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A stirrer for magnetohydrodynamically controlled minute fluidic networks

Abstract
Magnetohydrodynamics may potentially provide a convenient means for controlling fluid flow and stirring
fluids in minute fluidic networks. The branches of such fluidic networks consist of conduits with rectangular
cross sections. Each conduit has two individually controlled electrodes positioned along opposing walls and
additional disk-shaped electrodes deposited in the conduit's interior away from its sidewalls. The network is
positioned in a uniform magnetic field. When one applies a potential difference between a disk-shaped
electrode and two wall electrodes acting in tandem, circulatory motion is induced in the conduit. When the
potential difference alternates periodically across two or more such configurations, complicated (chaotic)
motions evolve. As the period of alternation increases, so does the complexity of the flow. We derive a two-
dimensional, time-independent expression for the magnetohydrodynamic creeping flow around a centrally
positioned disk-shaped electrode in the limit of zero radius. With the aid of this expression, the trajectories of
passive tracers are computed as functions of the alternations protocol and the electrodes' locations. The
theoretical results are qualitatively compared with flow visualization experiments.
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A stirrer for magnetohydrodynamically controlled minute fluidic networks
Shizhi Qian, Jianzhong Zhu, and Haim H. Baua)

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315

~Received 19 December 2001; accepted 11 July 2002; published 5 September 2002!

Magnetohydrodynamics may potentially provide a convenient means for controlling fluid flow and
stirring fluids in minute fluidic networks. The branches of such fluidic networks consist of conduits
with rectangular cross sections. Each conduit has two individually controlled electrodes positioned
along opposing walls and additional disk-shaped electrodes deposited in the conduit’s interior away
from its sidewalls. The network is positioned in a uniform magnetic field. When one applies a
potential difference between a disk-shaped electrode and two wall electrodes acting in tandem,
circulatory motion is induced in the conduit. When the potential difference alternates periodically
across two or more such configurations, complicated~chaotic! motions evolve. As the period of
alternation increases, so does the complexity of the flow. We derive a two-dimensional,
time-independent expression for the magnetohydrodynamic creeping flow around a centrally
positioned disk-shaped electrode in the limit of zero radius. With the aid of this expression, the
trajectories of passive tracers are computed as functions of the alternations protocol and the
electrodes’ locations. The theoretical results are qualitatively compared with flow visualization
experiments. ©2002 American Institute of Physics.@DOI: 10.1063/1.1504713#

I. INTRODUCTION

In recent years, there has been a growing interest in de-
veloping minute fluidic systems for biodetection, biotechnol-
ogy, chemical reactors, and medical, pharmaceutical, and en-
vironmental monitoring. In many of these applications, it is
necessary to propel fluids from one part of the device to
another, control the fluid motion, stir, and separate fluids. In
minute devices, these tasks are far from trivial. Typically,
electrostatic forces are being used to move liquids around.
However, these forces usually induce very low flow rates and
require the use of very high electric fields.

The application of electromagnetic forces to pump, con-
fine, and control fluids is by no means new. To date, how-
ever, magnetohydrodynamics~MHD! has mostly been used
to pump and control highly conducting fluids such as liquid
metals and ionized gases and to study ionospheric/
astrophysical plasmas.1,2 The potential use of electromag-
netic forces in microdevices has attracted much less atten-
tion. Recently, though, various groups3–5 constructed MHD
micropumps on silicon and ceramic substrates and demon-
strated that these pumps are able to move liquids around in
microconduits. The liquids need to be only slightly
conductive—a requirement met by many biological solu-
tions.

Subsequently, Bau6 demonstrated the feasibility of using
magnetohydrodynamic~MHD! forces to control fluid flow in
minute fluidic networks. The basic building block~branch!
of such a network is depicted in Fig. 1. The branch consists
of a conduit with two electrodes (C1 and C2) deposited
along its two opposing walls. The conduit is filled with an

electrolyte solution. Many conduits of the type depicted in
Fig. 1 can be connected to form a network. The entire device
is subjected to a uniform magnetic field in thez direction.
When a potential difference is applied across the electrodes
C1 andC2, the resulting current interacts with the magnetic
field to form body~Lorentz! forces that propel the fluid. By
judicious application of different potential differences to dif-
ferent electrode pairs, one can direct the liquid to flow along
any desired path without a need for mechanical pumps and
valves.6 In other words, MHD allows us to control fluid flow
in the minute fluidic network in very much the same way as
one controls electric current flow in an electronic circuit.

