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Linear Stability of a Viscous-Inviscid Interface

Abstract

In this paper the stability of the interface separating fluids of widely differing viscosities has been examined. It
is shown that a viscous-inviscid (V-I) model offers a consistent zeroth-order approximation to the stability
problem. The zeroth-order solution is obtained by neglecting the smallest-order effect, viz., viscosity on the
less viscous side of the interface. In this sense, the V-I model significantly differs from the Kelvin-Helmholtz
(K-H) approach where both the viscosities are dropped in a single step. A closed form solution for the
stability criterion governing the V-I model has been obtained, and a novel instability mechanism is described.
It is shown that the V-I model is also a consistent zeroth-order approximation for the Rayleigh-Taylor problem
of a viscous-viscous, nonflowing interface when the viscosity ratio tends to zero. For the interface separating
two viscous, nonflowing, incompressible fluids, exact solutions for the velocities, pressures, and interface
displacement for a disturbance of a given wavelength have been provided for the stable (lighter fluid on top)
wave motion. By discussing the roles played by the dynamic and kinematic viscosities, it is made clear why
neither the V-I nor the K-H model should apply to the air-water interface. The results of the V-I model
compare well with experimental observations. The V-I model serves as an excellent basis for comparison in
detailed numerical studies of the viscous-viscous interface.
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Linear stability of a viscous-inviscid interface
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In this paper the stability of the interface separating fluids of widely differing viscosities has been
examined. It is shown that a viscous—inviscid (V-I) model offers a consistent zeroth-order
approximation to the stability problem. The zeroth-order solution is obtained by neglecting the
smallest-order effect, viz., viscosity on the less viscous side of the interface. In this sense, the V-I
model significantly differs from the Kelvin—-Helmholtz (K-H} approach where both the
viscosities are dropped in a single step. A closed form solution for the stability criterion governing
the V-I model has been obtained, and a novel instability mechanism is described. It is shown that
the V-I model is also a consistent zeroth-order approximation for the Rayleigh-Taylor problem
of a viscous—viscous, nonflowing interface when the viscosity ratio tends to zero. For the interface
separating two viscous, nonflowing, incompressible fluids, exact solutions for the velocities,
pressures, and interface displacement for a disturbance of a given wavelength have been provided
for the stable (lighter fluid on top) wave motion. By discussing the roles played by the dynamic and
kinematic viscosities, it is made clear why neither the V-I nor the K-H model should apply to the
air—water interface. The results of the V-I model compare well with experimental observations.
The V-I model serves as an excellent basis for comparison in detailed numerical studies of the

viscous—viscous interface.

I. INTRODUCTION

In this paper we examine the linear stability of the inter-
face between a viscous and an inviscid fluid. The fluids may
be flowing or nonflowing relative to each other. The deter-
mination of the growth rates and wave propagation speeds is
reduced to solving simultaneous algebraic equations. The
velocities, pressures, and interfacial motions have been di-
rectly determined and closed form solutions have been found
for the linear stability limit. The study of the viscous—invis-
cid (V-I) model of this paper has been motivated by the ob-
servation that large changes in viscosity across interfaces
often arise in problems of practical interest. A consistent
zeroth-order treatment of such a problem is to neglect the
viscosity of the lesser viscous fluid rather than to completely
eliminate both the viscosities in a single step as is done in the
classical Kelvin-Helmholtz (K-H) theory. We consider the
roles played by both the kinematic and dynamic viscosities
in the zeroth-order limit, and provide a discussion of the
physical meaning of the solution in this limit.

The developments in this study have been checked for
correctness in various limiting cases. The nonflowing vis-
cous—inviscid solution is compared with the classical Ray-
leigh—Taylor viscous—viscous solution in the limit of the vis-
cosity of one of the fluids becoming vanishingly small. In the
process, we also provide detailed information about actual
fluid velocities that occur in the stable (lighter fluid on top)
wave motion of superposed, viscous fluids. It is shown that
our model provides an adequate physical description of the
fluid forces acting on the interface and correctly predicts the
pressure distributions in nonflowing fluids of widely differ-
ing viscosities.

