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On the Stability of Electric Arc Discharges

Abstract
The stability of electric arc discharges has been explored through the use of an energy balance coupled with
charge conservation. In order to facilitate this analysis, a new model for the electrical conductivity function
has been proposed. Asymptotic solutions for the arc governing equations have been obtained. Stability criteria
have been developed from both the linear theory (infinitesimal size disturbance) and from a minimizing
solution point of view for finite size disturbances. The results delineate an open region in the stability diagram
where arc instabilities may be possible.
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On the stability of electric arc discharges 
A. M. Whitman, P. S. Ayyaswamy, and Ira M. Cohen 

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 
Pennsylvania 19174 
(Received 7 June 1976) 

The stability of electric arc discharges has been explored through the use of an energy balance coupled 
with charge conservation. In order to facilitate this analysis, a new model for the electrical conductivity 
function has been proposed. Asymptotic solutions for the arc governing equations have been obtained. 
Stability criteria have been developed from both the linear theory (infinitesimal size disturbance) and from 
a minimizing solution point of view for finite size disturbances. The results delineate an open region in the 
stability diagram where arc instabilities may be possible. 

PACS numbers: 52.80.Mg, 52.75.Kq, 52.35.En 

I. INTRODUCTION 

An idealized description of electric arc phenomena 
centers on an energy balance between conduction heat 
transfer and dissipation by Ohmic heating. In this paper, 
we shall base a model for arc stability on this energy 
balance and as a result obtain stability criteria in terms 
of both arc plasma and circuit parameters. The model 
allows for variations in the transport properties. Other 
energy loss mechanisms, such as forced convection and 
radiation, are often important in practical applications. 
These are neglected here partly because idealized situa
tions can be constructed in which they are negligible, 
but more importantly, because we are formulating a new 
procedure to obtain stability criteria and we have chosen 
to start with the simplest possible nontrivial problem. 
We intend to include the effect of convection and radiation 
in subsequent work. 

Two features of the present study are noteworthy. 
First, the study provides a new model for the electrical 
conductivity function that reproduces all gross features 
of experimentally obtained characteristics and yet is 
suitable for easy mathematical manipulation. Second, a 
systematic inquiry into asymptotic limiting solutions of 
the governing equations has been shown to aid the devel
opment of the stability theories. Interesting estimates 
of voltage and current extremal values stemming from 
the solutions of scaled equations have been provided and 
compared with existing results where available. 

Finally, the stability criteria are obtained by investi
gating the perturbations of the steady solutions of the 
governing equations. This investigation has been under
taken from both the linear theory (disturbance size in
finitesimal) and from a minimizing solution point of view 
for finite size disturbances. The results complement 
each other in the sense that taken together they provide 
the necessary and sufficient conditions for instability for 
an arc. It is seen that they delineate an open region in 
the stability diagram wherein arc instabilities may be 
possible. Since the finite size disturbance theory solu
tions correspond to minimizing solutions, no definitive 
conclusions can be drawn with regard to subcritical in
stabilities, and it is hoped that experimental results 
(unavailable at present) will shed further light on this 
matter. 
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II. THEORETICAL FORMULATION 

Consider a planar arc between planar electrodes, es
sentially as a conducting slab which is bounded by iso
thermal side walls as shown in Fig. 1. If we neglect the 
effects of radiation and convection, energy conservation 
reduces to a balance between conduction heat transfer 
and Ohmic heating. Furthermore, with neglect of axial 
variations (see Ref. 1 for two-dimensional effects), we 
obtain the following steady-state Elenbass-Heller equa
tion for energy conservation, in terms of the heat flux 
potential 

with S(T) = J; k(T') dT', 

subject to the boundary condition 

~~ = 0 at X= 0; S=Sw at x=xw' 

In Eq. (1) we have used Ohm's law, 

j=aE. 

The current I in the y direction can be obtained from 
rXw 

1= 2wE)0 a(S)dx. 

y 
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FIG. 1. The arc geometry and arc as element of a circuit. 
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FIG. 2. Comparison of data for air with hyperbolic tangent 
conductivity model 

O'(Z) = !O'* {I +tanh[c(Z/Z* - Ill}. 

