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Generating Sequence of Eye Fixations Using Decision-theoretic Attention
Model

Abstract
Human eyes scan images with serial eye fixations. We proposed a novel attention selectivity model for the
automatic generation of eye fixations on 2D static scenes. An activation map was first computed by extracting
primary visual features and detecting meaningful objects from the scene. An adaptable retinal filter was
applied on this map to generate "Regions of Interest" (ROIs), whose locations corresponded to those of
activation peaks and whose sizes were estimated by an iterative adjustment algorithm. The focus of attention
was moved serially over the detected ROIs by a decision-theoretic mechanism. The generated sequence of eye
fixations was determined from the perceptual benefit function based on perceptual costs and rewards, while
the time distribution of different ROIs was estimated by a memory learning and decaying model. Finally, to
demonstrate the effectiveness of the proposed attention model, the gaze tracking results of different human
subjects and the simulated eye fixation shifting were compared.
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Erdan Gu† Jingbin Wang ‡ Norman I. Badler †
†Computer and Information Science Department, University of Pennsylvania, PA, 19104

‡Computer Science Department, Boston University, MA, 02215
†{erdan, badler}@seas.upenn.edu ‡jingbinw@cs.bu.edu

Abstract
Human eyes scan images with serial eye fixations. We

proposed a novel attention selectivity model for the auto-
matic generation of eye fixations on 2D static scenes. An
activation map was first computed by extracting primary
visual features and detecting meaningful objects from the
scene. An adaptable retinal filter was applied on this map
to generate “Regions of Interest” (ROIs), whose locations
corresponded to those of activation peaks and whose sizes
were estimated by an iterative adjustment algorithm. The
focus of attention was moved serially over the detected ROIs
by a decision-theoretic mechanism. The generated sequence
of eye fixations was determined from the perceptual benefit
function based on perceptual costs and rewards, while the
time distribution of different ROIs was estimated by a mem-
ory learning and decaying model. Finally, to demonstrate
the effectiveness of the proposed attention model, the gaze
tracking results of different human subjects and the simu-
lated eye fixation shifting were compared.

1. Introduction

The human visual system is highly non-uniform in sam-
pling, coding, processing and understanding. It is deter-
mined by the anatomical structure of the human retina, com-
posed of a high-resolution central fovea and a low resolu-
tion periphery. The visual attention system directs the lim-
ited computational resources to a small subset of sensory
information from environment stimuli for visual process-
ing. Consequently, the visual system places the fovea on
the interesting parts of the scene. How the visual attention
system works efficiently will be decomposed into four sub-
questions:

• How does the visual system know what information is
important enough to capture attention?

The visual system usually employs two mecha-
nisms to limit processing to important information of
the world. They appear to be implemented in a rapid,
bottom-up, conspicuous-driven manner or in a slower,

top-down, task-prominent manner [6]. The bottom-up
setting has been developed in many computer vision
models [19] [8] to make use of “saliency” for direct-
ing attention. The saliency map is established by inte-
grating all of the separated feature maps, which high-
light certain parts of the scene that differ from their
surroundings by specific feature extraction [3]. As de-
scribed in Section 2, the saliency map in current work
was a combination of primary feature maps on color,
intensity and orientation [9]. Other than the feature
saliency map, the final activation map also integrates
objects (face) pop-out [2] [4] and the peak locations of
the map became candidates for the ”Regions of Inter-
est” (ROIs). ROI, or fixation field, is the area of scene
to be fixated upon.

• What kind of “mental image” results from the non-
uniform coding of the world stimuli?

Itti et al. [7] implemented the foveation fil-
ter through interpolation across levels of a Gaussian
Pyramid to compute the ”mental image”. But Gaus-
sian model is inconsistent with empirical data on
the mapping from the primate retina to the vi-
sual cortex. The current method applied log-polar
sampling [1] as an approximation to the foveated rep-
resentation of the visual system. To speed up the com-
putation, the method partitioned the log-polar retinal
plane into receptive fields. Then, an adaptable divi-
sion of receptive fields was applied iteratively to de-
termine the appropriate size of the fixation field.
The details of the above process is given in Sec-
tion 3.

