11)-(13) to  obtain t L ,  tv, and t ~ .  

Before  these  zone transit times  are used for the  level 
calculation,  however, the global average is  calculated. This 
is determined by a  "boxcar"  average in which the last iV 
values from the last N measurement cycles are  averaged. The 
global  averaging  factor iV may be independently  programmed 
for liquid,  vapor, and mixed  zones. In the boxcar  average, 
each of the N measurements  are  given equal weight and at 
each measurement  cycle the newest  measurement  is  added and 
the oldest  measurement is erased.  The  global  averaging N is 
usually set to l for the mixed  zone and 30 for each of the two 
reference  zones. After each  measurement  cycle, the level is 
calculated  using the global  averages of t ~ ,  tv and tM using 
the  equation 

where 
- 

global  average transit time in vapor zone, 
global  average transit time in liquid zone, 

t,tf global  average transit time in mixed  zone. 
- 

By dwelling for most of each  cycle on the mixed zone, 
and averaging the reference  zones  over  a large number of 
cycles, the instrument can obtain  stable,  accurate  readings,  but 
nevertheless, maintain a rapid response. 

3 )  Bubbly Liquid Experiments and Tests: In  the  absence of 
air  bubbles  introduced  intentionally, the observed  increase in 
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transit time for the sensor of Fig. 1 (c) is  directly  proportional 
to  the  water  level, Fig. 4. 

To simulate at  room  temperature,  the  case of a boiling 
liquid, air was  introduced  through an air stone  at  the  bottom 
of the water column, raising the observed  top of the  foam by 
5 cm. This resulted in a  23-mm  apparent  increase in level, 
based on the increase in transit time. The fact  that  there 
was any  change at  all in the transit time is attributed  to the 
inhomogeneous  state of the bubbly fluid. It  is  acknowledged 
that  the aidwater simulation may be a  poor  simulation of the 
uncollapsed  condition of interest. Some earlier work on the 
use  of  torsional  sensors of different  cross  sections in bubbly 
flow is due to Arave [2], reproduced in [20, p. 4401. 

Another bubbly liquid experiment  consists of immersing  a 
ring  sensor in the vapor above  boiling  liquid  nitrogen,  then in 
the  boiling  region, and finally submerging it completely into 
the liquid. This leads to the  set of three  oscillogram  traces in 
Fig. 5. In all three cases, the temperature T cz -196°C. It is 
seen that the transit time and its jitter indicate the nature of 
the cryofluid: vapor;  boiling  two-phase  region;  liquid.  More 
attenuation  is  observed upon immersion of the ring  than  for 
a  straight  length of the same cross  section,  suggesting  that it 
may be associated with the toroidal  shape. 

B .  Fuel Mass Measurement  Aboard an Aircrafi 
To determine the mass of fuel on board an airplane, in 

each tank,  it is customary  to  sense both the liquid level,  and 
separately,  the  density  at one "representative"  point, e.g., near 
the bottom of the wing tank. In many  (but not all) cases, 
there  is sufficient mixing so that  one-point  p-sensing suffices 
in each tank or tank  section.  From the tank geometry, p, 
and  other  information on roll, pitch and yaw, the quantity 
of fuel  remaining can be calculated.  Acoustic  resonators are 
now widely used as avionic  p  sensors,  similar in principle 

tmm /r t r n A 0 a r  
tmmal 

Fig. 5 .  Torsional diamond ring sensor tests at -196OC in nitrogen vapor, 
just above the liquid's surface (top trace), in boiling liquid (middle trace) and 
fully immersed in liquid nitrogen (bottom trace). Sweep: 20 ps/div. In the 
schematic, the dotted circle (arrow) represents a warm steel wrench introduced 
to boil the nitrogen (middle trace). 

to  the  cylindrical tube sensors shown in [20, p. 430-4321. 
Despite  their  good  performance,  however,  there  remains,  for 
some avionic  applications,  a  desire to improve  the p sensor 
with respect to factors  such  as  reliability, ease of maintenance, 
size,  weight,  drift,  number of conductors in the wiring harness, 
accuracy,  and price. 

