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ABSTRACT: This paper describes an effort to revise the PMFserv agent architecture in order to 
implement J. J. Gibson’s Affordance Theory.  The theoretical justification for this revision is 
outlined along with the engineering constraints that inspired it.  We describe the resulting 
architectural changes and the impact of those changes on the flexibility, ease of rapid scenario 
creation, and ability to reuse previous investments in knowledge engineering offered by our 
architecture. The level of effort required to build a new scenario within PMFserv both with and 
without the revisions suggested by Affordance Theory is compared.   We conclude that Affordance 
Theory is an elegant solution to the problem of providing both rapid scenario development and the 
simulation of individual differences in perception, culture, and emotionality within the same agent 
architecture. 
 
1. Affordance Theory 
Affordance Theory (AT) stems from origins 
quite distinct from those of cognitive science, 
and its modern interpretation is oftentimes the 
subject of spirited debate.  James J. Gibson [1] 
coined the term “affordance”—one of a few 
cornerstones central to his theory of ecological 
psychology and direct perception.  At the time, 
although many sub-disciplines in cognitive 
science were proceeding well as individual areas 
of research, attempts to integrate and utilize 
them in working systems—particularly in time- 
and resource-limited environments—met with 
unsatisfactory or incoherent results.  
Increasingly complex mathematical approaches, 
including non-monotonic reasoning, required 
lengthy principled proofs that could not match 
the performance or capabilities observed in 
humans.  In a typical model, perception and 
attention were assumed to have occurred and the 
emphasis was on the cognitive or mathematic 

manipulation of symbols.  In conventional AI, 
anything considered relevant in the environment 
also had to be represented and maintained in the 
agent’s mind in order to keep the truth 
maintenance essential to AI knowledge 
representations coherent.  Whatever existed in 
the external world had to be replicated in the 
internal “world model” of the mind.  By 
overlooking the processes of perception and 
attention, the modeled agent acquired all the 
information in the world, whether it was 
relevant or not, in order to sustain truth 
maintenance, and was riddled with problems 
(e.g., [2], [3], [4]). 
 
In a complementary way, perception is all that 
Gibson seemed to want to write about—he 
strongly opposed what he referred to as the 
“computer bandwagon”.  Although supported by 
behavioral evidence, until the advent of situated 
action, ecological psychology was without a 



computational component (although cybernetics 
certainly promoted ideas consistent with it). 
 
Gibson’s notion of the affordance is based on a 
more unified relationship between agent and 
environment—form and function—more in 
keeping with the Gestalt, or “transactional” 
view [5].  Thus, salient, functional features 
present in the environment lead to direct 
sensation, perception, and action by the agent.  
Any notion of information is functional or 
situational, involves both agent and 
environment, and the affordance-based 
relationship between the two.  According to 
Gibson, we perceive objects in terms of the 
possibilities for action they offer, or afford, us.  
The contour and shape of a coffee mug handle 
affords grasping–lifting–drinking; a sidewalk 
affords locomotion in a general direction; the 
size, shape, placement, and features of the 
Windows OK and CANCEL buttons afford 
accepting or denying the current option, and so 
on. 
 
In this fashion, cognitive science and ecological 
psychology (including AT) proceeded in these 
forms largely in isolation from each other [6] 
until the mid-1980s, when the two finally met in 
the setting of AI planning, robotics, and game 
playing.  This union was referred to as “situated 
action”.  As a challenge, Agre and Chapman [7] 
deliberately chose the video game environment 
to stress the limited resources, quick decisions, 
and perceptual processing required for 
successful performance in that domain.  In a 
sense, these early pioneers were on the outside 
of cognitive science and ecological psychology, 
and were able to recognize what one had to 
offer the other. With the sudden rearrangement 
of the roles of agent, environment, perception, 
and cognition, and a slight redefinition of 
“causality”, “information”, and “context”, 
agents could now reason in arbitrarily complex 
environments. 
 