In this paper, we demonstrate that the basic network el-
ements can perform yet another important task—that of stir-
ring. In order to facilitate chemical reactions and biological
interactions, it is necessary to bring various molecules to-
gether. Diffusion alone is far too slow to achieve this task.
Since the Reynolds numbers of flows in microdevices are
usually very small, one is denied the benefits of turbulence as
an efficient mixer. However, since one can readily pattern
electrodes of various shapes, one can induce electric fields in
different directions. The interaction of such electric fields
with the magnetic field can be used to induce secondary
complex flows that may be beneficial for stirring and mixing.
The feasibility of inducing such secondary flows, including
chaotic flows, was demonstrated in Bau, Zhong, and Yi7 and
Yi, Qian, and Bau8 ~to which we refer hereafter as YQB!. For
example, the latter paper describes a stirrer consisting of a
closed cylindrical cavity with an electrode~C! deposited
around its periphery and two additional electrodesA and B
deposited eccentrically inside the cavity on the cavity’s bot-
tom. Chaotic advection was obtained by alternating the elec-

a!Author to whom correspondence should be addressed; electronic mail:
bau@seas.upenn.edu
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tric potential difference across electrodesA–C and B–C.
Such a stirrer is not suitable, however, when one desires to
facilitate through flow.

In this paper, we describe a variant of YQB’s stirrer that
is better suited for integration into the MHD network. Only
slight modifications are needed in the network’s branches so
that they can serve the double function of a ‘‘pump’’ and a
‘‘stirrer.’’ To this end, we deposit point electrodes~denoted
An in Fig. 1! along the centerline of the conduit’s bottom.
When we wish the network branch to operate as a stirrer, we
connect both electrodesC1 andC2 to the same terminal of
a power supply so that they act in tandem as the single elec-
trode C. When a potential difference is imposed across any
of the central electrodesAn and the electrodeC, circulatory
motion ensues with the liquid circulating around the elec-
trodeAn . When two or more internally positioned electrodes
are alternately actuated, complex, chaotic flows are induced.
This arrangement is similar to Aref’s9 blinking vortex. In
contrast to Aref’s highly idealized, inviscid system, the stir-
rer studied here can be readily constructed. Our paper is yet
another example of Stokes flow that exhibits chaotic advec-
tion. The literature on chaotic Stokes flows is quite exten-
sive, and additional relevant papers are cited in YQB. The
most relevant paper to our study is the work of Hackborn
et al. on chaotic advection in Stokes flow between long, par-
allel plates.10 The flow is driven by the rotation of a confined
cylinder and longitudinal oscillation of one of the confining
plates. In contrast, our stirrer does not require any moving
parts.

This paper is organized as follows. We first derive a
singular solution for the magnetohydrodynamic, creeping
flow between long parallel planes for the special case when
the radius of the inner electrode shrinks to zero. Subse-
quently, using a quasistatic approximation, we compute the
flow field and the trajectories of passive tracers when two or
more centrally located (An) electrodes are actuated alter-
nately. Not surprisingly, as the period of the modulations
increases so does the complexity of the flow. Finally, the
theoretical predictions are qualitatively compared with ex-
perimental observations.

II. MATHEMATICAL MODEL: STEADY FLOW

In this section, we describe a somewhat idealized two-
dimensional model of the MHD stirrer. Such a model is ne-
cessitated by our need for a relatively simple and accurate
expression for the flow field in order to enable the study of

chaotic advection. Despite its simplicity, the model gives a
qualitatively reasonable description of the phenomena that
occur in experiments.

Consider two long parallel plates (x56h) placed dis-
tance 2h apart~Fig. 1!. ElectrodesC1 andC2 are deposited
along these plates. The electrodes are wired to act in tandem
as a single electrodeC that is connected to one terminal of a
power supply. Additional ‘‘point’’ electrodesAn (n50,61,
62,...) are located middistance betweenC1 and C2 and
placed distances~c! apart. In other words, the point elec-
trodes (An) are located at (x,y)5(0,nc). The conduit is
filled with at least weakly conducting liquid of electrical con-
ductivity ~s! and viscosity~m!. A potential differenceDV is
imposed betweenoneof the central electrodes (An) and elec-
trodeC. The conduit is placed in a uniform, static magnetic
field of flux densityB5Bêz directed in the~z! direction. We
use bold letters to denote vectorial quantities.

