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Laminar Condensation on a Moving Drop. Part 2. Numerical Solutions

Abstract
In this paper, we investigate the problem of transient laminar condensation on a moving drop by the
semianalytical series-truncation method. The objectives are to assess the validity and the accuracy of the
matched-asymptotic method employed in Part 1 . The fluid flow and thermodynamic variables are expanded
as complete series of Legendre polynomials. The resulting transient momentum, energy and species equations
are integrated numerically. The numerical scheme basically involves a three-point central difference for the
spatial derivatives and a backward difference expression for the temporal derivatives. The finite-difference
equations have been solved by the strongly implicit procedure. Good agreement of the fully transient
numerical results with the singular perturbation approximation results of Part 1 lends credibility to a quasi-
steady treatment of the continuous phase. The computational time requirements for the fully numerical
solutions increase with decreasing non-condensable gas mass fraction in the bulk environment.
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Laminar condensation on a moving drop. 
Part 2. Numerical solutions 

By J. N. CHUNG, 
Department of Mechanical Engineering, Washington State University, 

Pullman, WA 99164-2920 

P. S. AYYASWAMY 
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 

Philadelphia, PA 19104 

AND s. s. SADHAL 
Department of Mechanical Engineering, University of Southern California, 

Los Angeles, CA 9008S1453 

(Received 26 August 1981 and in revised form 7 September 1983) 

I n  this paper, we investigate the problem of transient laminar condensation on 
a moving drop by the semianalytical series-truncation method. The objectives are to  
assess the validity and the accuracy of the matched-asymptotic method employed 
in Part 1 .  The fluid flow and thermodynamic variables are expanded as complete series 
of Legendre polynomials. The resulting transient momentum, energy and species 
equations are integrated numerically. The numerical scheme basically involves a 
three-point central difference for the spatial derivatives and a backward difference 
expression for the temporal derivatives. The finite-difference equations have been 
solved by the strongly implicit procedure. Good agreement of the fully transient 
numerical results with the singular perturbation approximation results of Part 1 lends 
credibility to a quasi-steady treatment of the continuous phase. The computational 
time requirements for the fully numerical solutions increase with decreasing non- 
condensable gas mass fraction in the bulk environment. 

1. Introduction 
I n  this paper both the phases are treated as fully transient. The entire set of 

transient coupled equations are simultaneously solved by the series-truncation 
method. The flow field, fluid temperature and the mass fraction of the non-condensable 
gas are expanded as complete series of Legendre polynomials. The basis of the 
series-truncation method is to approximate the solutions by a finite number of terms 
(Van Dyke 1965; Dennis, Walker & Hudson 1973). Here a six-term expansion series 
has been employed. I n  addition to a fully transient treatment, the present analysis 
provides results of a higher accuracy, particularly for high rates of condensation, 
compared with those presented in Part  1 (Chung, Ayyaswamy & Sadhal 1984). In  
Part 1 the expansion series was truncated after P,(cosB) in view of the analytical 
treatment being very difficult and involved. As a consequence, some of the results 
for the high-condensation regime (strong flow field, high liquid-side PBclet number 
Pe, and Re, - 5) provided there may not be sufficiently accurate. In the present paper 
the series has been truncated only after P,(cosO). Larger values for Pe, have been 
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accommodated and we are able to provide accurate results for high condensation 
rates. Finally, by comparing the numerical results obtained here with the results of 
Part 1 ,  we have ascertained the validity of the quasi-steady assumption for the 
continuous phase. 

2. Theoretical formulation 
We now drop the assumption that the fluid motion, and the heat and mass transfer 

in the continuous phase could be treated as quasi-steady. The other assumptions are 
identical with those made in Part  1. Non-dimensionalization will be as in Part 1 unless 
otherwise indicated. 