In 1993, Vera and Simon [8] published a major 
critique of situated action, claiming the 
approach was simply a reification of 
conventional symbolic cognitive science.  Their 
argument had merit, but was from the 
Newtonian-interactional perspective.  In 
physics, this would be tantamount to a theorist 
attempting a Newtonian argument in Quantum 
terms, or vice versa.  What Vera and Simon 
failed to explain is how Gibson’s notion of the 
“stimulus flux”, for example, is transformed into 
symbols, the stuff of cognition.  Nor did they 
understand the transactional, bi-directional, 
acausal nature of the various perceptual and 
cognitive modules in situated action 
architectures versus the unidirectional causal 
flow of control and data in conventional 
symbolic architectures and the several instances 
thereof.  They also failed to point out why 
situated action was required in the first place—
i.e., the computational intractability intrinsic to 
symbolic architectures.  Although Simon’s 
notion of bounded rationality is still a powerful 
edifice in cognitive science and economics, 
instances of the theory realized by his students 
and others usually required unbounded 
resources when approached from the 
interactional perspective. 

 
Since the formative years of situated action, the 
theory of affordances has broadened within 
cognitive science, which itself has evolved into 
an alternate approach we refer to as “Situated 
Cognitive Science” [9].  Given the requirements 
of an agent-based architecture, there are those 
aspects to which affordances pertain—namely, 
perceptual aspects—and others to which they do 
not—namely, symbolic manipulation.  The 
current generation of agent architectures appears 
to favor the hybrid approach, combining when 
necessary performance moderator functions, 
pattern-matching subsystems, rule-based sub-
systems, path-planning sub-systems, and so 
forth (see also Hawkins and Chattam, in these 
proceedings).  For the purposes of modeling and 
simulation the application of affordance theory 



is more of a solution to an engineering problem 
rather than a scientific problem. 
 
In addition to the architecture advanced in this 
paper, the current generation of modeling and 
simulation systems and other environments such 
as The Sims (2002) and AI-Implant (Toth et al., 
Van Lent et al., in Hawkins and Chatam, in 
these proceedings) makes use of affordances, 
particularly sensory-perceptual affordances, and 
appear to be best suited for meeting the subtle 
demands of the environment, in the context of 
its immediate surroundings.  A Sims modeler, 
who can even be a child (no Ph.D. required!), 
programs the environment, not the agents.  The 
characters’ behaviors are the result of the 
agents’ affordances or attunements to the 
environment, not descriptions of what goes on 
in their minds (see Clancey 1997, Part I, for a 
discussion).  The Soar cognitive architecture, on 
the other hand, which is a symbolic processing 
system, is better suited for short-, medium-, and 
longer-term reasoning in keeping with its 
longstanding tradition of manipulating post-
perceptual information. 
 
This new trend in modeling, simulation, and 
gaming, is very promising.  The following 
sections will describe how AT, standard 
symbolic cognition, economic utility theory, 
culture, and emotions can be combined in new 
and innovative ways to take advantage of the 
best features from all of these approaches. 
 
2. Why affordance theory? 
 
Our interest in the use of Affordance Theory in 
multi-agent systems arose from engineering 
constraints rather than a theoretical 
predisposition.   Agents created in earlier 
revisions of our architecture each contained a 
functional representation of every other object 
in its environment and made its decisions by 
consulting this internal schema.  State 
information was passed between agents and the 
environment, but every decision made by an 

agent was grounded in its own internal data 
structures. 
 
This is a common design for intelligent agents.  
It reflects 
our understanding of human cognition as the 
manipulation of mental models [10].  If people 
each carry within themselves a functional 
representation of the objects in their 
environment – a robust mental model of the 
world maintained by perceptual information – 
shouldn’t AI programs intended to traverse and 
manipulate a virtual landscape possess a similar 
structure?  In a traditional strategic simulation 
involving perfectly rational actors, such a 
capacity is overkill.  In a simulation that takes 
social dynamics into account, however, where 
individual points of view are significantly 
different and agents act with less than perfect 
knowledge of the world, such a capacity is a 
basic requirement.  In order to begin to capture 
the subtleties of social interaction or simulate 
human emotionality, agents must act based on 
their own unique socio-cultural background and 
personal experience. 
 