According to Ohm’s law for a moving conductor of con-
ductivity s in a magnetic field, the potential difference
(DV5V12V2) induces a current of density:

J5s~2“V1uÃB!. ~1!

In Eq. ~1!, u is the fluid’s velocity. The interaction between
the electric current and the magnetic field generates a~volu-
metric! Lorentz force of density JÃB. For a two-
dimensional, incompressible flow, the momentum equation is

r
Du

Dt
5JÃB2“p1m¹2u, ~2!

wheret is time,p is the pressure, andr is the liquid’s density.
We nondimensionalize all quantities using~h! as the length
scale;U5BI8h/2pm as the velocity scale;h/U as the time
scale;BI8/2p as the pressure scale; andI 8/2ps as the elec-
tric potential scale. In the above,I 8 is the electric current per
unit depth~in thez direction!. The dimensionless momentum
equation assumes the form

Re
]u

]t
5~2“V1Ha2uÃêz!Ãêz2“p1¹2u, ~3!

whereêz is a unit vector in thez direction.
In Eq. ~3!, we neglected advection, assuming that the

Reynolds number (Re5Uh/y) is small. Later, we will also
assume that the ratio between the convective time scale and
the time modulations of the electric field (T* ) is h/(UT* )
!1, that the flow is quasistatic, and that the time derivative
can be neglected.11 Ha5BhA(s/m) is the Hartman number.
When the liquid is a weak conductor of electricity such as in

FIG. 1. A liquid-filled conduit is confined between two
parallel plates (x56h). A uniform magnetic field,B, is
parallel to thez coordinate. ElectrodesC1 andC2 are
deposited along the confining plates (x56h) and
‘‘point’’ electrodes A21 , A0 , and A1 are positioned
alongx50, distancec apart. When the device operates
as a stirrer, electrodesC1 and C2 are wired to act in
tandem as a single electrodeC. ~a! Top view; ~b! side
view.

3585Phys. Fluids, Vol. 14, No. 10, October 2002 A MHD chaotic stirrer for fluidic networks



the case of saline solutions, the Hartman number is small and
the termuÃêz can be safely neglected. For example, in our
case, Ha;O(1022):

The electric potential~V! satisfies the Laplace equation:

¹2V50. ~4!

The solution of the Laplace equation can be readily obtained
utilizing Log–Tan–Cylinder coordinates.12,13 Here we con-
sider the limiting case when the inner electrodeAn shrinks to
the point (0,n c). More specifically, as the radius of the elec-
trode decreases, the potential differenceDV increases so as
to maintain a fixed current. Accordingly,V satisfies the fol-
lowing boundary conditions:

V~61,y!5V~x,6`!50 and lim
y→nc

V~0,y!→`. ~5!

Equations~4! and ~5! admit the solution12

V~x,y!5 ln~F~x,y!!, ~6!

where

F~x,y!5

122 expS p~y2nc!

2 D cosS px

2 D1exp~p~y2nc!!

112 expS p~y2nc!

2 D cosS px

2 D1exp~p~y2nc!!

.

~7!

It is convenient to introduce the stream functionc such
that ux5]C/]y and uy52]C/]x. The dimensionless
steady-state momentum equations,

]

]y
~¹2C1V!5

]p

]x
,

~8!

2
]

]x
~¹2C1V!5

]p

]y
,

with the boundary conditions,

C~61,y!5
]C~61,y!

]x
5C~x,6`!5

]C~x,6`!

]y
50,

~9!

admit the solution

Cn~x,y!52
x21~y2nc!2

4
ln@F~x,y!#

2E
0

`

h~x,k!cos@k~y2nc!#dk. ~10!

In the above,

h~x,k!5
sech2~k!@ tanh~k!cosh~kx!2x sinh~kx!#

k1cosh~k!sinh~k!
. ~11!

Both terms in~10! satisfy the biharmonic equation. The sec-
ond term is a Fourier integral that was introduced to satisfy
the boundary conditions atx561. As uyu→`, the first term
decays likey2 exp(2puyu/2). The integrand decays rapidly
~like e23k).