Curves A: O'(T), air at 10 atm. (Yos, Ref. 1), dashed line. 
Z=T, Z*=T*=I6000oK, 0'*=156mho/cm, c=2.3, solid line. 
Curves B: O'(h) (h, enthalpy), air at 10 atm. (Yos, Ref. 4), 
dashed line. Z=h, Z*=h*=14.1 kcal/g, 0'*=100 mho/cm, c 
=2.0, solid line. Curves C: O'(S) , air at 1 atm. (Devoto, 
Ref. 5), dashed line. Z=S, Z*=S*=I5.5W/cm, 0'*=90 mho/ 
cm, c= O. 6, solid line. No special attempt has been made to 
achieve a "best fit" to the data. 

In the above, E, a, k, T, j, and ware the electric 
field intensity, electrical conductivity, thermal con
ductivity, plasma temperature, current density, and 
width (in z direction) of the planar arc, respectively. 
The arc energy equation used for the analysis contains 
only a thermal-conduction energy loss. It must be em
phasized that in general the full range of energy transfer 
processes (radiation, convection, and conduction includ
ing the effects of turbulent transport) have importance 
in the energy conservation equation for an arc. These 
are neglected here partly because idealized situations 
can be constructed in which they are negligible, but 
more importantly, because we are formulating a new 
procedure to obtain stability criteria and we have 
chosen to start with the simplest possible nontrivial 
problem. We intend to include the effects of convection 
and radiation in subsequent work. 

The temperature variation of the transport properties 
and the quadratic manner in which the electric field 
enters the problem introduce strong nonlinearities, and 
any solution procedure other than a complete numerical 
scheme requires some simplifications. Here, through 
the use of the heat flux potential S, variation of the 
thermal conductivity function has already been taken 
into account. We must then make a suitable choice for 
approximately representing the electrical conductivity. 
In two previous papers (Refs. 2 and 3) we have obtained 
arc -column electric -field-vs -arc-current character
istics which showed sensitivity for large currents to the 
manner in which the electrical conductivity varied with 
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temperature. However, with any "switch-on" electrical 
conductivity that is identically zero for temperatures 
less than a "critical" temperature T *' the character
istic behavior for small currents is the same-E in
creases when I ~ 0 as 1/1. For the purpose of examining 
arc stability, the neighborhood of zero current is of 
crucial importance. A careful examination of our pre
vious models showed that the infinite electric field at 
zero current was a direct consequence of the discontinuity 
in the derivative da(T)/ dT at T *. To provide a more 
realistic model of the arc for small currents it is pro
posed in this paper that a(S) be represented by the 
relation 

(5) 

where a*, T *, and a are material constants. For high 
temperatures, this "tanh conductivity" model reproduces 
the features of the constant property arc model, but, 
since a(S) and all its derivates are everywhere con
tinuous, the arc characteristic has no singularities and 
reproduces all gross feat~res of experimentally obtained 
characteristics. In this regard, an examination of the 
electrical conductivity in equilibrium air4 ,5 indicates 
that on a linear plot, it is well fitted by a tanh function. 
(See Fig. 2.). Moreover, the one-dimensional analysiS 
yields current-electric field characteristics shown in 
Fig. 3 which are linear scale representations of gas 
discharge characteristics (for example, see Fig. 10f 
Ref. 6). Since our emphasis is on arcs, all phenomena 
on current scales much smaller than the arc scale are 
forced to the vertical axis. These phenomena have been 
treated in detail in Refs. 7 and 8. 

Now the problem can be made dimensionless by 
defining 

j=(S-S*)/(S*-S), Jl=a(S*-S), ~=x/xw, 

and by measuring E and I in units of 

[(S* - Sw)/ a*x~] 1/2 and w[ 4a* (S* - Sw)]1/2, 

respectively. Then from Equations (1)-(4), 

MAX E=18.40 
ATT=0.00152 

10 =-0.840 

5.0 

3.0 

2.0 

1.0 

o 0.5 

2.0 
1.5 

1.5 
0.5 

1.0 

---1J.=2.0 
----- IJ.= 4.0 
10 VALUES ARE INDICA TED 

ON CURVES 

1.5 2.0 2.5 3.0 
T 

FIG. 3. Current-electric field characteristic-the tanh con
ductivity arc. E is given by Eq. (9) and I is given by Eq. (10), 
through the parameter fo. A few representative values of/o are 
indicated on the figure. 
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and 

