
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1992

Proceedings of the Workshop on Linear Logic and Logic Proceedings of the Workshop on Linear Logic and Logic

Programming Programming

Dale Miller
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Dale Miller, " Proceedings of the Workshop on Linear Logic and Logic Programming", . November 1992.

University of PEnnsylvania Department of Computer and Information Science Tchnical Report No. MS-CIS-92-80.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/301
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/301
mailto:repository@pobox.upenn.edu

Proceedings of the Workshop on Linear Logic and Logic Programming Proceedings of the Workshop on Linear Logic and Logic Programming

Abstract Abstract
Declarative programming languages often fail to effectively address many aspects of control and
resource management. Linear logic provides a framework for increasing the strength of declarative
programming languages to embrace these aspects. Linear logic has been used to provide new analyses
of Prolog's operational semantics, including left-to-right/depth-first search and negation-as-failure. It has
also been used to design new logic programming languages for handling concurrency and for viewing
program clauses as (possibly) limited resources. Such logic programming languages have proved useful
in areas such as databases, object-oriented programming, theorem proving, and natural language parsing.

This workshop is intended to bring together researchers involved in all aspects of relating linear logic and
logic programming. The proceedings includes two high-level overviews of linear logic, and six contributed
papers.

Workshop organizers: Jean-Yves Girard (CNRS and University of Paris VII), Dale Miller (chair, University of
Pennsylvania, Philadelphia), and Remo Pareschi, (ECRC, Munich).

Comments Comments
University of PEnnsylvania Department of Computer and Information Science Tchnical Report No. MS-
CIS-92-80.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/301

https://repository.upenn.edu/cis_reports/301

Proceedings of the Workshop on Linear Logic and
Logic Programming

Washington, DC
14 November 1992

MS-CIS-92-80
LINC LAB 238

Edited by Dale Miller

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

November 1992

Proceedings of the Workshop on
Linear Logic

and
Logic Programming

Washington, DC 14 November 1992
following the 1992 Joint International Conference and Symposium on Logic

Programming

Declarative programming languages often fail to effectively address many aspects of con-
trol and resource management. Linear logic provides a framework for increasing the strength
of declarative programming languages to embrace these aspects. Linear logic has been used
to provide new analyses of Prolog's operational semantics, including left-to-rightjdepth-
first search and negation-as-failure. It has also been used to design new logic programming
languages for handling concurrency and for viewing program clauses as (possibly) limited
resources. Such logic programming languages have proved useful in areas such as databases,
object-oriented programming, theorem proving, and natural language parsing.

This workshop is intended to bring together researchers involved in all aspects of relating
linear logic and logic programming.

Workshop organizers:

r Jean-Yves Girard, CNRS and University of Paris VII

r Dale Miller (chair), University of Pennsylvania, Philadelphia

r Remo Pareschi, ECRC, Munich

Table of Contents

1 "Linear Logic and Logic Programming: An overview" by Dale Miller (University of
Pennsylvania).

21 "A Brief Guide to Linear Logic" by Andre Scedrov (University of Pennsylvania).

39 "A Synopsis on the Identification of Linear Logic Programming Languages" by James
Harland (University of Melbourne) and David Pym (University of Edinburgh).

45 "Rules of definitional reflection in logic programming" by Peter Schroeder-Heister
(Universitat Tubingen).

47 "A Relevance Logic Characterization of Static Discontinuity Grammars" by James
Andrews, Veronica Dahl, and Fred Popowich (Simon Fraser University).

53 "On Disjunction in Linear Logic Programming" by S. Briining, G. Grofie, S. Holldobler,
J. Schneeberger, U. Sigmund, M. Thielscher (Intellektik, Informatik, TH Darmstadt)

60 "An Observational Semantics of Linear Logic" by Yasushi Fujiwara (Stanford Univer-
sity).

65 "Asynchronous Communication Model Based on Linear Logic" by Naoki Kobayashi
and Akinori Yonezawa (University of Tokyo).

Linear Logic
and

Logic programming:
An Overview

Dale Miller

Computer Science Department
University of Pennsylvania

Philadelphia, PA 19104-6389

Workshop on Linear Logic and Logic
Progr amrning

14 November 1992
Washington, DC

Connections between Linear Logic
and

Logic Programming

Describing the External Logic of Prolog

S. Cerrito, "A Linear Semantics for Allowed
Logic Programs", LICSSO.

S. Cerrito, "A Linear Axiomatization of Nega-
tion as Failure", Journal of Logic Program-
ming, January 1992.

J-Y. Girard, "Towards a Geometry of Inter-
action", in Categories in Computer Science,
AMS series on Contemporary Mathematics,
Vol 92, June 1987.

New Language Designs

Focus of this presentation.

A Proof System for Linear Logic

Here, A and r are multisets of proposi-
tional formulas, and comma denotes mul-
tiset union.

A Proof Systems for Linear Logic (continued)

Intuitionistic implication B > C is coded
as !B-oC.

* (i Y ~ T M P ~ X Y
- a d) papunoqun a n s$uauoduro3 U I P J ~ O J ~

112 qou aJaqM suorsuaqxa nauq a ~ o ~ d x a 03
bsva qr sayvtrr U O ~ P I S U V J ~ s ~ q ? L ~ ~ ~ n 3 9 ~ ~ d UI

[Ov 0- ("v 8 8 Iv)] Z A ~

Proofs Involving Horn Clauses

The search for a proof of !A A. re-
duces to the search for proofs of

!A A l . . . !A --t A,.

The program (the left-hand side) stays the
same; the goal (the right-hand side) has
been reduced.

Another Presentation of Horn Clauses

Translate the syntax

Ao:-A1,. . . 7 An (n 2 0)
as the formula !V%[(A1 28 28 A,) -0 Ao].
In particular, if n = 0 then the translated
formula is !VZ[I -0 Ao].

AO AO !A -+ Al, . . . 9 A n , r

!A,Ao A. !A --+ A128 * * - q A , , r

!A, (Al 28 * * T A,) -0 A. -+ A o , r

!A A o , r
Such a reduction never ends in an initial se-
quent: at best it ends in the sequent !A
I. For the propositional calculus, the fol-
lowing holds: the list of goal (GI, . . . , Gn)
reduces via SLD-resolution to the list of goals
(H . . . , H) if and only if

!A, HI 38 Hm t- G1 28 2s Gn.

In other words, goal reduction corresponds
to implied-by.

Multiple-Conclusion Horn Clauses

Notice that goals in the list (GI) 9 Gn) do
not interact with each other.

If we admit clauses of the the form

Vz[A1 T * * * 28 A, -0 B1 28 m e - 28 B,]

then we can describe some interactions.

When A1, . . . , A,, B1, . . . 7 Bm are atomic and
m > 0, such clauses are multi-conclusion
Horn clauses.

INTER-SPACE INTERACTION

Each space can broadcast (typed) waves
to all surrounding spaces. .

L "Thanks to J-M. Andreoli and R.. Pareschi for this and the follo~ving three slides." J

.-
e# a" _..--

.*.*a::.. -* - . .-.-.. -
*:

LINEAR OBJECTS Informa1 Presentation #

becomes -

INTRA-SPACE INTERACTION

LINEAR OBJECTS Informal Presentation

INTRA-SPACE INTERACTION

Characteristics

Concurrent and Competitive

q T a o - s

be 1 comes

LINEAR OBJECTS Informal Presentation

COMPUTING WITH MULTIPLE SPACES

L
LINEAR OBJECTS

1C with

a Space Creation: Operator & (cloning)

I / 'OP

a Space Termination: Operator T

Informal Presentation

CCS as an Example

Now allow quantification over propositions.
If P is a formula and a is a constant then
a.P is a proposition and a.P.

VaVPVQ [P 28 Q -0 a.P 28 a.Q]
VPVQ [P -0 P + Q]
VPVQ [Q -0 P + Q]

VP [I -o!P]
VP [!P 28 ! P-o! PI

VP [P-o!P]

Notice that 28 corresponds to parallel com-
position I in CCS.

Work on Multiple-Conclusion Clauses

V ~ [B o d y -0 A1 28 28 A,]

1. Andreoli & Pareschi have developed LO
(Linear Objects) on multiple-conlcusion
clauses. Body may contain 28 , T, &.

2. Miller has a presentation of CCS and
the T-calculus using multiple-conclusion
clauses. Body may contain 9 ,l, V.

3. Saraswat & Lincoln have considered a
dual translation (using 8 instead of T).

4. See other papers in these proceedings.

All of these systems propose a setting for
addressing concurrency.

Single-Conclusion Clauses

The fragment of intuitionistic linear logic
restricted to formulas freely generated by

has been proposed by Hodas & Miller [In-
formation and Computation, 19921 as a re-
finement to the logic underlying XProlog
(that logic is based on T , &, > , V) . Positive
occurrences of CB, 3,@, ! ,1 can be admitted
and described using the clauses

VPVQ[P -0 (P CB Q)]
vPQQ[Q -O (P @ Q)I
VBVT[(B T) -0 (M)]

T * 1
VPVQ[P -0 Q -O (P @ Q)]

VP[P * !PI

These rules describe the right-hand behav-
ior of these connectives.

Proof Rules for T,&, -0, >,V

identity
r ; A - A r ;A--+T

I?, B; A, B ---+ C
absorb

*sjoo~d 30 uo!~~nxpsuo~ ayq Bu;~np
patunsuo3 aq up3 q.eql sa3mosaJ so papal?
a n %xaquo:, 30 q~od papunoq aqq u! sqnwxod

A Proof System for the 1-0 Interpretation

What is Logic Programming?

Programs are collections of logical formulas
(theories) .
Computation is a search for cut-free proofs.

Constract this to functional programming
where programs are proofs and computa-
tion is proof reduction (cut-elimination).

Search for arbitary cut-free proofs, however,
does not seem to capture the full spirit of
logic programming.

In logic programming languages, the "search
semantics" of a logical connective in a goal
is independent from its surrounding con-
text, which are only relevant for proving
atomic formulas.

Formalizing Goal-Directed Search

A cut-free sequent proof E is uniform if

for every subproof XP of B and

for every non-atomic formula occurrence
B in the right-hand side of the endse-
quent of Q,

there is a proof q' that is

equal to 9 up to permutation of infer-
ence rules and

is such that the last inference rule in !PIr'
introduces the t op-level logical connec-
tive occurring in B.

The given logic and proof system is called
an abstract logic programming language if a
sequent has a proof if and only if it has a
uniform proof.

I

A Brief Guide to Linear Logic

A N D R E SCEDROV*

Department of Mathematics, University of Pennsylvania

Philadelphia, PA 19104-6395, USA

Abstract

An overview of linear logic is given, including an extensive bibli-
ography and a simple example of the close relationship between linear
logic and computation.