The results predicted by the V-1 model also compare
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well with the experimental results for the flow of air over oil
and syrup. We discuss the predictions of the V-I model for
the flowing case in light of the likely behavior of the bound-
ary layer on the less viscous side of the interface. It is demon-
strated that free stream effects can generate pressure phase
shifts at the interface in instances where viscosities differ
widely across the interface. In the limit of zero viscosities,
results for flowing fluids coincide with those of classical Kel-
vin—-Helmholtz theory.

The next section provides the mathematical details. For
the sake of convenience we start with a general formulation
of the linearized interfacial stability problem, and subse-
quently consider the further developments as subsets.

Il. GOVERNING EQUATIONS

In this section we present the linearized equations for
the perturbed motion of two superposed, incompressible
fluids. The pressures and velocities are decomposed into
mean and fluctuating parts and are substituted into the con-
tinuity and Navier-Stokes equations. With linearization,
these equations become (with the usual notation)

i, +5,=0, (1)
i, + Ui, + U, b+ p,/p =i, +1i,), (2)
B, + Ub, + b, /p = YDux +7,,), (3)

where #, 3, and p are the fluctuating components of horizon-
tal velocity, vertical velocity, and pressure, respectively, and
U is the mean component of horizontal velocity (the mean
vertical component taken as zero). Subscripts in Eqgs. (1)<3)
denote differentiation with respect to the appropriate varia-
bles. Next, the fluctuations are written in the form:

© 1985 American Institute of Physics 2709

Downloaded 13 Aug 2010 to 158.130.78.178. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



(@, B, p)=(B(y), BY), ) &<, 4)
where a is the wavenumber and c is the complex speed. The
system of equations (1}-(3) may be specialized to the two-
fluid problem in which an interface separates two immiscible
fluids flowing horizontally at different mean velocities. Sub-
scripts 1 and 2 will be used to denote the upper and lower
fluids, respectively. From Eqs. (1)~(3), the equations for the
upper and lower fluids become

iaft, + 0; =0, (5)
ia(U, —cjis, + U b, + iap,/p, = vi(#47 — a’i,), (6)
ia(U, — c) b, + pi/p, =v,(b7 —a® b)), (7)

‘with similar equations for i, and ,. Here the primes indicate
differentiation with respect to y. The kinematic and viscous
boundary conditions at the interface will be addressed next.
The linearized kinematic relationships between the vertical
velocity and the displacement of the interface evaluated at
y=0are

. o7y an
by=—"4+U =+, 8
1= e (8)

with a similar expression of §,, where 7 is the displacement of
the interface and may be written

7 =ae** =), (9)
In terms of complex notation, the equations for b, and ¥,
become

,(0) = iaa(U, — ¢}, (10)

with a similar expression for ,(0). The continuity of shear
stress at the interface is given by

" (a(U,(v) + i,) +iﬁl)

dy ax
(U + ) | Fy)
. (—————ay + ax), (1)

which in complex notation becomes
pvi UL+ +iad,],—o
=pv, [U; + &, +iad,],_o - (12)

The no-slip conditions at the interface are written directly in
complex notation as

U,(0) = U,(0), #,(0) =1(0). (13)
The pressure boundary condition at the interface is
Al
- =T , 14
U)’J’: ayyl axz y=0 ( )

where o is the stress tensor and T is the surface tension. In
terms of complex notation, Eq. (14) becomes

B1—pga=p,—pga—a’Ta
+2vp, ] — 2vyp, B} |y=0 . (15)

lll. ANALYSIS OF VISCOUS~INVISCID INTERFACE

In this section, the analysis of the viscous—inviscid in-
terface is presented. For the flowing case, the stability
threshold is determined, and the physical mechanism re-
sponsible for the instability is discussed. For the nonflowing
case, the results are compared to the classical Rayleigh-Tay-
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lor solution in the limit of v,—0.

