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Explaining Modal Logic Proofs

Abstract

There has recently been considerable progress in the area of using computers as a tool for theorem
proving. In this paper we focus on one facet of human-computer interaction in such systems: generating
natural language explanations from proofs. We first discuss the X proof system - a tactic style theorem
proving system for first-order logic with a collection of inference rules corresponding to human-oriented
proof techniques. In X, proofs are stored as they are discovered using a structured term representation.
We describe a method for producing natural language explanations of proofs via a simple mapping
algorithm from proof structures to text. Nonclassical or specialized logics are often used in specialized
applications. For example, modal logics are often used to reason about time and knowledge, and
inheritance theories are often developed for classification systems. The form of, and explanations for,
proofs in these systems should be tailored to reflect their special features. In this paper, we focus on the
extension of X to incorporate proofs in modal logic, and on the different kinds of explanations of modal
proofs that can be produced to meet the needs of different users.
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Abstract

There has recently been considerable progress in the area of using computers as a tool
for theorem proving. In this paper we focus on one facet of human-computer interaction
in such systems: generating natural language explanations from proofs. We first discuss
the x proof system—a tactic style theorem proving system for first-order logic with a
collection of inference rules corresponding to human-oriented proof techniques. In y,
proofs are stored as they are discovered using a structured term representation. We
describe a method for producing natural language explanations of proofs via a simple
mapping algorithm from proof structures to text.

Nonclassical or specialized logics are often used in specialized applications. For ex-
ample, modal logics are often used to reason about time and knowledge, and inheritance
theories are often developed for classification systems. The form of, and explanations
for, proofs in these systems should be tailored to reflect their special features. In this
paper, we focus on the extension of x to incorporate proofs in modal logic, and on the

different kinds of explanations of modal proofs that can be produced to meet the needs
of different users.

Appearing in the proceedings of the IEEE 1988 International Conference on Systems,
Man, and Cybernetics, Beijing and Shenyang China, August 1988.



1 Introduction

One common route in the formal verification of correctness is to axiomatize the system under
study, and then verify its properties using proof theory. The desire to provide computer-
aided facilities for the construction of these proofs has led to the development of several
systems for interactive and semi-automatic construction of proofs in various logics. Exam-
ples include LCF[6] and Nuprl [2]. These systems typically provide a collection of inference
rules that correspond to human-oriented proof techniques such as indirect proof and case
analysis. This allows construction of natural proofs, encourages user involvement in the
search for proofs, and facilitates understanding of the resulting proofs. The x proof system
[3], built by the first author, is a theorem proving system built on these principles. x in-
cludes several additional facilities, including a mechanism for producing explanations from
proofs.

The explanation of a proof can take numerous equivalent forms depending on taste,
background, and the type of information to be conveyed. A basic criterion for presenting a
proof is the ability to disregard uninteresting detail and present only the most relevant facts.
Furthermore, if a proof is specific to a given domain, the explanation should be presented
in terms of concepts which have meaning within that domain. This is particularly true in
theories where logical operations correspond to specialized inferences. For instance, in a
first-order theory of inheritance, it makes sense to explain a proof in terms of inheritance
rather than the basic logical operations. Along the same lines, explaining a proof of a
statement in a nonclassical logic will require specialized treatment of any operators which
are not found in first-order logic.

In this paper, we first present the generation of explanations of proofs in x, and then
show how x can be extended to produce explanations for proofs in modal epistemic logic
[1], a nonclassical logic originally developed by philosophers to describe certain language
constructions involving knowledge and belief [10]. Variations on standard epistemic logics
have been employed in AI [14] and in distributed systems [8] as well as other areas. We then
demonstrate the explanation algorithm on a variant of the well-known wise men problem[15].

We present two different levels of explanation, and discuss other possible extensions and
variations.

2 Constructing Proofs and Generating Explanations

In the x proof system, proofs are stored using a structured term representation. Explana-
tions are generated by mapping these proof terms to natural language text. This mapping
algorithm is simple, yet flexible in that it is possible to generate different kinds of expla-
nations to meet the needs of different users. The form and content of a given explanation
depends upon the information extracted from its corresponding proof term, and the manner
in which that information is mapped to strings of text.

In this section, we first discuss the proof system used in x and present the term rep-
resentation for proofs. We then briefly describe the proof construction component used to
search for proofs. This component is quite important since it is at this stage that proof
terms are built, and the information used later in generating explanations is recorded. By
changing the proof at this level, we may change the explanation. Finally, we present the
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Figure 1: A sequential proof tree for Yw R(w,w) D Vz[Vy(R(z,y) D P(y)) D P(z)].
algorithm for mapping proof terms to natural language explanations.