I=tE fol[l +tanh(l1f)]d~, 

subject to the boundary conditions 

df = 0 at ~ = 0; f = - 1 at ~ = 1. 
d~ 

III. ASYMPTOTIC SOLUTIONS AND ESTIMATES 

(6) 

(7) 

(8) 

Let fa be the value of f at ~ = O. This is the heat flux 
potential at the centerline of the arc and can be used as 
a measure of the centerline temperature. Then, from 
integrating Eq. (6) once, we get the relation between 
the electric field and this measure of the centerline 
temperature as 

1 ! v.lo dt; 
E= 111/2 -v. [l1fo+ Incosh(l1fo) - t -lncosht;]1/2 (9) 

and through the use of Eq. (7), we can write 

1- 1 JV.io (l+tanht;)dt; (10) 
- 2 11 172 -v. [l1fo + In coshl1fo - t; - In cosht;]1 /2 

The set of solutions represented by Eqs. (9) and (10) is 
the current-electric field characteristic of the arc in 
parametric form with fa as the parameter. A calculation 
for 11 = 2 and 4 is shown in Fig. 3. An analytical evalu
ation of the integrals above is too complicated although 
solution estimates appropriate to the cases of large 
fa and fa nearly equal to - 1 (with 11 "large") can be ob
tained by suitable order-of-magnitude arguments. 
These estimates aid in the development of stability 
theories. 

With fa - 00, we write 

1 jv.lo dt; 
E - 111 / 2 A ""2 ...... 1 7"'2"'-( 11-1,-"0-_-t;")1-'7""2 

1 fA dt; 

+ Jj!T2 l_v. [l1fo + In cosh( I1fo) - t; - In cosht; ]1/2 ' 

where A is a number of 0(0 but numerically large 
enough to validate the approximation, 

A + In coshA - 2A -lno 2 . 

(11) 

(12) 

The value of E in this limit can be obtained in major part 
from the first integral in Eq. (11), and to dominant or
der it is given by 

E = (2fo)I/2 + (2f:)1 72 + 0 (f0-3/2). (13) 

With the same level of approximation 

1= (2£ )1/2 _ In2 - 11 + In coshl1 + 01+-3/2) 
!lo 211(2fo)I/2 Va 

or, for the characteristic in dimensionless form, we 
have 

(14) 

E = I+ (1 + In2 - 11
2
: In coshl1)i + 0(1-3). (15) 

Thus, for high centerline temperatures, the arc looks 
like a linear resistor as nearly all of the gap is filled 
with high-conductivity material (0'- u* for most all of 
I xl ~ x). On the other hand, for fa close to -1 (actu
ally Ilfo-- 00), we have 
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", 
1 f 0 dt E-

jif72 _" [exp(2Ilfo) - exp(2C)11 /2 
(16) 

where t + In cosht; has been approximated by - ln2 + exp 
(2?;), for ?;-oo. Transforming Eq. (16), we can produce 
a standard form, 

The function represented by Eq. (17) has a maximum and 
and furthermore, since 

dE = (dE)(!!.!...) _1 

dI dfo dfo ' 

the maximum corresponding to dEl dfo is a maximum of 
the characteristic. This last criterion yields, 

tanh{l - exp[ - 211(1 + fO)]P/2 

={1- exp[ - 211(1 + fO)]}-1/2, 

which has a unique solution 

fo = - 1 + 2111 In (1 ~ b2 ) , 

where 

For this value of fa, 

(1 - b2 )1/2 exp(l1) 
b ~ 

By similar arguments, 

1- exp~f~o) {1 - exp[ - 211(1 + fO)]P/2 

and the current at Emu. is therefore 

(18) 

(19) 

(20) 

(21) 

(22) 

b exp(- 11) 
Imu. - (1 _ b2)1/2 111/2 (23) 

As mentioned previously, these results will prove useful 
in developing stability criteria. 