In the following, fluid 1 will be considered viscous,
while fluid 2 is inviscid (Fig. 1). The gravity vector g, consid-
ered positive downward, can be positive or negative to allow
the viscous fluid to be either above or below the inviscid
fluid. The linearized perturbation equations are given by
Egs. (5)-(7), with similar equations for fluid 2, noting that
v, = 0. The mean flow is given by a step funtion in velocity
since fluid 2 is inviscid and can impose no tangential stress at
its interface with fluid 1. Thus U is zero in Eq. (6) and so
will be U ;. The boundary conditions given in Eq. (13) do not
apply, while the shear stress condition [Eq. (12)] reduces to
zero shear stress on the viscous side of the interface. This last
statement is true only for the situation when v, and u, both
equal zero. Thus, we would not expect this model to approxi-
mate the air-water interface. Note that this boundary condi-
tion differentiates the roles of the dynamic and kinematic
viscosities. When v,, u,»v,, u,, the viscous—inviscid ap-
proach eliminates small viscous effects in both the momen-
tum equation and shear stress boundary condition. If, how-
ever, v,»v, and u,<€u,, as in the air-water interface, the
situation is more complex. In this case we expect the bound-
ary layer thickness to be larger on the air side as will be
demonstrated subsequently. However, the fluid more accur-
ately modeled with the zero-shear stress condition is the wa-
ter. Thus the mathematical viscous—inviscid model can be a
zeroth-order solution only for those interfaces for which the
kinematic and dynamic viscosities are substantially larger on
the one side of the interface.

A pressure equation for each fluid may be obtained by
differentiating Eq. (2) with respect to x and Eq. (3) with re-
spect to y, adding and using continuity. The end result in
complex notation for fluid 1 is

ar

by _azﬁl =0 (16)

with a similar equation for p;. The solutions for the pres-
sures in the upper and lower fluid are

pr=Ae~* and p, = Be® . (17)
y
U1 R

]
FLUID 1 . 1

> X
FLUID 2 -

TH

FIG. 1. Schematic of interface stability problem.
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With these expressions, from Eqgs. (5}7),
y=De=® _ [A/p(Uy—c)le~*, (18)
by = — [id /p\(U, — )] e~ + (i/B) De =%, (19)

E i)

and

B=1I[1+iU,—c)/val'?. (20)
Also, from equations for #, and §,, setting v, =0,

@, = — Be® /p,(U, —¢) (21)
and

b, =iBe® /p,(U, —¢). (22)

It is evident from Eqgs. (17)—22) that the velocities and
pressures depend on the three coefficients 4, B, and D. Three
boundary conditions at the interface are available to explicit-
ly determine these coefficients [Eqgs. (8) (one for ,) and (9)].
The solutions for the coefficients are

A= —paaU,—cf [(B*+ 1)/B*—-1)],

B =pyaalU, — cf, (23)

D =2aa(U,—¢) [B/(1 —B3] .

The wave speed is determined by applying the pressure

boundary condition at the interface. Consider Eq. (15) which
is

P1 — p:8a =P, — p,ga — a*Ta — 2v,p, [@av,(B — 1)] .
(24)

Substituting for the pressures, this becomes

paUz — e + py(U, — cf = 2iviap,(U; —¢)

=(g/a)(p,—p)+aT+2vip@®B—17 (35

and is the governing equation for c. This equation represents
a pair of simultaneous equations in the two unknowns ¢, and
¢; (e =c, +ic;). If ¢; is positive, the flow is unstable with
exponential growth. For ¢; less than zero, disturbances de-
cay exponentially. With ¢, = 0, for neutral stability, we have

(Uy—¢)= —viap, Im [B—1)] (26)
and
pAU; — ¢, +pi(U, —¢,)?
= (¢/a) (p» — p1) + aT + 2vp,0* Re [(B— 17] .
(27)
Here Im and Re indicate the imaginary and real parts, re-
spectively. Equation (26) implies that
Ui=c (28)
at neutral stability. From Eq. (27), with Eq. (28)
U, — U, ={(1/p,) lg/a) (p. — p1) + 2T 1}
=A4U,_,;. - (29)
The flow is unstable for velocity differences greater than that
given by Eq. (29). Equation (29) gives the critical velocity
difference as a function of the wavenumber a. With zero
surface tension, there is always some a for which the critical
velocity difference is below the applied velocity difference
and, therefore, for which instability results. When surface

tension acts, the right hand side of Eq. (29) has a2 minimum
with respect to a. This minimum critical velocity difference
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defines the stability threshold for the interface. The critical
wavenumber which minimizes Eq. (29) is

e = [8( P2 "'Pl)/T]l/2 . (30)
This is the solution for the linear stability of the viscous—
inviscid interface.