1 Overview

Linear logic, introduced by Girard [41], is a refinement of classical logic.
Linear logic is sometimes described as resource sensitive because it provides
an intrinsic and natural accounting of resources. This is indicated by the
fact that in linear logic, two assumptions of a formula A are distinguished
from a single assumption of A. Informally, on the level of basic intuition, one
might say that classical logic is about truth, that intuitionistic logic is about
construction of proofs, and that linear logic is about process states, events,
or resources, which must be carefully accounted for.

A convenient way to present the syntax of linear logic is by modifying the
traditional Gentzen-style sequent calculus axiomatization of classical logic,

*andreQcis .upenn. edu. Research partially supported by NSF Grant CCR-91-02753
and by ONR Grant N00014-92-J-1916. This is an updated version of the article that has
originally appeared in the Bulletin of the European Association for Theoretical Computer
Science vol. 41, June, 1990, pp. 154-165 in the column "Logic in Computer Science"
edited by Yuri Gurevich. This version will appear in a collection of articles published by
World Scientific and edited by G. Rozenberg.

which may be found in e.g., Girard et al. [49] or in Gallier [38]. The modifi-
cation may be briefly described in three steps, bearing in mind that assump-
tions are viewed as resources, and conclusions as requirements to be met by
spending the given resources. In this reading the formula A i m p l i e s A, for
instance, means that the resource A is spent to meet the requirement A. This
is an axiom in linear logic.

The first step in presenting linear logic as a modification of classical logic is
to remove two "structural" rules, contraction and weakening, which manipu-
late the use of assumptions and conclusions in logical deductions. For expos-
itory purposes let us concentrate on the treatment of assumptions. The con-
traction rule states that if a property follows from two assumptions of a for-
mula, then that property can be derived just from a single assumption of that
formula. In effect, this means that any assumption, once stated, may then
be reused as often as desired. For instance, the formula A i m p l i e s (A and A)
is derivable from contraction. The weakening rule makes it possible to form
deductions that have dummy assumptions, i.e., weakening allows us to carry
out a deduction without using all of the assumptions. For instance, the for-
mula (A and B) i m p l i e s A is derivable from weakening. Because contraction
and weakening together make it possible to use an assumption as often or
as little as desired, these rules are responsible for what one may see in hind-
sight as a loss of control over resources in classical (and in intuitionistic)
logic. This realization is the starting point of linear logic. Removing the
rules of contraction and weakening produces a linear system in which each
assumption must be used, nay, spent exactly once. In the resulting linear
logic, formulas indicate finite resources that cannot necessarily be discarded
or duplicated without effort.

The second step in deriving linear logic involves the propositional connec-
tives. Briefly, the removal of structural rules just mentioned leads naturally
to two forms of conjunction, one called multiplicative and the other additive,
and similarly to two forms of disjunction. A proof of the multiplicative con-
junction as a conclusion forbids any sharing between the resources used to
establish each conjunct, whereas the additive conjunction requires the shar-
ing of all of the resources. We should mention that unlike this distinction
between the two forms of conjunction and disjunction, the quantifier rules
remain the same as in classical logic.

The third step in the presentation of linear logic involves adding a kind
of modality: a storage or reuse operator, ! . Intuitively, the assumption ! A

provides unlimited use of the resource A. A computational metaphor that
describes the meaning of !A quite well is that "the datum A is stored in
the memory and may be referenced an unlimited number of times". There
is also a dual modal operator,?, which is definable from ! using negation.
Intuitively, while !A provides unlimited creation of A, the formula ?B allows
the unlimited consumption of B.

Because the basic framework remains linear, unbounded consumption or
reuse is allowed "locally", only at formulas specifically marked with ? or
! , respectively. In effect, the structural rules of contraction and weakening
are replaced by the explicit logical rules about the modalities. The resulting
logical system is remarkably natural and well-structured, and it brings logical
form and content closer together. Linear logic also indicates a relationship
between classical logic and intuitionistic logic that is more subtle than the
standard negative interpretation, see Girard [45, 461.

Detailed descriptions of linear logic rules may be found in, e.g., [41, 68,
851. Let us mention that the nonmodal fragment of linear logic was antic-
ipated by a calculus proposed by Lambek [62, 631, motivated by linguistic
considerations of syntax of natural languages.

A remarkable result of Lincoln and Winkler [71] shows that there is no
simple minded truth table characterization of provability even for the mul-
tiplicative fragment of linear logic, unless P = N P (see below). In this sense
semantics of linear logic is necessarily involved. Basic linear algebra construc-
tions on finite dimensional vector spaces provide a first, naive interpretation
of some of the linear logic connectives, much as the basic operations on sets
provide an interpretation of the usual logical connectives. For instance, mul-
tiplicative conjunction may be interpreted as tensor product of vector spaces
and linear negation may be interpreted as the dual vector space. More subtle
aspects of linear logic, however, originate in so-called coherence domains [41],
which maintain a notion of finite basis and isomorphism with the double dual
without imposing isomorphism with the dual. Indeed, an important turning
point in the discovery of linear logic was Girard's insight that in coherence
domains, function type A + B could be decomposed as !A-oB , where !
is the reuse operator mentioned above, and -o is linear implication, which
provides the type of functions that "use" their argument exactly once.

Similar phenomena had been previously observed by Blass in certain nat-
ural set-theoretic operations on infinite games [23] and by Barr in so-called *-
autonomous categories [16]. Both settings, in addition to coherent domains,

are now understood to yield mathematical models for linear logic proofs,
more precisely, for the relation " t is a linear logic proof of a formula A "
[24, 84, 171. Other versions of game semantics are given by Abramsky and
Jagadeesan [2] and by Lafont and Streicher [61]. Event spaces, which come
about from Pratt's work in semantics of concurrency, also provide models for
certain linear logic proofs [78]. Models investigated by de Paiva [35] are moti-
vated by import ant proof- theoretic transformat ions. A mathematical model
for the linear logic provability relation is given by phase spaces, discussed by
Girard [41] and by Avron [14, 151. Kripke-style models are investigated by
Allwein and Dunn [6].

A mathematical structure underlying linear logic proof reduction and
normalization is provided by proof nets, introduced by Girard [41,42,47] and
studied by Danos and Regnier [34], Blute [25, 261, and others. A significant
insight into dynamic, operational semantics of linear logic proof reduction
(cut elimination) is provided by geometry of interaction, proposed by Girard
[43, 441; an exposition is in Danos [32]. Geometry of interaction is further
investigated in the work of Danos [33], Regnier [79], Malacaria and Regnier
[74], Abramsky and Jagadeesan [3], and Gonthier et al. [51, 521 (see below).

Linear logic continues to be a very active field of research. Up-to-date
developments are discussed on the electronic forum "Linear". One subscribes
by sending an email message to linear-request@cs.stanford.edu. An introduc-
tory description of linear logic is in Lincoln [65]. The first book on linear
logic, by Troelstra [85], was published in 1992. It provides a valuable first
reference for anyone interested in studying the subject.

2 Computational Aspects

Computer science ramifications of linear logic may be generally divided into
two kinds. In what may be broadly called functional programming ramifi-
cat ions (often involving certain aspects of concurrency), computation is seen
as term reduction corresponding to proof reduction (cut elimination). On
the other hand, in what may be broadly called logic programming ramifica-
tions (again, often involving concurrency), computation is expressed by cut
free proof search in certain linear logic theories. From the latter perspective,
the cut elimination property is used simply to allow one to concentrate on
cut free proofs without loss of generality. Certain permutabi l i ty properties,

which yield optimized presentations of cut free proofs play a central role in
the proof search paradigm, see Lincoln [72], Andreoli (71.

2. I Proof Reduction Paradigm

The earliest work in this direction was Lafont's investigation of a functional
programming language implementation in which garbage collection was re-
placed by explicit duplication operations based on linear logic [59]. An-
other possible application in functional programming is in optimization of
copying in lazy functional programming language implementation ("single-
threadedness"), studied by GuzmAn and Hudak [54]. Recent topics involve
linear lambda calculus and memory allocation, investigated by Lincoln and
Mitchell [66], Chirimar et al. [30], Wadler [86], Mackie [73], and Benton et
al. [22].

A strong relationship of the multiplicative fragment of linear logic to Petri
nets has been demonstrated by Gehlot and Gunter [53, 40, 391, Asperti et
al. [l l , 131, Engberg and Winskel [37], Marti-Oliet and Meseguer [75], and
Brown and Gurr [27]. Interpretations of linear logic proofs in concurrent
paradigms such as the chemical abstract machine or Milner's x-calculus are
given by Abramsky [l] and by Bellin and P.J. Scott [21]. With regard to
concurrency, we also note a remarkable similarity between a programming
paradigm based on proof nets and developed by Lafont [60] and connection
graphs, which were designed by Bawden to model the massively parallel
connection machine computations [18].

A modular setting for polynomial time computations can be given in a
bounded linear logic, studied by Girard et al. [50]. In this system unlimited
reuse is not allowed. Instead, bounded linear logic contains bounded or
limited reuse operators. A bounded reuse operator of order n indicates that a
datum is stored in the memory and may be referenced at most n times, where
variable n is the bound. Proof-rules of the sequent calculus then naturally
generate polynomial bounds. Bounded linear logic has polynomial t ime cut
elimination. This system might serve as a basis for a modular calculus of
efficient algorithms.

Recent topics include the use of geometry of interaction by Gonthier et
al. [51, 521 in a correctness proof for Lamping's graph reduction. (A com-
panion reference is Asperti [12].) Lamping [64] discovered an optimal graph-

reduction implementation of the lambda calculus, independently of Girard's
work on geometry of interaction (see above). Gonthier et al. show how the
geometry of interaction provides a suitable semantic basis for explaining and
improving Lamping's system. On the other hand, Gonthier et a!. show that
graphs similar to Lamping's and related to Lafont's nets (see above) provide
a concrete representation of the geometry of interaction.

2.2 Proof Search Paradigm

Linear logic is also related to computation in another way, namely, computa-
tion may be expressed by cut free proof search in certain linear logic theories.
The remarkable expressiveness of this computational paradigm is brought to
light in a body of research accumulated over the past three years. In a num-
ber of papers Andreoli and Pareschi develop a declarative treatment of object
communication and concurrent object-oriented computation [8, 9, 7, 101. A
treatment of linear logic programming is given by Hodas and Miller [55]. A
role of linear logic in a declarative semantics of SLDNF-resolution is consid-
ered by Cerrito [29]. An approach that spans both the proof reduction and
the proof search paradigms is proposed by Girard [48].

Recent topics include a treatment of concurrent constraint programming
by Saraswat and Lincoln [82] and a closely related treatment of Milner's
a-calculus of communicating processes by Miller [76]. In Miller's work the
agent expressions of the T-calculus are translated into a theory of linear logic
in such a way that the a-calculus reductions are identified, step by step,
with cut free proof search in the linear logic theory. The nonlogical axioms
of the theory resemble Horn clauses except that they may have multiple
conclusions. In particular, their heads may be the multiplicative disjunction
of atomic formulas. Such multiple conclusion clauses are used to axiomatize
communications among agents.