2.1. Continuous phase ( r  > 1 )  

We set the velocity components 

where @ is the stream function and ji = cos8. 

function @ is 
The dimensionless time-dependent momentum equation in terms of the stream 

where 

i$ is the unit vector in the azimuthal direction. The time t has been scaled by R2/v, .  
In  (2) 

p a i a  
L, = -- +--. 

1-p2ar r a p  

Consider the translation of the droplet as a perturbation of the eondensation-induced 
radial field. Then we can write 

where 

in which P,(p) is the Legendre polynomial of order m. I n  (6) c = Re,(t) = U,(t)  Rlv,, 
A,, = A,  R l v ,  , and A, is the normal velocity as in Part  1. Here @ and llr1 have been 
scaled with v, R and U ,  R2 respectively, as was done in Sadhal & Ayyaswamy (1983). 
Upon substituting (6) into (2) and collecting terms of O ( s ) ,  we have 

We now cast (8) in terms of the vorticity 5, and transform the radial coordinate as 
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r = et, to facilitate numerical computation. In terms of the new variable 5 the 
vorticity equation may be written as 

and (8) becomes 

Equations (9) and (10) are simultaneously solved subject to appropriate initial and 
boundary conditions. These conditions will be discussed after the mathematical model 
of the internal flow is presented. 

2.2. Condensed phase (0 < r < 1 )  

The liquid-phase Reynolds number Rel will be small enough (even with Re, as much 
as five) so that the inertial terms in the momentum equation for the liquid side may 
be neglected. The governing equation for flow is 

where time t has been scaled by R2/vL and yi l  has been scaled by U ,  R2. In  a manner 
similar to the treatment of the continuous phase, we develop the stream-function- 
vorticity combinations for the flow calculation as 

Dt@e+f;drsinB = 0, (12) 

2.3. Boundary conditions, initial conditions and interface conditions 

@/,++2tsin20, 6+0 as E+m, (14) 
Continuous phase 

where #p = PaJl l l .  
For the condensed phase 

@(+O, Q + O  as r+O, 

~L = -(r4-r2)Ql(p) (t  = 0). 

The interface conditions, at r = 1, are 
(i) continuity of tangential velocities and no mass transfer in the liquid phase : 

(ii) continuity of shear stress 
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2.4. Flow equations for  the series-truncation procedure 

Following the procedure for the series-truncation method proposed by Van Dyke 
(1965), we express @ and 5 in terms of the Legendre and the first associated Legendre 
functions of order n. Thus 

@I = ei5 f n ( t , t ) r  -1 Pn(z)dz, (20) 

@!= x Fn(t, T) J" pn(z )  dz, 

n = 1  

m 

(21)  
n - 1  -1 

With (20)-(23), the vorticity and momentum equations (9), (lo), (12)  and (13)  

(24) 

(25) 

become f,-((n+8)2fn-n(n+i)e~5gn = 0, 

-+ce-35A 00 ( 9; - g n )  = (9: + gk--n(n+ 1 )  g n )  e-25, a g n  
at 

F" -~ n(n+ ') Fn-n(n+ 1 )  rCJn = 0, 
r2 

The transformed boundary conditions, initial conditions and interface conditions are 
as follows. 

For the continuous phase 

gn+O for all n, as [-+a, (29) 

f n ( 0 , t )  = 0 (n  * 1 )  I 
For the condensed phase 

Fn+O as r+O, 

Gn+O as r+O, (32) 

(33) 

Fk = i f n  +fn> Fn = 0, (34) 

(35) 

Fl(O, r )  = - (r4 - r 2 ) ,  Fn(O, r )  = 0 (n =!= 1 ; t = 0).  

The interface conditions, a t  r = 1 ,  are the following: (18) and (19) become 

F:-2Fk+n(n+ 1 )  Fn = $,Gfl-2f;++(4n2+4n-5) f n ] ;  

(24)-(27) are subject to conditions (28)-(35). 
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3. Heat and mass transfer 

the high-condensation regimes is suitable. 
For a fully numerical treatment, a single approach applicable to both the low- and 

3.1. Vapour-gas phase 

The dimensionless energy and species equations are (omitting asterisks) 

where T* = (T-T,)/(z-T,), w* = m-m,, and time t has been scaled with R2/a,. 