Sequential Trees In X, proofs in first-order logic are constructed using a Gentzen style
sequent system similar to the LK system [5]. A sequent, consisting of a set, X, of hypotheses,
and a set, A, of conclusions, is written ¥ — A. Such a sequent has the interpretation,
“from the formulas in ¥, we can prove one of the formulas in A.” In y, Gentzen’s LK
inference rules are available as well as several additional derived rules, providing the user
with more choices in constructing proofs. These rules are described in [3]. For example, the
first inference rule below is the LK rule to introduce a disjunction on the left of the sequent

arrow, corresponding to an argument by case analysis. The second rule is a derived rule for
modus ponens.

AY — A BY — A
AV B Y — A

or-L

A— A B.X — A forwardchain
A, AD B,Y — A

Trees of sequents are constructed by applying inference rules which join a conclusion (parent)
sequent with its premises (children) sequents. A proof of a formula A is a finite tree with
the sequent — A at the root and axioms at all the leaves. Axioms are trivially true

sequents of the form A — A. Figure 1 gives an example proof of a statement about a
reflexive relation R and a predicate P.

A Structured Representation for Sequential Proofs We represent proof trees as
recursive term structures. The single node proof tree A — A is represented by the term
axiom(A). Each inference rule is encoded by a function symbol indicating the rule that
was applied, with arguments for the proof terms of the premises of the rule, and possibly
other arguments to encode the information necessary for an application of the rule. For
readability, we leave out such auxiliary arguments in this paper. For example, an application
of the forwardchain inference rule is represented by the term forwardchain(7},7,) where
T1 and T, are the term representations for the proof trees for the premises, A — A and
B,¥ — A, respectively. (In this case 7} is axiom(A).) Each inference rule has a similar
corresponding representation (see [12]). The proof term for the example above is:




imp_r(all_r(imp.r(all_1(all_l(forwardchain(axiom(R(a,a)),
axiom(P(a))))))))

Proof Construction in x The x proof system employs tactics and tacticals as the
mechanism for proof search and construction. In general, in tactic style theorem provers,
primitive tactics implement inference rules, while tacticals provide a mechanism for building
compound tactics by composing primitive tactics in various ways. Tactics and tacticals
promote modular design in the construction of theorem provers, and provide flexibility in
controlling both interactive and automatic aspects of the search for proofs (see [6,4]).

In x the primitive tactics implement the inference rules of our modified LK proof system.
(For more information on the use of tactics and tacticals in x, see [12].) The ability to
introduce new tactics into the theorem proving environment provides a mechanism for
incrementally enhancing the interactive proof environment with new inference rules. For
example, derived rules such as the forwardchain rule above enhance user interaction during
proof search by providing human-oriented proof techniques. As we will see, this capability
also enhances the explanation facility. New inference rules introduce new proof structures,
which will be mapped to the appropriate natural language text.

The Explanation Algorithm The explanation algorithm is implemented by providing,
for each inference rule, a corresponding function which takes the explanations of the proofs
of the premises and puts them together, possibly adding more text, to construct the expla-
nation for the proof of the conclusion. This algorithm will only “lexicalize” inference rules
to produce a skeletal outline for proofs. We will not lexicalize formulas, though this could
be done fairly easily and would often produce more readable text.

To illustrate how the mapping is achieved, consider the or-L inference rule above. A
term of the form or_1(73,T3) represents a proof using case analysis. If T} is mapped to
text; which is the text for the proof of the left premise arguing that A follows from A and
%, and T3 is mapped to tert, which argues that A follows from B and X, then the text

below is one possible mapping of or_1(T3,7%) to the conclusion that A follows from AV B
and X.

We have two cases. Case 1: Assume A. text; Case 2: Assume B. text, Thus,
in either case, we have A.

As another example, if text is the explanation for T3 representing a proof of B, — A
in the proof term forwardchain(7T;,T3), the resulting explanation is simply:

By modus ponens we have B. tezt

All inference rules can be given such interpretations. Using this mapping algorithm the
following explanation is generated for the simple example above.

Assume Yw R(w,w). Assume Vy(R(a,y) D P(y)). Let w = a in Vw R(w,w).
Let y = a in Vy(R(a,y) D P(y)). By modus ponens we have P(a). Since a was
arbitrary we have Vz[Vy(R(z,y) D P(y)) D P(z)].