• How does the visual system know how to allocate the
focus of attention to interpret the scene rather than do-
ing it at random?

Models of visual information acquisition are clas-
sified into two categories. Visual search [16] empha-
sizes on locating a single target and the search time re-
quired. Other models [21] focus on the eyes, regarded
as a ”single server queue”, in visual scanning. The cru-
cial concern is not target detection, but instead the scan
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order and the viewing time assigned to various ROIs.
Many works [9] [17] present the sequence of the at-
tended locations in the order of decreasing saliency.
This strategy, however, conflicts with a fact of visual
scanning people are not willing to move their gaze fre-
quently. Therefore, considering perceptual cost and re-
ward, Wickens et al. described an attentional expected
value model, which was validated by the experiments
of pilot task management [21]. But it was a descriptive
model, which mainly stressed that the dynamic pro-
cessing is under control. From a decision-theoretic per-
spective, we proposed a computational model to find
an optimal selection strategy for 2D static scenes in
Section 4.

• How do we assess the plausibility of our attention se-
lectivity model?

It is believed that eye movements are tightly linked
to visual attention [22]. Thus, tracking eye movement
is a suitable means for studying the simulated visual
attention selectivity. In Sections 5 and 6, an empiri-
cal validation method was performed by comparing the
performance of the computational model and human
subjects. The actual eye fixation sequences and look-
ing time can be obtained from gaze tracking results for
eye movement video. Afterwards, an objective com-
parison criterion was defined to assess the plausibility
of the model-simulated gaze shifting behavior.

2. Generation of Activation Map

One important mode of the attentional operation,
bottom-up control, automatically performs independent ex-
traction of features in parallel and processes them. The
main criteria driving attention here is odd target pop-out,
which generally falls into two categories: visual feature ex-
traction at the lower level and object recognition at the
higher level.

We applied the method of Itti et al [9] for the extrac-
tion of primary features (see Fig.1). First, a number of vi-
sual maps of multi-scale images are computed, for differ-
ent image features, e.g., color, intensity and orientation, us-
ing center-surround difference. Then, the feature maps ob-
tained on different scales are summed, respectively, into
three saliency maps in a competitive way. Finally, a single
scalar measure, which expresses the salience at each loca-
tion of the scene image, can be determined by linear aver-
aging the three saliency maps.

Besides the primary visual features, the current method
also detected pop-out objects based on their social rele-
vance, in particular, human faces by the method proposed
by Paul Viola et al [20]. A learning process based on Ad-
aBoost, as an efficient classifiers, was applied to select a

Figure 1: Generation of saliency map for “party” image: (1) feature ex-
traction, (2) saliency computation for intensity, color and orientation, and
saliency map generation.

small number of critical visual features from “Integral Im-
age” windows. To reduce the computation cost, these clas-
sifiers were combined in a cascade manner, eliminating the
need for further processing of background regions. The cur-
rent application used the CMU face database for learn-
ing purposes. As a result, the final activation map was ob-
tained by combining the scalar saliency map and the de-
tected faces.

3. Estimation of Regions of Interests

The human fovea has a much higher density of photore-
ceptor in the center than the periphery. As a result, people
direct their fovea to the part of scene that they wish to at-
tend. Given the computed activation map, the fixation points
were defined as the peak locations of the activation map
while fixation field sizes were estimated by an adaptable
retinal filter centered on the fixation points.

3.1. Adaptable Retinal Filter

A fixation image is defined as the transformation of
the world image by retinal filter. It is computed by a
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complex-logarithmic fall-off function with eccentric-
ity. The log-polar transformation, or so-called logmap, was
studied as a good approximation to the retino-cortical map-
ping in the human visual system [18]. The logmap, l(X),
was defined as a conformal mapping from the carte-
sian plane X = (x, y)T to the log-polar retinal plane
z = (ξ, η)T :

l(X) =
(

ξ
η

)
=

(
log[x2 + y2]

arctan y
x

)
I(z) = I(l−1(X))