The striking expressiveness of cut free linear logic proof search as a com-
putational paradigm is also indicated by the complexity and undecidability
of (provability in) the natural fragments of linear logic. This comes about
as a consequence of direct, lockstep simulations of computations on generic
machines by cut free proof search in fragments of linear logic, see Section
3 below. The simulations reveal a structural relationship between the nat-
ural fragments of linear logic on the one hand and the standard computa-

tional complexity classes on the other. Lincoln et al. [68] show that the full
propositional (i.e., quantifier free) linear logic is undecidable. However, even
the fragment of propositional linear logic that does not allow modalities is
unexpectedly expressive. Kanovich [57] shows that the multiplicative frag-
ment is NP-complete. Furthermore, in a marked contrast to the standard
NP-completeness of the satisfiability of propositional formulas in classical
logic, in linear logic even the decision problem for constant-only multiplica-
tive propositional formulas is NP-complete. This result, obtained by Lincoln
and Winkler 1711, shows that a simple minded, efficient, truth-table style
characterization of provability in the multiplicative fragment of linear logic
would imply that p = NP. Beyond the multiplicatives, Lincoln et al. [68]
show ~ ~ ~ ~ ~ ~ - c o r n p l e t e n e s s of the nonmodal propositional fragment (i.e., the
multiplicative-additive propositional fragment). Lincoln et al. [70] exhibit
a structural embedding of a cut free proof system for implicational proposi-
tional intuitionistic logic in the nonmodal propositional linear logic. Lincoln
and Scedrov [69] obtain NEXPTIME-hardness of nonmodal linear logic with
first order quantifiers and function symbols.

Example

This section describes an example of the ability of linear logic to express
computational features. A simple computation on an ordinary two counter
machine with zero-test instruction is simulated, step by step, by cut free
proof search in propositional linear logic. A key insight is that searching for
a certain kind of proof of a linear logic formula from finitely many nonlogical
axioms that involve only multiplicative conjuction 8 and additive disjunc-
tion $ corresponds directly to searching for an accepting computation. The
product of a successful search is an accepting computation. This example is
taken from Lincoln et al. [68, 671.

Suppose the transition relation S of a standard two counter machine with
zero-test consists of the following:

h1 : : = QI Increment A Q2
S2 : : = Q3 Decrement A QF
S3 : : = Q2 Zero-Test B Q3

The machine may perform the following transitions, where an instantaneous

description of a two counter machine is given by the triple consisting of Qj,
the current state, and the values of counters A and B.

This computation starts in state Qr, increments the A counter and steps to
state Q2. Then it tests the B counter for zero, and moves to Q3, where it
then decrements the A counter, moves to QF, and accepts.

The transition relation S may be transformed into a transition relation
S' for an equivalent and-branching two counter machine without zero-test, or
briefly ACM. The modified relation 6' (shown on the left below), may then
be encoded as a linear logic theory (shown on the right):

Transitions Theory Axioms
6; : : = Q I Increment A Q2 ql F (q2 @ a)
6; : : = Q3 Decrement A QF q3, a I- q~
5; : : = Qz Fork ZB, Q3 42 t- (Z B @ 43)
6; : : = ZB Decrement A ZB zg, a t- ZB

62 ::= ZB Fork QF,QF ZB (QF @ QF)

Notice how the first two transitions (S1 and S2) of the standard two counter
machine are preserved in the translation from S to 6'. Also, the Zero-Test
instruction S3 is encoded as three ACM transitions - 64, 6:, and 62. The
transition 6; is a fork to a special state ZB, and one other state, Q3. The
two extra transitions, Si, and 6:, force the computation branch starting in
state ZB to verify that counter B is zero. Given the above transitions, the
and-branching machine without zero-test may then perform these moves:

Note that an instantaneous description of this and-branching machine is a list
of triples, and the machine accepts if and only if it is able to reach (QF, 0,O)
in all branches of its computation. This particular computation starts in
state QI, increments the A counter and steps to state Q2. Then it forks into
two separate computations; one which verifies that the B counter is zero, and
the other which proceeds to state Q3. The B counter is zero, so the proof of
that branch proceeds by decrementing the A counter to zero, and jumping

to the final state QF. The other branch from state Qg simply decrements A
and moves to QF. Thus all branches of the computation terminate in the
final state with both counters at zero, resulting in an accepting computation.

The linear logic proof corresponding to this computation is displayed in
Figures 1 and 2, and is explained in the following paragraphs. In these
proofs, each application of a theory axiom corresponds to one step of ACM

computation. We represent the values of the ACM counters in unary by copies
of the formulas a and b. In this example the B counter is always zero, so
there are no occurrences of b.

The proof shown in Figure 1 of z ~ , a I- q~ in the above linear logic
theory corresponds to the ACM verifying that the B counter is zero. Reading
the proof bottom up, it begins with a directed cut. The sequent z~ t- q~ is
left as an intermediate step. The next step is to use another directed cut,
and after application of the $ L rule, we have two sequents left to prove:
q~ t- q~ and q~ t- q ~ . Both of these correspond to the ACM triple (QF, 0,O)
which is the accepting triple, and are provable by the identity rule. If we
had attempted to prove this sequent with some occurrences of b, we would
be unable to complete the proof.

!IF I- QF QF I- Q F * ~

Ii? t- (BF @ q ~) " (QF @ QF) QF
I Cut

ZB, a t- zBS4 ZB t QF Cut

Figure 1: Zero-test proof

The proof shown in Figure 2 of qr t- q~ in the same theory demon-
strates the remainder of the ACM machinery. The lowermost introduction
of a theory axiom, Cut, and @I L together correspond to the application
of the increment instruction 6;. That is, the qr has been "traded in" for qz
along with a . The application of a directed cut and @ L correspond to the
fork instruction, 6; which requires that both branches of the proof be suc-
cessful in the same way that and-branching machines require all branches to
reach an accepting configuration. The indicated proof of zg, a I- q~ appears
in Figure 1, and corresponds to the verification that the B counter is zero.

zB,a k QF 43, a I- qF $L
(ZB @ 43), a qF Cut

q27a k q ~

91 t (92 8 a)6;
L

Cut

Figure 2: Proof corresponding to computation

The application of Cut , theory axiom, and identity correspond to the final
decrement instruction of the computation, and complete the proof.

References

[I] S. Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 1992. Special Issue on the 1990 Workshop on Math.
Found. Prog. Semantics. To appear.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for
multiplicative linear logic. Manuscript, September 1992. Available us-
ing anonymous ftp from the host theory.doc.ic.ac.uk and the file the-
ory/papers/Abramsky/gfc.dvi.

[3] S. Abramsky and R. Jagadeesan. New foundations for the geometry of
interaction. In Proc. 7-th Annual IEEE Symposium on Logic in Com-
puter Science, Santa Cruz, California, pages 211-222. IEEE Computer
Society Press, Los Alamitos, California, June 1992.

[4] V.M. Abrusci. Noncommutative intuitionistic linear propositional logic.
Zeitschr. f. Math. Logik u. Grundlagen d . Math., 36:297-318, 1990.

[5] V.M. Abrusci. Phase semantics and sequent calculus for pure noncom-
mutative classical linear propositional logic. Journal of Symbolic Logic,
56:1403-1451, 1991.

[6] G. Allwein and J.M. Dunn. Kripke models for linear logic. Manuscript,
January 1992.

[7] J.-M. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 1992. To appear.

[8] J.-M. Andreoli and R. Pareschi. Logic programming with sequent sys-
tems: a linear logic approach. In Proc. Worlcshop on Extensions of
Logic Programming, Tuebingen. Lecture Notes in Artificial Intelligence,
Springer-Verlag, Berlin, 1990.

[9] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9, 1991.

[lo] J.-M. Andreoli and R. Pareschi. Associative communication and its
optimization via abstract interpretation. Manuscript, August 1992.

[ll] A. Asperti. A logic for concurrency. Technical report, Dipartimento di
Informatica, Universit6 di Pisa, 1987.

[12] A. Asperti. Linear logic, comonads and optimal reductions. Manuscript,
December 1991.

[13] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the
'proofs as computations' analogy. In Proc. 17-th ACM Symp. on Prin-
ciples of Programming Languages, Sun Francisco, pages 59-71, January
1990.

[14] A. Avron. The semantics and proof theory of linear logic. Theoretical
Computer Science, 573161-184, 1988.

[15] A. Avron. Some properties of linear logic proved by semantic methods.
Manuscript, December 1991.

[16] M. Barr. *-Autonomous Categories, volume 752 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1979.

(171 M. Barr. Accessible categories and models of linear logic. Journal Pure
Appl. Algebra, 69:219-232, 1990.

[18] A. Bawden. Connection graphs. In Proc. ACM Symp. on Lisp and
Functional Programming, pages 258-265, 1986.

[19] G. Bellin. Mechanizing Proof Theory: Resource-Aware Logics and Proof-
Transformations to Extract Implicit Information. PhD thesis, Stanford
University, 1990.

[20] G. Bellin and J. Ketonen. A decision procedure revisited: Notes on
direct logic, linear logic, and its implementation. Theoretical Computer
Science, 95:115-142, 1992.

[21] G. Bellin and P.J. Scott. Remarks on the T-Calculus and Linear Logic.
Manuscript to be submitted to Proc. MFPS 8, Oxford, 1992.

[22] N. Benton, G. Bierman, V. de Paiva, and J.M.E. Hyland. Term assign-
ment for intuitionistic linear logic. Manuscript, September 1992.

[23] A. Blass. Degrees of indeterminacy of games. Fundamenta Mathemati-
cue, 77:151-166, 1972.

[24] A. Blass. A game semantics for linear logic. Annals Pure Appl. Logic,
56:183-220, 1992. Special Volume dedicated to the memory of John
Myhill.

[25] R. Blute. Linear logic, coherence, and dinaturality. Dissertation, Uni-
versity of Pennsylvania, September 1991. Edited version to appear in
Theoretical Computer Science.

[26] R. Blute. Proof nets and coherence theorems. In Category Theory and
Computer Science, Proceedings 1991. Springer LNCS 530, 1991.

[27] C. Brown and D. Gurr. A categorical linear framework for Petri nets.
In Proc. 5-th IEEE Symp. on Logic in Computer Science, Philadelphia,
June 1990.

[28] C. Brown and D. Gurr. Relations and noncommutative linear logic.
Manuscript, December 1991.

[29] S. Cerrito. A linear semantics for allowed logic programs. In Proc: 5-th
IEEE Symp. on Logic in Computer Science, Philadelphia, June 1990.

[30] J. Chirimar, C. Gunter, and J. Riecke. Linear ML. In Proc. ACM
Symposium on Lisp and Functional Programming, Sun Francisco. ACM
Press, June 1992.

[31] J. Chirimar and J. Lipton. Provability in TBLL: A decision procedure.
In Computer Science Logic, Proceedings 1991, pages 341-356. Springer
LNCS 626, 1992.

[32] V Danos. Logique lin6aire. une reprksentation algkbrique du calcul. Gaz.
Math. (Soc. Math. de France), 41:55-64, 1989.