IV. DEVELOPMENT OF STABILITY CRITERIA 

In order to develop suitable stability criteria, con
sider the arc to form part of a circuit of inductance L 
and driving voltage Vo coswt as shown in Fig. 1. Equa
tion (1) has to be modified to include time dependence 
and must be supplemented by the circuit equation. 
Thus 

(24) 

and 

(25) 

Here K and ware the reciprocal thermal diffusivity and 
the dimensionless driving frequency, respectively. In 
addition, l is the distance between electrodes so that in 
Eq. (25) El is the arc voltage drop. We are therefore 
neglecting in this formulation the effect of the contrac
tion regions as well as the cathode and anode sheaths on 
the over-all voltage drop. The above equations must be 
considered together with the current conservation equa
tion (4) to form the required system of governing equa
tions. Introducting T= wt, w* = WKX~, to = 2xwwO'*Lw/l, 
and A=(VaXjl)(u*/(S* -Sw)JI/2, these equations become 
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(26) 

(27) 

and 
dl 

D.dT + E=ACOST. (28) 

We shall restrict our considerations to cases in which 
w* is much less than unity. Then the arc thermal in
ertia term is negligible so long as time variations occur 
on the scale T and therefore the arc is quasisteady with 
current-electric field characteristics given by our pre
vious result [Eqs. (21) and (23)]. Substituting this into 
Eq. (28) then produces a nonlinear ordinary differential 
equation for the current I( T). However, for 11» I, our 
previous result [see Eqs. (21) and (23)] indicates that 
when the current is small O[WI/ 2 exp(- 11)], the arc 
voltage is large O[WI/2exp(Il)] and the maximum tem
perature is not very different from the wall temperature, 
f mu + 1 =O(WI). Then in Eq. (28) the inductive voltage 
drop must balance the arc voltage drop and this requires 
that d/ dT be large. This argument shows that in a re
gion of small current ("current-zero") time variations 
occur on a much shorter scale than T and hence the arc 
thermal inertia is not a perturbation quantity. In order 
to investigate this region we are thus led to scale the 
equations as follows: 

1= I WI/ 2 exp(- 11), E= i; j.Ll/2 exp(ll) 

f = - 1 + g / 11, T = i3 + w* -;. . 

The f scaling yields 

HI + tanh(ll.tlJ - exp(- 211) exp(2g), 

so that to leading order in 11 and w* we obtain 

a2g - ag - + E2 exp(2g) ;:,;-
ae aT' 

I;:,;i; f;exp(2g)d~, 
and 

where we have introduced 0 = D. exp( - 211)/ w* and A 

(29) 

(30) 

(31) 

= A exp( - 11) III / 2 cosi3. The quantity i3 is a measure of the 
time at which the "current-zero" occurs. 

There are two time scales in this set of equations. 
One is the time scale on which the temperature changes; 
this is the basic scale of the problem. The other is the 
scale on which the arc voltage recovers to the instanta
neous value of the source voltage D. exp( - 211)/ w* which 
depends on the circuit and arc parameters. 

Now time does not appear explicitly in the coefficients 
of Eqs. (29)-(31) and therefore we can obtain a steady
state solution. This is given by (overbars indicate 
steady -state solutions) 

E=1\ 

1= A fol exp (2g) d~ 

and from Eq. (29) 
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(32) 

(33) 

(34) 

subject to 

ag __ 0 t t 0 - 0 a <,= ; g= 
a~ 

at ~ = 1. (35) 

Therefore, 

g = go -In(cosh{~ tanh-Ill - exp( - 2go)]1 /2}). (36) 

We note that for a given go, the value of 1\ is unique, 
while for a given A two different values for go are pos
sible. Finally, 

1= A foIexp(2go) sech2{~ tanh-Ill - exp(- 2g0)1 /2}d~ 

=exp(go)[1-exp(-2go)]1/2. (37) 

If we find that some steady solution given above is a 
stable one, then subsequently the arc current will re
mail)- small and we can say that the arc is extinguished. 
On the other hand, if a steady-state solution given above 
is unstable, the arc current will again grow to finite 
values and we would conclude that the arc has reignited. 
Thus an investigation of the perturbation of these 

steady-state solutions will enable us to obtain criteria 
governing stability. We shall approach the stability as
pects of this problem from both the linear theory and 
the nonlinear theory view points. 

V. LINEAR STABILITY THEORY 

Consider letting g=g + g', E= E+ E', and 1= I + I', 
where the prime denotes perturbation quantities. The 
perturbation equations for a linear theory become 

and 

02 , 0 ' ~ + 2A 2 exp(2?1' )g' + 2i\. exp(2g- )E' = E4--oe IS aT ' 
1 1 

I' = E'l exp (2g) d~ + 21\ f exp(2g)g' d~ 
o 0 

"dl' + E'-O vaT -. 