We now discuss whether this solution is a consistent
zeroth-order solution for real interfaces across which large
changes in viscosity occur. Obviously, several physical
mechanisms have been neglected by the viscous—inviscid ap-
proach. The transition layer between two uniform streams,
for example, is characterized by two boundary layers which
must develop either in time or in X. However, the mean flows
in the viscous—inviscid problem are step functions indepen-
dent of time and X. We now determine the conditions under
which the real effects of developing boundary layers are
small relative to the interaction of the outer viscous and
slightly viscous streams. Consider a diffusing sheet vortex
(with large viscosity ratio across the interface) as the base
flow to be perturbed. The penetration of the boundary layer
velocity variation into the region of uniform flow after time ¢
is of order (v£)'/? and is more pronounced on the more vis-
cous side of the interface (fluid 1). The distance traveled by
the perturbation after time ¢ is C,t. At the linear stability
threshold, in a coordinate frame moving at the average ve-
locity of the two outer steams,

C,=A4U/2. (31)

Then the distance traveled by the perturbation is of order
A Ut. The times required for the vorticity to diffuse a distance
equal to the length scale of the perturbation (inverse wave-
number) and for the perturbation to travel this same distance
are, respectively,

1/a*>v and 1/4Ua . (32)

The requirement that the time scale of the perturbation be
much shorter than that of vorticity diffusion in the mean
flow is then

AU /vay1; (33)

i.e., the Reynolds number of the more viscous flow must be
large. At the linear stability threshold, Egs. (29) and (30) can
be used to generate this requirement as

2T3/2 1/2
( ) >1. (34)
Vi p2 V8l p2—pi)

Note that the Reynolds number of the fluid on the less vis-
cous side of the interface will now be larger yet, thus ensur-
ing that it is consistent to retain momentum terms while
neglecting viscous terms on this side of the interface.

Since the base flow is slowly varying in time, boundary
layer thicknesses can eventually become large even for large
Reynolds numbers based on the wavenumber. Therefore, an
independent restriction must be placed on the boundary lay-
er thickness, namely,

Sa<l,

to ensure that the deviation from uniform flow is restricted
to a region which is small compared to the disturbance wave-
length. With these restrictions, the velocities and pressures
for either of the two viscous fluids (with widely different
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viscosities) flowing relative to each other can be written as

U= U(o) + 6.U(l) , = a(o) + eﬁ(l) ,

a A(0) A a 2 (0] a(l
v=v”+6v“’, p=p()+6()’

where € is the ratio of viscosities v,/v,. Here U and U
form a step function across the transition region, and effects
dependent on the viscosity ratio are contained in terms mul-
tiplied by €. Substituting these expressions in Egs. (5)-(7),
using the appropriate boundary conditions, and collecting
terms of zeroth order, results in the viscous—inviscid formu-
lation presented in our paper. For the quiescent (nonflowing)
case, this zeroth-order consistency is further demonstrated
by letting € tend to zero in the actual solution that is valid for
two viscous fluids. As will be shown subsequently, the solu-
tion under this limit matches the viscous—inviscid result.

