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in a Distributed Shared Memory 

Ronald G. Minnich David J. Farber 

Supercomputing Research Center University of Pennsylvania 
Bowie, MD Phila., PA 

Abstract Mether is a Distributed Shared Memory (DSM) 
that runs on ~uu'workstations under the SunOS 4.0 operating 
system. User programs access the Mether address space in a way 
indistinguishable from other memory. Mether had a number of 
performance problems which we had also seen on a distributed 
shared menmry called MenlNet[2]. In this paper we discuss 
changes we made to Mether and protocols we developed to use 
Mether that minimize host load, network load, and latency. An 
interesting (and unexpected) result was that for one problem we 
studied Uie same "best" protocol for Mether is identical to the 
"best" protocol for MemNet[6]. 

The changes to Mether involve exposing an inconsistent 
store to the application and making access to the consistent and 
inconsistent versions very convenient; providing both demand- 
driven and data-driven semantics for updating pages; and allow- 
ing the user to specify that only a small subset of a page need be 
transferred. All of these operations are encoded in a few address 
bib in the Mether virtual address. 

2 Overview of Distributed Shared 
Memories 

Distributed shared memories (DSM) allow processes to share 
data over a network. They provide a memory model as opposed 
to a message sendreceive model. 

In a DSM, progranls are provided with a virtual address 
space. At any given time only a portion of the components of 
the space are present on the processor the program is running on. 
When programs access a portion of the space that is not present. 
the missing portion is fetched. Here is where DSMs differ from 
conventional shared memory. The data for a conventional shared 
nlemory are either copied from disk to main memory, or main 
memory to cache. In the case of DSM, the data is copied over 
a network2. The latency is therefore much higher. This high 
latency has many implications for the implementation and use 
of DSM. It can not be used in the same way that conventional 
shared memory is used, as the latency can up to lo4 times higher 
than a conventional memory bus. 

The first description of DSM as we understand the term 
can be found in [I]. Cheriton describes what he calls problem 
oriented shared memory. It is by definition a non-consistent 
' Sun and SunOS are trademark8 of Sun Miaayslcm Inc. 

Note UIat Lhe network is MI neceaurily a VW. 

memory. What this means is that different processors may see 
different values for the same variable at the same time, which 
is not the case for a consistent multiprocessor shared memory. 
He argues that trying to achieve consistency in a networking 
environment is impractical; in this paper he advances the view 
that the real question is how to properly manage a non-consistent 
memory. 

Two DSMs that provide a consistent shared memory are 
described in [4] and [2]. 

In [8], the authors describe what they call a "smart shared 
memory". This is a memory which understands high-level 
operators such as queueing operators. A co-processor connected 
to a high-speed network manages data transport transparently. 

These systems vary in terms of how they are implemented 
and the type of memory they support They do not vary in 
that they use the memory model with some modifications as the 
means by which an application shares data with other applica- 
tions over a network. 

The Mether system, described in [5], constitutes a distributed 
shared memory. Mether began as a fairly traditional DSM along 
the lines of [4] and [2]. It has evolved since then, driven by 
both application demands and performance demands. We will 
begin this paper with a description of Mether as it now stands; a 
description of a simple Mether protocol; and a description of an 
application that uses Mether. We will later in this paper describe 
the factors that made Mether the way it is. 

3 The Current Mether Applications 
Interface 

The Melher system described in [5] was quite similar to 
systems described in [3], [7] and [2]. Processes map in a set of 
pages that are distinguished by being sharable over a network. 
A page could be moved from one processor to another at any 
time. If a process accessed a page and it was not present on the 
processor it was fetched over the network. 

The goals of the systems were in some cases quite differ- 
ent. The Mach shared memory server supports paging over the 
Ethernet. Both Mether and MemNet have a different goal: to 
determine what the next generation of network application inter- 
faces should look like. While it is true that we feel the shared 
memory model is a part of the picture, we do not believe that 



it is thc complete answer. As networks become faster, the av- 
erage I;~tency grows, a id  many shared nlcmory programming 
tecliniqucs will fail in this higher-latency environment. For this 
reason we are willing to have Melher depart from an emulation 
of the shared memory model where differences can provide a 
perfornkuice improvement. 