Equation ~10! is a new singular solution for the two-
dimensional, magnetohydrodynamic Stokes problem for a
point electrode confined between two parallel planes~elec-

trodes!. Figures 2~a! and 2~b!, respectively, depict the com-
puted and experimentally observed flow fields whenn50.
The experimental setup is described later in the paper. The
flow visualization was carried out by dye injection. The flow
circulates around the electrode with an elliptic fixed~stagna-
tion! point at the electrode’s location. The MHD flow topol-
ogy is quite different from the flow field induced by a rotlet
confined between two parallel plates.13 In the case of the
rotlet, the flow consists of an infinite sequence of Moffatt14

eddies. The existence of an angular Lorentz force precludes
the formation of such eddies in our case.

Figure 3 depicts the velocity profilesuy(x,0) and
ux(0,y). The velocity decreases rapidly~exponentially! asuyu
increases. This is consistent with the exponential decrease in
the current’s density as one moves away fromA0 . Although
the above-described flow serves to move liquid transversely
across the width of the conduit, the motion is quite regular,
and the stirring is not very efficient. In order to improve the
efficiency of the stirring, we alternate the potential difference
across a few groups (An–C) of electrodes.

III. TIME-MODULATED FLOWS

In this section, we study the chain of events when the
potential difference is alternated across two, i.e.,A21–C and
A1–C, and three, i.e.,A21–C, A0–C, andA1–C, configu-
rations. If one so desires, a larger number of electrode groups
can be engaged. When we engage two electrode groups, we
impose a potential difference acrossA21–C for the time
interval 0,t,T1 and then a potential difference of the same
magnitude~albeit not necessarily the same polarity! across
A1–C for the time intervalT1,t,T. Subsequently, the pro-
cess is repeated with periodT. Similarly, when we utilize
three electrode groups, we impose the same potential differ-
ences acrossA21–C, A0–C, andA1–C for the time inter-
vals 0,t,T1 , T1,t,T2 , andT2,t,T, respectively. Sub-
sequently, the process is repeated. Of course, one can use
other algorithms as well. The choice of the algorithm that
provides the most efficient stirring process is an interesting
optimization problem that we do not address here.

We assume that the Reynolds number is small and the
potential alternations are sufficiently slow so that the flow
can be approximated as quasistatic. We also assume that the
instantaneous flow field is given by the steady-state solution

FIG. 2. The flow field induced by a single electrode groupA0–C. ~a!
Computed streamlines.~b! Flow visualization photograph.
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of the Stokes equation. The approximation is commonly used
in the context of Stokes flows and chaotic advection.15,16

When the potential difference is induced across electrode
group An–C, we denote the resulting flow field ascn @Eq.
~10!#. When the potential difference alternates among elec-
trode groupsA21–C, A0–C, and A1–C while A21 , A0 ,
andA1 have the same polarity, the resulting flow field is

c~x,y,t !5c21~x,y! f 21~ t !1c0~x,y! f 0~ t !

1c11~x,y! f 1~ t ! ~12!

provided that no two electrode groups are engaged simulta-
neously, i.e.,f 0(t)5 f 1(t)50 whenf 21(t)Þ0. Simultaneous

engagement of more than one electrode group will alter the
electric field and render Eq.~10! invalid. When electrodes
An–C (n521,0,1) are subjected to different polarities, the
various electrode groups induce motion in opposite direc-
tions, and the ‘‘1’’ sign in ~12! is replaced with a ‘‘2’’ sign.
When we alternate only the two electrodesA21 and A1 ,
f 0(t)50.

The trajectories of passive tracers can be readily com-
puted by numerically integrating the advection equations:

FIG. 3. Velocity profiles of flow induced by a single
electrode groupA0–C. ~a! uy(x,0) as a function ofx;
~b! ux(0,y) as a function ofy.

FIG. 4. Superposed flow fields in the limit ofT→0 when two electrode
groups (A21–C andA1–C) are alternately activated. The symbol~3! de-
notes the positions of the ‘‘point’’ electrodes:~a! co-rotating andc50.5; ~b!
co-rotating andc52; ~c! counter-rotating andc52.