3.2. Liquid phase 
The dimensionless energy equation is (omitting asterisks) 

where T,* = (T,-T,)/(To-Tm), Pe, = Re,Pr,, Re, = U,R/v,, Pr, = VJae, and 
time t has been scaled with R2/a,. The above heatlmass-transfer equations are 
subject to the following boundary conditions, initial conditions and interface 
conditions. 

3.3. Boundary conditions, initial conditions and interface conditions 

For the vapour-gas phase 

T = w = O  as t-tco, (39) 

T = w = O  ( t = O ) .  
For the liquid phase 

Te <a ( r  = 0; all e), 

3 = o (e = 0,n; all r ) ,  (43) ae 
Te = 1 ( t  = 0) .  (44) 

The interface conditions, a t  r = 1, are 

1 aw 

aT, QkPT 

ur = -- 
miSc dr ' 

i3T 
ur+Qk;,j ar Ja  

T = T , = q .  

In  (46) $k = k , / k ,  and Ja  = C, ATlh. AT = T,-T,. 

(45) 

(47) 
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Let 

3.4. Expansion procedure for heatlmass-transfer analysis 

On substituting (48)-(49) into (36) and (37), and using appropriate velocity fields, 
we obtain for the continuous phase 

= Ti+Ti-n(n+ 1) T, (n  = 0 , 1 , 2 ,  ...), 

= w : + w i - n ( n + l ) w ,  ( n=  0 , 1 , 2 ,  ...), 

(54) 

where the prime denotes differentiation with respect to 6. For the drop interior we 
substitute (50) and velocity fields derived from (21) into (38). Then we multiply the 
resulting equation by P,(p) and integrate it, involving orthogonality of Legendre 
polynomials where appropriate, to generate the following set of equations : 

2 
r 

= T:,+ -T2n-n(n-:-1)7)n ( n = 0 , 1 , 2 ,  ...), (55) 

where 

are the 3-j symbols (Rotenberg et al. 1959; Talman 1968). The boundary conditions, 
initial conditions and interface conditions are as follows. 

For the vapour-gas phase 

T, = T, = 0, Go = w,  = O  as t + O ,  
T, = T, = 0, Wo = W ,  = 0 ( t  = 0). 

The symmetry conditions aT/a$ = aw/a$ = 0 a t  0 = 0 and 7c are satisfied by (48) 
and (49). 
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5 = 0, T,, = 0, n 2 1 ( r  = 0; all o) ,  (58) 

Tdn = 6,o ( t  = 0). (59) 

ar 

Also, (43) is satisfied by (50). 

into (45) and (47), and using appropriate flow fields, we obtain 
The interface conditions, at r = 1, are the following: on substituting (49) and (50) 

aao -- - Sc Aoo(ao + m,) el, 
86 

(60) 

awn 
- = X c [ A o o w n - ( ~ o + m O D ) f n ( 0 ) ] e ~  (n  = 0,1 ,2 ,  ...), (61) at 

m OD 

T,(O,  t )  + 6 X Tn Pn(p) = X T,n Pn(p). 
n=o n=o 

Equations (51)-(55) are subject to the conditions (56)-(64). 