The mechanism of the viscous—inviscid instability is
best understood in terms of work done by pressure forces of
the viscous fluid on the interface between the viscous and
inviscid fluids. Evaluated at y = 0, the location of interface,
this pressure is

p=—palU,—cf B>+ 1/B*~1)] 7. (35)
With B given by Eq. (20), this becomes
b =p@v(U, —clin —pa(U; — ' 7. (36)

The first term in the above is caused by viscosity. It is the
second inviscid term which describes the increase in pressure
at the wave troughs and the decrease in pressure at the wave
crests. This basic pressure field results from the change in
flow area experienced by the upper stream as it flows over
the waveform. The second term in Eq. (36) is quadratic and
for real values of the wave speed, c, is in antiphase with ¢
irrespective of the sign of (U, — ¢}. The phasing of the vis-
cous term relative to the basic pressure field depends on the
sign of (U, — c). However, inspection of this equation shows
that the phase shift of the pressure component caused by
viscosity is always in the direction of the velocity of the vis-
cous fluid relative to the waveform. This effect is shown in
Fig. 2. In the upper diagram, the viscous flow to the right is
relative to the waveform and points such as B experience a
decrease in pressure, while points such as D experience an
increase. The basic pressure field has a decrease at points like
A and an increase at points like C. The viscous component of
pressure is thus shifted to the right of the basic pressure field,
in the direction of the viscous flow relative to the waveform.
In the lower diagram, the viscous component of the pressure
relative to the basic pressure fields is shifted to the left, again
in the direction of the viscous flow relative to the waveform.

The rate of sinking of the interface, — d7/d%, is given by

g .

E iacy . (37)
Comparison of the last two equations shows the pressure
perturbation caused by viscosity [first term in Eq. (36)] to be
in phase with the rate of sinking of the interface for U,
greater than ¢ (viscous fluid overtaking wave) and 180° out of
phase with the rate of sinking of the interface for U, less than
¢ (wave overtaking viscous fluid—see Fig. 2). In the former
case, the integral of p,( — dn/dt) over each wavelength is
positive and, therefore, net work is done on the interface

2712 Phys. Fluids, Vol. 28, No. 9, September 1985

u1 > G
(UNSTABLE)

Uy < G
(DAMPED)

FIG. 2. Phasing of pressure with respect to interface. Arrows indicate pres-
sure component caused by viscosity (positive where arrows are downward).

feeding energy into the growth of the instability. Physically,
the component of pressure caused by viscosity increases
where the interface sinks away from the viscous fluid and
decreases where the interface rises into the viscous fluid, in
each case enhancing the growth of the disturbance. When
the pressure is 180° out of phase with the rate of sinking,
damping of interface motion occurs by a similar argument,
i.e., now the pressure component caused by viscosity in-
creases where the interface attempts to rise into the viscous
fluid and decreases where the interface attempts to sink
away from the viscous fluid. Thus, only for ¢, = U, can neu-
tral stability occur [as previously shown in Eq. (28)]. The
effect of viscosity is then to change the phasing of the pres-
sure perturbation with respect to the interface, thus allowing
work to be done on the interface by the two uniform flows.
Previous physical arguments given by Jeffreys,' Miles,>?
Brooke Benjamin,** Lighthill,® and Mollo-Christensen’ in
explaining the mechanism of water wave generation by
sheared airflows depend on boundary layer phenomena for
the pressure phase shift. The present analysis, however,
shows that the simple free stream flow of a viscous fluid over
the disturbance waveform generates pressure perturbations
capable of performing work on the interface.

A. Rayleigh-Taylor flow

We now consider the case of zero mean flow with a full
accounting of viscosity on both sides of the interface. This
classical problem has been studied by a large number of in-
vestigators and the monographs by Chandrasekhar,® Yih,’
Drazin and Reid!® provide the historical, theoretical, and
experimental developments in this regard. The articles by
Axford,"! Menikoff, Mjolsness, Sharp and Zemach,'? Meni-
koff, Mjolsness, Sharp, Zemach, and Doyle,'® Bernstein and
Book, 4 and Baker'® also contain important information re-
lated to this problem and review earlier papers. We shall
rederive the dispersion equation in a slightly ‘different form
from those of the previous investigators. The limits of the
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dispersion equation for the viscosity ratio tending to zero
will be examined, and the pressure difference across the in-
terface under this limit determined. We then compare these
results to the viscous—inviscid formulation discussed earlier.
First, weset U, = U, = U} = U; = Ointhe governing
equations and solve the resultmg system to obtain

1 =l_)e_“ﬁ”'+Ze_ay,

D, =i /pic + (D /By) e~

@1, = Ee™®” + Be™, (38)
b, = — (E/B,) e — (iB /pxc) e,

B, =(1—ic/via)’?, B,=(1—ic/vaa)'’?.