(1)
To allow real-time computation of the logmap images I(z),
we partitioned the retinal plane into ten receptive fields,
whose size and position correspond to a uniform partition of
the plane. The innermost receptive field, defined as the fix-
ation field, corresponds to the part of the scene falling onto
fovea, being sampled with the highest resolution. Thus, the
inner receptive field forms clear patch while the other fields
represents the blurred patch of the retinal image. When an
interesting location, e.g.,the “BBQ beef” in Fig. 2, was fix-
ated on, the sampling rate of the fixation field rose, and
consequently, the accuracy of the perceived information im-
proved. On the other hand, as the size of the fixation field
shrank, the blur patch became larger and lost more acuity
due to the limited visual resources. Interpolation across dif-
ferent receptive fields was implemented to eliminate arti-
facts due to the sample discontinuities on the boundaries of
receptive fields. The partition of receptive fields changes as
a function of the fixation field size, illustrated by Fig. 2(a)
and 2(b), which is in accordance with human dynamic sam-
pling behavior.

Figure 2: Adjustable retinal filter: (a-b): Partitions of receptive field with
large fixation field and small one. (c-d): Resulting retinal images from the
corresponding partition (a-b).

3.2. Estimation of Fixation Field Size

There are two traditional assumptions to account for the
conspicuity-based attention strategy. The space-based atten-

tion theory processes everything within a spatial window
while the object-based theory argues that attention is actu-
ally directed to objects rather than regions. In current im-
plementation, a space-based setting was applied to facili-
tate the computation of the fixation field size. The fixation
field was defined as a regular disk area with center posi-
tion and radius. For the detected face area, the width of the
sub-window used in face detection system was used as the
approximated diameter of the fixation fields.

The candidates for fixation were always locations of the
local maxima of the normalized activation map. The fixa-
tion field sizes, however, could vary in different scene im-
ages, and even for the same image, since they were depen-
dent on the distance from the observer to the scene. More-
over, more activation peaks will merger into a single field
when the larger size of fixation field offered. Therefore,
as suggested by Pomplun’s work [16], the method applied
an iterative algorithm to adaptively adjust the fixation field
sizes in order to achieve the desired fixation fields. The al-
gorithm started using an initial fixation field with an arbi-
trary size, which agreed with human dynamic sampling be-
havior that starts from a random process. The computation
process then counted the number of peaks of the activation
map to determine the number of fixations. The size adjust-
ment procedure stopped when the number of fixations ap-
proached an empirical threshold learned in the preliminary
study.

In summary, the properties of the i-th detected ROI are
represented as:

ROIi = {AVi, Ai}i=1..n

n∑
i=1

AVi = 1 (2)

AVi = Wi

∑
x,y∈Ai

Sx,yPx,y (3)

Ai = {xcenter, ycenter, radius} (4)

where AVi is a weighted sum of the activation value within
area Ai, which defines the geometrical properties of the
area. Sxy represents the scalar value of the given location
on the activation map. A position weight Pxy is assigned by
a normalized Gaussian template centered at the image. Dif-
ferent weights Wi are applied to ROIs for the low level fea-
tures and the face areas, respectively. The weights applied
for the low-level features were chosen to be smaller than
those applied for the faces, and the ratio of these two types
of weights was about 0.5, which was empirically decided
based on the preliminary study on a wide range of naturally
occurring images.

4. Attention Selectivity

Attention selectivity attempts to optimally allocate the
limited human visual resource to explore the perceived en-
vironment. It assures the retrieval of the necessary informa-
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tion for interpreting the scene in a timely manner. To sim-
ulate the above procedure, the model should automatically
decide where to look, when to look there and how long to
stop there.

4.1. Decision-making Attention Shifting

In the current application, we assumed all observers are
at a comfortable distance from the scene image so that eye
movement with a fixed head pose suffices for acquiring the
necessary information. The movement of eye is inexpensive
but not ”free”. Thus, the fixation shifting behavior should
be penalized. The current method took the above two as-
pects into account and modelled them via a designed bene-
fit function, where the overall perceptual benefit was com-
puted as the summation of penalties of gaze shifting and re-
wards of perceived information. The penalty was computed
based on shifting distance between ROIs, while the percep-
tual reward was associated with the importance of the per-
ceived information. Hence, we have:

B(k) = ReW (ik) − C(ik−1, ik) + B(k − 1) (5)
ReW (ik) = f(R(ik)); (6)

R(ik) = KrAVik
; (7)

C(ik−1, ik) = KcDist(ik−1, ik) (8)

where B(k) represents the maximum gained benefit after
the gaze fixation had shifted for k times and stopped on the
ik-th ROI1. Expected cost C(ik−1, ik) represents the per-
ceptual cost by shifting the attention from ik−1-th ROI to
the ik-th ROI. Reward value R(ik) denotes the information
importance of the ik-th ROI relevant to other ROIs in the 2D
scene and is dependent on the value AVi. ReW (ik) is a re-
wardable variable, computed by function f(R(ik)). f(.) is
a time dependent function and will be described in detail in
next section. The function Dist(ik−1, ik) is a L2 distance
measurement between the ik−1-th ROI to the ik-th ROI. It
is important to strike a careful balance between the influ-
ences from the perceptual costs and rewards values through
constants Kc and Kr, so that the penalty value is usually
smaller than the reward value to ensure the the profitabil-
ity of gaze shifting. On the other hand, the cost can not be
too small, otherwise it becomes negligible.

To maximize the benefit function, one basic strategy as-
sumes people would normally shift their focus of attention
to a nearby ROI than one farther away for comparable re-
wardable. But it allows the attention goes the farther ROI in-
stead of the closer one when the former carries much more
important information. This is different from the Greedy
Heuristic in scanpath theory, which assumes that people is
so lazy that they rather linger on many insignificant items

1 Subscript k indicates the times of eye fixation shiftings before
the ik-th ROI receieve the attention.

close to the most salient object, instead of paying attention
to other salient targets which are a little further away.

4.2. Memory Learning and Decay Model

The duration of the fixation affects the accuracy of the
acquired information. Such Information accuracy is a key
factor in computing the benefit of shifting attention because
humans attempt to maintain a certain level of accuracy for
the acquired information in practice.

There are two types of monitoring behaviors that people
perform: overt monitoring and covert monitoring. During
the overt monitoring, a person is actively attending to a tar-
get by placing their fovea on it, consequently, the informa-
tion accuracy of the target becomes higher. If a high enough
accuracy of ROI is reached, its reward is set to zero to sim-
ulate inhibition of return. Otherwise, people will continue
attending to the same ROI since it has higher reward. Dur-
ing covert monitoring, the target is monitored from mem-
ory, and the accuracy decreases over time. When the accu-
racy drops below a certain threshold of tolerant accuracy,
the value of ReW (ik) will set back to R(ik) and the tar-
get ROI will return to the competition pool as a candidate
choice for the next location to be attended. This means that
the fixation will often move back to targets already visited
a long time ago. In the current implementation, the thresh-
old of tolerant accuracy is 50%.

With respect to the above two types of monitoring behav-
iors, two models, a power law of learning model [14] and a
model of memory decay [12], are applied to measure the ac-
curacy level of the perceived information. These two mod-
els are respectively expressed as:

Learn : kl ∗ exp(bl ∗ tlik
) = AVik

∗ ∆Pik
(9)

⇒ tlik
=

1
bl

log(AVik
∆Pik

) − 1
bl

log kl (10)

Decay : kd ∗ exp(bd ∗ tdik
) = AVik

∗ ∆Pik
(11)

⇒ tdik
=

1
bd

log(AVik
∆Pik

) − 1
bd

log kd (12)

where the time tlik
denotes how long it takes to raise the ac-

curacy level ∆Pik
since the eye fixates on the ik-th ROI.

