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Thermal and electrical characteristics of a two‐dimensional
tanh‐conductivity arc

Abstract
The two-dimensional variable-property arc has been studied through the use of the tanh-conductivity model.
Results that describe the thermal and electric arc characteristics for various values of the electrode
temperatures and aspect ratios are given. The numerical evaluation is carried out by the use of a Galerkin
technique. The results exhibit several novel and interesting features depending on the arc parameters. For large
aspect ratios (ratio of the interelectrode distance to that between the bounding walls) and small electrode
temperatures, the current---electric-field characteristics tend toward those of a slender arc. However, at a given
aspect ratio with large enough electrode temperatures, the distinct minimum noted in the slender-arc
characteristics does not occur. Also, for a given aspect ratio and large enough differences in electrode
potential, the electric-field-current characteristic is nearly linear and is independent of the electrode
temperature. The transverse electrostatic potential is found to have no significant variation in cross-sectional
planes. The qualitative nature of the thermal characteristics are similar to those of a constant-property arc
although significant differences in quantitative results exist. Wall and electrode heat transfer rates are
provided.
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Thermal and electrical characteristics of a two-dimensional 
tanh-conductivity arc 

P. S. Ayyaswamy, G.C. Das, and I. M. Cohen 

Department of Mechanical Engineering and Applied Mechanics. University of Pennsylvania, Philadelphia, 
Pennsylvania 19104 
(Received 6 January 1977; accepted for publication 5 April 1977) 

The two-dimensional variable-property arc has been studied through the use of the tanh-conductivity 
model. Results that describe the thermal and electric arc characteristics for various values of the electrode 
temperatures and aspect ratios are given. The numerical evaluation is carried out by the use of a Galerkin 
technique. The results exhibit several novel and interesting features depending on the arc parameters. For 
large aspect ratios (ratio of the interelectrode distance to that between the bounding walls) and small 
electrode temperatures, the current---electric-field characteristics tend toward those of a slender arc. 
However, at a given aspect ratio with large enough electrode temperatures, the distinct minimum noted in 
the slender-arc characteristics does not occur. Also, for a given aspect ratio and large enough differences 
in electrode potential, the electric-field-current characteristic is nearly linear and is independent of the 
electrode temperature. The transverse electrostatic potential is found to have no significant variation in 
cross-sectional planes. The qualitative nature of the thermal characteristics are similar to those of a 
constant-property arc although significant differences in quantitative results exist. Wall and electrode heat 
transfer rates are provided. 

PACS numbers: S2.80.Mg 

I. INTRODUCTION 

In the last several years, we have tried to gain in­
sight into the basic mechanisms operating in arc dis­
charges by considering simplified models, In this 

the effects of convection and radiation may be neglected, 
and in the steady state, this formulation reduces to a 
balance between thermal conduction and electrical 
dissipation, 

paper, we will consider a planar (two-dimensional) arc 
between two planar electrodes in which both temperature 
and electric field distributions may be fully two dimen­
sional. Asymmetries between cathode and anode tem­
peratures and corresponding heat flux rates will be 
emphasized. For arc plasma electrical conductivity 
modeled by a tanh function, we find that higher electrode 
temperatures and short arcs result in monotonically in­
creasing current -voltage characteristics. On the other 
hand, lower electrode temperatures and longer arcs 
yield characteristics with distinct voltage maxima and 
minima. These characteristics look very much like 
those for discharge lamps shown in Ref. 1. There, the 
voltage increases steeply to a low current maximum, 
then decreases to a minimum as the arc expands from 
a thin filament to nearly fill the volume between the 
confining walls, and then, for still larger currents, the 
voltage increases nearly linearly (as for a constant 
resistor). The arc temperatures are quite low at the 
low-current-maximum-voltage point and much higher 
at the intermediate -current-minimum -voltage point. 
Between these two points, on the branch of the charac­
teristic for which voltage decreases as current in­
creases, we could not obtain numerical solutions. We 
find arc thickness maxima near the electrodes with a 
minimum arc thickness near the central plane when the 
current is slightly greater than that required for the 
minimum voltage. More importantly, we find that the 
electric field may be taken as one dimensional (along the 
arc axis) with only a slight error. 