As our testing progressed, we realized that the simple pagein- 
over-network model of the original Mether was not sufficient to 
meet our needs. In many cases processes need only examine 
a few variables in a page. Consistent memory is not always 
needed. Even the demand-driven nature so basic to the pagein- 
over-network model is not always desirable. We describe these 
enhancements in further detail below. 

Inconsistent Memory 
Mclher allows a process to access memory as consistent or 

inconsistent. A process indicates its desired access by mapping 
the melnory read-only or writeable. There is only ever one 
consistent copy of a page; for reasons described below. we move 
the consistent copy of a page around, rather than just the write 
pem~issio~i to a page. 

When a process gets an inconsistent copy of a page, the 
process holding a consistent copy may continue to write to 
it. Over time, a read-only copy will become out of date, or 
inconsistent. There are three ways that an update may occur: 

1. A process may request the consistent copy, causing an up-to- 
date copy of the page to be transmitted over the network, at 
which time all the Mether servers having a copy of the page 
will refresh their copy. In this sense the Mether servers are 
"snoopy". 

2. The process holding the consistent copy can cause a new 
version of the copy to be sent out over the network via a 
system call. 

3. The process holding the inconsistent copy can purge its copy; 
the next time it accesses the page a new copy will be fetched 
over the network. 

The first two mechanisms constitute a passive update. The 
last mechanism is an active update. The idea of purging comes 
directly from the cache operation of the same name. 

We have found the inconsistent memory to be useful. While 
it may seem counter-intuitive for an application to have to deal 
with inconsistent memory, in fact applications deal with incon- 
sistent menmry all the time. Any application that uses windows 
(either character or bitmapped) manages window descriptors that 
become i~iconsistent with the display. At some point the applica- 
tion calls a function that restores the consistency. Applications 
that look up Intenlet host names now know that a lookup failure 
may not indicate that a host name is invalid; it may mean that the 
global name store is in an inconsistent state and that the lookup 
should be retried3. Programmers who use "out of core" pro- 
gramming techniques on a Cray X - M P ~  or Y-MP also are used 
to managing the consistency of their in-core data with a backing 
store (the Solid-State Disk). There are many other examples of 

In lad ,  it ia sale to ~y that Ule global rum store is almost n c v a  in a conaislcnt able ' Cray, Cray X-MP, and Cray Y-MP ur registered lrxicmarh of Cray Rclurch. Inc. 

applicalioris that manage an inconsistent set of structures and 
occasionally refresh a backing store. We feel that allowing the 
application to n m g e  the inconsistent pages in the Melher ad- 
dress space is the correct decision. Mether can not anticipate 
a program's use of its pages any m r e  than a window manager 
can decide when to refresh the screen. The application must be 
given control. 

The Cloud Systern[7] shares some attributes of the current 
version of Mether, notably the inconsistent page, which they call 
weak read-only. In Cloud, a consistent or inconsistent view is 
chosen by a system call. In Mether there are a number of address 
spaces with different semantics, and they are chosen by address 
bits in the virtual address. 

User Driven Page Propagation 
Because pages can become out of date, lhere must be a way 

to propagate new copies of a page. Since the servers do not 
always know when propagation should occur, Mether supports 
user driven propagation. The propagation is supported by two 
operators in b e  kernel driver. The first is called PURGE, the 
second called DO-PURGE. PURGE is used by applications to 
purge a page; DO-PURGE is used by servers to acknowledge 
that a PURGE has occurred. For the Ethernet-based implemen- 
tation of Mether, DO-PURGE is only needed when a writeable 
page is PURGE'd. PURGE operates differently depending as 
the page is read-only or writeable. 

For read-only pages, PURGE simply unmaps the page from 
all processes and marks it as invalid. The next time any process 
attempts to access the page it will be marked wanted and the 
server must take action to fetch it. 

For writeable pages, PURGE will set an attribute for the 
page called purge pending. The process will then go into a 
kernel sleep until that attribute is cleared. The server, on seeing 
a page with the purge pending attribute set, will broadcast a 
read-only copy of the page to the network, and then issue a 
DO-PURGE, which clears the purge pending and wakes up the 
waiting process. 