In an  attempt  to  achieve such improvements,  some labora- 
tory experiments  were  conducted with diamond  cross  section 
toroidal  sensors, i.e., diamond  rings  excited in the torsional 
mode. One such  sensor  is  illustrated in Fig. 6. Similar  to the 
collapsed or equivalent  liquid  level  sensor,  mode  conversion 
is used to  launch and detect  the  torsional wave. Broadband 
100-kHz  pulses  propagate  symmetrically cw and ccw, adding 
up opposite their launch point. After  traveling  along  the 
semicircular  paths, the signal  is still broadband and  shows  little 
or  no  evidence of dispersion (see again,  Fig. 5).  By immersing 
the diamond-ring  sensor in liquids of different p, one obtains, 
at room temperature, the calibration  function shown in Fig. 7. 
The plotted transit times  are  functions of T also, and this effect 
must be eliminated if the sensor is to be useful over the T range 
of interest, lf6OoC, approximately.  (Note that S(= lAc/c) for 
water immersion is 15%, essentially the same as in a  straight 
SS sensor of the same  shape and aspect ratio,b/d  =3.] 

In principle,  one  could use a Pt or Ni RTD (resistance  tem- 
perature detector) to sense T .  However, this adds conductors 
to the  wiring  harness. One partial remedy is to use Ni Span 
C (for which d c / d T  can be made small through  proper  heat 
treatment). This material is used in some of the existing  avionic 
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(b) 

Fig. 6. (a) Diamond cross section rings made of SS, Ti, and Al. (b) Photo- 
graph of a housed sensor. 
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Fig. 7. Calibration data showing the response at room temperature of the SS 
ring of Fig. 6 (a) to liquids of different densities. Note that S z 15%, close 
to the value for a straight SS sensor of the same cross section. 

resonator p sensors. As  one of our objectives is  to  develop a 
p sensor that can be made of any one of a number of different 

~ BNC connector (2) 
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L 

Fig. 8. Use of diamond cross section sensor interrogated in the torsional 
mode to sense fluid density pf and, as in [26] .  interrogated also in the 
extensional mode to measure temperature T .  

metals (Ti, SS316, etc.), we are  investigating  ways of using 
the extensional  sound  speed text in the lead-in, lead-out,  or in 
the ring, to  provide T compensation, perhaps  along the  lines 
of Miller er al. [26].  

Referring  again to  Fig. 6, it is seen that for a SS ring 
diameter of 100 mm, the  semi-circumference  path of 159 mm 
has a  torsional  transit  time that increases from -100 P S  in air 
to 115 p s  in water. If this 15-ps increase can be  resolved to 
15 ns, and if T effects  can be eliminated, resolution of f l  
mg/cm3 ought to be achievable. 

If the  torsional sensor is positioned  along the  axis of a  pipe, 
Fig. 8, it can be  used to measure p at  essentially  the same  time 
and  same place that flow velocity V is being  measured  ultra- 
sonically. This  combination may  provide  a less  expensive way 
to  measure  mass flowrate h f f ,  than with Coriolis alternatives 
currently available.  The density sensor  can  also be located 
outside  the region of high flow velocity, to  measure p while 
avoiding  flow-induced  stresses. In  some avionic applications 
where  mass  flowrate ,bff must  be  measured at a  response time 
of 1&30 ms, the fuel density pf does not change rapidly. This 
relaxes the requirements on the density  part of such a mass 
flowrate sensing  system. 