II. FORMULATION OF THE PROBLEM 

The dominant equations governing the analYSis of elec­
tric arc discharges are conservation of energy and con­
servation of charge. Under these circumstances when 

\1"8= - j . E 

and the statement that current denSity j is solenoidal 

\1. j =0. 

In Eq, (1), 5 is the heat flux potential, 

S(T)= rTk(T')dT', 
• 0 

(1) 

(2) 

where k is the thermal conductivity, T is the tempera­
ture, and E is the electric field intensity. The constitu­
tive equation for j is Ohm's law 

j=aE, 
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FIG. 1. Arc geometry. boundary conditions, and coordinate 
system. 

(3) 
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where ° is the electrical conductivity. In the steady 
state, \7 xE == ° from Faraday's law, so that E == - \7eb, 
where dJ is the electrostatic potential. The total arc 
current is the cross -sectional integral of the current 
density. 

1= - I 0\7 rp • dS, (4) 

where dS is an element of cross -sectional area. 

The temperature variation of the transport properties 
and the quadratic manner in which the electric field 
enters the problem introduce strong nonlinearities, and 
any solution procedure other than a complete numerical 
scheme requires some simplifications. In this study, 
through the use of the heat flux potential 5, the variation 
of the thermal conductivity function has already been 
taken into account. The electrical conductivity function 
is represented by the following model: 

a(5) == 10* {I + tanh[a(S - 5*)]}, (5) 

where 0* and a are material constants. The suitability 
of this model has been discussed by us in an earlier 
paper. 2 The boundary conditions for the equations 
become 

x=±L: 5=5 u_, odJ =0 
~x 

v = + ~l: s= 5" (x), 1J = ¢2 
~2 

Y= - ~l: 5= 5e (x), cb=¢" (6) 
1 

Figure 1 shows the arc geometry, boundary conditions, 
and the coordinate system used. 

The equations are cast in dimensionless form by 
introducing the following variables and parameters: 

and 

5=(S-5*)/(S* -5w ), fJ=a(5-S*), b=I/2L, 

x=x/L, y=y/L, 

1=1[20*(5* _S)I-1 /2, 

-;f= cp[2(5* _5u)/0*]-1/2, 

where the subscript If) refers to wall values. Omitting 
the overbars for simplicity, the corresponding set of 
equations appropriate to the steady state become 

-:;-:T + ~ + [1 + tanh(1l5) J ~ + - = ° ?" 5 (12 S [1((1 dJ) 2 (0 rp)2] 
U,' ~)' 2x ay 

and 

a
2

t/J 220 [arp 05 arp 25] 
iJy2 + oy'Z + }J.[1 -tanh(}J.S) I h ax + 2Y av = 0. 

The dimensionless current is 

11' (I¢ 1 = '2 [1 + tanh(J..LS) I a-;-dX. 
-1 :} 

The boundary conditions become 

x=±l: 5= -1, ~=o 
OX 

y=+b: 5=fe (x), ¢= ¢2 
2 

Y= -b: 5=fe, (x), ¢= ¢,. 

Equations (7) and (8) must be solved subject to the 
boundary conditions given by Eq. (10). 
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(7) 

(8) 

(9) 

(10) 

In this study, we effect conSiderable Simplification in 
the solution of the problem by suitably redefining the 
dependent variables 5 and t/J such that the functions 
themselves or, their first derivatives, vanish on the 
boundaries. First, we define 

U(X, .1') =5(x, y) -F(x, .1'), (11) 

where 

F(x, ... ) = (fe
2
(x) + ll[(y + b)/2b I 

- [fe/x) + 11[(y - b )/2b 1-1. (12) 

Next, we define 

I/;(x, y) == rp(x, y) - O2 [(Y + b)/2b 1+ rpJCv - b)/2b I, (13) 

so that, from conditions (10), 

U(x, ±b)=O, U(±I, y)=O, I/J(x, ±b)=O, 

and 

iJ~ -(±1, v)=O, rix ' 

Furthermore, 

rU(O, Y) _ c/ji(O, y) 
ox ax 0. 