FIG. 5. Stroboscopic image~Poincare´ section! when two~co-rotating! elec-
trode groups are engaged.c51, T54, andT15T/2. At t50, passive tracers
were inserted at~0, 0!, ~0, 60.45!, ~0, 60.6!, ~0, 60.8!, ~0, 60.9!, ~0, 1.75!,
~0, 2!, ~0, 2.25!, and~0, 2.5!.
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ẋ5ux~x,y,t !, ẏ5uy~x,y,t !. ~13!

We computed the particles’ trajectories by integrating the
above-mentioned equations using Matlab’s fourth-order
Runge–Kutta algorithm. We were particularly interested in
constructing stroboscopic images~Poincare´ sections! that de-
scribe the location of the tracer at the beginning of each
period, i.e.,x(kT), wherek50,1,2,... andx5$x,y%. In other
words, the Poincare´ section maps the position of a particle at
time t(modT) to its position one period later,x(kT)→x((k
11)T). Since the flow is incompressible, the map preserves
area.

One can explore various types of time modulations@vari-
ous functionsf n(t)]. Here, for brevity, we select the simple
on–off protocol. The resulting flow field is periodic in time
with periodicity T, i.e., c(x,y,t1T)5c(x,y,t). The ‘‘on–
off’’ potocol is not quite consistent with the Stokes approxi-
mation that requires the time constant associated with the
modulations to be larger than the viscous time constant. Aref
and Balachandar15 have, however, investigated the effects of
various protocols on the kinematics of the flow between two
rotating, eccentric cylinders and determined that an ‘‘on–
off’’ protocol gives qualitatively indistinguishable results
compared to ones obtained with ‘‘smoother’’ protocols. In-
deed, a functionf (t) that provides a more gradual time-wise

change will only modify the ‘‘effective’’ time intervalTn

without changing the qualitative nature of the flow. Within
each time interval, the passive tracer’s trajectory coincides
with the streamlines depicted in Fig. 2. Choosing a different
f (t) would merely have the effect of changing the length of
the segment that a particle travels along a streamline in the
allotted time. In fact, we can introduce a new time-variable,
t5* t f (j)dj, to eliminate the explicit dependence on the
particular choice off (t). Finally, we note that the more in-
teresting flow phenomena occur when~T! is relatively large
and when the quasistatic approximation is likely to be valid.

We emphasize again that the expressions for the flow
fields are valid whenonly one electrodeAn is active at any
given time. Nevertheless, it is instructive to examine the flow
field in the limiting case of the alternations period,T→0. We
think of T as a ‘‘control’’ parameter and follow the chain of
events asT increases. WhenT→0, the streamlines associated
with various electrode groups are simply superposed. This
superposition reveals the existence of hyperbolic and elliptic,
fixed ~stagnation! points that have a profound effect on the
evolution of the flow asT increases. Moreover, as we will
see later, both in experiment and theory, whenT is small, the
passive tracers’ trajectories follow closely the superposed
flow field.

Figure 4 depicts the streamlines for a few cases when
two electrode groups are engaged andT50. In Figs. 4~a! and
4~b!, the electrodesA21 and A1 are located, respectively,
distances 1 and 4 apart and have the same polarity. Witness
the presence of one hyperbolic fixed-point midway between
the two electrodesA21 andA1 and two elliptic fixed points
next to the electrodesA21 andA1 . The qualitative features
of Figs. 4~a! and 4~b! appear to be independent of the dis-
tance between the electrodes. The flow field consists of pe-
riodic orbits ~tori! of periods~G! ranging from 0 to infinity.
There are two types of orbits: orbits that encircle only one of
the elliptic fixed points and orbits that encircle both elliptic
points. These two families of tori are separated by ho-
moclinic orbits that pass through the hyperbolic~saddle!
point. The flow topology changes considerably when the two
inner electrodes,A21 andA1 , have opposing polarities@Fig.

FIG. 6. Superposed flow fields in the limit ofT→0
when three evenly spaced electrode groups, (A21–C,
A0–C, and A1–C), are alternately engaged. The~3!
denotes the positions of the ‘‘point’’ electrodes:~a! co-
rotating, c50.5; ~b! co-rotating, c52; ~c! counter-
rotating,c50.6; and~d! counter-rotating,c52.

FIG. 7. Schematic description of the experimental device.
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4~c!#. In this case, the two electrode groups induce counter-
rotating vortices separated by the streamlineC(x,0)50.
Each family of streamlines is centered about an elliptic, fixed
point located in the vicinity of electrodesA21 andA1 .