C .  Reflection at an Interface 

If the  noncircular cross section  waveguide  intersects the 
interface between  two fluids of dissimilar  density, torsional 
reflection will occur. Measurements of the  interface echo were 
conducted with  different  liquids  (liquid/air  interface),  with 
sensors of different  density py (SS, Ti,  Al,  acrylic) and with 
the sensor not just  normal,  but  also inclined  at angles up to 
45" to the horizontal  interface.  Confirming  the theory, the 
observed sound pressure  reflection  coefficient RP increases  as 
ps decreases, see Fig. 9 (a). R, is taken  as  the  ratio of the 
echo amplitude at the  interface to that at  the free  end when 
the  waveguide was in air, prior to immersion.  Note  the  sign 
of RP. Although ctors is reduced  in  the  immersed  section, 
the inertial  term more than makes up for the  reduced ctors, 
such that 2 2  > 21 and R, is positive. It is observed that 

As the  sensor  goes  deeper  and  deeper  into water: a)  the 
free-end echo B (of R, = -1) is increasingly delayed;  b)  the 
interface echo A arrives earlier and  earlier (Fig. 9 (b));  and 
c) the sign of A is opposite that of B. It was  found  that  for 
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Fig. 9. (a) Graph of reflection coefficient R as a function of the sensor 
density p 3 .  This pulse echo test used a Wiedemann  transducer. (b) Example 
of reflection obtained when a diamond straight sensor intersects an interface 
between two fluids of different density (e.g., water/air). The reference echo 
(left) for  the waveguide in  air is recorded at SO0 mV/div versus SO mV/div 
for the  interface echoes at the  right (levels A, B ,  C). 

angles  up to 45' the interface echo A is rather  tolerant of, or 
insensitive  to, tilt. It was also observed  that echo A is similarly 
insensitive  to  surface  ripple. In principle, it might be possible 
to  detect  interfaces  between two fluids like  aviation fuel and 
water,  or  automotive  gasolines and water,  whose  densities 
differ  only by some 20%. However, RP for  such cases would 
be much harder  to  measure, than for  the air/water case. On the 
other  hand,  detecting  a  distinct  cryogenic  liquidlvapor  interface 

0 . 1 5 ~ ' ' ' ' ' ' " ' ' ' ' ' ' 1 ' ' ' ' '  
1 1.05 1 .l 1 . l 5  1.2 

SUSPENSION DENSITY 
FLUID DENSITY 

Fig. IO. The measurement of suspension concentration with S-pm alumina 
particles mixed in distilled water. 

for N2 or 0 2  would be comparable  to  air/water, with respect 
to the magnitude of RP,  inasmuch as the densities of liquid 
nitrogen (0.815 g/cm3)  and liquid oxygen (1.143 g/cm3)  are 
comparable to that of water. 

Note  that  the transit time of echo A down to the  interface 
and back,  yields  liquid level H independent of liquid density 
p .  Knowing H ,  one can  relate  the  time  interval  between A and 
B to the average  liquid density,  top to  bottom. In principle, 
a  multizone  notched  sensor  could yield information on the 
density profile, p(z) .  

D. Measurement of a Suspension's Concentrution 

The torsional wave sensor  can be used to measure the 
equivalent  density of a  suspension of particulates in a  liquid. 
If the  individual  density of the two  components (the  solid 
particulates  and the liquid) is known,  one  can  obtain  the 
mass concentration of the  particles.  Fig. 10 describes the 
effect of particle mass concentration on the transmission 
time of a  torsional  wave in a  fully  submerged  waveguide 
(hexagonal  cross  section and aspect ratio 3.5). The symbols 
and  solid  line  correspond,  respectively,  to  experimental results 
and theoretical  predictions ( ( 2 ) ) .  The suspension  consisted of 
5-pm diameter  alumina (A1203) particles in distilled  water. 
A rotating  mixer was used to  maintain  uniform  concentra- 
tion. The equivalent  density of the mixture  was  obtained by 
weighing  a  known  volume of the suspension. 