[33] V. Danos. La Logique Lin6aire Appliquke & 19@tude de Divers Proces-
sus de Normalisation at Principalement du Lambda-Calcul. Thkse de
Doctorat, Universit6 de Paris VII, 1990.

[34] V. Danos and L. Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181-203, 1989.

[35] V.C.V. de Paiva. A dialectica-like model of linear logic. In Category The-
ory and Computer Science, pages 341-356. Springer LNCS 389, Septem-
ber 1989.

[36] K. Dosen. Nonmodal classical linear predicate logic is a fragment of
intuitionistic linear logic. Theoretical Computer Science, 102:207-214,
1992.

[37] U. Engberg and G. Winskel. Petri nets as models of linear logic. In
A. Arnold, editor, Proceedings of CAAP '90. Lecture Notes in Computer
Science vol. 431, Springer- Verlag, 1990.

[38] J.H. Gallier. Logic for computer science. Harper & Row Publishers,
New York, 1986.

[39] V. Gehlot. A proof-theoretic approach to semantics of concurrency.
Dissertation, University of Pennsylvania, 1991.

[40] V. Gehlot and C.A. Gunter. Normal process representatives. In Proc. 5-
th IEEE Symp. on Logic in Computer Science, Philadelphia, June 1990.

[41] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:l-102,
1987.

[42] J.-Y. Girard. Multiplicatives. Rendiconti del Seminario Matematico dell'
Universita' e Politecnico Torino, Special Issue on Logic and Computer
Science, pages 11-33, 1987.

[43] J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In
Logic Colloquium '88, Amsterdam, 1989. North-Holland.

[44] J .-Y. Girard. Geometry of interaction 11: Deadlock-free algorithms. In:
Springer LNCS 417, 1990.

[45] J.-Y. Girard. A new constructive logic: classical logic. Mathematical
Structures in Computer Science, 1:255-296, 1991.

[46] J.-Y. Girard. On the unity of logic. Manuscript, 1991.

[47] J.-Y. Girard. Quantifiers in linear logic 11. Prkpublications Paris 7
Logique, No. 19, January 1991.

[48] J.-Y. Girard. A fixpoint theorem in linear logic. Announcement on
'Linear' electronic forum , February 1992.

[49] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press,
1989.

[50] J.-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: A mod-
ular approach to polynomial time computability. Theoretical Computer
Science, 97:l-66, 1992.

[51] G. Gonthier, M. Abadi, and J.-J. Levy. The geometry of optimal lambda
reduction. In Proc. 19-th Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, New Mexico. ACM Press, New
York, NY, January 1992.

[52] G. Gonthier, M. Abadi, and J.-J. Levy. Linear logic without boxes.
In Proc. 7-th Annual IEEE Symposium on Logic in Computer Science,
Santa Cruz, California, pages 223-234. IEEE Computer Society Press,
Los Alamitos, California, June 1992.

[53] C.A. Gunter and V. Gehlot. Nets as tensor theories. In G. De Michelis,
editor, Proc. 10-th International Conference on Application and Theory
of Petri Nets, Bonn, pages 174-191, 1989.

[54] J.C. Guzman and P. Hudak. Single-threaded polymorphic lambda calcu-
lus. In Proc. 5 t h IEEE Symp. on Logic in Computer Science, Philadel-
phia, June 1990.

[55] J.S. Hodas and D. Miller. Logic programming in a fragment of intu-
itionistic linear logic. In Proc. 6-th Annual IEEE Symposium on Logic
in Computer Science, Amsterdam, pages 32-42. IEEE Computer Soci-
ety Press, Los Alamitos, California, July 1991. Full paper to appear
in Information and Computation. Draft available using anonymous ftp
from host ftp.cis.upenn.edu and the file pub/papers/miller/ic92.dvi.Z.

[56] B. Jacobs. Semantics of weakening and contraction. Manuscript, May
1992.

[57] M. Kanovich. Horn programming in linear logic is NP-complete. In Proc.
7-th Annual IEEE Symposium on Logic in Computer Science, Santa
Cruz, California, pages 200-21 0. IEEE Computer Society Press, Los
Alamitos, California, June 1992.

[58] J. Ketonen and R. Weyhrauch. A decidable fragment of predicate cal-
culus. Theoretical Computer Science, 32, 1984.

[59] Y. Lafont. The linear abstract machine. Theoretical Computer Science,
59:157-180, 1988.

[60] Y. Lafont. Interaction nets. In Proc. 17-th ACM Symp. on Principles of
Programming Languages, Sun Francisco, pages 95-108, January 1990.

[61] Y. Lafont and T. Streicher. Game semantics for linear logic. In Proc. 6-
th Annual IEEE Symposium on Logic in Computer Science, Amsterdam,
pages 43-50. IEEE Computer Society Press, Los Alamitos, California,
July 1991.

[62] J. Lambek. The mathematics of sentence structure. Amer. Math.
Monthly, 65:154-169, 1958.

[63] J. Lambek. Multicategories revisited. In Categories in Computer Sci-
ence and Logic, pages 217-239. Contemporary Math., vol. 92, American
Math. Soc., Providence, RI, 1989.

[64] J. Lamping. An algorithm for optimal lambda calculus reduction. In
Proc. 17-th Annual ACM Symposium on Principles of Programming
Languages, Sun Francisco, pages 16-30. ACM Press, New York, NY,
January 1990.

[65] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29-37, Spring
1992.

[66] P. Lincoln and J . Mitchell. Operational aspects of linear lambda cal-
culus. In Proc. 7-th Annual IEEE Symposium on Logic in Computer
Science, Santa Cruz, California, pages 235-246. IEEE Computer Soci-
ety Press, Los Alamitos, California, June 1992.

[67] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems
for propositional linear logic. In Proc. 31st IEEE Symp. on Foundations
of Computer Science, pages 662-671, 1990.

[68] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems
for propositional linear logic. Annals Pure Appl. Logic, 56:239-311, 1992.
Special Volume dedicated to the memory of John Myhill.

[69] P. Lincoln and A. Scedrov. First order linear logic without modal-
ities is NEXPTIME-hard. Manuscript, September 1992. Avail-
able using anonymous ftp from host ftp.cis.upenn.edu and the file
pub/papers/scedrov/malll .dvi.

[70] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic im-
plication. In Proc. 6-th Annual IEEE Symposium on Logic in Computer
Science, Amsterdam, pages 51-62. IEEE Computer Society Press, Los
Alamitos, California, July 1991. Full paper to appear in Annals of
Pure and Applied Logic. Draft available using anonymous ftp from host
ftp.cis.upenn.edu and the file pub/papers/scedrov/lss91 .dvi.

[71] P. Lincoln and T. Winkler. Constant-Only Multiplicative Linear Logic is
NP-complete. Manuscript, September 1992. Available using anonymous
ftp from host ftp.csl.sri.com and the file pub/lincoln/comult-npc.dvi.

[72] P.D. Lincoln. Computational Aspects of Linear Logic. PhD thesis, Stan-
ford University, 1992.

[73] I. Mackie. Lilac - a functional programming language based on linear
logic. Master's Thesis, Imperial College, London, 1991.

[74] P. Malacaria and L. Regnier. Some results on the interpretation of A-
calculus in operator algebras. In Proc. 6-th Annual IEEE Symposium on
Logic in Computer Science, Amsterdam, pages 63-72. IEEE Computer
Society Press, Los Alamitos, California, July 1991.

[75] N. Marti-Oliet and J. Meseguer. From Petri nets to linear logic. In:
Springer LNCS 389, ed. by D.H. Pitt et al., 1989. 313-340.

[76] D. Miller. The T-calculus as a theory in linear logic: Prelimi-
nary results. Technical Report MS-CIS-92-48, Computer Science De-
partment, University of Pennsylvania, June 1992. Submitted. Avail-
able using anonymous ftp from host ftp.cis.upenn.edu and the file
pub/papers/miller/pic.dvi.Z.

[77] H. Ono. Phase structures and quantales - a semantical study of logics
without structural rules. Manuscript, 1991.

[78] V.R. Pratt . Event spaces and their linear logic. In AMAST '91: Al-
gebraic Methodology and Software Technology, Iowa City, 1991, Work-
shops in Computing, pages 1-23. Springer-Verlag, 1992.

[79] L. Regnier. A-calcul et Reseaux. Thkse de Doctorat, Universitk de Paris
VII, 1992.

[80] D. Roorda. Resource logics: proof- theoretical investigations. Disserta-
tion, University of Amsterdam, September 1991.

[81] K.I. Rosenthal. Girard quantaloids. Mathematical Structures in Com-
puter Science, 2:93-108, 1992.

[82] V. Saraswat and P. Lincoln. Higher-order, linear, concurrent constraint
programming. Manuscript, August 1992.

[83] H. Schellinx. Some syntactical observations on linear logic. Journal of
Logic and Computation, 1:537-559, 1991.

[84] R. A .G. Seely. Linear logic, *-autonomous categories, and cofree coal-
gebras. In Categories i n Computer Science and Logic, pages 371-382.
Contemporary Math., vol. 92, American Math. Soc., Providence, RI,
1989.

[85] A.S. Troelstra. Lectures o n Linear Logic. CSLI Lecture Notes No. 29.
Center for the Study of Language and Information, Stanford University,
1992.

[86] P. Wadler. There's no substitute for linear logic. Manuscript, December
1991.

[87] D.N. Yetter. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55:41-64, 1990.

A Synopsis on the Identification of Linear Logic
Programming Languages

(Extended ~bstract)'
James Harland David P y m

University of Melbourne University of Edinburgh
Australia Scotland, U.K.

We investigate the definition of logic programming languages within linear logic [Gir87].
We take as our point of conceptual departure the uniform proofs of Miller et al., [MNPS91],
[Mi1891 and the class of hereditary Harrop formulae of intuitionistic logic, although our
aims are more foundational. In particular, we assume that the characteristic feature of
logic programming is goal-directed proof-search. More precisely, there is a search operation
corresponding to each logical connective, and when searching for a proof of a given goal
one applies the search operation that corresponds to the outermost connective of that goal,
and then to the outermost connective of each subgoal so generated, etc.. Furthermore,
we assume that it must be possible to rewrite the program so that just one left rule, an
appropriate notion of resolution2 rule is required.

In linear logic, the identification of a class of computationally appealing proofs, uniform
proofs, is somewhat more intricate than in logics that have been considered previously.
For example, in first-order intuitionistic or minimal hereditary Harrop formulae [MNPS91],
[Mi189], the search operation corresponding to each connective that can occur in a goal is
given by the right rule for that connective. It turns out that for the whole intuitionistic
hereditary Harrop fragment, in which just A, > and V may occur negatively (the definite
formulae) and A, V, >, V and 3 may occur positively (the goal formulae), the strategy of
constructing proofs (from root to leaves) by applying a right rule wherever one is applicable
is complete. This property arises from the permutability properties of the rules of the
(classical and) intuitionistic sequent calculus first studied by (Curry and) Kleene [Kle52,
MNPS91, HP91, HP921.