Short Pages 
Another capability added to Mether was support for slwrt 

pages. Short pages are only 32 bytes long. They are actually 
the first 32 bytes of a full-sized page. A typical use is to store 
important state variables in the first 32 bytes of the page. The 
process can access these variables with extremely low overhead 
and determine whether to access the full (8192 byte) page. The 
low overhead comes from the fact that page faults cause only 
32 bytes as opposed to 8192 bytes to transit the network. The 
address space for short pages completely overlays the address 
space for full pages, which is how the short pages can share 
variables with full pages. 

Data Driven Page Faults 
An even greater departure from the standard DSM is the 

support Mether provides for data driven page faults. In the 



shared-menwry systenls described above a page fault always result in a far rnore complex and much less reliable implemen- 
results in a request over the network for a page. tation of Mether. This decision has a major impact on all the 

In a data driven page fault, the process blocks as before, but Mewfa 

the server does not send out a request. Some other process must The problems with using such protocols involve the corn- 
actively send out an update in the manner described above. Thus paratively low reliability of be network we are using; the in- 
this form of page fault is completely passive. It also results in determinacy of b e  lime it takes to purge a cache line; and the 
a very low overhead for a page fault. inability to order purges. 

The rules for paging pages in and out, mapping them into 
a process's address space, and locking them into one process's 
address space are more complex than for other DSMs. A table 
describing these rules is shown in Figure 1. In this table, superser 
refers to the containing page (i.e. the 8192 byte page in the 
current implementation); subset refers to the contained page (i.e. 
the short page). Note that we may later have rnore than two 
lengths of pages. 

Figure 1 The rules for subspace operatiom 

Operalion 

nlapping a page in 

pagein from the 
network 

pageout 

lock 

page fault 

Purge 

Figure 2 shows how different virtual addresses in the Mether 
address space reference a single page. 

Alternative Applications Interfaces 

Rule for subsets 

All subsets must 
be present 

All subsets paged 
in 

All subsets paged 
out 

all subsets must be 
present; if all are 
present, all are 

locked; otherwise 
the lock fails and 
any non-present 

subsets are marked 
wanted 

All subsets must 
be present 

All consistent 
subsets are purged 

To the user used to the applications interface provided on, 
e.g. a Sequent, the Mether interface will seem unnecessarily 
complicated. On the Sequent or similar machine memory is 
shared at the byte level. The consistency of shared memory is 
nlaintained automatically by the cache hardware. Neither kernel 
nor user level software need do anything to maintain consistency 
between caches. 

We considered providing such an applications interface, and 
decided not to. Providing such an applications interface would 

Rule for supersets 

Supersels need not 
be present 

No supersets paged 
in 

all supersets left 
paged in but 

unmapped 

No supersets 
locked but must be 

present; all are 

unmapped; 
supersets not 

present are marked 
wanted. 

Supersets need not 
be present 

Supersets are not 
affected 

Notes: 

1. The choice of the read-only space or the writeable space is 
chosen when the application maps the Mether address space 
in. 

2. Note that the consistent space can only be demand-driven. 
3. The choice of full or short page, demand or data driven is 

determined by two address bits in the Mether address space. 
4. If further applications demand it, we may opt for four dif- 

ferent page sizes- one more bit of address space. 

Figure 2 The Mether address space 

Most traditional shared cache protocols employ a mechanism 
for gaining ownership of a cache line. This mechanism is in 
essence a broadcast message to all other caches to invalidate 
a copy of a cache line. The algorithms all depend on certain 
properties of the hardware implementation: 

1. The reliability of the cache invalidate message being re- 
ceived and acted on is more reliable than a write to main 
memory. Thus no explicit acknowledge is needed. The 
whole set of issues relating to reliable transport are irrele- 
vant to these system. The transport is by definition reliable 
and ack-less. A failure of this mechanism is serious enough 
to warrant a machine check- such a failure is as serious as 
a main memory failure. 

2. The cache lines are small- typically 16 or 32 bytes at most. 
Even if the cache line needs to be transfemed to the re- 
questor's cache, the transfer will occupy only a few cycles. 