For relatively  low particle concentrations, the figure demon- 
strates good agreement  between theory and  experiment. We 
were  not  able to  conduct measurements with higher con- 
centration  suspensions  than  those  shown in the  figure due 
to persistent  signal  drift which we  attributed to a  possible 
accumulation of particles on the waveguide's  surface. This 
problem  possibly  can be solved by appropriate  coating of the 
waveguide's  surface, by occasionally  operating the transducer 
at high  enough  amplitude  to  promote  self-cleaning; by periodic 
purge; or perhaps by other means. 
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IV. CONCLUSION 

The  diamond  cross  section has been utilized in straight 
and toroidal  sensors,  fabricated of SS and  other  materials, 
and interrogated using Wiedemann-effect and/or Joule-effect 
magnetostrictive  transducers. The choice of the  transducer for 
this sensor is dictated  largely by the temperature,  feedthrough 
constraints,  and the geometry of the  application. In config- 
urations tested to  date, the diamond  cross  section  torsional 
sensor  appears  to  complement or in some cases  offer potential 
or  actual  (demonstrated)  advantages for measuring fluid den- 
sity  and  collapsed  (equivalent)  level in harsh  environments, 
compared to the nonacoustic  sensors  currently in use. On the 
other hand, in some  applications the use of flexural or bending 
waves may be preferred over torsional  waves.  While flexural 
waves may not always be slowed down  as much  nor in as 
simple  a  manner as torsional  waves, the possibility of using 
them with clamp-on  transducers is attractive [22]. 

V. ACKNOWLDGMENT 

The manuscript was typed by Tamara M. Stearns. Chris D. 
Smart drafted  most of the line  drawings. 

REFERENCES 

N. S. Ageeva, “Ultrasonic Method for measuring the height of the fluid 
level in a vessel by means of flexural oscillation of a thin elastic strip,” 
Sov. Phys.  -Acous. vol. 6, no. 1, pp. 116-117, Jan.-Mar. 1960). 
A. E. Arave, “Ultrasonic densitometer development,” presented at NRC 
Instrumentation Review Group Meeting, Silver Spring, Maryland July 
24-26, 1979. 
H.  H. Bau, “Torsional wave sensor - A theory,” ASME J .  Appl.  Mech., 
vol. 53. no. 4, pp. 846-848, Dec. 1986. 
H.  H. Bau, J .  0. Kim, L.  C. Lynnworth, and T. H. Nguyen, “Improved 
torsional wave sensor and system,” U. S. Patent 4,893,496,  Jan. 16, 
1990. 
C. F. Brockelsby, J. S. Palfreeman, and  R. W. Gibson, Ultrasonic 
Delay Lines. London, U. K.: Iliffe Books, 1963; see also, S. Davidson, 
“Wire and strip delay lines,” Ultrason., vol. 3, no. 3, pp.  136-146, 
JulySeptember 1965. 
E. Dieulesaint, D. Royer, 0. Legras, and F. Boubenider, “A guided 
acoustic wave liquid level sensor,” in 1987 Ultrasonics Symp. Proc., 
1987, pp. 569-572. 
F. A. Firestone and D. S. Ling,  Jr., “Reflection and refraction of 
supersonic waves,’’ The  Rayhender, p. 7, Mar. 1945, see also R. C. 
McMaster, ed., Nondestruc.tive Testing Handbook, Vol. 11. New  York: 
Ronald, 1959, sections 43-5 1 .  
A. B. Gillespie. M. 0. Deighton. R. B. Pike, and R .  D. Watkins, “A new 
ultrasonic technique for the measurement of liquid level,” Ultrason. vol. 
20, no. I ,  pp. 13-17, 1982. 
G. V. Jeskey, L. C. Lynnworth. and K. A. Fowler, “An ultrasonic 
transmission technique for real time monitoring of steel solidification,” 
AFS Int.  Cast  Metals J . ,  vol. 2, no. 4, pp. 26-30, Dec. 1977. 
J. 0. Kim, “The interaction between stress waves transmitted in  solid 
waveguides and adjacent media,” Ph.D. Dissertation, Univ. of Pennsyl- 
vania, 1989. 
J. 0. Kim and H. H. Bau, “On-line real-time densimeter - Theory and 
optimization,” J .  Acousr. Soc. Amer., vol. 85, no. 1, pp. 432439,  Jan. 
1989. 
-, “Instrument for simultaneous measurement of density and vis- 
cosity,” Rev. Sri. Instrum., vol. 60, no. 6, pp. 11 11-1 115, July 1989. 
J. 0. Kim, Y. Wang, and H.  H. Bau, “The effect of  an adjacent viscous 
fluid on the transmission of torsional stress waves in a submerged 