Now, from Eqs. (7) and (8), U and ~, satisfy 

02U a2 u ,,2F 
L {u, /ji}= ax2 + V+ rix2 

+ {I + tanh[J..L(U + F) nr(o/ji\ 2 + (O,/ji + A¢)2] L\?x) av b 

= ° (14) 

Jai/J (au + aF)+(OI/J + Aql)(?U + 2F)] 
Lax (Ix (IX ilv b ily iJ" 

=0, 

where 

A¢=f;.(rp2-t/J). 

III. GALERKIN'S INTERIOR ORTHOGONALITY 
METHOD 

(15) 

Briefly, the dependent variables are expanded in a 
truncated series of complete functions. The remainders 
obtained by substituting these approximations into the 
appropriate differential equations are then required to 
be orthogonal to each of the approximating functions, 
thus yielding an equation for each of the unknown coeffi­
cients in the series. For a detailed explanation, see 
Ref. 3. 

The approximating series of polynomials are chosen 
as follows: With t=y!b, 

U(x,y)'="E '£ '£ Amnp(l-x2)n(l-t2)mtp (16) 
m n p 

and 

/ji(x, y)'=".0 .0 E B",np(1-.0)"(I_t2 )mtp, 
m b 

(17) 

m=I,2,3, .. . 
n=I,2,3, .. . 
p=0,1,2,3, ... , 
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where the appropriate symmetries in x and y and the 
boundary conditions are satisfied by each term. Amnp 
and Emnp are the coefficients to be determined by the 
Galerkin procedure. The electrode temperature param­
eters /')x) and I,)x) must be speCified. We choose 

t"" (y) =/20(1 _y')2 - 1 (18) 

and 

(19) 

where /20 and flO are numerical constants so that the 
electrodes also satisfy the sidewall boundary conditions 
(additionally with zero heat conduction). For equal 
electrode temperatures, we letf20 =/10= fo. The actual 
number of terms retained in the series representation 
varied from two to as many as eight depending on the 
parameter values. Expressions (16) and (17) are substi­
tuted into Eqs. (14) and (15), respectively, and we form 
the integrals 

lmnp= r: dy r: ely L {U, <)!}(1_x2)n (1 _t2 )mtp (20) 

and 

Jmnp = r: dy ,C dxlf1{U, <)!}(I_x2)n(l_t2)m tP, (21) 

111=1,2,3, .. . 
n=1,2,3, .. . 
p=0,1,2, ... . 

Since we require the residuals to be orthogonal to each 
term in the approximating series, then Imnp = 0 and 
Jmnp=O giving sets of 111XnXp equations. 

An examination of Eqs. (14) and (15) shows that the 
presence of the highly nonlinear terms make the compu­
tation of the Galerkin coefficients a nontrivial exercise. 
To start the numerical scheme, the following procedure 
is used. First, for given electrode temperatures, 
aspect ratio b, and J.l, Eq. (20) without the nonlinear 
terms of Eq. (14) and with AlP = 0 was solved for the 

1.5 2,0 2,5 3,0 
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3.5 

coefficients Amnp. These trial coeffiCients were then 
used to compute Emnp coefficients for any selected non­
zero :::'lP through Eq. (21). The resultant coefficients 
were iteratively fed back into the fully nonlinear Eq. 
(20). Having started the procedure in this manner, the 
convergence criterion was 

(22) 

A Similar one for the Bmnp coefficients was used to 
terminate the procedure. Once the coefficients are 
known, the current is obtained from Eq. (9), while the 
dimenSionless heat transfer rates are computed as 
follows: 

Heat transfer rate to walls. 