Even here, we have made choices in the presentation. An experienced logician would prob-
ably suppress the statements about the instantiation of variables since they can be inferred
from context. This can be achieved by modifying the mapping to text of the all-L rule.

3 Modal Logic Proof Systems

The modal language we will consider is a slightly modified form of that found in [15]. We
consider some set of n agents and discuss what these agents “know” by introducing modal
operators of the form K; (i = 1,...,n). We form the language by considering all sentences
constructed from some set of propositions, the usual logical connectives, and the (monadic)
modal operators. Thus we have statements of the form K;A and K;-~K;(AV B) with the
informal interpretations “agent ¢ knows that A” and “agent ¢ knows that it is not the
case that agent j knows either A or B,” respectively. The semantic interpretation for K,
developed initially in [10], is that to know something is to see that it is true in all possible
configurations of the world imaginable given what is currently known. Thus, the modal
operator is not interpreted truth-functionally—the truth of K;A depends not just on the
truth of A, but its truth in all states consistent with the current one. Different logics result
by adopting different notions of a consistent state.

Modal logic can be translated to first-order logic [9], and so may be considered a spe-
cialized theory in first-order logic. The translation of a propositional logic of knowledge to
first-order logic uses the following general rules: 1) consider the initial modal statement rela-
tive to some situation wyg, 2) translate a formula consisting of one or two operands joined by
a standard logical connective as that connective applied to the translations of its operands
relative to the situation of the original formula, 3) translate a primitive proposition A rel-
ative to situation w as A(w), 4) translate K;A relative to situation w as Yw'(w R; w’ D B)
where B is the translation of A relative to w’. If B is the translation of A relative to wg, and
T is the conjunction of the axioms describing the possible-world topology, the final formula
to be proven is T' D VwoB. For example, the statement proved in Figure 1 is the translation
of the modal statement K;P D P in a possible worlds topology which is reflexive.

A Modal Gentzen Style Proof System While translation is a viable approach to
automating modal logic, the resulting first-order proofs contain details which are irrelevant
to the thrust of the proof. For example, in the explanation of the proof in Figure 1, the
reasoning about possible worlds shows up explicitly, and the modal operators are lost. We
will develop a sequent system that presents a compressed version of the proof for the first-
order translation of a modal formula. This allows us to present explanations couched at the
level of the actual model theory (which the first-order statements represent), or in terms of
the original modal statement.

In our modal Gentzen system, we will ornament formulas with a world term denoting
the situation in which the formula is to be interpreted, e.g. (A V B),,. The ornamentation
on the formula, and a set of relational constraints indicating the possible-world structure
will encode the current frame of the proof. Validity is ensured by ornamenting the initial
formula with an arbitrary initial world term which appears nowhere else in the proof and
appealing to universal generalization over the class of models generated from that term.

We will extend the definition of sequent to include a set, ®, indicating the currently



known facts about the possible-world relation. A sequent will now be written ;% — A
and has the interpretation, “given the possible-world configuration R, the possible-world
theory, and the formulas in ¥, we can prove one of the formulas in A.” We map the
propositional Gentzen rules for classical logic to rules of our system by maintaining the
world denotation. In addition, we include introduction rules for the modal operators which
take the following form [7]:

R wR;z] R4, — A KoL R,wRiz;2 — AA
R (KiA)w, ¥ — A BE — A’(KiA)w

* K;-R

K;-R requires the proviso that  does not appear as an ornamentation in the lower sequent.
K;-L requires the proviso that w R;z follows, in the theory of the system s, from the
statements contained in R, i.e. R F°w R;z as indicated on the inference figure. For
example, if s is a system whose possible-world theory is transitive, the following inference
is acceptable.

wR;z,z R;y; 4y, % — A
wRz,z R y; (KiA)y, X — A

K;-L

We will also extend term structures to accommodate the additional inference rules. The
single node modal proof tree ®; A, — A, is represented by the term axiom(A,w,R).
A proof tree whose last inference rule is K;-R will be represented as Ki_r(7T',w). The
argument 7' is the proof term encoding all the information for the proof of the premise and
w is the ornamentation on the formula K;A in the conclusion. The proof term for K;-L is
Ki_l(T,w,P). The extra argument P encodes the proof of the proviso.