The main novelty in linear logic is that for the desired classes of definite formulae and
goal formulae, it may be necessary, under certain circumstances, to apply a left rule in the
middle of a sequence of right rules in order to maintain completeness. In particular, we
need to allow the 8 - L and C!-L (contraction on the left) rules to occur immediately after
the 8-R rule, and various left rules after the !-R rule [HP91, HP921. One solution to this
problem would be to exclude 8 and ! from the class of definite formulae in linear logic.
However, this is both undesirable and unnecessary. It turns out that these exceptions to
the strategy of applying right rules wherever they are applicable can be eliminated in the

'This work was supported in part by ESPRIT BRA, "Logical Frameworks"; and U.K. SERC grant GR/G
58588, "Logical and Semantical Frameworksn; and by a grant of the Australian Research Council.

2We stress that our notion of resolution is an analytic one; cf. classical Horn clause resolution, in which
resolution amounts to cut together with unification.

next step of our analysis, in which, just as in the setting of intuitionistic hereditary Harrop
formulae, we rewrite the antecedents to a certain clausal form for which a single left rule,
the appropriate notion of resolution rule, is complete.

Thus we show in [HP91, HP921 how an analysis of the permutability properties of the
two-sided linear sequent calculus can be used to determine fragments of linear logic for which
a suitable notion of resolution proof can be defined. A summary of this analysis consists
in essentially two, mutually dependent, steps: (i) The identification of the class of formulae
such that the strategy of constructing proofs (considering rules to be reduction operators,
in the sense of Kleene) [Kle68] by applying right rules wherever they are applicable is
complete, subject to certain exceptions to this strategy, which must be handled, i.e., made
goal-directed, by the second step. This class of proofs, constructed by the application of
the right rules wherever possible, subject to the exceptions to be handled by step (ii), is
the appropriate class of uniform proofs; (ii) The exploitation of the structural properties
of the antecedents of linear sequents so that exceptions to the right rule-first strategy can
be eliminated and so that we can invoke a single left rule, a resolution rule whilst retaining
(soundness and) completeness with respect to linear sequent calculus. This is achieved by
introducing a mapping which reduces antecedents to multisets of clauses.

This analysis leads us to identify the following classes of formulae as being available for
use as a linear logic programming language:

Definite formulae D ::= A) ~ (I I D & D I D @ D I D ~ E D I G - ~ A I A x . D I ! D
Goal formulae G ::= A I ~ I I I T I D ~ ~ G @ G J G @ G I G ~ E G I G & G

I D - o G I A x . G I V x . G (! G I ? G ,

where A ranges over atomic formulae. Programs are linear antecedents that consist of
just closed definite formulae and goals are linear succedents that consist of just closed goal
formulae.

Of course, there are other, more pragmatically motivated, influences on the choices of
definite formulae, and indeed on the choices of goal formulae. We remark here that if we
were to restrict definite formulae to be just the clauses permitted by (ii), above, we should
be forced to constrain goal formulae rather more than is essential.

It remains an open problem to determine precisely the maximal class of linear formulae
for which suitable notions of goal-directed proof are complete. However, some upper and
lower bounds may be given. The main omissions from the class of definite formulae are
those of the form Dl $ D2, V x.D and ?D, as well as the constant 0. The first two cases
should not be surprising; note that in the intuitionistic case, the formulae Dl V D2 and
3x.D are not allowed in definite formulae, as the relevant permutation properties do not
hold otherwise. The same property holds in the linear case for Dl $ D2 and Vx.D, and
also for ?D. The omission of 0 is also not peculiar to linear logic, but essentially a denial of
the principle of ex nihil quodlibet; it seems difficult to reconcile the notion of goal-directed
provability with the provability of r, 0 I- A for an arbitrary A. Thus it would seem that the
omission of these four cases is necessary to preserve the notion of goal-directed provability.

The situation is less clear cut for some of the other omissions. Whilst the permutation
properties appear to disqualify GI as a definite formula on the same grounds as Dl $ D2,

V x.D and ?D, G I is linearly equivalent to G -o I, and as I may appear in goals, it seems
reasonable to suggest that formulae of the form G -0 I may be included in the class of
definite formulae. This form of negated formulae may considered as a way of ensuring that
definite formulae containing negations may only be "used" at particular places in a proof.

Another "grey area" is for formulae of the form G -0 D, rather than merely G -o A
where A is an atom. In the intuitionistic case, it is known that a formula of the form
G > D may be converted into an equivalent set of definite formulae in which only formulae
of the form G 3 A appear. However, this property does not hold in linear logic - for
example, p -o (q @ r) is not linearly equivalent to (p -0 q) @ (p -0 r) . Hence in the linear
case, the addition of formulae of the form G -0 D increases both expressibility and power.
The main reason that formulae of the form G -o A are desirable is that they allow simple
proofs to be used, i.e., that the 3 -L rule need only be used as a unary rule, which in turn
leads to the familiar notion of unifying an atom with the head of a clause. Clearly such a
notion of proof cannot be used in the presence of formulae of the form G -o D. However,
uniform provability remains complete for such formulae, and so we may choose to maintain
either simple proofs or formulae of the form G 4 D, but not both. In this sense the notion
of maximality will depend upon whether we consider goal-directed provability to include the
notion of simple proof or not. Another possibility is to restrict D to a subclass of definite
formulae with a correspondingly restricted class of subproofs appearing on the right of
-o -L, such as allowing the subproof to contain only the rules Cf? -L, & -L and @-L. Such a
straightforward modification of our notion of uniform proof permits the presence of definite
formulae of the form G 4 (A1 Cf? . . . Cf? A,), for example. This seems to be an interesting
compromise between simple proofs and allowing arbitrary (uniform) proofs on the right of
-o -L; in particular, no right rules or occurrences of -o -L will appear in such subproofs, and
so the subproof resembles a particularly simple form of clausal decomposition. Whatever
choice is made, it is clear that the answer to the maximality question depends very much
on the the way in which we allow the 4 -L rule to be used.

Hence the above class of formulae may not be the "ultimate" linear logic programming
language, but it would seem that it is not very far from it, and that it will be a subtle and/or
intricate task to expand the language in significant ways. The more abstract problem of
identifying, for a given class of proofs (such as uniform proofs), the maximal class of formulae
for which that class of proofs is complete with respect to provability remains an intriguing
open problem and the subject of active research.

Whilst resolution proofs determine the nature of the search primitives needed to me-
chanically implement this language as far as is possible logically, they are not, in operational
terms, deterministic. In order describe interpreters we must have a suitably deterministic,
operational characterization of proofs. For example, consider the @-rule of [HP92]:

where C E 2) and {Vo,Dh bR GI @ Gz, Go, Q;) U U~=l{Vi G;) is a multiset of C-
components of the sequent 2) GI @G2, G. In this rule, read from conclusion to premisses,

the program V and goal G are, roughly speaking, split, via C-components, into the parts
Do, DL, 221,. . . , Dn and Go, G;, GI,. . . , Gn, respectively. The reader might easily verify that
the following is an example of the @-rule:

But the rule provides no determination of how this splitting is to be calculated. A similar
problem arises with resolution rule in linear logic programming [HP92]: a clause may need
to be deleted after it has been used, i.e., after a resolution step has been performed. Indeed,
on consideration of the resolution rule (below), the reader will see that both of these issues
arise:

where UZ1{V; kR G;} is a resolvant of V FR A, 6: a resolvant3, for a particular choice of
clause G -o A E V which does not appear in 221,. . . , V,, determines how to split V ((7) into
vl,...,vn (Gl,---,Gn)-

The definition of the resolution rule is not as complicated as the reader might at first
suppose. For example, the reader might easily check that the following, in which-we write c
for the formula !((p -o r) 43 ((ql @ q2) -o s)), is an instance of the resolution rule (2) (above):

Again, the rule provides no determination of how this splitting is to be calculated.
Our solution [HP91, HP921, at the abstract level, to the problem of how to calculate

splittings is to adopt a lazy approach, and to this end we permit an interpreter to construct
proto-proofs by modifying the rules of resolution proof to delay the calculation of splittings
(so that, for example, all suitable formulae in the antecedent and succedent go each way
at a @-rule). In order to maintain the soundness, we introduce the notion of path in such
proto-proofs. Paths can be considered to be proto-proof-objects - they are the appropriate
notion of proof-object for our computational purposes and are related to proof-nets [Gir87].

We sketch the definition of the construction of a pdh4 in such a proto-proof as follows:
(I) The endsequent is in every path; (11) Traverse the proto-proof tree towards the leaves,
starting at the endsequent: (i) Whenever a &-rule is reached, choose a branch and proceed;
(ii) Whenever a @- or resolution rule is reached, proceed along all branches; (111) Continue
until all branches of the path have reached a leaf. The proto-proof determines a proof just in
case for each possible path in it, there are expansions (at the appropriate rule applications)
of the antecedent and succedent that are compatible with leaves in the path.

We illustrate the notion of path with an example of a proto-proof involving both the
8- and resolution rules. (As above, we denote the formula ! ((p -o r) 0 ((ql @ q2) -a s)) as c

where convenient .)

31n a simple propositional setting.
'Such a construction proceeds dynamically, during the construction of a proto-proof.

t f C,P,!?l,q2 k R ~ c , p , q l , q 2 , (~ 1 8 ~ 2) ~ s ~ k q l CjP,41,92 k ~ q 2
res. €4

c , p , q l j q 2 , p - o r k k r c , p , q l , q 2 , (~ 1 ~ 3 q z) - o s k k q 1 ~ 9 2
res.

p, q 1 , q 2 , ! ((p 4 r) tf4 ((q 1 ~ 9 ~ 2 1 4 9)) k k r , S

There is just one path (marked by j) in this proto-proof and the reader might easily verify
that suitable splittings and expansions5 exist for a resolution proof to be determined, i.e.,
that there is indeed a resolution proof of this endsequent. To see this, consider that the leaves
on the path require exactly one occurrence of each of q l , q2 and p; that the implicational
subformulae of c are each used exactly once; and that these conditions are compatible
with the proto-proof. It should be noted that the input/output model of [HM91] can be
considered to be a particular computational method of determining paths.

The full theory of paths, which has much in common with the work of Andrews, Bibel
and Wallen on the use of matrices and matings for proof-search [And81, Bib82, Wal891,
remains to be developed in detail. Such a theory provides the transition from the logical
characterization of goal-directed proof-search given by resolution proofs to a truly opera-
tional account, whilst making no inessential commitment to a particular implementation
strategy.

We remark that it will be important and interesting to study broader classes of relevance
logics.

References
[And811 Andrews, P.B. Theorem-proving via general matings. J. Assoc. Comp. Mach.

28(2):193-214, 1981.

[Bib821 Bibel, W. Computationally Improved Versions of Herbrand's Theorem. Logic Col-
loquium '81, pp. 11-28. North-Holland, 1982.