3. Because no explicit ack is needed for a purge, the cost of 
invalidating a cache line is the same no matter how many 
caches have a copy. 



Coritrast this environment with that seen by a shared memory 
over an EU~ernet or like network using datagrans or a sinlilar 
conriectionless protocol. A host may need to cause all other 
hosts to purge their copies of a page. It can either broadcast 
the message or send it to each of the other hosts one at a time. 
Either way, it must hiow that all hosts having the page have 
received h e  purge cornnland and acted on it. It must therefore 
know the identity of every host having a copy of the page, 
as it will have to wait for each host to respond affirmatively. 
As a result every host must keep track of where every page 
is. The host must incorporate in the protocol the whole set 
of mechanisms providing reliable transport, including retries, 
strategies for determining when a host is down, and so on. A 
cache purge no longer takes a fixed amount of time; in fact it 
takes an undeterminable amount of time. Hosts may become 
unreachable for a period of time and yet still have a copy of the 
page that must be invalidated. Some strategy for dealing with 
unreachable hosts would have to be formulated. 

Still worse is the problem of ordering of purges. In tightly 
coupled cache systenx the ordering of purges is guaranteed by 
the hardware: a processor issues a purge and by definition a few 
clocks later the purge is accomplished and the processor owns the 
cache line. No purge commands occur in the interval because the 
processor owns the global cache control bus while it is issuing 
the purge. Two processors can not issue purges simultaneously: 
the hardware schedules the purges, usually in a round-robin 
fashion. Contrast that with the situation on an Ethernet with 
multiple bridges. There is no ordering of purge requests that 
can be guaranteed. Two hosts on different trunks can issue 
purges. Which purge goes out first depends on the depth of 
the queues in the hosts and the bridges, which in turn depends 
on background network tramc on each branch. The potential for 
deadlock, livelock, arid deadly embraces is unlimited. 

A design which could handle the above situations was ex- 
anlirled, and proved to be quite complex. Many of the details of 
the design were specific to the protocol family we were using 
(UDPIIP) and the transport medium (Ethernet). Currently Mether 
communications are managed by a user-level server. Since we 
plan at some point to migrate the server to the kernel we want 
to keep it as simple as possible. Burdening the user-level server 
with a complex protocol would make migration to the kernel 
in~ossible. 

For these reasons we decided not to use the conventional 
cache purge mechanism for Mether. In addition, we decided 
to abandon global consistency as a requirement. That does not 
nlean that access to a consistent view of a page is impossible; 
rather, it means that we decided to allow the application to decide 
whether it wanted to pay the price for consistency. There is 
only ever one consistent copy of a page. If an application needs 
that copy it pays the price in time for getting it. It will also 
cause other applications to lose access to the consistent copy 
for such time as the application needs it. There are, however, 
many inconsistent copies of a page. These copies represent the 
state of a page as of the last time it was seen on the network5. 

' Because Mether is a broadcast protocol, every tim a page trmsil. the n c l w a k  all the 
inc~lsistent copies of that page KC updated. 

They may well be up to date, but are not guaranteed to be. The 
user protocol may decide to access h e  consistent copy of a page 
given certain parameters it finds set in the inconsistent copy. 

A Sample User Protocol 
To give an idea how the different subspaces are used we 

will give an example of a sample application and a user protocol 
written to support it. The user protocol we developed used both 
inconsistent and consistent views of a page as well as demand 
and data driven views. 

The application was a multiple-process sparse matrix solver 
written by Bob Lucas of the SRC~. This program was designed 
and written for portability and had run on a number of machines, 
including an 1ntel7 iPSCUVX. The version of the program we 
have is written in Fortran and runs on (he Cray-2. At the heart 
of his program are send and receive functions modelled after 
Intel's csend and crecv. To move the program to a new machine 
requires writing a new version of csend and crecv. The version 
of csend and crecv we s k e d  with transferred data (through the 
shared memory of the Cray-2) between the processes. There 
were no shared arrays used. 