Qw=-bfl(~~) lit; 
-1 _.:.\ ,-=±l 

(23) 

heat transfer rate to the electrodes: 

Q = 'F~fl(a5) dx. 
~ b -1 ri / HI 

(24) 

In the above, the heat transfer has been made dimen­
sionless by division by L(5* -5w )' 

IV. DISCUSSION OF RESULTS 

Figure 2 shows the dimensionless potential versus 
dimenSionless current characteristics for three differ­
ent aspect ratios (b = 1. 4, 2.0, and 3.0) with two values 
for the equal electrode temperatures (f1O=f20=J~= 1.1 
and 3.0) and five sets of values for unequal electrode 
temperatures. We observe that the larger the aspect 
ratio and the lower the electrode temperatures, the 
higher the maximum voltage and deeper the minimum on 
the characteristics. For sufficiently hot electrodes 
and/or short arcs, the current-voltage characteristic 

4,0 4,5 

FIG. 2. Current-voltage characteristics, 
Jl~2. Curve 1:/10~ho~fo~3.0, b~1.4. 
Curve 2:jl0~/20=/0~1.1, b=1.4. Curve 
3:/'O~/20~/0~ 1. 1, b ~ 3. O. Curve 4: f,o 
~/20~fo~ 3. 0, b ~ 2. O. Curve 5:f10=f20 
~fo~1.1, b=2.0. Curve 6:/10=0.5, 
/20~ 1.1, b = 2. O. Curve 7 :/10= O. G, f 20 
=1.1, b=3.0. Curve 8:/10=0.5'/20 
=0.2, b=2.0. Curve 9:/10~0.5'/20 
~0.01. b~2.0. Curve 10:fl0~2.5,ho 
=0.001, b=2.0. 
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6.0 

5.0 

4.0 

3.0 

5 

2.0 

1.0 -

0 

- 0.8 - 0.6 -0.4 - 0.2 0 
1(x=OJ 
b 

02 

may be monotonically increasing. For the same b, as 
fo increases, D.¢/b decreases at each T. Thus, as ex­
pected, the hotter the electrodes, the smaller the elec­
tric field and potential drop needed to sustain a fixed 
current. In Fig. 2, the dotted portion of curves 1-10 
is a sketched interpolation between the calculated maxi­
mum and minimum values. No stable solutions could be 
obtained in this region of falling characteristic. We 
understand that the electrode temperature does not re­
main fixed for the entire range of current shown on the 
current-voltage characteristics. In fact, we would ex­
pect the electrode temperature to increase with cur­
rent, but some exterior temperature may be held fixed. 
This more difficult problem we shall leave for another 
time, but recognize now that a true current-voltage 
characteristic involves a family of our curves, where 
each value of current is taken from the characteristic 
having the appropriate electrode temperatures. 

1.0 
1 =4.99 

=4.3 .J 

08 

1=3.56) 

0.6 

0.4 

0.2 

0.4 0.6 0.8 1.0 

FIG. 3. Temperature pro­
files on arc centerline (x 
=' 0): S versus y/b. I is pa­
rameter of the characteris­
tics 1-10 in Fig. 2. 

Figure 3 shows the centerline heat-flux potential dis­
tribution corresponding to points on all of the charac­
teristics 6,7,8,9, and 10 of Fig. 2. The distinction 
between the low -current branch and the high -current 
branch is clear. Low current corresponds to low tem­
perature or low heat-flux potential and the higher­
current branch corresponds to much higher heat-flux 
potential. For example, the curve marked T = 1. 74 is 
very near the local minimum of its characteristic and 
has a transitional nature with two relative maxima near 
the electrodes and a relative minimum near the center. 

The arc shapes corresponding to characteristics 6, 7, 
and 8 of Fig. 2 are shown in Fig. 4. The arc shape is 
specified by the locus of pOints for which S = O. With the 
tanh-conductivity model, the current is conducted for - -
S negative as well as S positive. But, with our definition 
of arc shape, the arc boundary will not touch the elec-

FIG. 4. ~rc shape: x * ver­
sus y/b. I is parameter of 
the characteristics 6-8 in 
Fig. 2. x* is theJocus of 
points for which S=' O. 