[Gir87] Girard, J.-Y. Linear logic. Theoretical Computer Science, 50:l-102, 1987.

[HP91] Harland, J., Pym, D. The Uniform Proof-theoretic Foundation of Linear Logic
Programming (Extended Abstract). Proceedings of the International Logic Pro-
gramming Symposium (V. Saraswat and K. Ueda, editors), San Diego, October,
1991. MIT Press, 1991. pp. 304-318.

[HP92] Harland, J.A., Pym, D.J. Resolution in Fragments of Classical Linear Logic (Ex-
tended Abstract). Proceedings of the Russian Conference on Logic Programming
and Automated Reasoning (A. Voronkov, editor), St. Petersburg, July, 1992. Lec-
ture Notes in Artificial Intelligence, Vol. 624, Springer-Verlag, 1992. pp. 30-41.

[HM91] Hodas, J., Miller, D. Logic Programming in a Fragment of Intuitionistic Linear
Logic: Extended Abstract. Proceedings of the 6th Annual IEEE Symposium on

5Multiplicities of formulae, such as c , with ! as their outermost connective.

Logic in Computer Science, Amsterdam, July, 1991. IEEE Computer Society Press,
1991. pp. 32-42.

[Kle68] Kleene, S.C. Mathematical Logic. Wiley and Sons, 1968.

[Kle52] Kleene, S.C. Permutability of inferences in Gentzen's calculi LK and LJ. Memoirs
of the American Mathematical Society 10, pp. 1-26, 1952.

[Mi1891 Miller, D. A Logical Analysis of Modules in Logic Programming. J . Logic Prog.
6(1& 2), 1989, pp. 79-108.

[MNPS91] Miller, D., Nadathur, G., Pfenning, F., ~ ~ e d r o v , A. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and Applied Logic 51, pp. 125-157,
1991.

[Wal89] Wallen, L.A. Automated Deduction in Non-classical Logics. MIT Press, 1989.

Rules of definitional reflection in logic
programming

Peter Schroeder-Heister
Universitiit Tiibingen, Wilhelm- Schickard-Institut

Sand 13, 7400 Tiibingen, Germany
e-mail: schroeder-heister@mailserv.zdv.uni-tuebingen.de

Given a set D of clauses of the form
F * A,

where F is a formula of some logic and A is an atom, it is natural to extend the sequent
calculus for that logic by a rule like

F I - F
r I- a (I- D),

yielding a logic over D . This idea has been used in proof-theoretic interpretations and ex-
tensions of definite Horn clause programming, notably A-Prolog, by giving a computational
reading to (I- D), which corresponds to resolution if the clauses in D are of a particular
form.

In systems like GCLA, a principle dual to (t- D) is considered in addition, yielding
a fully symmetric sequent calculus. It is called "definitional reflection" since it is based
on reading the database D as a definition. There are two main options for formulating
definitional reflection. The rule on which GCLA is based is the following:

An alternative rule which has been considered by Eriksson and which seems also to be the
one Girard is favoring, has the following form:

{Fa, Fa I- Go : F =+ 3 E D and a = mgu(A, B))
I',A I- G

(D t)*.

As they stand, (D I-)* is stronger than (D I-) (in the non-propositional case) - a standard
example being the derivations of the axioms of ordinary first-order equality theory. Compu-
tationally, however, they rest on different intuitions. The first rule considers free variables
as ezistentially quantified from outside, for which an appropriate substitution has to be
computed. The second rule considers them as erniversally quantified from outside rather
than something for which an substitution has still to be found. By means of unification it
takes into account all possible substitution instances of the atom A, which can be inferred
according to the given definition D , thus corresponding to some kind of w-rule.

Therefore, the extension of logic programming systems by computational variants of
(D I-) and (D I-)* leads to conceptually different approaches. A combination of (D I-) and
(D I-)* with both existential and universal variables, as proposed by Eriksson, would be a
most desirable feature of a logic programming system with definitional reflection. There are
certain algorithmic problems involved in such a combination that have still to be solved.

In any case, whether one considers (D I-) or (D I-)* or a combination of both, cut-
elimination fails for the full system but holds if the definition D does not contain implications
in clause bodies or if the underlying logic is contraction-free (e.g., linear). We argue that
the failure of cut-elimination is a matter of the definition D considered rather than a defect
of the underlying logic.

A Relevance Logic Characterization
of Static Discontinuity ~ramrnars~

(Extended Abstract)
James Andrews, Ver6nica Dahl, Fred Popowich

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada V5A 1S6

The "logic grammar" framework [PW80, Per81, DA89] has proven to be an effective
tool in computational linguistics [Joh87, Sta88, Dah89, DP901. Rather than offering specific
linguistic theories themselves, logic grammars offer clear and declarative ways to implement
linguistic theories.

Studies of the foundations of logic grammars have suggested that they have a relation-
ship to relevance logic, the brand of logic which refuses to recognize an implication as valid
unless the assumptions are relevant to the conclusion. Similar connections have been estab-
lished to linear logic [Gir87], which with relevance logic falls under the banner of so-called
"substructural logics".

In this talk and its associated paper ([ADPSI], submitted to the Journal of Logic Pro-
gramming), we will describe how a specific logic grammar formalism, Dahl's Static Discon-
tinuity Grammars, can be given a precise characterisation by a logic which is very similar in
spirit to traditional relevance logics [AB75], but which also incorporates elements of linear
logic.

1 "Parsing as Deduction" and its Difficulties

The parsing-as-deduction approach to syntax views the problem of parsing a sentence as
the problem of deducing the assertion "we have heard (or read, or input) a sentence" from
assertions of the form "we have heard (read, input) a certain word." We encode such
premisses and the conclusion in some formal logic, following whatever linguistic principles
we have in mind; then we give axioms and/or rules of inference which allow all and only
our desired sentences to be parsed.

For instance, one possible way to encode the parsing of the sentence "Evelyn loves
books" might be

'Research supported by operating grants OGP0002436 and OGP0041910 from the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by the BC Advanced Systems Institute. We are
grateful to the Logic and Functional Programming Group, in whose lab this work was developed, and to
the Centre for Systems Science, Laboratory for Computer and Communications Research and School of
Computing Science at Simon Fraser University for the use of their facilities.

That is, "if we have heard the three words 'evelyn', 'loves', and 'books', we have heard a
sentence." The logical system associated with this encoding would give axioms and rules
which allow us to parse the sentence, by asserting that if we have heard certain tokens we
have heard corresponding parts of speech, and so on.

However, if we interpret I- as the classical consequence relation, we have problems; if
the above statement is provable, so should be

because the set of assumptions which allowed us to conclude that we had heard a sentence
originally is still a subset of the set of assumptions in all three cases.

We could sdlve this problem by putting some temporal information explicitly into the
logical encoding, by doing such things as labelling the words with the "times" at which
they were heard, or (as in the encoding of DCGs into Horn clauses [PW80]) building such
information into data structures. However, this solution may burden the axioms, rules of
inference, and grammar rules with clumsy notational trivia. It would be more in the spirit
of the parsing-as-deduction approach to encode this information at a basic level in the logic.

2 Relevance Logic

Relevance logic [AB75, Rea881 seems to be useful in solving the problems associated with
parsing as deduction, in part because it can express the needed occurrence and ordering
information in a way that is less notationally burdened than the ways given above.

Relevance logic arises from the view that one should be able to deduce a conclusion
from assumptions only if the assumptions are relevant to the conclusion and made in a
relevant order. Relevance logic therefore treats a list of assumptions as a sequence rather
than a set, and rejects the "structural rules" of permutation (which says that the order of
assumptions is irrelevant), contraction (which says that we can duplicate any assumption),
and weakening (which says that if we add assumptions we can still prove the same things).

"Substructural logics" in general (those logics which reject some structural rules) seem
to be connected to parsing as deduction. Evidence of this is given by work to do with linear
logic [Gir87], another substructural logic. The sequent calculus version of the Lambek
calculus for categorial grammars [Lam881 has been proven equivalent to a fragment of
intuitionistic linear logic by Abrusci [AbrSO] and independently by de Paiva [DP91]; and
Hodas and Miller [HM91] have used linear logic to extend Definite Clause Grammars via a
linear logic programming language.

3 The Approach of This Paper

In this paper, we make explicit the connection between substructural logic and logic gram-
mars by a concrete example.

The logic grammar framework which we study is Dahl's Static Discontinuity Grammars
(SDGs) [DPSO], which grew out of Definite Clause Grammars [PW80] and Extraposition
Grammars [Per811 in a desire to handle discontinuous constituents and "movement" at
a more fundamental level. We show that both of the interpretations of SDGs can be
characterized in a sound and complete manner by a relevance-logic sequent calculus. Since
DCGs, Scattered Context Grammars [GH69], and so on are encompassed by the SDG
formalism, this characterization also applies to them.

3.1 Static Discontinuity Grammars

A static discontinuity grammar (SDG) is a collection of rules, each of which is a tuple
of clauses. A clause is an expression of the form (t + A1,. . . ,Am), for m 2 1, where
(essentially) t is a non-terminal, and each of the Ai's is a terminal, non-terminal, or empty
sequence marker ("[I").

An SDG in which each rule contains only one clause is interpreted exactly as if it were
a DCG. Rules containing more than one clause are interpreted as stating that whenever
an instance of the rule is used, each clause instance must be applied exactly once, in a
left-to-right manner across the parse tree.

There are two interpretations of SDGs, one broader than the other. They differ only in
their restrictions on the positions in the parse tree at which clauses of a multi-clause rule
can be applied. In the "rewriting" interpretation, the "cut" in the parse tree corresponding
to a rule application (informally, a line drawn across the parse tree going through each head
node involved) must not cross any other rule's cut; in the "tree admissibility" interpretation,
crossing cuts are allowed. Each interpretation has some advantages and disadvantages. Both
interpretations are characterized by the logic given in the paper.

3.2 The Sequent Calculus Characterization

The sequent calculus which characterizes SDGs makes use of several features of relevance
and/or linear logic:

1. The "splitting" conjunction 8, found in both relevance and linear logic;

2. The relevance-logic "bunch" construct (Al,. . . , A,), which groups together formulae
to preserve their order within a sequent; and

3. The unary linear-logic "of course" connective "!", which represents 0 or more copies
of a formula.

However, the sequent calculus interprets bunches in a manner which is connected to, but
not the same as, the standard interpretation in relevance logic.