(38) 

(39) 

(40) 

Solution of these equations is greatly facilitated by re
ducing this system to a single equation in g'. From 
Eq. (38) 

2A fo 1 exp(2g)g' d~ 

1 r 1 ~ . J 1 -) 1 og' 
=A, . 0 aT d~ - 2E' 0 exp(2g d~ -A, ar-

Now with Eqs. (39) and (33), 

Using these relations, after some manipulation, we get 
from Eq. (38), 
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Letting, g' =;(0 exp(a'T), where a is the frequency of 
the perturbation, 

(42) 

We wish to inquire into mathematical conditions that 
correspond to a total physical failure or the complete 
extinguishing of the arc. We will assume that this physi
cal situation corresponds to a time-independent insta
bility pI:ocess and therefore the mathematical solution 
corresponds to the neutral stability problem. The 
neutral state is governed by the stationary solution to 

rf.i 2 -" d~2 + 2A exp(2g)g= O. 

Setting, 

tanh- l {[1 - exp(- 2g0)]1/2}= r, 

we need to solve 

~g . .2 2()" de +2rsech ~rg=O 

subject to 

dg =0 " d~ at ~=O; g=O at ~=1. 

(43) 

(44) 

(45) 

(46) 

Equation (45) together with conditions (46) can be con
verted into an initial-value problem and integrated 
numer ically. The minimum r is found to be 1. 1997. It 
is of interest to note that this value of r corresponds to 
the maximum of the current-voltage characteristic as 
obtained from Eq. (18) and shown in Fig. 3. The result 
obtained here is valid for infinitesimal disturbances 
from equilibrium and is the sufficient condition for arc 
reignition. For values of go, the scaled dimensionless 
centerline heat flux potential, above those given by 
[1 - exp(- 2go)jl / 2 = 0.8336, small size disturbances will 
grow and hence the current will ultimately grow large. 
We note at this point that this result, although interest
ing, is of limited practical value since the initial state 
in approaching the current-zero region is far removed 
from the equilibrium state described by the source vol
tage. This observation naturally leads to the finite am
plitude disturbance problem. With this in mind, in order 
to examine whether "subcritical" instabilities may exist 
or not, we now proceed to the formualtion and solution 
of the nonlinear stability problem through a variational 
approach. 

VI. NONLINEAR THEORY AND NECESSARY 
CONDITION FOR INSTABILITY 

The perturbation equations for a nonlinear theory are 
a2 , _ _ W + 2EE' exp(2g) exp(2g') + E2 exp(2g)[exp(2g') - 1] 

a ' + E'2 exp(2g) exp(2g') = L 
aT ' 

]' = EUo l 
exp(2g)[exp(2g') - 1] dd 

+ E'[fol exp(2g) exp(2g') dH 
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( 47) 

(48) 

and 
dF 

6 ----z + E' = 0 . 
elT 

(49) 

The necessary conditions for the instability of the arc 
can be obtained by investigating the criteria 

d g'2 f( d g'2) --- d~ = 0 and --;;:; - d~,,; O. 
rrt 2 dT 2 

(50) 

We note that [,2 and g,2 are the squares of the current 
and temperature disturbance amplitude, respectively. 
The joint requirement demanded by inequalities (50) 
guarantees stability with respect to all possible distur
bances. For the purposes of clarity, consider the 
latter requirement. If 

f d L . 
dT 2 d~ < 0, 

then temperature disturbances decay. When 

Jd g,2 
dT -2- d~= 0 

we have the stability boundary: neutral stability. A 
similar explanation holds for the former requirement. 
Thus we have from inequalities (50), and from Eq. (49) 

6 + E']'? 0 
(51) 

and 

f d'd' f-- d~ d~ d~+ 2EE'g'exp(2g)exp(2g')d~ 

+ f £2 exp(2g)[exp(2g') - 1 19' d~ 
+ f E,2g 'exp[2(g+ g')]d~ ~ O. (52) 