Pik
, a percentage value, represents the information accu-

racy of the ik-th ROI. ∆Pik
represents how much accuracy

is retained or forgotten for the ik-th ROI, respectively, for
the learning and decay models. For the first viewing ik-th
ROI , Pik

goes up from 0 to 1, thus, ∆Pik
equals 1.0. Simi-

larly, tdik
is the time spent covertly monitoring the ik-th ROI

since the last overt fixation on it, which simulates the accu-
racy degradation process. The time function of decay is set
to be much slower than the acquisition model although both
of these process are exponential. kl, bl, bd, and kd are con-
stants empirically decided, where the values of bl and bd

decide the performance of the decay and acquirisition func-
tion. To determine the value of the key ratio β = bl/bd,
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we used the magic number, 7 ± 2 slots for working mem-
ory, proposed by Miller [13]. In a summary, function f(.)
in EQ. 6 is defined as:

f(R(ik)) =




R(ik) if tf
ik

< 1
bl

log(AVik∆Pik) − log kl
bl

R(ik) elseif td
ik

> 1
bd

log(AVik∆Pik) − log kd
bd

0 otherwise
(13)

Given the list of ROIs for the synthetic “shape” image
(Fig. 3), the activation array for six ROIs was calculated
as AV [6] = {.41, .14, .23, .06, .14, .03}. The processing of
acquisition and decay are plotted (Fig. 3:below), where the
decay curves stop at the accuracy threshold for a tolerance
50%. For this example, information accuracies are main-
tained within the tolerant range until all ROIs have been
scanned. Thus, with sufficient short-term memory, attention
is not supposed to shift back the formerly attended ROI un-
til all ROIs are viewed.

Figure 3: Top: Attention shifting path for a synthetic image “shape”.
Here, ROIs are defined as these arbitrary-shaped objects. Below: Mem-
ory acquisition and decay curves for the “shape” image. Dashed lines in-
dicate the moment when the acquisition processing for currently attended
ROI is completed. Afterward, attention shifts to the next attended ROI and
currently attended ROI will be monitored from memory.

4.3. Finding Optimal Solution

Given the image marked with m ROIs, we can construct
a complete graph with ROIs as the graph nodes. The edge
weights in the graph are defined as the shifting benefit be-
tween nodes. The goal is to find an optimal path that passes

through all ROIs and ends with a maximum value of B(n)
where n ≥ m. Due to dynamically changing weights of
edge in the graph, finding an optimal path can not be re-
duced to a shortest path problem. We solved the current
problem by a dynamic programming mechanism, summa-
rized as Algorithm 1. The algorithm takes m ROIs as input,
and outputs the results as a transition path between ROIs,
the corresponding time duration and the accuracy level for
each ROI. Two examples of the generated eye fixation se-
quences are illustrated in Fig. 3 and Fig. 4, respectively.

Algorithm 1 MAXBENEFIT(ROI j, j = 1 . . . m);
Step 1: B(1)=Max(R(j)), j ∈ 1..m, m ≤ n;

i1=argmaxj(R(j));
ReW (i1)=0;

Step 2: B(2)=ReW (i2)-C(i2, i1)+B(1);
ReW (i2)=0;
t(i1) = 1

bl
log AVi2 − 1

bl
log kl;

P (i1)=1-
AVi2
AVi1

;

if P (i1) out of tolerance
ReW (i1)=R(i1);
t(i1)=0;

Step 3..n − 1: . . .
Step n: B(n)=ReW (in)-C(in, in−1)+B(n − 1);

ReW (in) = 0;
for k = i1 to in−1

t(k)=t(k + 1)+. . .+t(n);
P (k)=1- 1

AVk
AVk+1 . . . AVn;

if P (k) out of tolerance
ReW (k)=R(k);
t(k)=0;

Output: Max(B(n)), and a path of ROI i1 . . . in and a duration
series t(i1) . . . t(in) and accuracy level P (i1) . . . P (in).

Figure 4: Attention shifting path for “party” image.

5. Validation of Attention Selectivity Model

The biological grounding of saliency-based attention, as
reported in Itti’s work, was empirically assessed by Ouer-
hani’s work [15]. Thus, it is believed that the construction
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Figure 5: Gaze tracking results on some frames

of the activation map and the subsequent estimation of ROIs
are reliable. Moreover, recent works [17] have confirmed
that fixation points correspond to the most salient parts of
the scene. Thus, in the current application, we focused on
validating the plausibility of the simulated attention selec-
tivity mechanism. For this purpose, human subjects were
asked to watch test images with detected ROIs marked on
them. The eye movements of the subjects, actively scanning
between the ROIs, were recorded. Then gaze shifting pat-
tern were extracted by gazing tracking via Active Appear-
ance Model (AAM) [5] as follows.