-~.~0U---_~0~.8~--~_0~.6~---_0~.74----_~O.~2----~0~--~OL.2----~OL.4-----oL.6-----0~.8--~~1.0 
1... 
b 
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FIG. 5. Variation of transverse electrostatic potential. I is 
parameter of the characteristics 6-10 in Fig. 2. 

trodes when either flo or 120 or both are less than unity. 
When the current is very small (on the left branch of 
the characteristics 6-8 of Fig. 2), and if either Of/!0 
or /20 or both are less than unity, S is everywhere nega­
tive. Therefore, no arc shape would be indicated in 
Fig. 4 for that region. As the current increases, the 
arc thickens uniformly. However, for cold electrodes 
and small current on the right-hand branch of the 
characteristics 6-8 of Fig. 2, we find that arc thick­
ness maxima occur near the electrodes and a local 
minimum thickness occurs near the central plane in 
conformity with the transitional heat-flux potential curve 
of Fig. 3. 

The transverse electrostatic potential variations 
corresponding to the points on all of the characteristics 
6-10 of Fig. 2 are shown in Fig. 5. It can be seen from 
the figure that the maximum variation in potential in 
the cross -sectional plane is very small. Therefore, the 
electric field is nearly one dimensional and the arc 
models which use a two -dimensional temperature field 
and a one -dimensional electric field must yield results 
that are nearly the same as those given here. In parti­
cular, for equal electrode temperatures, the curves 
obtained here for axial and transverse heat-flux poten­
tial distribution and arc shape are quantitatively the 
same as those of Ref. 4. 

The variation of dimensionless heat transfer, Q, with 
arc current is shown in Fig. 6. There is a significant 
increase in heat transfer with a change from the low­
current branch to the high -current branch of the charac-

164 J. Appl. Phys., Vol. 49, No.1, January 1978 

teristic. The transition occurs on the falling part of the 
characteristic. When the current is very small, the 
arc is very thin and therefore the associated wall heat 
transfer is small. With increasing current, the arc 
thickness increases with the result that the heat trans­
fer increases. The arc thickens from nearly zero to a 
Significant fraction of the wall distance in the transition 
from the low current branch to the high current branch 
of the characteristic. At the low current end of the high 
current branch, Fig. 4 shows that the arc does not 
extend close to the boundaries. Increasing the cur rent 
increases the arc thickness without significantly in­
creasing the wall heat transfe r. Howeve r, by a dimen­
sionless current Y = 4. 0 the arc very nearly extends to 
the bounding side walls and can grow no further. 
Further increase of the current shows a dramatic in­
crease in heat transfer to the wall. Similar arguments 
could be made for the heat transfer to the electrodes. 

V. CONCLUSIONS 

The thermal and electrical characteristics of a two­
dimensional variable-property arc have been explored 
by using a tanh -conductivity model. The numerical 
evaluation is carried out by the Galerkin interior 
orthogonality method. For large aspect ratios and small 
electrode temperatures, the current-electric -field 
characteristics tend toward those of a slender arc. This 
is as would be expected. However, for sufficiently hot 
electrodes and/or short arcs, the current-voltage 
characteristic is monotonically increasing and stable 
solutions can be obtained over the whole range of 

90' 
I 
I 

80 -

70 

60~ 
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5°1 

40l 
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8 , WALL 
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I 
3°i 

201 

J/ 
I' 

1.= -I 
b I 

8 9 
6 -'10 

--' 

r '/ '.'. 

0>;:' 
1.0 

-10 

7.0 

FIG. 6. Heat transfer to wall (x ~ c±-1), cathode (y/IJ = -1), and 
anode (y/b=+ 1). T is parameter of the characteristics (j and 
8-10 in Fig. 2. 
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parameter values. We also conclude that the transverse 
electrostatic potential variation is insignificant in 
cross -sectional planes. Therefore, the electric field is 
nearly one dimensional and the arc models which use a 
two-dimensional temperature field and a one-dimen­
sional electric field must yield results that are nearly 
the same as those given here. 
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