A Gentzen Proof for the Wise Men Problem To illustrate our modal system, we
turn to the wise men problem as stated in [15]. In this puzzle, a king has three advisors
and he wishes to determine who is the wisest. He devises a test in which he paints a white
dot on each advisor’s forehead, and then tells them that at least one of them has a white
dot on his forehead. The solution involves the advisors reasoning about what the others
know. The first advisor, upon seeing only white dots, is forced to admit he does not know
whether he has a white dot. The second advisor, on hearing this but still seeing two white
dots, is also forced to admit ignorance. The final advisor, based on the admissions of his
colleagues, is now able to conclude he has a white dot.

For illustration purposes, we have shortened the puzzle to involve a queen with two
advisors. The reasoning remains essentially the same. In the following, interpret p; as
the proposition, “advisor ¢ has a white dot on her head.” K; is, of course, interpreted as,
“advisor ¢ knows that”, and O is interpreted as, “it is common knowledge that.” The proof
system will include rules for the modal operators K¢, K5 and O. These modalities all have
a reflexive, transitive possible-world relation, and, in addition, the theory for O states that
if, for any ¢, w R; w’, then w Rp w’. That is, the possible-world relation for O is the superset
of all individual possible-world relations. The axioms for the advisor puzzle (adapted from
[15]) are given below.

1. It is common knowledge that someone has a white dot: O(p; V p2). However, we will
use the logically equivalent form O(—p; D p1) since it results in a better explanation.



R; ("'Pz)y — (—'PZ)y R2; (pl)y — (pl)y forwardchain
Ra; (—p2)y, (P2 D 1)y — (P1)y

Ra; (mp2)y, O(—p2 D P1)w — (P1)y

Ra; (K17p2)z, O(-p2 D p1)w — (P1)y

R1;(K17p2)z, O(-p2 D p1)w — (K1P1)s

Ri;(P2)e — (P2)s k.1, R1; (K1p2)e, O(-p2 D p1)w, (0K1p1)e —

R1; (Kap2): — (p2)s R1; (K1-p2)z, O(=p2 D p1)w, ("K1p1)e — (p2)s
R1; (K1p2 V K17p2)z, O(=p2 D p1)w, (= K1p1): — (p2)=

R1; O(K1p2 V K1-p2)w, O(—p2 D p1)w, (K1p1): — (P2)e

R1; 0(K1p2 V K17p2)w, O(—p2 D p1)w, (K2=K1p1)w — (p2)s

Ro; O(K1p2 V K17p2)w, O(—p2 D p1)w, (K2=Kip1)w — (K2p2)w

Ro; — (O(K1p2V K1—p2) AO(=p2 D p1) A Ka—=Kip1 D Kapa)w

O-L

K;-L
K;-R
neg-L

thinning
or-L

O-L

Ko-L

Ks-R
imp-R,and-L

Figure 2: A proof tree for the wise queen problem. Here Ry = @, ®; = {w Ry z}, and
R, = {wRaz,z Ry}

In x, we allow the user to choose either form by including a tactic for an inference
rule which treats implication as the equivalent disjunction.

. It is common knowledge that the first advisor knows whether the second advisor has
a white dot or not: O(Kip2 V K1-p2).

Advisor 2 knows that her colleague has no information as to the color of her own dot:
K2-1K 1P1.

We have axiomatized the puzzle asymmetrically—in general, either advisor could determine

the color of her spot if her colleague speaks first. However, since the dual axioms are never
used, we have not included them here.

We wish to demonstrate that Advisor 2 can determine she has a white dot: Kyp;. The

proof tree in Figure 2 establishes the necessary conclusion. The term representation for this
proof is:

imp_r(and_1(and_1(K2_r(K2.1(0.1
(or1(Ki-1(axiom(pq,z,R1)),
thin(neg-1(K1_r(K1.1(0.1
(forwardchain(axiom(—p2,y,R2),

axiom(p1,¥,R2)1)))1I)NNIIN)
4 Explanations of Modal Proofs

To extend the explanation algorithm to modal logic, we must add text generation functions
whose contribution to the explanation will depend on the meaning of the corresponding
modal operator. This contribution can vary depending on context and the amount of detail
desired in the explanation. For example, the rules for the knowledge operators embody
the fact that if K;A is true (in world w), then A is also true (in world z), as long as z is



R;-related to w. The simplest explanations, which we will demonstrate first, assume that
the reader is familiar with these rules, so that if K;A is true, it will not be necessary to
explicitly state A before using it. Such a reader will not need to know the details of how
the possible worlds are related. This kind of detail would add unnecessary clutter to the
proof.