For this program we wrote a new send and receive function. 
The functions communicate through two pages. Each process 
sees a read-only, inconsistent page and a writeable, consistent 
page, as shown in Figure 1. The WriteGeneration and Write- 
Datasize in the consistent page are paired with a ReadGenera- 
tion and ReadDataSize in the inconsistent page. A write can only 
proceed when the WriteGeneration in the consistent page and the 
ReadGeneration in the inconsistent page are equal. A read can 
proceed only when the WriteGeneration in the inconsistent page 
is greater than the ReadGeneralion in the consistent page. The 
WrheDataSize is an indicator of how much data to copy out. 
If the amount of data is less than 32 bytes then the short page 
can be accessed with a corresponding performance improvement. 
The amount of data copied (read) is available in Ule ReadData- 
Size in the inconsistent page. Because one page on each side is 
inconsistent, a part of the initialization code purges the current 
copy of the inconsistent page, so that an up-to-date one will be 
accessed. This sort of initialization activity is ubiqutous to our 
protocols; we call it "Deal Me In". 

Figure 3 Comica t ions  Stnrcturw for the Spars Solva 

' The wlva was written by Bob belorn he u m  lo SRC ' Intel. IPSC. md iPSC2NX arc regislacd (Rdemarlrr of Intel Corp. 



Thc protocol is as follows. The writer locks the page, fills in 
the data, sets the WriteDataSize, increments the WriteGeneration 
counter, and issues a purge. 

Whcn the reader wants to read the page, it &st checks 
the inconsistent, short, demand-driven copy. If the copy is not 
present it is fetched. If the WriteGeneration indicates no new 
data, the reader issues a PURGE on the short page and checks 
again. If there is still no indication of new data to read, the 
reader issues a PURGE and then checks the inconsislent, short, 
data-driven view of the page. At this point the reader blocks 
until a new version of the page transits the network. When 
the page comes in, the reader compares the WriteGeneration 
counter in the read-only page to its ReadGeneration counter. If 
the WriteGeneration is larger, the reader knows it has some data. 
It copies the data out, sets the ReadDataSize in its writeable page, 
incrc~llcl~ts the ReadGcl~eration counter, and returns. Note that if 
the amount of data to be copied out is larger than the short page 
the reader must access the full-page view. The reader thus views 
the pagc in several different ways. The protocol is absolutely 
synmlclric; a write or read from either end proceeds in the exact 
same way. 

Were we less concerned about portability we could make 
more user of Mether. For example, a data array could be placed 
in the Mether address space. Nevertheless the program shows 
linear speedup on up to four processors (all we had available at 
the tin=, and the most the Cray-2 version program would run 
on, as the Cray-2 only has four processors). 

We are working on a number of other applications. As the 
applications we run grow in number, we expect Mether to slowly 
evolve still further from the classical shared-memory model. We 
also feel, however, that the major changes have been made. 

In the following sections we discuss the factors that affected 
the Mether applications interface. Changes in the interface were 
motivated by a simple question: how fast can we transfer a 
single bit of information- in this case, the change of a counter- 
over Mether? 

4 Application Interface Development 
In this section we discuss how and why Mether has evolved 

to its current design. Many of the changes were driven by 
testing with a very simple program The program was effective 
in that its computation was so simple that its run time was 
measuring overhead only. Its function is to count up to 1024, 
cooperatively. We used this program to measure the time it took 
to change a word and have that change seen at another machine. 
The program models two processes synchronizing. Because the 
program does nothing but synchronize, it will exercise the worst- 
case behavior of all the components of a shared-memory system. 

The program constitutes a user protocol. This user protocol 
will use the Mether applications interface to access pages, modify 
them, and in some cases purge them 

This program was motivated by our desire to measure both 
throughput and latency for Mether. In addition we used this 
program to dcternline ways (a improve the reliability and per- 

formance of the user-level servers, the kernel server, and the 
application interface to the kernel server. 

All the trials were run on SUN 3150s running SunOS 4.0. 
If both processes were run on the s m  machine they each took 
81 seconds wall-clock time, 37 seconds cpu time. If we simply 
run the program as one, rather than two, processes, it runs in 
approximately 50ms8. Thus a single processor iteration takes 
approximately 50 microseconds per increment, including over- 
head. The two process implementation takes approximately 70 
ms per increment, including overhead. The additional overhead 
is simply the wasted time spent spinning on values that do not 
change, as there is no (convenient) way to tell the scheduler to 
go run someone else; it also is the amount of time spent in con- 
text switch, which is hard to measure but as a rule of thumb 
takes a few milliseconds9. Given that paging is accomplished in 
Methcr by a user level server, the problem of an Mether client 
that is spinning on an unvarying memory location should be ob- 
vious: the client may be pre-empting the user level server and 
thus preventing itself from getting the newest version of a page. 