4. Evaluation of U,(t) 
As discussed in Part 1, the velocity of the drop a t  any instant is a function of the 

radial flow field induced by condensation. This velocity, relative to  the quiescent 
ambient mixture of steam and air, is governed by the following equation of motion: 

where the added-mass force, pressure-gradient force and the Basset history force 
(Basset 1888, see also Clift, Grace & Weber 1978) have all been neglected. The neglect 
is based on the large difference in density between that of the drop and of the 
gas-vapour mixture. The drag coefficient C ,  is defined by 

drag force c -  
- bOD U",t) nR2 

From Milne-Thomson (1968). after suitable rearrangement, 

CD = 2 
-""[ 

p(6 ,  8)  cos 8 sin 8d8+ (u, u, cos 8-u, uo sin 8)  sin 8 d 8  
Re, 0 

- fr (z 2 cos 8 - ( r  $ (;) ++$) sin 8) sin 8 do] , (67) 

where p is dimensionless pressure. We calculate C ,  also by the series-truncation 
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method. For this calculation C, is transformed in terms of f n  and g , ,  and a t  the 
interface, ( = 0, C, becomes 

The initial condition for the equation (65) is 

The Runge-Kutta method was employed for the solution of (65).  

5. A brief discussion of numerical procedures 
Equations (24)-(27) subject to conditions (28)-(35) for the flow fields, and (51)-(55) 
subject to conditions (56)-(64) for the heat/mass transfer are solved simultaneously 
through finite-difference numerical procedures. A simultaneous solution, a t  each time 
step, is needed in view of the coupling of the variables at the interface. In  the actual 
solution a truncation of order no is defined by setting all f , ,  F,, g,, G,, T,, w,, and 
Tdn equal to zero for n > no. The order no depends on E ,  Pe, Pe, and on the strength 
of condensation fluxes Re,. The value of no is determined by letting it increase until 
there is no appreciable change in the calculated results. In  this study no = 6 was found 
to be adequate for describing high rates of condensation (Re, - 5), while no = 4 was 
sufficient for the complete Stokes-regime problem. The governing equations (24)-( 2 7 )  
and (51)-(55), in their truncated form, present a set of nonlinear coupled differential 
equations. The finite-difference method employs the three-point central-difference 
scheme for the spatial derivatives and the backward-difference for the temporal 
derivatives. The strongly implicit procedure proposed by Stone (1968) was adopted 
for the solutions of the finite-difference equations. The resultant tridiagonal matrix 
for each mode is solved from n = 0 to n = no, one mode at a time, while holding the 
values of all other modes constant until all the boundary conditions appropriate for 
the given mode are satisfied. The same operation is performed on the next mode, with 
a relaxation of the calculated values for the previous mode. During the above primary 
iteration, the nonlinear terms are held constant. At the end of each primary iteration 
cycle the nonlinear terms are relaxed and the primary iteration cycle is then repeated 
until the desired convergence criterion is met. The [+OO condition, in this study, 
was set finally a t  [ = 5.5 after some numerical experimentation. 

Since the governing equations are all in a single-dimension (r-direction) form, the 
droplet interior is divided into L - 1 equal radial spacings and the continuous phase 
into M -  L equal spacings in ( (see figure 1 for details). The iteration procedure for 
each time step involves the flow-field calculation, for both phases, at the beginning 
of each iteration cycle. The flow equations (24)-(27) with boundary conditions 
(28)-(35) can be solved explicitly once A,, and f , ( O )  are known. The values of these 
quantities are guessed for the first iteration of the first time step. For subsequent 
iterations the values of the previous iteration are used. The temperature and the 
species equations are then solved for each grid point by using the most recent flow 
solutions. 
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FIGURE 1.  Geometry and numerical grid description. 

At the interface the two compatibility conditions (60) and (62) must be satisfied. 
I n  a fully transient treatment repeated iteration is required to enforce a strict 
conservation of mass and energy across the interface. A strong-coupling scheme for 
condensation velocities A,, and f,(O), mass fraction of air m i ( q , p m )  and interface 
temperature must be implemented. The heat-flux continuity equation (62) must 
be recognized as only a surface condition. Therefore, in order to  satisfy conservation- 
of-energy requirements strictly, the energy equation must be written as appropriate 
to a control volume. The control volume chosen here is enclosed by two concentric 
spherical surfaces. The outer surface of this shell coincides with the drop surface, while 
the locus of the inner is the bisection of the grid line connecting the outer surface 
to the first inner grid point, as shown in the shaded area of figure 1 .  Equations (62) 
and (63) are the outer-surface boundary conditions for this volume. The interface 
condensation-velocity terms A,, and f,(O) are then expressed in terms of the following 
set of special iteration equations to ensure efficient and fast convergence. Equations 
(6) and (61) are rewritten as 