Take as an example an American helicopter 
flying over Mogadishu in Somalia in 1992.  For 
some Somalis, the helicopter was a threatening 
menace that blew women’s skirts above their 
knees and ripped babies from their arms.  For 
Mohamed Fararah Addid’s clansmen the 
helicopter contained their enemies and 
persecutors.  For the US Rangers and Special 
Forces stationed in Somalia the helicopter was a 
means of transport and a source of support.  As 
a result of these distinct representations a 
successful attack on the helicopter would result 
in distinct emotions for the different groups 
mentioned above.  Onlookers might feel fear, 
joy, or anger as a result of the event, and would 
subsequently select their actions on the basis of 
those feelings.  Each would tell a different story 
if asked to describe the event, because each 
would perceive the event through the lens of 
their own unique personal and social history.  



Representing these different points of view is 
especially important in a military simulation, as 
without differing points of view there would be 
no conflict at all!  For a simulation grounded in 
emotion simulating differences in point of view 
is an absolute requirement. 
 
Unfortunately, representing those distinct points 
of view is a nightmare for developers, as the 
time and effort required to create an individual 
knowledge representation for each agent in such 
a system grows exponentially as additional 
agents and objects are added.  Each agent 
contains a unique semantic markup of the world 
describing every perceived object in terms of 
the agent’s own cultural and emotional history.   
To add a new object to that world, each and 
every agent would need to be revised to include 
this object and the actions available as a result 
of its presence into their individual semantic 
markup. With a simulation containing more than 
just a few agents, such a solution is untenable.  
 
Affordance Theory offers an elegant solution to 
this problem.  If the semantic markup of the 
objects in the environment is contained within 
and broadcast by the objects themselves rather 
than the agents perceiving them, then agents and 
objects can be added independently.   A 
simulation developer adding a new agent type to 
the system need not worry about what agents or 
objects are already instantiated.  The objects in 
the simulation will broadcast their affordances, 
or the actions that they afford to the agent in 
combination with some measure of the 
anticipated results of those actions, to any new 
agent, allowing it to manipulate them with no a 
priori knowledge of that object whatsoever. 
 
Affordances cannot be uniform for all agents.  
Each agent must still have a unique view of the 
objects in its environment.  The affordance 
approach offers two possibilities for introducing 
individual differences in perception.  The first is 
to have multiple perceptual types for each 
object, accompanied by perception rules that 

determine which type is active for any given 
agent.  For example, the helicopter object might 
contain a rule set that tests the allegiance of the 
agent perceiving it.  If the perceiving agent is an 
American, it will be perceived as a friendly 
helicopter.  If the perceiving agent is a member 
of Addid’s clan, it will be perceived as an 
enemy helicopter.  These perceptual types will 
provide different actions and anticipated effects.  
For an American the helicopter might offer 
extraction from a dangerous situation, whereas 
for the Somali it might offer a ready target.  The 
second possibility is to provide some 
mechanism in each agent that will automatically 
modify or interpret the affordance according to 
some property internal to the agent.  For 
example, an agent system might be devised that 
categorized actions in terms of certain central 
goals.  If a helicopter object affords the action 
“attack,” this action might be defined in terms 
of its respective success and failure on the 
opposing goals “Kill Americans” and “Protect 
Americans.”  The American agent will prefer 
actions that succeed at “Protect Americans” and 
fail at “Kill Americans” whereas the Somali 
agent will prefer actions with the opposite 
pattern of results.  Despite a uniform affordance, 
the agents interpret the actions available to them 
differently based on internal data. 
 
We feel that the best approach is a union of 
these two possibilities.  Each perceivable object 
(including agents) should contain a variety of 
perceptual types representing fundamentally 
different perceptions of that object.  
Concurrently, each agent should contain a 
system for interpreting the actions afforded by 
each object according to its own properties. 
 
3. Methodology 
 
The knowledge engineering necessitated by this 
approach is by no means trivial, though it is far, 
far less time-intensive than would be required 
for an emotional agent system without 
affordances.  Every agent and object must be 



wrapped in a semantic markup that fully 
specifies the available perceptual types, the 
perception rules, and the set of affordances 
belonging to each perceptual type.  Furthermore, 
agents must be populated with parameters or 
properties through which they can create 
individualized responses to common afforded 
options.  Much of the knowledge engineering 
required to build an emotional agent system 
without using affordances is still required for an 
affordance-based approach.  The benefits come 
when a simulation developer needs to add a new 
agent, add or remove an object, or change the 
behavior of an agent.  Furthermore, an 
affordance-based system will benefit from the 
creation of libraries of pre-constructed agents 
and objects.  Using such a library it should be 
possible to build a new scenario extremely 
quickly.  By facilitating the reuse of agents and 
objects, the creation of a new scenario can be 
accomplished with a minimum of additional 
programming effort or knowledge engineering.   
 