The four boundary conditions given by Eq. (10) and a similar
one for 9,(0), (12), and (13) may be used to solve for 4, B, D,
and E. These constants are then substituted into Eq. (38) to
obtain the velocities as a function of the wave speed ¢. The
wave speed itself is determined from the pressure boundary

condition at the interface. This may be written as

3]

v
v

A—pga=B—p,ga—aTa+2vp,

X[ —iad /pc —iaD ] — 2vyp,

X[ —iaB /p,c —iaE ] . (39)
This equation is nondimensionalized by division throughout
with (Vga a). Additionally, we introduce cy =ca/g,
0, = v,a*'*/\g, 0, = v,a*'*/\g,and J = p,/( p, — p,). Here

¢y is the nondimensional complex wave speed. Letting
¢y =C,5 + ic;y, the pressure boundary condition becomes

By en(po/p) I — Ay en I =1+ a°T /g(p, — p1)
+ 2i0\(Ay + Dy) — W (po/p1)i6,(By + Ey),  (40)

where
Ay =B, — 1)/1B,—1)] {Fy}—2en/Bi— 1) —cy,

BN =FN +cN
Dy = — (B — 1)/, — )] {Fy} + 22B1

B-1" @y
Ey = —BFn .

In Eq. (41) we have introduced

Bi= (1 —icy \g/ma>*)'?,
By = (1—icy Ng/via@*?)'?,

and

£ _ 2oy +(m— D g) B = 1]
N B, — 1) (p/py) + B, — 1)

We note that ¢ is completely specified by the four nondi-
mensional parameters p,/p,, @*T /g( p, — 1), 0,, and v,/v;.
Equation (40) actually represents two equations, one real and
one imaginary which can be solved simultaneously for the
real and imaginary wave speeds ¢, and ¢;. The solution of
these equations is straightforward using standard numerical
routines. Once ¢, and ¢; are known, the constants 4, B, D,
and E may be evaluated. The fluid velocities and pressures
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are then known functions of 7, y, and ¢ for a wave of initial
height @ and wavenumber a.

For zero surface tension, our equation (40) is identical
to Eq. (33) of Ref. 9 (see Chap. 4, Sec. 3), derived earlier by
Chandrasekhar.® The present form for the dispersion equa-
tion is favored because the constants 4, B, D, and E also
appear in the expressions for the velocities. Thus, once they
are numerically evaluated, the wave velocity as well as the
fluid velocities are known.

The actual fluid velocities that occur in the stable wave
motion of superposed viscous fluids do not seem to have
appeared in published literature and are included here for
completeness. If the velocities are nondimensionalized in the
same way as the wave speed ¢ (with Vg/a), they will still
depend on the initial wave height a. It proves more conven-
ient, therefore, to define uy = u/y/ga a. Then the x compo-
nents of velocity are given by

Bivl) =Dy e =P 4 Ay e,
ﬂZN(J’) = EN eazay + BN e“y . (42)

These velocities are plotted for the typical cases of air—water
and air—oil interfaces in Figs. 3 and 4, respectively. Profiles
have been shown over one complete period. Of particular
interest is the fact that the fluid in the boundary layers is
leading the inviscid far-field solution. Such a phenomenon
occurs in other oscillating flow situations. For example, in
oscillating pipe flow, or oscillating boundary layers adjacent
to flat plates, the flow adjacent to the wall reverses before the
outer flow does. In these flows, as well as in the current
study, the pressure gradient (dp/dx) acting on the flow with-

U - COMPONENT (NONDIMENSIONAL)

0.75-1.0
L e S S B S S e |

e

{a) T=0 (b) T=0.25 x PERIOD {c) T=0.5 x PERIOD

ay

-0.75
T"lﬁI’IIT

II]IIIIII

%

{d) T=0.78 x PERIOD {e) T=1.0 x PERIOD

FIG. 3. Velocity profiles on air-water interface. Wavelength =0.03 m,
8, =9.3X10"%, v,/v, =0.066, p,/p, =820, a*T/g(p,—p;) =0.316,
¢ = 1.1455, ¢,y = 0.202X 1072,
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FIG. 4. Velocity profiles on air-oil interface. Wavelength =0.03 m,
0,=0263, v,/v,=18.75, p,/p, =738, o’T/g(p,—p,)=0.144,
¢,n =0911, ¢,y =0.319.
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mentum and, therefore, responds more rapidly to the chang-
ing pressure gradient.