where superscript 0 represents the previous iterate value. 
The iteration procedure for the mass fraction and the surface temperature employs 
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the ClausiusGlapeyron equation and the approximation that the gas-vapour 
mixture behaves like an ideal gas as follows: 

where TZ is the absolute temperature in the bulk, A; = p,, ,/pa, A; = h/R, 
A ,  = Mv/Mg-l ,  ii$, = @,+m,, T,* = z A T + T z ;  AT = T,-T,, h is the latent heat 
of vaporization, Ris the gas constant, M ,  and M g  are the molecular weights of vapour 
and gas respectively, and p,., is the vapour pressure of steam in the bulk. The 
iteration equations themselves are generated by linearizing the equations of mass 
fraction of the non-condensable gas at the interface about the previous iterations. 
These are 

- 

[l +A2(@ + m,)] [1-$ -m,] A; AT 

(1 +A,)  ( T 3  
91, = 

Equations (51-54) can be written as the following finite-difference equations : 

TT+l = ~ , i  T?!' + C Z Z ~  TT!;'   US^ (i  = 1,2,  . . . , M ;  i + L ) ,  (76) 

wn+l = b l i w ~ , f + b b 2 ~ w ~ - + ~ + b 3 i  ( i  = L + l ,  ..., M ) ,  (77) 

where Tstands for z or T, and w for a, or wn respectively. 
The time-dependent control-volume energy-balance equations with surface boun- 

dary conditions (62) and (63), the auxiliary equations (70)-(75) and the equations 
(76) and (77) can be written in finite-difference forms. After rearrangement, we obtain 
the following equations for the interface temperature : 

(78) 

(79) 

Here g, and g2 should be replaced by g l n  and g,, respectively, whenever w stands for 
w,. The superscript and subscript represent the time-st)ep number and the node point 
respectively. With temperatures and mass fractions of non-condensable gas known 
for each node point, the condensation velocities A,, andf,(O) are updated using (70) 
and (71). The iteration procedure is continued until 11 - - -A, , /A~,~ and 11 -f,(O)/j:(O)l 
are less than lop3. 

T;+l = A p + l + B  Tn+l 
L ~ + 1  L L-1 +EL u$:: + FL w:+l+ GL, 

WE+' = g, TZ+l +g2. 
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3 t  m, =0.01 

0.5 _ _ _ _ _ _ - -  -------- 

i I 

10-2 10-1 1 
1' 

FIGURE 2. Dimensionless heat transfer V.S. dimensionless time : numerical and asymptotic 
results; Renc = 0.5, = 30 O C ,  T, = 100 'C. 

6. Results and discussion 
Here we shall discuss numerical comparisons and temperature fields. The discussion 

about the physical insights gained from a study of condensation on a moving droplet 
has already been presented in Part 1 .  The initial and ambient thermodynamic 
conditions are kept the same as in Part  1. This enables a direct comparison of 
numerical results with those of the asymptotic analysis. 

For the numerical calculations, the average heat transfer is computed from 

R 
while cNu remains the same as before. 