It should be noted that our architecture describes 
decision-making only.  Once a decision is made, 
action execution is simulation-specific.  This 
approach should therefore be theoretically 
applicable to any simulation in which human or 
agent decision-making plays a role.  The 
granularity of the decisions is of no 
consequence, assuming that the actions under 
consideration can be wrapped according to our 
specifications.  In fact, multiple levels of 
granularity could co-exist in the same system.  
For example, a commander agent might make 
strategic decisions about troop placement while 
those under his command decide how to act 
given his orders. 
 
3.1 Scenario Design 
 
The following section will outline a basic 
methodology for designing a scenario from 
scratch in an affordance-based agent 
architecture.  This methodology should apply 
irrespective of the simulation environment in 

which it is deployed and the level of granularity 
at which decisions are being made by the 
agents.  In keeping with our Mogadishu 
examples above, we will use an example mini-
scenario loosely drawn from Mark Bowden’s 
book Black Hawk Down.  In this scenario, a 
helicopter has crashed in Mogadishu leaving 
one surviving pilot.  A crowd, comprised of 
armed militia and civilians, is advancing on the 
crash site. 
 
Step1: Create Agent/Object Inventory -- 
Generating a complete list of agents and objects 
is crucial, as an agent will only be able to 
perform an action if that action is made 
available to it by an object in the scenario.  The 
inventory should therefore contain not only 
physical objects but also composite (e.g. 
crowds, squads, etc) and conceptual (e.g. orders 
that can be followed, etc) objects as called for 
by the specific demands of the scenario.  If 
objects can be in different physical states over 
the course of the scenario, and those different 
states afford completely different opportunities 
for action, then they might be represented by 
multiple objects that replace each other when 
the state changes.  For example, a dead body 
should be a different object than its living 
counterpart. 
 
As our example scenario is simple and only 
loosely based on actual events, the inventory of 
objects and agents is quite short.  We will need 
at least the following objects: 
 

Crashed_Helicopter, Pilot, 
Dead_Pilot, Militia_Member, 
Dead_Militia_Member, 
Civilian_Man, 
Dead_Civilian_Man, 
Civilian_Woman, 
Dead_Civilian_Woman, Building, 
Rubble,Rifle, Pistol, and Grenade.  

 
Our example is simple enough to avoid the need 
for conceptual objects, but we might have added 



an orders object for the Militia_Member 
agents that specified that the pilot should be 
captured alive and held as a hostage. 
 
Step 2: Identify Perceptual Type for Each 
Object/Agent--Each simulated object should 
contain a set of perceptual types that describe 
the variety of perceptions of that object 
available to other agents.  The list of perceptual 
types reflects every distinct manner in which an 
object can be perceived, so it is quite important 
to specify a full list. 
 
For our example scenario, we will examine just 
two objects: Pilot and Civilian_Woman.  
The pilot object could be perceived by a 
sympathetic Somali as a 
friendly_american_soldier, by other 
Somalis as a hostile_foreign_soldier, 
by militia members as an enemy_soldier, 
by some militia members as a 
potential_hostage, or by a fellow 
American as a compatriot.  Dependent on 
the status of Pilot, he might also be perceived 
as a combatant_enemy, or as an 
unarmed_american_soldier, etc. 
 
One of the issues that American soldiers faced 
in Somalia was the frequent use of women and 
children as human shields by Somali 
combatants.  The Civilian_Woman object 
might therefore include a set of perceptual types 
that represent this behavior in the simulation.  
An American soldier might view 
Civilian_Woman as an 
innocent_bystander, a human_shield, 
or an enemy_combatant depending on her 
current activity.  Other agents might perceive 
her as a friend, a woman, a 
potential_human_shield, or an 
active_human_shield. 
 