J. F. Kirkpatrick and W. C. Kuzniak, “Development of large- scale 
waveguide,”J. Acoust. Soc. Amer., vol. 89, no. 3. pp. 1414-1422, 1991. 

acoustic waveguides for liquid-level measurement,” Trans. Amer. Nucl. 
Soc.., pp. 719-721, 1987. 
L. D. Landau and E.M. Lifshitz, Fluid Mec.hunics, 6th  ed. Oxford, U. 
K.: Pergamon, 1982. 
L. C. Lynnworth, [E€€ Trans. Son. Ultrason., vol. SU-22, pp. 71-101, 
1975. 

-, “Slow torsional wave sensor,” in 1977 Ulrrasonics Symp. Proc. 
1977, pp. 29-34; U.S. Patent No. 4,193,291, Mar. 18, 1980. 
-, “Ultrasonic flowmeters,” in W. P.  Mason  and R. N. Thurston 
eds., Physical  Acoustics vol. 14. New York: Academic, 1979, ch. 5 ,  

L. C. Lynnworth, J. L. Seger and J .  E. Bradshaw, “Ultrasonic system for 
measuring fluid impedance or liquid level,” U.S. Patent No. 4,320,659, 

pp. 407-525. 

Mar. 23,-1982. . 
L. C. Lynnworth, Ultrasonic  Measurements for Process  Control. New 
York: Academic, 1989. 
-, “Ultrasonics in instrumentation,” in:  P. H .  Sydenham and  R. 
Thorn. eds., Handbook of Measurement  Science, vol. 3. New York: 
Wiley, 1992, chap. 38, pp. 1655-1689. 
-, “Marginally dispersive ultrasonic waveguides,” U.S. Patent No. 
5,159,838, Nov. 3, 1992. 
W.  P. Mason, “Measurements of the viscosity and shear elasticity of 
liquids by means of a torsionally vibrating crystal,” Trans.  Amer. Soc. 
Mech. Eng.,  vol. 69, pp. 359-370.  May 1947. 
W. P. Mason, W. 0. Baker, H. J. McSkimin, and J. H. Hess. “Mea- 
surement of shear elasticity and viscosity of liquids at ultrasonic 
frequencies,” Phys.  Rev., vol. 75,  pp.  936-946, Mar. 15, 1949. 
H. J. McSkimin, “Measurement of dynamic properties of materials,” 
U.S. Patent No. 2,966,058 Dec. 27, 1960. 
G. N. Miller, R.  L. Anderson, S. C. Rogers, L. C.  Lymworth,  W. B. 
Studley, and W. R. Wade, “High temperature, high pressure water level 
sensor,” in 1980 Ultrasonics Symp. Proc.. 1980, pp.  877-881. 
C. E. Mongan,, “Method and apparatus for measuring liquid level,” U.S. 
Patent No. 3,010,318, Nov. 28, 1961. 
R. S. Moore and H. J. McSkimin, “Dynamic shear properties of solvents 
and polystyrene solutions from 20 to 300 MHz,” in W. P. Mason and R. 
N. Thurson. eds.. Physical  Acoustics VI. New York: Academic, 1970, 
pp. 167-242. 
R. S. Muller, R.  T. Howe, S .  D. Senturia, R. Smith,  and  R. M. White, 
eds., Microsensors. New  York: IEEE, 1992. 
W. Roth and I. R. Rich, J .  Appl.  Phys., vol. 24, pp. 940-950, 1953. 
E. G. Thompson, “Metallurgical evaluation of an FETF PPS pressure 
transducer interface seal assembly after liquid sodium service.” Rep. 
ETEC-78-1 I ,  UC-79m, Contract EY-76-C-03-0700, Energy Technology 
Engineering Center, Sept. 30, 1978. 
G. J. Twa, “Testing of the FITF plant protection system pressure 
transducers,” Rep. LMEC-77-5, UC-79m, Contract EY-76-C-03-700, 
Liquid Metal Engineering Center,  Jan. 15, 1978. 
H.  E. Van Valkenburg, “Ultrasonic liquid depth indicator,” U. S. Patent 
No. 2,787,160, Apr. 2, 1957. 
H.  E.  Van Valkenburg and  R. E. Sansom, “Liquid level indicator,” U.S. 
Patent No. 2,883,861, Apr. 28, 1959. 
V. V. Varadan, Y. R.  Roh,  B.  Shankar, and V.  K. Varadan, “Mea- 
surement of the skin friction associated with turbulent flows in air and 
water using SAW devices,” in 1990 Ultrasonics  Symp.  Proc., 1990, pp. 
303-306. 
T. P. Weldon and W. Lyman, “Void measurement in pressurized water 
reactors.” in Instrumentation in the  Power  Industry. Research Triangle 
Park, NC: ISA, 198 I ;  see also NRC Inspection Rep. 50-293-92- 17, 1992. 