The first step in the characterization of SDGs is to give a translation of an SDG and a
parsing problem into formulae. A clause (t + A1,. . . , A,) is translated into the formula
(t t A1@- - -@A,). A rule (Cl, . . . ,C,) is translated into the formula !(t(Cl)@- - .@t(C,)),

! r , !R, !rt, A, (R), A/ I- B
V/1:

!r, A, (R[X := ti), A/ I- B
Cont/l:

! r , !R, !rl, A, A/ I- B !r, A, (VXR), at I- B

("copy SDG rule") ("choose substitutions")

("separate rule clauses")

("allocate clauses across tree")

!I?, A, At I- B
Refl: !r, A, (t + B), at I- t

("call clause") ("match terminal")

("ignore empty rule") ("match empty sequence")

Figure 1: Rules for sequent calculus Rsa.

where t(C) is the translation of clause C. Finally, the problem of parsing a sequence of
terminals tl , . . . , tk as a non-terminal s in a grammar G is translated into the sequent

where t(G) is the translation of the rules of G.
With this translation given, we have only to give the rules for the sequent calculus,

called Rsa (Figure 1). We have the result that a sentence is accepted by an SDG under
the "admissibility" interpretation iff the translation of the parsing problem is a theorem of
Rsa. Furthermore, there is a variant of Rsa, called Rsr, which characterizes the "rewriting"
interpretation in the same way: it is the restriction of Rsa in which the indicated bunch of
the c / l rule must be the leftmost one.

The formal definitions, theorems, and proofs are given in [ADPSI].

References

[AB75] Alan R. Anderson and Nuel D. Belnap. Entailment: The Logic of Relevance and

Necessity. Princeton University Press, Princeton, N. J., 1975.

[AbrgO] M. Abrusci. A comparison between Lambek syntactic calculi and intuitionistic
linear logic. Zeitschrift fri'r Mathematische Logik, 36:ll-15, 1990.

[ADPSI] James Andrews, Veronica Dahl, and Fred Popowich. A relevance logic character-
ization of static discontinuity grammars. Technical Report CSS/LCCR TR91-12,
School of Computing Science, Simon Fraser University, Burnaby, B C, Canada,
December 1991. Expanded version submitted to the Journal of Logic Program-
ming.

[DA89] V. Dahl and H. Abramson. Logic Grammars. Monograph, Symbolic Computation
A1 Series. Springer-Verlag, 1989.

[Dah89] Veronica Dahl. Discontinuous grammars. Computational Intelligence, 5:161-179,
1989.

[DP90] Veronica Dahl and Fred Popowich. Parsing and generation with static disconti-
nuity grammars. New Generation Computing, 8:245-274, 1990.

[DP91] Valeria De Paiva. A Dialectics model of the Lambek calculus. In 8th Amsterdam
Logic Colloquium, Amsterdam, December 1991.

[GH69] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Computer
and System Sciences, 3:233-247, 1969.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:l-102, 1987.

[HM91] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic
linear logic. In Logic in Computer Science, Amsterdam, July 1991.

[Joh87] M. Johnson. The use of knowledge of language. Technical report, Brain and
Cognitive Sciences, M.I.T., 1987.

[Lam881 J . Lambek. Categorial and categorical grammars. In Richard T. Oehrle, Emmon
Bach, and Deirdre Wheeler, editors, Categorial Grammars and Natural Language
Structures, volume 32 of Studies in Linguistics and Philosophy, Dordrecht, 1988.
D. Reidel.

[Per811 Fernando Pereira. Extraposition grammars. American Journal for Computational
Linguistics, 7:243-256, 1981.

[PW80] Fernando Pereira and David H. D. Warren. Definite clause grammars for language
analysis - a survey of the formalism and a comparison with transition networks.
Artificial Intelligence, 13:231-278, 1980.

[Rea88] Stephen Read. Relevant Logic. Blackwell, Oxford, 1988.

[Sta88] E. P. Stabler, Jr. The logical approach to syntax: Foundations, specifications
and implementations of theories of government and binding. Technical report,
Department of Linguistics, UCLA, November 1988.

Disjunction in Linear Deductive Planning?
(Extended Abstract)

S. Briining, G. GroBe, S. Holldobler, J. Schneeberger, U. Sigmund, M. Thielscher
Intellektik, Informatik, T H Darmstadt, Alexanderstraf3e 10, D-6100 Darmstadt (Germany)

It has always been a major research goal in lntellecticss to model in a formal system the
remarkable ability of human agents to reason about situations and actions [7]. But despite
all efforts the goal is far from being reached. Recently three new deductive approaches were
proposed [I, 5, 61, where the facts describing situations are treated as resources. In fact,
a situation is a multiset of facts. The facts are consumed when the conditions of action
are to be satisfied and are produced as the effects of an action. None of these approaches
requires to state frame axioms explicitely and even though they are based on very different
paradigms, they are essentially equivalent [4].

In more realistic examples situations are not just multisets of facts but there are usually
alternatives and, even worse, an agent may not even be aware of all alternatives. In this pa-
per we consider alternatives but restrict ourselves to the case where the agent has complete
knowledge about the various possibilities. We also assume that the agent is quite cautious
in the sense that she is only interested in plans - ie. sequences of actions - which solve
her goals no matter which one of the alternatives holds in the real world. Technically, this
amounts to an extension of the previously mentioned approaches. In this paper we extend
two approaches - the equational logic approach of [5] and the linear connection method of
[I] - and allow situations to be described by formulae containing (non-idempotent) con-
junctions and (idempotent) disjunctions. The conjunctions model the multisets of resources
as before whereas the disjunctions model the alternatives. We give a semantics for these
extensions and show that they are equivalent. Thereby it will turn out that Bibel7s linear-
ity constraint - ie. the requirement that in a connection proof of a planning problem each
literal is connected at most once - is insufficient for handling disjunction. We introduce
a new linearity constraint and demonstrate that this new constraint guarantees the proper
treatment of disjunction.

Disjunctive Planning Problems

The use of disjunction in planning is best explained by formalizing a short story which we
want to call the tragic king's problem. Once upon a time the king of an old country suflered
from the kidnapping of his only son by the wizzard. There was no hope until a young and
brave lady crossed the country. As she heard about the king's suflering and saw a beautiful

'This work was funded in part by the (German) Ministry for Research and Technology (BMFT) within
project TASSO under grant no. ITW 8900 C2, by ESPRIT within basic research action MEDLAR-I1 under
grant no. 6471, by the Deutsche Forschungsgemeinschaft (DFG) within projects MUSE under grant no. HE
117015-1 and KONNEKTIONSBEWEISER under grant no. Bi 22816-1.

'1e. Artificial Intelligence and Cognition [3].

painting of his lovely son she knew what to do. There were two ways to release him. The
first one was to fight an enormous dragon. The second one was to kill the wizzard. For
both tasks she needed the stiletto she got from the mother of her gmndmother, But to kill
the dragon she needed also a lance and to kill the wizzard she needed also a magic wand.
Fortunately, the lady had a blue fairy, who has always fulfilled her wishes, and she asked
her for help. Did the king see his lovely son ever again?

In our formal treatment we use the strings s , w, d, dw, dd, I , m to represent the
stiletto, the wizzard, the dragon, the dead wizzard, the dead dragon, the lance, and the
magic wand, respectively. A situation is described by a multiset of facts, eg. the multiset
{ s , w, 6) models a situation in which the stiletto, the wizzard, and the dragon are present.
A disjunctive planning problem consists of an initial set of situations Z - here { { s , w, d)} ,
a set of actions A - here

b f : w - + { #) , { m)) for asking the blue fairy,
kd : s , 1 , H { d d } for killing the dragon,
kw : { s , m , w] H { { d w) } for killing the wizzard,

and a set of goal situations 9 - here { { d w) , { d d)) . One should observe that the goal as
well as the effects of the first action contain alternatives. Receiving either a lance or a magic
wand is expressed by a set consisting of two multisets. Throughout the paper we assume
the condition of the actions to consist of only one situation. In this case, a rule containing
alternatives as condition can easily be expanded to an equivalent set of actions where the
condition of each rule corresponds to one alternative.

An action A : C H { E l , . . .,En} is applicable to a set of situation S = {S1,. . . , S,}
iff C S; for all S; E S . If A is applicable to S then the application of A to S yields
the set of situations {(Si I C) u Ej I 1 5 i < m, 1 < j 5 n) . A plan is a tree whose
nodes represent sets of situations and whose edges represent actions. A plan p is called
permitted with respect to a set A of actions iff for all inner nodes S of p the following
condition holds. If S has k successors S;, . . . , Si , k > 1 , then there exist disjoint sets
Sl, . . . , Sk such that S = S1 U . . . U Sk and for all i = 1 , . . . , k , if the edge from S to Si
is labelled with action A; E A then A; is applicable to S; and yields S;' . A plan p solves
a given disjunctive planning problem (1, A, G) iff p is permitted with respect to the set
A of actions, the root of p represents the set Z of initial situations, and each element of
each set of situations represented by a leaf of p contains one element of the set 6 of goal
situations.

The following figure shows a plan which solves the tragic king's problem. One should
observe, that after asking the blue fairy the lady must observe the answer before she can
decide on which action to take next. This can be expressed by introducing a conditional
in a linearized version of the plan. For the tragic king's problem we obtain the linearized
plan [bf , cond(1, kd, m , kw)] , which should be read as ask the blue fairy first, and then, if

'~u l t i se t s are denoted by the brackets 4 and] whereas sets are denoted as usual by { and). The
operations c , ir and I denote the multiset extensions of the usual operations C , U, and - defined on
sets.

she hands you a lance, kill the dragon, otherwise, if she hands you a magic wand, kill the
wizzard.

Disjunction in Equational Logic Programming

In [5], situations are represented as terms built from the facts and the constant 0 using
the binary function symbol o . For example, the empty situation is denoted by 0 and the
initial situation in the tragic king's problem can be represented by the term s o w o d .
Such a term models a multiset if o is commutative, associative, and has 0 as a unit
element. In other words, o represents an AC1-function. Planning problems are specified
using a predicate pIan(s,p,t) which is interpreted declaratively as the execution of plan p
transforms situation s into situation t . Actions are defined by rules of the form

plan(conditions o V, [action, PI, W) : - pIan(e8ects o V, P, W).

Such an action is applicable if the term conditions o V unifies with the term representing
the current situation under the equational theory for o . The planning process terminates
if the goal situation is contained in the current situation, ie.

Extending this approach to handle disjunctive planning problems, we first have to rep-
resent sets of alternative situations. This is done with the help of a binary function symbol
I , which is associative, commutative, idempotent, and admits a unit element I. In other
words, I represents an ACI1-function whose intended meaning is to denote alternatives. For
instance, the term I I m denotes the set {{I), {m)} obtained when receiving a gift from
the fairy, whereas the term I I I denotes the set { { l) } , which contains the only alternative
if the fairy only hase two lances to choose from. If we regard facts as resources and a term
of the form X I Y as having either the resources contained in X or the resources contained
in Y but not both, then it is natural to require that o distributes over I , ie. that the law
of distibutivity (D)

holds. Using this equation every term can be transformed into disjunctive normal form.
One should observe that I does not distribute over o as this contradicts the intended
interpret ation.

The rules to express disjunctive planning problems have the same form as the rules in
[5] except that now the function symbol I may also be used to specify situations. Hence,
the rules

plan(V1, [bf,Pll,Wl) :- plan((l I m) 0 Vl,Pl,Wl), (4)

encode the actions in the tragic king's problem. The planning process is triggered by
formulating the planning problem as a query to the logic program.