This program and subsequent programs embody a user pro- 
tocol. We had several goals in mind for the tests we performed: 

1. To measure and minimize the host load, network load, and 
latency of the applications interface and server protocols. 

2. To find the "best" user protocol for synchronizing over 
Mether. 

3. To determine the relationship (if any) between the "best" 
protocols for Mether and MernNet. 

Depending on the user protocol we observed higher or lower 
host load, network load, and latency. For this program (protocol) 
and each subsequent program (protocol) we will describe 

1. The protocol 
2. The cost of the protocol in space, packets, context switches, 

and bytes transferred 
3. The mean time required for a page fault after 1024 synchro- 

nization operations 
4. A L o s N i n  ratio, that is the number of times the program 

saw an unchanged variable versus the number of times it 
saw a changed variable 

5. A discussion of the results 

First User Protocol: Increment on Full-Size Page 

In this protocol, as in all the protocols, the processes incre- 
ment the first 32-bit word on a full-size page. When we say 
full-size page we mean that when a process required access to 
the 32-bit word an entire Sun page (8192 bytes) had to be trans- 
ferred over the network. For each addition to the word, then, a 
page had to be transferred and a request had to be processed. 

' It i8 not pouible lo  get a more accurate m u a u r e m l -  B e  rciolulion of lhc SunOS proceu 
l imn is X)m. 
* A few milli.cconda m y  acem extreme. but 31- nmning SunOS 4.0 u e  constantly paging 



Figure 4 Performance of the first user protocol. 

Operation 

Wallclock T i r ~ e  

User Time 

Sys Time 

Network Load 

Context Switches 

Average Latency 

Losses/wins 

The results of the run are shown in Figure 1. 

Cost 

128 seconds 

10 seconds 

30 seconds 

66 kbytedsecond 

4 per addition 

120 ms 

500 

Discussion It is obvious that most of the program's time is 
still spent uselessly spinlling on unchanging data, as indicated 
by the Loss/Win ratio. The results of this experiment left us 
with several areas to explore. We felt the most serious problem 
was that we were transferring 8 Mb where the actual data that 
needed to move was 4 Kb. We first addressed network load 
with an intention to address the host load and latency later. The 
network load problem was solved by making it possible to have 
shorter packets. 

Second User Protocol: Spin on Short Page 
It was obvious that sending 8192 bytes to reflect a change 

in one word was quite wasteful. We spent some time looking at 
our applications and decided that some support for short pages 
would be useful. A short page in this context means that only 
some subset of the total page is sent when it is requested over 
the network. 

The change to Mether was to partition the address space into 
two virtual address spaces, and allow the user level server to use 
the additional address bit as an indicator of how much of a page 
to fetch. One half of the address space represents full pages; the 
other half represents the first 32 bytes of each full page. A page 
fault on the lower half will cause the entire page to be fetched; 
a page fault on the upper half will cause only the first 32 bytes 
to be fetched. For the user protocol described above the total 
data transferred decreases from 8Mb to 146 kbyteslO. 

The results are tabularized in Figure 1. 

Figure 5 Performance of the second user protocol. 
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3 seconds 
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134 

Discussion As we shrank the pages from 8192 to 32 bytes, a 
ratio of 256 to 1, the user tirnc, system time, wall-clock time, 
and latency all decreased by a factor of two. At the very least the 
difference in the ratios suggests we shrank the page too much. 
Some further calculation indicates that we could make the short 
pages larger with very little impact on performance; making them 
smaller would not be worthwhile. 

We have significantly decreased network load with this 
change, but the user cpu t i m  only shrank by one-half. In ad- 
dition, we obviously wish to improve performance still further. 
The amount of tim spent spinning uselessly increases latency- 
the time for the other process to access the page- and host load. 
Our LossIWin ratio is still quite large. In the next section we 
examine one of the ways we changed the server and the modified 
protocol that accompanied the change. 