Now consider taking variations of Eqs. (51) and (52) with 
respect to [' and g', respectively. In extremalizing the 
requirements posed by inequalities (50), we are finding 
conditions for the minimum value, i. e. , the maximum 
negative value. This is because there is no finite maxi
mum of either 

f d g'2 
--d~ 
072 

or 

when positive, they grow to infinity. Thus we are finding 
conditions for the maximum decay rates for spontaneous 
disturbances about equilibrium for an arc. These lead 
to the most conservative nontrivial criterion for stabil
ity, From Eq. (51), a variational formulation requires 
that E' be zero as appropriate to a nonzero ]'. This con
dition can, at best, be only interpreted as representa
tive of situations when the decay rates for nonzero E' 
are very much faster than those for ]'. Nevertheless, 
the formulation is mathematically correct and solutions 
will be proper minimizing functions for the problem 
posed. With E' = 0, from Eq. (52) we obtain 

t!1L -de + ~E 2 exp(2g) exp(2g')(1 + 2g') - ~E2 exp(2g) = O. 

(53) 

Inserting the known values for Ii and g, the variational 
equation governing nonlinear stability becomes 
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FIG. 4. Stability boundary for a slender arc. 

d2 , 

d~~ + ~rsech2 (YO [exp(2g')+exp(2g')2g'-11=0 

subject to the boundary conditions, 

dg' 
- = 0 at ~ = 0; g' = 0 at ~ = 1. 
d~ 

(54) 

(55) 

With the transformation 7) = Y~, we can convert the 
above boundary-eigenvalue problem to an initial value 
problem as follows: 

rfK d7)2 + ~sech27)[exp(2g')+exp(2g')2g'-1]=,0 (56) 

with 

da' 
....Q..=Oandg'=g~ ai1)=O; g'=O at7)=Y. (57) 
d7) 

In order to facilitate a discussion of the solution to this 
initial-value problem, we introduce the weight 

J: g' d~ = X (58) 

as a measure of the size of the disturbance. It is then 
enough to examine the behavior of X as a function of go, 
the scaled centerline heat flux potential. Figure 4 shows 
this characteristic. The curve delineates an open region 
in the X-go space where subcritical instabilities may be 
possible. Since the results correspond to minimizing 
solutions, the area enclosed by the curve and the X axis 
corresponds to the region of unconditional stability. Arc 
instabilities are not possible here. It is interesting to 
note that the size of the disturbance and the dimension
less centerline heat flux potential bear an inverse re
lation in the region of absolute stability, although an ex
plicit relationship cannot be writ.ten. Note that small go 
corresponds to small currents in Fig. 3. From Fig. 4" 
we see that with an increaSing go, the size of the dis
turbance that can be accommodated by a stable arc cor-
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respondingly decreases. Definitive conclusions, how
ever, about the existence of subcritical instabilites in 
the open region between the nonlinear and linear char
acteristics cannot be drawn in the absence of any ex
perimental results. It is seen that the "nonlinear" result 
approaches the linear critical value as the disturbance 
size becomes smaller, approaching the "global" value 
go= 0.594. 

VII. CONCLUDING REMARKS 

It is seen from a linear theory study that a variable 
property, slender arc is unconditionally unstable with re
spect to infinitesimal size disturbances when the dimen
sionless arc centerline heat flux potential exceeds a 
given numerical constant, viz., 0.584. Based on this 
result, however, no conclusion can be drawn regarding 
the existence of regions of arc stability. The question 
then arises, under what conditions can we expect an arc 
to be stable, and in particular, with respect to finite size 
disturbances. We are therefore led to the following 
queries: Do there exist combinations of finite size dis
turbances and centerline heat flux potential values that 
correspond to arc stability, and if there are, can we 
chart the domain of their existence on the stability dia
gram. It appears that these queries can be answered by 
investigating the complementary problem that provides 
estimates for the necessary conditions for instability. 
Clearly, the criterion stemming from this latter analy
sis describes a region where the arc is always stable, 
From the results presented in here, we see that with 
increasing values of the centerline heat flux potential, 
the size of the disturbance that can be accomodated by 
a stable arc correspondingly decreases. With the size 
of the disturbance becoming infinitesimally small, the 
value of go predicted by the linear theory is properly 
recovered. Thus the two results complement each other. 
One must, however, be cautious in interpreting this 
minimizing solution result. Although the result is 
rigrously valid, based on this result no definitive con
clusions can be drawn as to the existence of subcritical 
instabilites. 
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