The limit of the dispersion equation as v,—0 while p,/
p, remains finite is investigated next. This case simulates the
interface between oil and water. In this situation 8, c0 and
m—0. The dispersion equation becomes

ch(pl +p2) + 4i0,p\cn

=(p;—py) + T /g +4p,6,* [1 — (1 —icy/61)"*] .
(43)
For 6, «1 this equation simplifies to

cx (P +p2) +40pieni—(p, —p1) —a*T /g =0,

(44)
the solution of which is
ene = {che — [20p1/(p1 + ) IP}? (45)
and
ey = —20p/(p1+p2)s (46)

where cy, is the inviscid wave speed.

The pressure difference across the interface plays a cru-
cial role in the damping of stable interfacial motion. By non-
dimensionalizing this pressure difference with 4pg/a, we
have

Apy =P2CNaBN 7 __ picnady 7+ a(p, —p)) 7.
in the boundary layer is essentially the same as the pressure 4p 4p
gradient acting on the flow outside the boundary layer. (47)
However, the fluid within the boundary layer has lower mo-  In the limit of v,—0 this pressure difference becomes
AN 14 (py+ P/ Ap] 1+ (@/Bp) (py — pa) 1 + (20:/8p) ey i (48)
lim v,—0 NP1 T pPNAp) Y PP — P2 T 1/ 4p) Cn 17 -

The first two terms of this equation form the inviscid result
for the pressure difference. The last term contains the vis-
cous effects and only depends on the viscous properties of
fluid 1. Note that in this development the no-slip interface
condition has not been violated under this limit. The kine-
matic viscosity v, is arbitrarily small but still nonzero. The
boundary layer in fluid 2, however, is sufficiently small so
that its effect on the interfacial pressure difference may be
ignored in comparison to the viscous effects on this pressure
difference resulting from the motion of fluid 1.

B. Comparisons of the Rayleigh-Taylor flow with the
viscous-inviscid development

Consider Eq. (43). This is the formal limit of the vis-
cous—viscous Rayleigh-Taylor formulation as v,—0 (the
limit as the boundary layer thickness tends to zero). On the
other hand, Eq. (25) was obtained by ignoring the no-slip
condition and the viscosity (the boundary layer) on the less
viscous side of the interface. Letting U, = U, = 0, and intro-
ducing ¢, and 6, Eq. (25) reduces to Eq. (43). Thus, the dis-
persion equation for interfaces separating real fluids of suffi-
ciently different viscosities is properly modeled by the
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viscous—inviscid approach. Also, it is easy to show that the
pressure difference across the interface for the viscous—invis-
cid model is identical to Eq. (48), the formal limit of the
pressure difference in the viscous—viscous formulation for
v,—0.

C. Kelvin-Helmholtz problem

Here the flow of one inviscid fluid relative to another
inviscid fluid is considered. The equation for the wave mo-
tion can be found by setting v, = v, = 0 in Egs. (5)-{(7) and
the similar ones for i,, 0,, and eliminating the boundary
conditions given by Eqs. (12) and (13). The resulting wave
equation is

poU, — ¢ + pi(U, — ¢f = (g/a) (p, — py) + aT . (49)
The solution of which is

c= 22Uzt U [§_(P2—P1)+ al

P2+ P a (p2+p)  (p2tpl)
U, —-U 21172
— PP (—2———‘)] : (50)
P1tpP2

The flow is unstable (¢; > 0) for
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AU,_, =U,~U,> [(p, +P2)/P1P2]l/2