Third User Protocol: Spin on Disjoint 
Pages, one Read-Only 

We had studied this problem on a quite different distributed 
shared memory (MemNet) and devised a solution which we 
wished to try on Melher. 

In previous examples processes communicated through one 
page. There is significant overhead in moving the write capabil- 
ity back and forth over the net. The protocol we describe here 
avoids the problem by leaving the write capability stationary at 
a given processor, and using pages as one-way links to share 
information. A process may thus spin on a read-only copy of 
a page. When a process writes a page it also issues a PURGE, 
which results in the newest copy of the page being propagated 
as described in Section 1. 

The protocol worked very poorly. Losses outnumbered wins 
by 10,000 to one. The network was saturated with PURGE 
packets. 

Figure 6 Performance of Ihe third user protocol. 
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Discussion The problem with the protocol on reflection is 
pretty obvious. It takes no time at all to increment the nunher; 
the program spends most of its time finding that its read-only 
copy is out of date, as it takes tens of milliseconds to get the 
new copy. However, in addition to doing useless work, the 
program is generating thousands of useless packets and page 
faults, all of which must be processed by the user level server, 
which increases the latency further still. The whole process 

Cost 

Never finished 

Never finished 

Never finished 

NA 

NA 

Very High 

10,000 



is degenerative, and in the end it is almost impossible for any 
work to be done at all. 

We tried a number of approaches to fixing the problem. 
The first atttempt was to add hysteresis, in the form of a fixed 
delay wait in the protocol after each loss. While this approach 
improved the widloss ratio, it was difficult to get consistent 
timing delays from the SunOS kernel. Also to be considered are 
the esthetics of such an interface. Asking users to put timing 
delays in their programs is unacceptable. 

Finally, we decided to add hysteresis in a different form. 
We simply issued a purge after every 100 losses. This worked 
acceptably well: the program would at Least run, but not quickly. 
Increasing the number to 10,000 decreased the user time to 19 
seconds on average, but the system time was 50 seconds. In 
addition, the ratio of losses to wins was still 80 to one. The 
resulk for the protocol with hysteresis are shown in Figure 
1. While we were able to improve the performance with this 
protocol after hysteresis was added, it was clear that we still 
were not providing the right sort of interface. CPU time was 
still to high. 

Figure 7 Performance of the third user protocol with hysteresis. 
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It was clear that we needed to re-examine some basic as- 
sumptions. It occurred to us that to this point the design had 
always been demand driven. In fact, most distributed shared 
memories are. When a process faulted, a page request was sent 
out. We wondered what the effect of putting data driven se- 
mantics into our model would be. In a data driven model a 
process could fault on a page but no active request would be 
sent out; rather, the server would wait for a copy of that page 
being broadcast to the network. 

Cost 

77 seconds 

19 seconds 

50 seconds 

approx 1 kbytedsecond 
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2 pages (16384 bytes) 

45 ms 

80 

To implemnt the data driven semantics of pages we parti- 
tioned the virtual address space one more time. Before we had 
long and short pages; now we had long and short pages, data 
and denmld driven. There are four views of a page. The data 
driven view is by defiition read-only and therefore inconsistent. 

Fourth User Protocol: Spin on Short 
Page, Data Driven 

In this user protocol we access two different views of the 
page: the demand-driven, consistent, writeable, short view and 
the data-driven, inconsistent, short, read-only view. 

Performance did improve marginally. The win/loss ratio was 
disappointing, 400 losses for every win. User time increased to 
7 seconds on average. 

Figure 8 Performance of Ihe fourth user prolocol. 
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Discussion The goal we set for this system was not met. We 
had hoped that Ule process which wrote the counter and then 
issued a purge would spend a lot of time waiting, however the 
win/loss ratio indicated that this was clearly not happening. It is 
easy to see why: the purge returns very quickly, and the process 
continues to sample a value that is not changing. The process 
in addition blocks the user level server. This is a testimony of 
sorts to the efficiency of short pages and the implementation of 
the user level server. 