Figures 2 and 3 show the comparisons between the numerical and asymptotic 
results for dimensionless heat transfer as a function of dimensionless time. The 
time-independent Reynolds number Renc, based on the steady terminal velocity limo 
is 0.5 for figure 2 and 0.1 for figure 3. The agreement between the results is very good, 
particularly for the low rates of condensation (low Re,, high mu,). The presence of 
a large non-condensable mass fraction in the bulk causes the radial-flow field to be 
weakened. In  turn, the internal circulation inside the drop is weaker, and the 
corresponding liquid-side PBclet number Pel is smaller. The asymptotic solution 
should be capable of representing this situation very well, and it is seen to do so. Any 
discrepancy that is observed between the numerical and asymptotic results could be 
explained in the following manner. First recall the differences in methodology 
between the two techniques as implemented in our study. For the singular perturbation 
solutions, the flow fields in both the phases and the heat/mass transport in the 
continuous phase were all assumed quasi-steady. Only the liquid-phase heat transfer 
was treated as transient there. The velocities and temperatures were expanded in 
terms of the instantaneous Reynolds number Re,(t), and the terms smaller than 
O(Re,(t)) were neglected. The numerical solution, on the other hand, treats both the 
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m, = 0.01 

numerical 
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5 -  
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t* 

FIGITRE 3. Dimensionless heat transfer DS. dimensionless time ; numerical and asymptotic 

0.05 

0.10 

0.25 

0.50 

1 

results; Renc = 0.1, T, = 30 O C ,  T, = 100 O C .  

FIGURE 4. Variation of condensation-induced Reynolds number Re, with dimensionless time for 
time-independent Reynolds number Renc = 0.5, T, = 30 O C ,  T, = 100 O C .  

phases as fully transient for flow and heat/mass transport. The technique relies on 
the series-truncation method in which the series expansion has been truncated only 
after the sixth term. On these bases, the deviations between the calculated results 
may be attributed to two possible causes: ( a )  presence of a strong condensation field 
leading to a high Re, ( - 5 )  and the inability of the asymptotic solution to accommodate 
such high Re, values; ( 6 )  invoking the quasi-steady assumption for the continuous 
phase. The quasi-steady assumption may become invalid a t  very high condensation 
rates. Yet another observation that can be made from figures 2 and 3 is that the 
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I I * =  I . o x ~ o - ~ , R ~ , , = o . ~  
2 1.0 x 10-3, 0.1 
3 1.0 x 10-2, 0.5 
4 1.ox 10-2, 
5 5.0 x 10-2, 0.5 

0. I 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 
r* 

FIGURE 5.  Dimensionless temperature T* 71s. radial distance r* from drop centre; 
T, = 30 O C ,  T, = 100 O C ,  m, = 0.01. 

asymptotic results overpredict the heat transfer for very short times (t* < as 
compared with the numerically calculated values. However, higher heat transfer leads 
to a rapid increase of surface temperature and a consequent decrease in the thermal 
driving force. With increasing t* the asymptotic results therefore underpredict. But 
again, a t  a much higher t*, the numerically calculated values are less for this same 
reason. This explains the 'wraparound' effect noted in figures 2 and 3. 

Figure 4 shows the variation of the condensation-induced Reynolds number Re, 
with dimensionless time t* for Re,, equal to 0.5 andm, varying from 0.01 to  0.5. Lower 
non-condensable mass fractions lead to higher Re,. As the drop equilibrates with the 
ambient environment and condensation ceases, the Re, value becomes zero. The drop 
continues to translate a t  its terminal velocity Renc beyond this point. 

Figure 5 shows the variation of the numerically computed dimensionless temper- 
ature with radial distance from the drop centre. The results presented are for the drop 
equatorial plane (6 = 90'). The interface is given by r* = 1.  A decrease in the 
non-dimensional temperature corresponds to  an increase in actual temperature. 
Conduction heat transfer is seen to be the dominant mechanism for the droplet 
interior. This is as would be expected. The steep temperature gradient in the 
vapour-gas phase is due to the condensation-induced radial velocity that convects 
the heat to the droplet surface. 

The computation time typically ranges within 1-2 minutes on an AMDHAL 
machine for calculating one complete characteristic. The time required for convergent 
solutions increases with increasing Re, and with decreasing m, (relatively vigorous 
condensation). 

Sponsorship of this work by the National Science Foundation under Grants 
ENG77-23137 and MEA 8023861 is gratefully acknowledged. 
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