A Skeletal Explanation We explain an instance of the K;-R rule by simply concluding
K;A after explaining the proof of A. This reflects the modal rule of necessitation. The
function for K;-R takes an input argument text which is the explanation for the proof for
R,wR;z;X — A, A, (the premise of the rule) and produces the following text as the
proof of the conclusion:

text. Thus K;A.

The K;-L function is even simpler. In the conclusion of this rule, K;A is an assumption
which takes the form A in the premise. Since these two are equivalent to our reader, the
explanation for the premise and conclusion will be the same, i.e. the function K;-L takes the
input text and returns it unchanged. The explanation functions for the common knowledge
operator will be defined in the same way as those for K;.

Returning to the wise queen example, the explanation generated using the above func-
tions is:

Assume:
1. O(Kyp2 V Ky1-ps)

2. O(=p2 D p1)
3. K2—1](1p1

We have two cases:
Case 1: Kipo

Case 2: Kj-p;. By modus ponens, we have p;. Thus Kyp;. Hence, we have a
contradiction.

Thus, in either case, we have p,. Hence, Ksps.

A More Detailed Explanation For a reader not so familiar with the axioms and infer-
ence rules of modal logic, this explanation is probably too skeletal. Since modal logic is not
truth-functional in the classical sense, the surface structure of a proof does not directly mir-
ror the underlying model theory, though one is often interested in the actual model-theoretic
underpinnings of a modal statement[11]. As we have pointed out, a direct explanation of a
first-order translation is too general, so we will develop an algorithm which gives a “deeper”
explanation of the proof which is specialized to possible-world semantics. We will borrow
terminology from Moore [14] and Hintikka [10], and refer to possible worlds as “situations”
or “states of affairs.” A state of affairs can be thought of as the set of propositions which are
true in that situation. The possible-world relation will be interpreted as linking consistent
states of affairs. The new function for K;-R will return the text string:

Let situation z be an arbitrary state of affairs consistent with situation w. text.
Since situation z is consistent with situation w, we have K; A in situation w.



Here, text is the explanation of the premise sequent, = is the possible-world variable or-
namenting the formula A in the premise, and w is the world ornamenting K;A in the
conclusion. Since the proof terms fully represent sequential proof trees, all the necessary
information (including these world variables) will be present and obtainable from the input
arguments to the explanation function.

The new K;-L function generates the following explanation:
We have A in situation z. text.

Once again the explanation functions for the common knowledge modal operator O will
be similar to those for K;, except that the phrase “We have” will be replaced by “From
common knowledge we have.”

To obtain this kind of deeper explanation, in addition to these new functions for the
knowledge operators, the explanation functions for the remainder of the inference rules
must give the information about the situation. This is accomplished by adding the text “in
situation w” after every formula that is inserted into the text, where w is the ornamentation
on the formula. Using these explanation functions, the text for our example is:

Assume:

1. O(K1p2 V K1-p2) in an initial situation w.
2. O(—p2 D p1) in an initial situation w.
3. K3—K1p; in an initial situation w.

Let situation x be an arbitrary state of affairs consistent with situation w. We
have - K7p; in situation z. From common knowledge we have Kip; V K1-ps in
situation z.

‘We have two cases:

Case 1: Kip; in situation z. We have p, in situation z.

Case 2: K1-p2 in situation z. Let situation y be an arbitrary state of affairs
consistent with situation z. We have —ps in situation y. From common
knowledge we have —p; D p; in situation y. By modus ponens we have
pi1 in situation y. Since situation y is consistent with situation z, we have
Kip: in situation z. Hence we have a contradiction.

Thus, in either case we have p, in situation z. Since situation z is consistent
with situation w, we have Kyp, in situation w.

The second explanation provides two kinds of additional information. First, it provides
more detail about the chain of inference. For example, in the first explanation Kip; con-
tradicts the fact that Advisor 2 knows that —K;p; (given by the third assumption). In the
second explanation, the additional inference to obtain - K;p; is stated explicitly, and the
contradiction follows from the resulting formula. Second, information from the possible-
world ornamentations is used to give explicit reference as to how situations are related. For
example, in Case 2, we conclude —p; D p; in situation y from O(—p; D p2) in situation w.
This follows from earlier statements that situation w is consistent with situation z, and situ-
ation z is consistent with situation y. While this is more detailed than the first explanation,
it assumes some familiarity on the part of the reader about how worlds are related. For ex-
ample, the reader must understand that the possible-world relation is transitive. A slightly



more detailed explanation would result from explicitly stating the consistency conditions
that prevailed in order to apply K;-L. We can generate such an explanation by using the
information in P (the proof of the proviso) when explaining instances of the K;-L rule. In
this kind of explanation, the inferences used to determine that the situation of the premise
is consistent with the situation of the conclusion would be explicitly stated.