Step 3: Codify Afforded Actions -- Each 
perceptual type for any given object should 
offer a set of possible actions and the results of 

those actions anticipated by the agent perceiving 
that object.  These anticipated results need to be 
presented in a format that can be readily 
understood and interpreted by all agents in the 
simulation.  For example, results might be 
presented in terms of the degree to which they 
satisfy a predetermined set of needs common to 
all agents (though not necessarily weighted 
equally by all agents).  For the purposes of this 
general explanation we will assume that our 
agents understand the results of actions in terms 
of a series of goals: safety, self-esteem, and 
glory.  Each of the anticipated results should be 
described in terms of these three goals. 
 
Continuing with our earlier example, the 
Pilot object, we can define the actions 
available for the 
hostile_foreign_soldier, 
enemy_soldier, and unarmed 
_hostile_foreign_soldier perceptual 
types.  The hostile_foreign_soldier 
perceptual type represents the perception of 
those that oppose the American presence but are 
not actively fighting against it.  The available 
actions could be 
Pilot.hostile_foreign_soldier 
.attack(), which might fail considerably on 
safety and succeed a small amount on glory, and  
Pilot.hostile_foreign_soldier.fl
ee_from(), which might succeed on safety 
and fail on glory and self esteem.  The 
unarmed_hostile_foreign_soldier 
actions would look similar: 
Pilot.unarmed_hostile_foreign_so
ldier .attack() might fail only a small 
amount on safety but succeed considerably on 
self esteem, while 
Pilot.unarmed_hostile_foreign_so
ldier.taunt() might only succeed a little 
bit on esteem.  Pilot.enemy 
_soldier.attack() might succeed on 
glory and self esteem but fail on safety, while 
Pilot.enemy _soldier.flee_from() 
might succeed on safety but fail considerably on 
glory and self esteem. 



 
An agent who sees the Pilot as an 
enemy_soldier and an agent who sees the 
Pilot as an hostile_foreign 
_soldier would therefore both have the 
option to flee from the Pilot, though they 
would attribute a different pattern of goal 
success and failure to that action.  Even agents 
who saw the Pilot as the same perceptual type 
might have different responses to the same 
pattern of goal successes and failures. 
 
The choices made in the process of knowledge-
engineering an affordance-based agent system 
should reflect as accurately and completely as 
possible the various perceptions of each object 
that real people would experience  - and the 
variety of choices that real people would 
encounter - were they in the scenario 
themselves.  We recommend extensive literature 
review and the consultation of SMEs (subject 
matter experts) as a starting point for developing 
the semantic markup of the agents and objects in 
the world.  The final list, though hopefully 
inspired by valid data, will invariably be 
dictated in large measure by common sense and 
by the perceptual types necessary to support 
specific behaviors that scenario developers may 
want to simulate in their systems. 
 
4. Case Study – PMFserv Scenarios Before 
AT and After AT 
 
PMFserv was conceived as a software product 
that would expose a large library of well 
established and data-grounded Performance 
Moderator Functions (PMFs) and Human 
Behavior Representations (HBRs) for use by 
cognitive architectures deployed in a variety of 
simulation environments.  Its principal feature 
has been and continues to be a model of 
decision-making based on emotional subjective 
utility constrained by stress and physiology 
[13].  PMFserv quickly grew to become an 
agent architecture in its own right – with the 
flexibility to either act as a meta-level emotional 

arbitrator for others’ cognitive architectures or 
provide a fully functional stand-alone system to 
simulate human decision making. 
 
4.1 PMFserv Architecture 
 
PMFserv is built around a blackboard data 
structure loosely corresponding to a short-term 
or working memory system.  Modular PMF 
subsystems manipulate data contained both in 
the blackboard and in a long-term memory 
store.  Information is layered on the blackboard 
such that each layer is dependent on the layers 
below it for a given decision cycle of the agent 
(see Figure 1). 