When T50, the system is autonomous and integrable.
WhenT.0, the system may no longer be integrable. Chaotic
behavior may arise both because of the disruption of the
hyperbolic fixed point and the perturbation of the tori. This
process is illustrated in Fig. 5. Figure 5 depicts the strobo-
scopic image~Poincare´ section! of the passive tracer par-
ticles’ trajectories. The ‘‘particles’’ were initially inserted at
~0,0!, ~0,60.45!, ~0,60.6!, ~0,60.8!, ~0,60.9!, ~0,1.75!,
~0,2!, ~0,2.25! and ~0,2.5! when T54, c51, T15T/2 and
two electrode groups,A21–C andA1–C, are engaged. Both
A21 andA1 have the same polarity. Witness the emergence
of a chaotic region resulting from the homoclinic tangle and
the formation of new hyperbolic and elliptic points.

More complicated flow topologies can form when more
than two electrode groups are engaged. Figure 6 depicts a
few examples when three electrode groups (A21 , A0 , and
A1) are engaged. In Figs. 6~a! and 6~b!, all the ‘‘point’’ elec-
trodes have the same polarity. In Figs. 6~c! and 6~d!, the
central electrodeA0 has a different polarity than the two
other electrodes (A21 andA1). In addition to its dependence

on the electrodes’ polarity, the flow field’s topology also de-
pends on the distance between the electrodes. When all three
‘‘point’’ electrodes have the same polarity and the distances
between the electrodes are relatively small@Fig. 6~a!, c
,1], all the streamlines encircle the elliptic point located at
A0 . When the distances between the electrodes are increased
(c.1), one observes the presence of two hyperbolic and
three elliptic fixed points. One would expect that the pres-
ence of multiple hyperbolic points would lead to an efficient
stirring process. The situation is quite different when the po-
larity of the electrodeA0 differs from that of the other two
‘‘point’’ electrodes@Figs. 6~c! and 6~d!#. When the separation
between the electrodes is relatively small@Fig. 6~c!#, one
observes the presence of three elliptic, fixed points and two
hyperbolic points. Some of the streamlines encircle only one
of the three ‘‘point’’ electrodes while other streamlines en-
circle all three ‘‘point’’ electrodes. As the distance between
the electrodes increases, the two hyperbolic, fixed points mi-
grate toward the sidewalls (x561). Whenc.1 @Fig. 6~d!#,
these two hyperbolic points anchor on the sidewalls (x
561), and three separate families of streamlines form. A
variety of other flow structures~which we do not describe
here! can be formed by adding additional electrodes and by
varying the distances between the electrodes. In Sec. V, we
will describe the chain of events as the periodT increases.

IV. FLOW VISUALIZATION EXPERIMENTS

To illustrate that similar flows to the ones predicted can
be observed in practice, we fabricated a prototype of a MHD
stirrer with low temperature, co-fired ceramic tapes.17 Figure
7 depicts schematically the experimental device. To facilitate
easy flow visualization, the device was made relatively
‘‘large.’’ The conduit’s half width and depth were, respec-
tively, h54 and 2 mm. The device consisted of two 32-mm-
long, straight conduit segments connected with semicircular
arcs on both ends. ElectrodesC1 andC2, made of DuPont
6146 gold paste, were printed along the walls of the straight
segments. Five ‘‘point’’ electrodes with radii of approxi-
mately 0.3 mm were printed along the centerline of the

FIG. 8. The electric current as a function of applied voltage. Graphs~a! and
~b! correspond, respectively, to 0.1 M610% and 0.36 M610% NaCl solu-
tion in water.