Cost 

68 seconds 

7 seconds 

50 seconds 

approx. 1 kbytedsecond 

10 per addition 

1 page (8192 bytes) 

65 ms 

400 

The experience with this protocol led quite quickly to the 
final user protocol design. It was clear that a process could 
block on a page, as long as it did not have a writeable (e.g. 
consistent) copy of that page. Once again we used two pages, 
maintaining a writeable, consistent, short, demand-paged copy 
and a read-only, inconsistent, short, data-driven copy on each 
machine. 

Final User Protocol: Spin on Disjoint 
Pages, one Data Driven 

In this user protocol we maintain two pages. Each program 
maintains a consistent, writeable, demand-driven, short page. 
The other sides views that page as an inconsistent, data-driven, 
read-only, short page. 

The results were extremely good. User time dropped to be- 
low one second. System time was consistently under 8 seconds. 
Wall-clock time was on average 57 seconds. Only one packet 
was ever sent per increment: the PURGE packet from the host 
with the writeable page. The network load thus dropped by a 
factor of almost two, as no request packets needed to be sent. 



Figure 9 Perromance of the final usex protocol. 

Discussion In any event, this protocol is ideal in almost every 
sense, save that it takes two pages instead of one. There is one 
packet per addition; the losdwin ratio is very low, indicating 
that a process is either incrementing the variable, checking the 
variable once or twice, or sleeping on a new version of the 
variable. The user level server is doing less work as well, which 
also decreases the total host load. The latency is as low as we 
are going to get given that we have a user-level transport as 
opposed to a kernel-level transport- it is close to a theoretical 
minimum derived from what we know of SunOS 4.0. At this 
point we have hit a threshhold in which the major bottleneck is 
now the context switches required to receive a new page. That 
problem will be solved by a different hardware-based network 
or a migration of the user level server code to the kernel. 
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5 Conclusions 
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2 pages (16384 bytes) 

20 ms 
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Using the information gained from these tests, we built 
a library which provides support for using Mether efficiently. 
The library provides named segments with capabilities; pipe- 
like operations; and other operations to make use of Mether 
convenient for programmers. 

Some applications use shared memory to pass small blocks 
of data between processes. We earlier gave one example: a 
program which ran on a Cray-2 and used shared memory, but 
only for (user-written) send and receive primitives. For those 
applications which wished to use Mether as a message-passing 
nledium, we support a set of functions that establish pipe-like 
semantics. One may create a pipe or open an existing pipe. In 
either case, two pointers are returned, a read and a write pointer. 
These pointers may be used to read the pipe and write the pipe. 
using the pointer pair. A bidirectional flow of data is possible. 
Note that this message-like support is provided for those who use 
it, but it is not the only way to use Mether. The programming 
effort of emulating sendreceive on Mether is much less than 
writing sendreceive primitives that use, e.g., SunRPC. 

6 Summary 
Mether is an implementation of DSM over Ethernet. Mether 

exposes the cost of accessing a consistent page to the application, 
rather than trying to provide h e  application with a consistent 

view of all pages. Applications may access a not-necessarily up- 
to-date copy of a page at much lower cost in time. Applications 
may also access subsets of a page. The encoding of how an 
application accesses a page is performed in the virtual address. 
Thus an application can reference page subsets or inconsistent 
copies of the page at will, without the overhead of a system call 
to change its access mode. 

Exposing an inconsistent store to the applications program 
mer may at first seem non-intuitive. In fact, p r o g m r s  have 
been dealing with inconsistency for years. We feel that exposing 
the inconsistency of Mether to the application allows the best de- 
cisions to be made about when consistency should be provided. 

We have experimentally determined that the best comprw 
mise for decreasing network load, host load, and latency comes 
at a cost in the number of pages a program uses to comrnuni- 
cate with other programs. The experimental results for Mether 
directly match the analytical and simulation results for Mem- 
net, a distributed shared memory implemented completely in 
hardware. Finding the identical "best" protocol for Mether, a 
software DSM, and Mernnet, a hardware DSM, is surprising. 

In using Mether we have found the programming interface 
much easier to deal with than, e.g., communicating via TCP/IP or 
the various RPC libraries available. We feel that the distributed 
shared memory model is effective for the next generation of 
high-speed networks. 
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