AAM applied PCA to model both the shape variations
of image patches and their texture variations. The model es-
tablished a compact parameterization of object variability
for human eye as learned from a training set by estimating
a set of latent variables. To model both the shape x and tex-
ture g of the eye movements, a parameterized shape and tex-
ture model can be represented as below:

x = x̄ + φsbs, g = ḡ + φgbg (14)

where x̄ and ḡ denoted the mean shape and the mean nor-
malized grey-level vector, respectively. Eigenvectors φs and
φg were obtained from the training set covariances, and
represented the variations of the shape and texture of eyes
across the given training samples. A residual vector δI be-
tween the model and image, δI = Iimage − Imodel, was re-
gressed against a known displacement vector δc, such that
δc = AδI . By an iterative updating scheme, the robust gaze
tracking was achieved even for low quality Web-Cam im-
ages. Fig. 5 shows some example frames for gaze tracking.

The obtained tracking sequences were parsed into the at-
tention shifting path and fixation times were allocated for
each ROI. These empirical results were then compared with
the simulated results derived from the computational model
for the same image data.

6. Experiments and Discussions

Different test images, seen many times in advance by all
subjects, were used in the current experiments. It assures
the subjects will use natural internal cognitive models to
look at the images [17] with a fixed head pose, at a com-
fortable distance from the screen. The gaze-position accu-
racy needed was quite low so that simple calibration sys-
tem can work out which ROI a gaze falls into, once the gaze
tracking data is collected. We can then parse the tracking

results into fixations, brief stops, saccade and rapid jumps,
etc., using different parsing parameters. Before the objec-
tive comparison was performed, both model-simulated fix-
ation times and actual duration times from human subjects
were normalized since viewing times for various 2D scenes
are heavily subject-dependent. The sequences and time dis-
tributions for ”shape” (Fig. 3), ”party” (Fig. 4)and ”bench”
(Fig. 6) images are shown in the Table 1, 2, 3, below.

To evaluate the coherence of the empirical and simu-
lated results, we performed a quantitative measurement.
A dissimilarity metric is defined as the minimal cost for
transforming one distribution of the sequential representa-
tions onto the other precisely. Given n fixation shifting, let
P be the computer-generated sequence, which consists of
Pi = (pi; ρ

p
i ), i ∈ 1..n, where for the i-th fixation, pi de-

notes the attended ROI and ρp
i is time distribution. While Q

is the obtained empirical data with same representation. The
editing distance De(P,Q) was needed to minimize. The op-
timization problem was defined with the swapping opera-
tion, the only operation for editing, assigned to the unit cost
s(.), on the sequence.

s(Qi, Qj) = |i − j|(ρq
i + ρq

j) (15)

N(s(Qi, Qj)) =
s(qi, qj)∑n

k=1(s(qi, qk) + s(qk, qj))
(16)

De(P,Q) = min
P,Q

(
∑
i,j

N(s(Pi, Pj)),
∑
i,j

(N(s(Qi, Qj)))) (17)

We normalized the swap cost to make it comparable to
the following L1 distance. Once the editing problem was
solved, we got the distribution (P,Q′) with the same se-
quence order, where Q’ was the edited sequence of Q. Then,
we used L1 distance, Dd =

∑n
i=1 |ρp

i − ρq
i |, to measure the

dissimilarity. The total transformation cost Dt was obtained
by Dt = De + Dd. The transformation cost denoted how
closely two sets of data resembled each other in distribu-
tion for the sequential representations.

The results of the comparison demonstrated a correla-
tion between the human eye movements and the computer
modelled eye movements, for a synthetic image (Fig. 4), as
shown in Table 1. For natural images, some human subjects
presented a good correlation to the computer model while
others were inharmonious with it. Besides the errors intro-
duced by the simulation procedure of the proposed model,
one possible reason for the result is the variation that ex-
ists between human subjects, causing each person to inter-
pret the scene image differently. Moreover, inaccurate mea-
surement of eye movements from the gaze tracking process
could also introduce other type of errors. In summary, the
above measurements demonstrate a preliminary but promis-
ing correlation between the attention of real humans and the
proposed computer model.
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Figure 7: Images sequences of fixations for “party” image: 1. the boy in red; 2.the girl on the left; 3.the boy in blue in the middle; 4.the girl on the right;
5. the boy with glasses on the left; 6.fruit salad; 7.BBQ beef; 8.meat ball; 9.yellow cup in the front.