FIG. 9. Stroboscopic image~I! and flow visualization photos~II ! when two~co-rotating! electrode groups are engaged.c51 andT15T/2. ~a! T54; ~b! T58;
~c! T520.
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straight conduits’ bottoms. The ‘‘point’’ electrodes were po-
sitioned at various distances apart to facilitate the examina-
tion of the effect of the interelectrode distance on the nature
of the flow. In the upper conduit, the ‘‘point’’ electrodes were
positioned at distances64 mm (A61) and610 mm (A62)
from the central electrode (A0). In the lower conduit, the
‘‘point’’ electrodes were positioned at distances62 and66
mm from the conduit’s midlength. All the electrodes were
connected via computer-controlled relay actuators and a D/I
card~PCL-725, Advantech Co., Ltd.! to the terminals of two
dc-power supplies~Hewlett Packard, HP 6032A!. The relays
were wired and programmed to switch ‘‘on’’ and ‘‘off’’ each
of the electrodes. The device was positioned on top of a
neodymium~NdFeB, Polymag Inc.!, permanent magnet that
provided a magnetic field ofB;0.4 T. The cavity was filled
with 0.36 M610% saline solution with a conductivity ofs
5;3.9V21 m21. Since the magnitude of the Lorentz force
is dictated by the intensity of the current, the solution’s con-
ductivity merely determines the potential difference needed
to obtain the desired current.

After inserting the saline solution in the stirrer, we mea-
sured the current in the device as a function of the potential
difference between electrodesA0 and C ~Fig. 8!. The mea-
surements were carried out for 0.1 M~A! and 0.36 M~B!
saline solutions. Witness that there is a potential difference
threshold (V0) such that beneath the threshold value little
current passes in the solution. Once the potential difference
increases above the threshold, the current increases nearly
linearly with the potential difference. We conducted all our
experiments at currents well below 5 mA. When the current’s
magnitude was increased above;6 mA, we observed sig-
nificant formation of bubbles next to the electrodes.

When the device operated in a ‘‘pumping’’ mode, a po-
tential difference was imposed across the electrode pairC1

andC2, and liquid circulated around the device. When the
device operated in a ‘‘stirrer’’ mode, the two wall electrodes
were connected together to act in tandem as a single elec-
trodeC, and the potential difference alternated between vari-
ous An and C. In our experiments, the alternation period
ranged from 1 to 10 s. We varied the effective~dimension-
less! period, T, by varying both the potential-difference
across the electrodes and the actual~dimensional! period.

The flow field was visualized by introducing a drop of
dye ~Fluorescent Liquid Dye, Cole-Parmer Instrument Com-
pany! at various locations inside the channel. Because of
equipment limitations, the flow visualization allowed us to
obtain only a crude qualitative description of the flow field.
The images of the flow field were captured with both video
and still cameras. The movies provide a much more vivid
account of the evolution of the dye tracers.18

In our experiments, we did not observe any significant
bubble generation. This is consistent with the very low elec-
trical currents transmitted through the apparatus. Over time,
however, the electrodes degraded. This could be a problem in
a practical device designed to operate for an extended period
of time. The erosion problem can be significantly reduced or
even eliminated by appropriate selection of electrode mate-
rial and electrolyte solution and/or through the use of an ac
electric field. By appropriate synchronization of an ac elec-

tromagnetic field with an ac current, the direction of the Lor-
entz force would remain unaltered.4

V. CHAOTIC ADVECTION

The stirring process depends on a number of parameters
such as the electrodes’ locations, the number of electrode
groups engaged, the protocol for time variation, and the pe-
riod of the time alternations. Here, we provide a sample of
our computations and experimental observations. We con-
sider the cases of two and three alternating agitators~elec-
trode groups! with distancec5h between any two adjacent

FIG. 10. Deformation of a material blob alternately excited by two electrode
groups. Co-rotating,c51 andT520. ~a! t50; ~b! t5T; ~c! t52T; ~d! t
53T; ~e! t54T; ~f! t55T; ~g! t56T; ~h! t515T; and ~i! t520T.
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An electrodes. When two or three agitators are engaged, we
set, respectively,T15T/2 andT15T25T/3. We use the flow
visualization experiments to illustrate that qualitatively simi-
lar phenomena to that predicted occur in the experiments.
The periodT in the experiment is an approximation of the
theoretical value.

Figure 9 depicts the stroboscopic images~Poincare´ sec-
tions! of a passive tracer~I! and flow visualization observa-
tions ~II ! when two agitators induce co-rotating motions and
T54 ~a!, 8 ~b!, and 20~c!. The stroboscopic images~I! were
obtained by integrating Eq.~13! and documenting the trac-
er’s location at the end of each period. The equations were
integrated for 5000 periods and the tracer particle~s! were
initially injected at$0, 0%, $0, 60.9% and $0, 2.5% @Fig. 9~a!#
and$0, 0% @Figs. 9~b! and 9~c!#. In the experiments, a drop of
dye was initially inserted at approximately$0, 2% @Fig.
9~aII!#, and$0, 0% @Figs. 9~bII! and 9~cII!#. When the period
~T! is relatively small@Fig. 9~aI!#, only narrow regions of
irregularity are observed. Both the theoretical and experi-
mental data illustrate that at relatively small periods, the flow
has a similar structure to the ‘‘superposed’’ flow topology
observed in the limiting case ofT→0. As T increases@Fig.
9~b!#, so does the size of the chaotic region and the spread of
the dye. WhenT520 @Fig. 9~c!#, the chaotic region has
nearly occupied the entire region23,y,3.