Jin 0. Kim was born in Seoul, Korea, in 1958. He 
received the B.S. and M.S. degrees in mechanical 
engineering from Seoul National University, Korea, 
in 1983 and 1983, respectively, and the Ph.D. degree 
from the University of Pennsylvania, Philadelphia, 
in 1989. 

From 1983 to 1985, he was with the Korea Insti- 
tute of Standards and Science, where he carried out 
experimental research on detecting defects of rolling 
element bearings by vibration analysis. While he 
was at the University of Pennsylvania, he worked 

on the interaction between guided stress waves and adjacent media. Since 
1989. he has been working in the Center for Quality Engineering and Failure 
Prevention at Northwestern University, where he has been engaged in the 
applications of the ultrasonic nondestructive evaluation techniques, especially 
acoustic microscopy for the measurement of elastic properties of thin films 
and for the detection of subsurface defects. 

Dr. Kim  is  an associate member of the American Society of Mechanical 
Engineers and a member of the American Society for Nondestructive Testing. 

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 16,2010 at 18:55:39 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: TORSIONAL SENSOR APPLICATIONS IN TWO-PHASE FLUIDS 575 

Haim  H. Bau received the B.S. and M.S. degrees  Kimberly .4. Hall  was born in Mineola,  NY, in 
in mechanical  engineering  from the Technion. Is- 1960.  She  received the B.A.  degree  in  English  from 
rael Institute of Technology, in 1969 and 1973,  Rider  College  and the B.S. degree in electrical 
respectively, and the Ph.D.  degree in mechanical  engineering from Northeastern  University. 
engineering from Cornell University in 1980. She  has been working at Panametrics  since 1988. 

From 1960 to 1977, he served with the Israeli  Currently,  she is developing and testing  software 
Defense  Force.  Since 1980, he has been on  the 
faculty of the University of Pennsylvania,  Philadel- 

for  electronic  instruments for acoustic  applications, 

phia, PA, where he is currently a Professor of 
including level sensing  and fluid flow. 

Mechanical  Engineering and Applied Mechanics 
and of Electrical  Engineering. 

Dr. Bau is a  recipient  of  a  Presidential Young Investigator  Award,  He is a 
member of the ASME, APS, and SIAM. 