X [g/a) (p, —pi) +aT ] (51)

First we note that in the limit of v,—0, Eq. (25) reduces
to the inviscid—inviscid Eq. (49). Next, note that the viscous—
inviscid critical velocity difference, AU, _; [Eq. (29)], is re-
lated to the classical inviscid-inviscid critical velocity differ-
ence, AU, _, [Eq. (51)], as follows:

AU,_, =Ip/(p, +p)1"* AU, _, . (52)

Thus, the viscous~inviscid interface has a smaller stability
threshold than that of the inviscid—-inviscid interface. Equa-
tion (52) is identical to the result obtained by Weissman'® for
a model that included a small amount of viscosity in one
layer of the Kelvin-Helmholtz flow. The present analysis,
however, shows that this equation is valid for any level of
viscosity on the viscous side of the viscous—inviscid interface.

IV. CONCLUSIONS

It is interesting to qualitatively compare the predictions
of the viscous—inviscid theory with observations of the mo-
tions of real interfaces. Recall that for the air—water inter-
face, the Kelvin—Helmholtz solution predicts a critical ve-
locity difference of 6.5 m/sec, whereas Jeffries lists critical
velocities for flow over ponds between 0.2 and 1.3 m/sec.
For such large-scale flows, determination of the velocity di-
rectly above the water surface is difficult. Laboratory data
on the air-water interface is not readily available. On the
other hand, Francis'”'® has documented experiments sug-
gesting fair agreement between Kelvin’s classical stability
analysis and measured critical velocities for interfaces
between air and two types of oil and air and syrup. Oil kine-
matic viscosities were 2.5 and 29 stokes (S) (17 and 197 times
the viscosity of air, respectively). Syrup kinematic viscosity
was 578 S or 3932 times the viscosity of air. Velocity profiles
of the air were not uniform directly above the oil or syrup,
and Francis had to resort to an extrapolated value of the air
velocity at 0.05 cm above the undisturbed interface for com-
parison with Kelvin’s critical velocity equation. This ex-
trapolated value was in good agreement with Kelvin’s theo-
retical velocity. Clearly, such agreement is somewhat
dependent on the extrapolation height above the interface.
Of more significance is the fact that Francis’ critical veloc-
ities did not depend on the viscosity of the oil or syrup—
varied through the experiments by a factor of 230. This re-
sult is not a function of the extrapolation height and is appar-
ently a characteristic of interfaces separating fluids of widely
differing viscosities. Our viscous-inviscid stability theory
satisfactorily explains the results noted by Francis. Note that
Eq. (34) is satisfied for the air—oil interface, ensuring the ap-
plicability of the viscous—inviscid solution as a consistent
zeroth-order approach. Equation (52) gives the relationship
between the critical velocities of the viscous—inviscid inter-
face and the inviscid—inviscid interface. For conditions pre-
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vailing in Francis’ experiments, the equation shows these
velocities to be essentially equal, i.e., p,<€p,. Thus, agree-
ment between Francis’ viscous-inviscid experiments and
Kelvin’s inviscid~inviscid analysis is to be expected. In fact,
for those interfaces separating liquid and gas in which the
liquid can be modeled as viscous and the gas as inviscid, the
two theories are in essential agreement on the value of the
critical velocity. The present viscous-inviscid theory pre-
dicts no dependence of the critical velocity on the kinematic
viscosity of the viscous fluid [see Eq. (29)]. This prediction is
in excellent agreement with the results of Francis’ experi-
ments in which liquid viscosity was varied by a factor of 230
with no effect on the critical velocity.

The present formulation makes it clear why neither the
V-Inor the K-H model is a valid approximation for the air—
water interface—in neither case can an argument be made
for zero-order consistency. It is important to note that the
V-I model contains the classical K~H result as a proper
subset. In this sense, the results are more general and useful.
In this same context, previous investigations of the stability
threshold'® have been restricted to the study of interfaces
between inviscid and weakly viscous fluids only. The results
derived here, Eq. (52), are an exact solution for the stability
threshold for any level of viscosity on the viscous side.
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