Another way to examine the stirring process is to track
the history of a material blob inserted into the liquid. To this
end, we inserted a square material blob of edge size 0.1,
centered at~0, 0!, and tracked its evolution as a function of
time by integrating the trajectories of 104 points initially
evenly distributed within the square. Figure 10 depicts the
evolution of the blob at timest50 ~a!, T ~b!, 2T ~c!, 3T ~d!,
4T ~e!, 5T ~f!, 6T ~g!, 15T ~h!, and 20T ~i! whenT520 and
co-rotating agitators. Figure 10 illustrates the rapid stretching
and folding processes associated with chaotic advection. At
time t56T, the trace particles have visited most of the mix-
ing region, allowing diffusion~absent in Fig. 10! to complete
the mixing process.

For the case ofT520 and two counterotating agitators,
Fig. 11 depicts the evolution of a square material blob of
edge size 0.1, centered at~0, 0!, as a function of time by
integrating the trajectories of 104 points initially evenly dis-
tributed within the square. Figure 11 compares qualitatively
the computational results with experimental observations.
Due to the rapid stretching process, we believe that the dif-
ferences in the blob’s initial shape in the experiment and
theory should have only a minor effect on the blob’s evolu-
tion. Figure 11 depicts the blob’s evolution at timest52T
~a!, 3T ~b!, 4T ~c!, 6T ~d!, and 20T ~e!. More complicated
motions can be produced when more than two agitators are
engaged.

FIG. 11. Deformation of a material blob alternately ex-
cited by two agitators. Counter-rotating,c51 and T
520. I and II represent, respectively, the computational
results and the visualization photos.~a! t52T; ~b! t
53T; ~c! t54T; ~d! t56T; ~e! t520T.
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VI. CONCLUSIONS

The paper describes a low Reynolds number, novel mag-
netohydrodynamic stirrer that can be used in minute fluidic
devices in general and in magnetohydrodynamic fluidic cir-
cuits in particular. The MHD circuit consists of individually
controlled branches. With appropriate adjustment of potential
differences across electrodes, each of the network branches
can double as a stirrer. Neither the MHD circuit nor the
stirrer requires any mechanical parts. The pumping and stir-
ring functions are achieved by judicious interplay between
magnetic and electric fields to generate Lorentz forces in any
desired direction. When network branches are operating as
stirrers, potential differences are alternately applied between
inner and wall electrodes. Each stirrer is equipped with two
or more agitators. By alternately actuating the agitators, we
demonstrate both in experiment and theory that it is possible
to induce chaotic advection and efficient stirring. The theo-
retical results are in good qualitative agreement with experi-
mental observations. This is yet another practical example of
a system that exhibits chaotic advection in the Stokes flow
regime. Moreover, this investigation illustrates a way of con-
structing inexpensive laboratory experiments that exhibit
complex flow behaviors.

Unfortunately, the operation of the MHD fluidic network
and stirrer is not completely problem-free. Some potential
problems are bubble formation, electrode consumption, and
migration of analytes in the electric field. The severity of
these undesired phenomena depends on the device’s configu-
ration and its length of operation. For example, bubble for-
mation is not likely to be a problem when one operates for
relatively short time intervals or with open trenches. More-
over, it does not appear to be a problem at very low potential
differences. Electrode erosion is not likely to be of concern
in disposable devices. Furthermore, the adverse effects of
bubble generation, electrode consumption, and charged mol-
ecules migration could be greatly reduced by operating with
synchronized, alternating magnetic and electric fields~i.e.,
the various electrodes assume alternately the roles of cath-
odes and anodes! and/or by judicious selection of the analyte

solution. Finally, the electrodes can be passivated to reduce
their erosion.
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