Long Term Memory Blackboard
(Working Memory)

Physiology Reservoir

Stress Reservoir

Coping style

Perceived Object
List

Chosen action

Stress  PMFs 

Decision  PMFs 

Perception  PMFs 

Doctrine Ruleset

Standards Hierarchy

Preference Hierarchy

Agent Memory

Stress Thresholds

Goal Hierarchy
}

Decay Parameters

PMF Module Scheduler 

Memory
Relationships
Physical Props

Need Reservoir
Values

Calculated Utilities

Emotion  PMFs Calculated Emotions

Generic PMFserv  Agent 

 
Figure 1 – PMFserv Overview 

 
Walking up the blackboard from the bottom up 
reveals the decision cycle of a single agent.  
Physiological data across a range of measures 
(including arousal, fatigue, hunger, thirst, injury, 
etc) are combined to set the levels of a series of 
stress reservoirs.  The stress reservoirs then 
determine the agent’s coping style (a measure of 
the agent’s current awareness and capacity for 
rational thought) for the current decision cycle.  
Need reservoirs corresponding to the degree to 
which the agent has satisfied the needs outlined 
by Maslow [11] are set based on any action that 
might have occurred in between decision cycles. 
 
At this point Affordance Theory begins to play a 
prominent role in the decision cycle.  Based on 
the agent’s coping style, physiology, and any 



memory elements that might have been created 
prior to the current cycle, each object in the 
system executes its perception rules to 
determine which objects are currently 
perceivable by the agent and generates a list of 
the perceptual types and corresponding 
affordances currently available to the agent. 
 
These affordances are represented in terms of 
the agent’s emotion model.  Our emotion model, 
abbreviated here as OCC in homage to the trio 
of psychologists Ortony, Clure, and Collins [12] 
who proposed it, is described in great detail in 
numerous other papers (available at 
http://www.seas.upenn.edu/~barryg) so our 
discussion here will be brief.  The general idea 
is that an agent posses three hierarchical 
concern trees that describe the agent’s Goals for 
Action, Standards for Behavior, and Preferences 
for People, Objects, and Situations, 
respectively. An action can be represented by a 
series of successes and failures on the sub-nodes 
of these three trees.  Each sub-goal is given a 
weight that describes how much it contributes to 
its parent node. To determine the emotional 
utility of an action, the OCC model multiplies 
the degree of success and failure of each node 
up the trees.  From the top nodes on each tree, 
11 pairs of oppositely valenced emotions are 
generated.  By summing those emotions we 
arrive at a utility value for the action under 
consideration.  This process is completed for 
every afforded action available to the agent.  
The action with the highest utility value is 
chosen and executed. 
 
The OCC model allows for a common set of 
Goals, Standards, and Preference trees whose 
structure is shared by all agents.  The weights, 
however, are unique for each agent.  We are 
therefore able to give each agent a robust and 
individual worldview.  We have tried to 
construct the trees to allow for the 
representation of as wide a variety as possible of 
cultural, ideological, and personal backgrounds 
as possible. 

 
4.2 Scenarios Built Before Affordance Theory 
 
Before the current set of revisions, our 
architecture looked significantly different.  A 
full description of the original architecture is 
available in [13] and at our website.  The basic 
functionality of the OCC model itself was not 
fundamentally different from its current 
incarnation, although each agent was given its 
own unique set of trees.     An agent’s decisions, 
however, were driven by internal Markov chains 
that represented every possible state of the 
world as far as the agent was concerned.  Each 
state was tied to a set of successes or failures on 
its OCC tree nodes that provided a means to 
evaluate which states were preferable to others.  
As in the current system, the agent’s physiology 
contributed to a stress value that determined the 
agents coping style.  Rather than influence the 
agents’ perception, however, coping style 
served to constrain how far into possible future 
states the agent would look in order to calculate 
emotional utility.  Whenever one agent could 
affect the state of another agent, a forced state 
change would occur.  Our agents had no 
capacity for anticipating such a forced change.  
They acted as though they were the lone actor in 
a static world. 
 
A number of demonstration scenarios were built 
using this architecture.  The earliest was an 
ambush at a school bus inspired by the fourth 
dream depicted in General Paul Gorman’s In 
Defense of Fombler’s Ford.  The second 
simulated the target selection procedures of a 
Terrorist group.  Shortly thereafter a number of 
scenarios were built that depicted crowd scenes.  
Each featured a crowd that had gathered to 
protest a social injustice.  In one series of 
scenarios this injustice was a roadblock that 
kept people from going to work.  In several 
others it was a protest outside of a prison.  All of 
these scenarios featured similar characters: a 
group of protesters comprised of both females 
and males, employed and unemployed, a police 



presence, a group of onlookers, and an instigator 
or two trying to rouse the crowd. 
 