5 Discussion

We have presented a technique for the generation of text explanations for proofs in modal
logic. These explanations were generated from structures corresponding to Gentzen style
proofs in a modified sequent system. Proofs in this system were represented via a recursive
term structure, and explanations generated by a simple mapping from these term structures
to text strings.

We have selected a particular style of Gentzen proofs for a single modal logic. Other
proof systems and logics may lead to different explanations. Also, we presented only two
possible explanations. We can certainly obtain others by examining different kinds of map-
pings from proof terms to text. Yet another way to generate new explanations is to go back
to the proof construction component and construct different proofs (thus obtaining differ-
ent proof terms) for the same formula. Such new proofs may use alternative inference rules
which will have their own encoding as proof terms, and thus their own mapping function
to natural language text. The design of the proof construction component and the kinds of
inference rules available play an important role in the generation of explanations.

Finally, we note that we have only presented a subset of the facilities available in y for
manipulating proofs of modal statements. x also has facilities for integrating proofs auto-
matically generated via traditional methods such as resolution for first-order logic. These
proofs can be transformed into the sequential proof system used in the interactive envi-
ronment. In order to do this, a technical device called expansion proofs [13] is employed.
Expansion proofs can be extended to modal logic [7] thus allowing the automatic genera-
tion of modal proofs. By transforming these proofs to sequential proofs, we can produce
explanations for modal statements in a completely automated fashion.

Acknowledgements The authors would like to thank Dale Miller for his help and guid-
ance in doing this research, and for useful comments on a draft of this paper. This work has
been supported by NSF AI Center grants NSF-MCS-83-05221, US Army Research office

grant ARO-DAA29-84-9-0027, DARPA N000-14-85-K-0018, and DARPA/ONR N0014-85-
K-0807.

References
[1] B. F. Chellas. Modal Logic, an Introduction. Cambridge University Press, Cambridge,
1980.

[2] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.



[3] A. Felty. Using Eztended Tactics to do Proof Transformations. Master’s thesis, Uni-
versity of Pennsylvania, December 1986. Technical Report MS-CIS-86-89.

[4] A.Felty and D. Miller. Specifying theorem provers in a higher-order logic programming
language. In Ninth International Conference on Automated Deduction, Argonne Ill.,
May 1988.

[5] G. Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor, The

Collected Papers of Gerhard Gentzen, pages 68—-131, North-Holland Publishing Co.,
Amsterdam, 1969.

[6] M.J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic

of Computation. Volume 78 of Lecture Notes in Computer Science, Springer-Verlag,
1979.

[7] G. Hager. Computational Aspects of Proofs in Modal Logic. Master’s thesis, University
of Pennsylvania, December 1985. Technical Report MS-CIS-85-55.

[8] J. Halpern and Y. Moses. A guide to the modal logics of knowledge and belief: pre-
liminary draft. In Proceedings of the International Joint Conference on Artificial In-
telligence 1985, pages 480-490, Los Angeles, August 1985.

[9] C. Haspel. A Study of Some Interpretations of Modal and Intuitionistic Logics in the
First Order Predicate Calculus. PhD thesis, Syracuse University, Syracuse, NY, 1972,

[10] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.
[11] J. Hintikka. Models for Modalities. D. Reidel Publishing Company, Boston, 1969.

[12] D. Miller and A. Felty. An integration of resolution and natural deduction theorem
proving. In Proceedings of the Fifth National Conference on Artificial Intelligence,
pages 198-202, AAAI, Morgan Kaufmann, Philadelphia, PA, August 1986.

(13] D. A. Miller. Expansion tree proofs and their conversion to natural deduction proofs.
In R. E. Shostak, editor, Seventh Conference on Automated Deduction, pages 375-393,
Springer-Verlag, Napa CA, May 1984,

[14] R. C. Moore. Knowledge and Action. Technical Report 191, SRI International, Menlo
Park, October 1980.

[15] M. Sato. A study of Kripke-type models for some modal logics by Gentzen’s sequential
method. Publications of the Research Institute for Mathematical Science, 13:381-468,
1977.

10



	Explaining Modal Logic Proofs
	Recommended Citation

	Explaining Modal Logic Proofs
	Abstract
	Comments

	tmp.1190306341.pdf.dYArf