Yi Liu ("92) received the B.S. degree in electrical 
engineering  from  Xi'an  Institute of Metallurgy and 
Construction  Engineering,  China, in 1981 and the 
M.S. degree  from  Beijing  Institute  of  Technology 
(BIT),  China, 1984. 

Between  1984  and  1987, he was with BIT,  where 
he was responsible for the  development of electrode- 
less liquid conductivity  sensors. From 1987  to  1989, 
he was a research  investigator at Rutgers  University, 
NJ, where he worked on in-line  ultrasonic  sensors 
for  food  processing.  He  joined  Panametrics in 1990, 

where he has  been  working on the development of acoustic  sensors for 
measurements  of liquid level,  density, flow, and  other  process  control or 
avionic  measurands. 

Saul A. Jacobson ("86) received the B.S.  and 
M.S. degrees in clectrical  engineering from the 
University of Cape  Town,  South  Africa, in 1977 
and 1983,  respectively. 

He  has been involved in research and applications 
of ultrasonic measurement and signal processing as 
a  graduate  student at the University of Cape Town 
from 1981 to 1982 and at the Council  for  Mineral 
Technology.  Randburg,  South  Africa  from  1982 to 
1984. In 1984, he joined  Panametrics.  where he has 
been working on the development  and  application 

of ultrasonic  instrumentation  for  mea?urement of flow, density. and level 

James M. Korba received the B.S. degree in math- 
ematics from Southern  Illinois  University in 1973. 

He has worked for Panametrics as a Software 
Engineer  since  1979.  He  has  developed  embedded 
systems  software which supports  research  and  de- 
velopment in a variety of meahurements  including 
flow, temperature,  level, and density.  His  previous 
programming work involved  a  variety of' military 
and medical  applications.  He is a  co-inventor of the 
differential  correlation  analyzer. 

Robert J. Murphy was born in Waltham,  MA, 
in 1967. He  received the B.S.  degree in electrical 
engineering  from  the University of Lowell, MA, in 
1989. 

He has  worked  for  Panametrics  since 1985, con- 
centrating  primarily in electronics  as used in new 
flowmeter  products  such as liquid,  gas, and two- 
phase  flowmeters,  and in special projects  such  as an 
experimental  downhole flow tool. 

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 16,2010 at 18:55:39 UTC from IEEE Xplore.  Restrictions apply. 



S16 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 40, NO. 5 ,  SEPTEMBER 1993 

Kyle G. King received the B.S. and MS. degrees 
in electrical engineering from Union College, Sch- 
enectady, NY in 1989 and 1992, respectively. 

From 1989 to 1992, he was a Project Engineer 
with GE Power Generation, where he was responsi- 
ble for managing the  design, testing, and manufac- 
turing of power plant instrumentation and control 
equipment. Since 1992 he has been a Research 
Engineer at the High Voltage Transmission Research 
Center in Lenox,  MA, where he is responsible 
for the design and development of magnetic field 

management systems for transmission and distribution lines. 
Mr. King was awarded the 1991 GE Young Engineer Award. He is a 

licensed Professional Engineer in New York.  He  is also a member of Eta 
Kappa Nu, Tau Beta Pi, and is the Secretary of IEEE Power Engineering 
Society, Berkshire Section. 

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 16,2010 at 18:55:39 UTC from IEEE Xplore.  Restrictions apply. 


	University of Pennsylvania
	ScholarlyCommons
	9-1-1993

	Torsional Sensor Applications in Two-Phase Fluids
	Jin O. Kim
	Haim H. Bau
	Yi Liu
	Lawrence C. Lynnworth
	Steven A. Lynnworth
	See next page for additional authors
	Recommended Citation

	Torsional Sensor Applications in Two-Phase Fluids
	Abstract
	Disciplines
	Comments
	Author(s)


	Torsional Sensor Applications in Two-Phase Fluids