It was during the development of these 
scenarios that the limitations of our approach 
became apparent.  Despite the fact that the 
characters involved in the scenes were virtually 
identical from scenario to scenario, they had to 
be built from scratch each time to accommodate 
new agents, objects, or behaviors.  To produce 
meaningful, scenario-specific behavior the 
agents’ Markov chains needed to include sets of 
states that could represent the specific, complex 
social dynamics present in each scenario.  
Furthermore, the OCC trees needed to be highly 
customized and tuned to produce believable 
behavior for any given Markov chain.  While 
we were producing stand-alone, unique 
scenarios this was not a problem.  As soon as 
we started to build related scenarios with shared 
characters, however, we realized that there was 
no way our architecture could support rapid 
scenario development or facilitate the editing of 
scenarios.  Agents built with static Markov 
chains could not be easily edited.  The addition 
of a new object or agent necessitated a revised 
Markov chain and OCC tree set for every 
existing agent in the scenario. 
 
We came to the conclusion that the only way to 
design a rapidly composable system of social, 
emotional agents was to decouple all knowledge 
of the world from the agents’ internal data 
structures and somehow generate that 
knowledge automatically at runtime.  
Affordance Theory was the obvious choice for 
doing so, as it allowed complete encapsulation 
of the knowledge necessary to manipulate 
objects in the world within those objects 
themselves. In essence, we are using Affordance 
Theory as a software engineering shortcut.  
Rather than build mental models on a per-agent 
basis we allow those models to be generated at 
runtime based on the objects present in the 
environment at the time.  This allows us to build 
agents that can respond to very complex 

situations without having to painstakingly 
design those complexities into their Markov 
chains from the start. 
 
Take, for example, the simple Mogadishu 
scenario that we began to sketch in our new 
architecture in Section 3.  Before we moved to 
our current affordance-based approach, 
developing a similar scenario would have 
involved the following effort: 
 
Step 1: Generate a list of all agents, objects, and 
events involved in the scenario. -- The level of 
effort here was equivalent to the level of effort 
required using the affordance-based approach, 
assuming that there are no pre-existing agents or 
objects that we could pull from a library or 
otherwise reuse. 
 
Step 2: For each agent type, develop a complete 
Markov chain describing the agent’s possible 
states and valid state transitions -- Because 
events or actions were described in terms of the 
actor rather than the recipient of the action, 
there was a greater tendency to oversimplify 
scenarios and omit critical events, which 
necessitated lengthy revisions.  As a result the 
process of crafting Markov chains was iterative 
and tedious.  It was also quite limiting.  Events 
could only occur in certain sequences pre-
specified by the Markov chain.  If that event did 
not unfold as planned, a revision was necessary 
for every agent whose states were affected by 
the event. 
 
In our new system, we do not need to create a 
static state-space for each agent, as the agents’ 
possible actions are determined at run-time by 
the objects in the environment.  The available 
actions are coded into each object only once 
rather than repeatedly describing all actions 
available to each agent.  Very little needs to be 
“pre-scripted” so the emergence of a far greater 
range of behaviors and outcomes is possible.  
Because the development cycle of an agent 
ceases to be an iterative, trial-and-error process, 



and because actions are coded on a per-object 
rather than a per-agent basis, the time and effort 
required for this step is vastly reduced in our 
new architecture. 
  
Step 3:  Design unique concern trees that 
correspond to each agent’s Markov chain --In 
the old system a new tree needed to be 
constructed for every agent.  Each agent then 
required its weights to be set and validated.  
This process was repeated every time a 
significant change was made to the Markov 
chain to accommodate new possibilities for 
action. 
 
In the current system the trees themselves are 
static.  We developed a common concern set 
that all agents possess.  Only the weights need 
to be set on a per-agent basis.  Though the 
resulting concern trees are significantly larger 
than their predecessors, they provide a 
systematic framework for describing individual 
differences in culture and belief systems 
between agents that maintains the ability to 
produce unique agents present in our earlier 
architecture.  As a result, each agent or agent 
type developed under our new architecture 
requires merely a new set of weights, not an 
entirely new tree.  Because the tree structure 
itself requires no revision or tweaking during 
scenario development the effort required for this 
step is significantly reduced in our new 
architecture. 
 