Sequ 1 2 3 4 5 6 7 8 9 Dt

Comp 1: 0.19 2:0.13 3:0.15 4:0.11 5:0.13 6:0.08 7:0.09 8:0.07 9: 0.06 0%
Subj1 3: 0.19 2:0.15 1:0.16 4:0.13 5:0.12 6:0.06 7:0.09 8:0.06 9: 0.04 21.3%
Subj2 1: 0.18 2:0.12 3:0.19 4:0.12 5:0.11 6:0.10 7:0.10 8:0.05 9: 0.03 17.0%
Subj3 2: 0.15 1:0.16 3:0.16 4:0.13 5:0.10 6:0.08 7:0.10 8:0.07 9: 0.06 17.0%
Subj4 1: 0.18 2:0.12 3:0.18 4:0.13 5:0.14 7:0.08 6:0.10 8:0.05 9: 0.04 13.8%

Table. 3 Coherence results for “party” image

Figure 6: Computer-generated distribution of fixation for “bench” image
was illustrated as histogram, and the sequence of the fixations was labelled
on the image.

7. Conclusions

The human behavior of attention selectivity is elusive
and still far from being well understood. A complete theory
of top-down guidance remains unavailable for modelling
the visual attention nowadays. This paper aims to present a
decision-theoretic attention model, which allows automatic
generation of the sequence of eye fixation and its time distri-
butions on 2D scenes. The proposed attention model can be
potentially useful in many applications, such as robot con-
trolling, human-computer interaction, animation, or inter-
active games, etc. A full assessment of the model needs a
large number of experiments that involve more human sub-
jects and test images. In the future, we are planning to ap-

Sequ 1 2 3 4 5 6 Dt

Comp 1:0.25 2:0.17 3:0.21 4:0.12 5:0.17 6:0.08 0%
Subj1 1:0.18 2:0.19 3:0.25 4:0.12 5:0.15 6:0.11 19%
Subj2 1:0.16 2:0.16 3:0.25 4:0.13 5:0.15 6:0.15 24%
Subj3 1:0.20 2:0.17 3:0.22 4:0.14 5:0.15 6:0.12 14%

Table. 1 Coherence results for “shape” image: The model generated fix-
ation sequence (row 1) and the sequences of three human subjects
(rows 2-4) are shown. We use “3:0.19” for p1 = 3, ρp

1 = 0.19, mean-
ing ROI3 was viewed as the first item in the sequence and the allocated
time proportion was 19% over the whole sequence duration. The last col-
umn shows the computed transformation cost. The same notation applies
for Table.2, 3.

ROIs 1 2 3 4 5 6 Dt

Sequ 1:0.33 2:0.20 3:0.08 4:0.14 5:0.13 6:0.13 0%
Subj1 1:0.35 6:0.12 2:0.14 3:0.06 4:0.09 5:0.23 44.7%
Subj2 1:0.42 2:0.12 3:0.05 4:0.06 5:0.29 6:0.06 42.0%
Subj3 1:0.38 2:0.25 3:0.04 4:0.05 5:0.20 6:0.08 35.0%

Table. 2 Coherence results for “bench” image

ply the current model for creating more human-like anima-
tion characters. Within this application, the performance of
the proposed model will be better evaluated both in terms of
the animated agents’ behaviors and their interactions with
the 3D virtual environment.
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Figure 8: Middle: Computer-generated attention shifting sequence and
time distribution results (left) for the “party” image (right). Top: Results
from Subject 1 (left), where the fixation orders for the 1st and 3rd ROIs in
the sequence are swapped; Results from Subject 2(right). Bottom: Results
from Subject3 (left), where the order of the 1st and 2nd ROIs are swapped;
Results from subject4 (right), where the orders of the 6th and 7th ROIs are
swapped.
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