Step 4: Implement the execution of all events in 
code along with forced state transitions -- The 
effort required here is equivalent.  The 
simulation environment, not PMFserv, handles 
the execution of actions.  In our earlier demos 
we built our own simple simulation environment 
for analysis and testing, but we are now working 
to integrate our agent architecture with external 
simulation systems that handle action execution 
themselves. 
 

In summary, then, the effort required to develop 
a scenario has been drastically reduced by the 
implementation of affordance theory within our 
architecture.  A certain level of subject matter 
research and knowledge engineering will always 
be required to develop valid, complex agent 
scenarios.  However, our new approach 
eliminates redundant knowledge structures and 
greatly facilitates the reuse of previously 
implemented and validated agents and objects. 
 
4.3 Subsequent Work 
 
To help us better understand the knowledge 
engineering demands imposed by our new 
system, we enlisted the help of a group of 
Systems Engineering students who were looking 
for a project that would fulfill their senior 
design requirement.  These students spent a 
semester designing a scenario that could be 
implemented in our system, though the system 
itself is still under development.  This included 
an extensive literature review of the events 
depicted in the book “Black Hawk Down.”  The 
students were asked to extract several key agent 
types, derive weights for the standards, goals, 
and preference trees along with documented 
justification for those weights, and construct a 
limited ontology of objects in their scenario 
along with their perceptual types and 
affordances.  By observing their effort we 
gained some insight into the level of effort that 
will be required to build up a large library of 
validated agents and object presets. 
 
The very fact that we were able to “outsource” 
the development of a scenario to a student team 
demonstrates a major advantage of Affordance 
Theory.  In our previous architecture the 
development cycle was iterative and confusing 
as a result of the interdependencies between 
agents, objects, and their environment.  Students 
were not able to create scenarios in this system 
without quite a bit of hand-holding.  Because 
the objects now contain their own data, 
however, scenario components can be 



developed in relative isolation from each other 
without having an impact on the overall 
scenario development. 
 
 
5. Conclusion 
 
We are currently working to provide a 
standards-based interface that would allow 
PMFserv to drive the behavior of agents situated 
in a variety of simulation and game 
environments.  We envision PMFserv as a 
multipurpose toolkit from which simulation 
developers will be able to either drag-and-drop 
agent minds onto the agent bodies in their 
simulations or use specific PMF components as 
needed to moderate the behavior of their own 
cognitive sub-systems. 
 
The initial test bed for this effort is a joint 
project with a group at ICT.  We are developing 
a hybrid architecture that uses PMFserv to 
moderate decisions made by SOAR agents 
within the Unreal game engine.  AI-Implant is 
being used to manage art resources and provide 
low-level implementations of actions that can be 
triggered by SOAR or PMFserv directly (e.g. 
navigation, movement, physical actions, etc.).  
By exploring ways of tying these systems 
together, we will increase our understanding of 
the requirements for integration significantly.   
 
This demonstration will set the stage for future 
integration efforts with real-world simulation 
systems and provide valuable insight into the 
requirements for behavioral interchange 
standards that we will be able to share with 
others attempting similar efforts. 
 
Revising our agent architecture to support AT 
was by no means a trivial effort.  A fundamental 
redesign was required to include AT at every 
level.  The work was well worth it, however.  
Without AT scenarios were more difficult to 
design and debug.  We struggled and failed to 
find an elegant solution to provide rapid 

scenario development capabilities and the 
construction of libraries to facilitate agent re-
use.  As a result of our redesign, these 
capabilities have become a cornerstone of our 
architecture and our agents themselves are able 
to exhibit far more complex, emergent 
behaviors than was previously possible. 
 
Affordance Theory is by no means a panacea for 
simulation developers, however.  As a theory of 
cognition it is far from being accepted.  
Architectures that are designed to be unified 
theories of cognition unto themselves or that 
model expert performance (SOAR, ACT-R, etc) 
would be better off employing a perception 
model with a stronger physiological grounding.  
Conversely, AT would probably be overkill for 
most cellular automata or other artificial life 
simulations.  For multi-agent systems that 
simulate the cognition and/or emotionality of 
individual agents, and that aspire to a high 
degree of reuse and rapid composability, 
however, AT is practically a requirement. 
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