? - plan(s o w o d, P, dw I dd). (7)

As in [5] , queries are answered using SLDE-resolution, where the union of the equational
theory AC1 of the operator o , the theory ACIl of the operator 1, and the law of distribu-
tivity (D) are built into a special unification procedure. Resolving the goal clause (7) with
rule (4) yields the binding {P I+ [bf, PI]) for P and the resolvent

?-plan((sowodo1) I (sowodom),Pl ,dw I dd). (8)

As our lady may have received either the lance or the magic wand, there are now two
alternative situations. Since we intend to model cautious agents, which are looking for plans
such that their goals are achieved no matter which situation they are in, we have to solve
the problem in both alternatives. This can be done by splitting goal (8) using the following
rule.

plan((X2 I Xi>oVz,cond(Xz,P2,Xi,P~),Wz) :- plan(XzoV2,Pz,Wz),
plan(X4 o VZ, Pi, WZ). (9)

The term cond(X2, P2, Xi, Pi) is a conditional and should be read as if the agent observes
X2 then plan P2 solves the problem, otherwise, if the agent observes X i then plan Pi
solves the problem. Resolving (8) and (9) yields the binding {PI H cond(1, P2, m, Pi)} for
PI and the resolvent

?- plan(s o w o d o I, P2, dw I dd), plan(s o w o d o m, Pi, dw I dd). (10)

The subgoals of this query can be resolved with the rules (5) and (6), respectively, leading
to the bindings {P2 I+ [kd, P3], Pi H [kw, P4]) for P2 and Pi and the resolvent

? - plan(w o dd, P3, dw I dd), plan(d o dw, P4, dw 1 dd). (11)

The tragic king's problem is almost solved. The agent is in a situation where either
the dragon or the wizzard is dead. However, the fact (3) cannot immediately be used to
terminate the refutation because the goal situation contains alternatives. However, if we
use the fact plan(X o Y, [I, X (X') instead, then P3 and P4 are bound to the empty plan
[] . Composing the substitutions obtained in the refutation of (7), we obtain the computed
answer substitution {P H [bf, cond(1, [kd, []],m, [kw, [I])]) which is precisely the desired
answer.

Disjunction in the Linear Connection Method

We know from [8] or [2] that a proof for a first order formula consists of a set of connections
such that all connected literals are simultaneously unifiable. In [I] it was shown that such
proofs solve planning problems if each literal is engaged in at most one connection. Although
in a l l examples given in [I] the conditions and effects of actions were conjunctions of atoms,
the so-called linear connection method is not restricted to such conjunctions.

In this section we want to illustrate with the help of the tragic king's problem how
Bibel's linear connection method handles disjunctions. The initial set Z of situations is
encoded as the formula

I ~ 3 P : s A w A d A s t (P) ,

where st(P) is the so-called state literal, whose only purpose is to record the actions taken
in order to achieve a goal. The set G of goal situations is encoded as

G = [dw v dd] A st([]),

where [] is a constant denoting the empty plan. The set A of actions is represented by
A - B F A K D A K W , where

B F r VP1,P2:st([t,cond(n,Pl,l,P2)])~[1hst(P~)]~[m~st(P~)],
KW r VY : st([kw,Y]) A s A w A m + dw A st(Y), and
KD = VZ : st([kd, 21) A s A d A 1 =+ dd A st(Z).

A linear connection proof of the formula I A A + G should yield the desired plan. The
following figure shows a connection proof. This proof generates this plan as the binding

{ P [bf , cond(l, [h, [I], m, [kd, [11)11 for P -
Unfortunately, the proof is not linear. The literals 7s and st([]) are connected twice. The
literal st([]) can be duplicated with the help of a distributivity law similar to (D), whereas
the literal 1s cannot be duplicated as this would contradict the concept of resources.
However, the proof shows an interesting feature. For every alternative plan - viz. the
plans [bf, cond(1, [kw, [I])] and [bf, cond(m, [kd, [I])] - a linear connection proof can be
found if we split the alternatives in the set of goal situations as well as in the rule B F into
two submatrices as shown in the following figure, and proof each goal situation separately.
In this figure the proof of [bf, cond(1, [kw, [I])] is shown in the usual way, whereas the
connections of the proof of [bf, cond(m, [kd, [I])] are drawn with dotted lines.

This observations suggests a modified linearity constraint under which disjunctive plan-
ning problems can be solved by the linear connection method. A connection proof of a
matrix M is said to be glohlly linear iff each subproof of M is linear, where the subproofs
are obtained by splitting the alternatives in the effects of actions and in the initial situation
and proofing alternative goal situations separately.

Results

In the talk we discuss the soundness and completeness of the equational logic approach
as well as its equivalence to the modified linear connection method. Whether it is also
equivalent to a corresponding extension of the linear logic approach in [6] remains to be
seen.

References

[l] W. Bibel. A deductive solution for plan generation. New Genemtion Computing, 4:115-
132,1986.

[2] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, second edition,
1987.

[3] W. Bibel. Intellectics. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence,
pages 705-706. John Wiley, New York, 1992.

[4] G. Grosse, S. Holldobler, and J. Schneeberger. On linear deductive planning. Internal
Report, Technische Hochschule Darmstadt, Fachbereich Informatik, 1992.

[5] S. Holldobler and J. Schneeberger. A new deductive approach to planning. New Gener-
ation Computing, 8:225-244, 1990. A short version appeared in the Proceedings of the
German Workshop on Artificial Intelligence, Informatik Fachberichte 216, pages 63-73,
1989.

[6] M. Masseron, C. Tollu, and J. Vauzielles. Generating plans in linear logic. In Foundations
of Software Technology and Theoretical Computer Science, pages 63-75. Springer, LNCS
472, 1990.

[7] J. McCarthy. Situations and actions and causal laws. Stanford Artificial Intelligence
Project: Memo 2, 1963.

[8] M. E. Stickel. An introduction to automated deduction. In W. Bibel and P. Jorrand,
editors, Fundamentals of Artificial Intelligeme, pages 75 - 132. Springer, 1987.

An Observational Semantics of Linear Logic

Yasushi Fujiwara
Department of Computer Science

Stanford Universityf0
fujiwara(0cs.stanford.edu

Abstract

We present a simple semantics of noncommutative linear logic based on the observa-
tion of labeled transition systems, which is familiar notion in the study of concurrency.
In this interpretation a little similar to Kripke semantics of modal logics, 8 will be
viewed as sequential composition. We also show that many process equivalences dis-
cussed so far in concurrency theory can be characterized by using linear logic formulas,
which is an analogue of modal characterization theorems. This exhibits a relationship
between linear logic and process observation of calculi like CCS or CSP.

4 Transition System Semantics

Linear logic was proposed by Girard as a logic of action [Girard]. The departure of linear
logic from (ordinary) classical logic is the abondonment of the structural rules. It is Girard7s
crucial observation that structural rules may lose the control of cut-elimination of the logic
and injure the constructiveness.

From its birth, linear logic has been expected to be significant in the study of parallelism
or concurrency. In this note, we will consider an aspect of linear logic as observational logic.
The semantics we discuss is based on the observation of labeled transition systems, which
is a common notion in the study of concurrency.

A labeled transition system over a given set A is a pair (X, S), where

r X is a set, called the set of processes;

6 : A x ~ - + 2 ~ is any function, called the transition function (2X denotes the power
set of X.);

We denote by x 5 y the condition that y E S(a, x). In this note, we tacitly impose image-
finiteness condition, i.e. 6(a, x) is finite for all (a, x) f A x X.

For the definition of noncommutative linear logic, the reader is referred to [BrownGurr]
or [Yetter]. We identify A with the set of atomic propositions of linear formulas. Given an
equivalence relation N on X, we will interpret linear formulas as relations that are right
and left-invariant with respect to N. (On the analogy with Bainbridge et al [BFSS], we call
such relations saturated.) For example, an atomic proposition a will be interpreted by the

''On leave from Toshiba Corporation.

saturated relation {(x, y))3xt3y'(x N x', x' -5 y', y' N y)), which is the smallest among sat-
urated relations that contain {(x, y)lx -5 y}. The satisfaction relation of noncommutative
linear logic (without modalities ! and ?) is defined as follows:

(x , y) I = l = X N Y

(x , y) b T 5 true

(x, y) b 0 - false

(x ,y) I=L - X ~ L Y
(x, y) a - 3x'3y'(x N x', x' 5 y', y' N y)

(x ,y) I=aL = (y , x) P a

7 Y k 4 8 $ = 3 4 2 , d) i= 4 and (2, Y) I= $)
(x, Y) I= 4p$ - Vz((x, 4 t= 4 or (z, Y) t= $1
(x, Y) k 4&$ (x, y) /= 4 and (x, Y) b $

(x , Y > I = # $ $ ' (",Y)I=4or(x,Y)I=$

(We here use p for "multiplicative or.") It is easy to see that all the relations that interpret
linear formulas are saturated. The interpretation of additive connectives & and $ follows
Tarskian semantics, but the interpretation of multiplicative connectives 8 and p is similar to
that in Kripke semantics of modal logics. And linear negation is interpreted as "reaction."

A linear logic formula 4 is called valid if (x, x) I= 4 for any x E X and will be denoted

by (X, 6, N) 4. It is easy to check the following claim.

Theorem 1 Let (X , 6) be a transition system over A and N be an equivalence relation on
X . If 4 is provable in noncommutative linear logic, then (X , 6, N) b 4.

(The logic is not complete with respect to this interpretation. For example, & is distributive
over $ because of the set- theoretic definiton.)

5 Linear Characterization Theorem

In the study of concurrency, many notions of process classification have been proposed.
Probably, the most famous among them are bisimilarity and trace equivalence. Different
process equivalences represent behavioral equivalence under different notions of processe
observation.

Hennessy and Milner [HennMil] introduced Hennessy-Milner logic (HML), a kind of
modal logic, and showed that bisimilarity is characterized by the satisfaction relation of
HML formuals. Two processes are bisimilar if and only if the set of HML formulas they sat-
isfy coincide. It has been shown that many other process preorders are characterized by the
satisfaction relation of fragments of HML ("modal characterization theorems" [AbrVick]).
Modal characterization theorems are one of central topics in concurrency theory.

As the labeled transition systems can be seen as models of linear logic, it is natural to
expect that Linear logic model may be useful for the understanding of such process preorders.
By the construction, the following proposition is obvious.

Proposition 1 Let (X, 6) be a labeled transition system over A and .v be an equivalence
relation on X . If x N y and x' N y', then, for any linear formula $, we have

In particular, if x N y, for any linear formula $, we have

We will exploit the possibility of the opposite implication. That is, we will consider whether
the equivalence relation N is characterized by satisfaction relation of linear formulas.

We give a brief review of the definition of HML. The syntax is given as follows:

The satisfaction relation x $ is defined following the line of Kripke semantics. It is
sufficient to display the definiton of modalities.

An equivalence relation .v on X is said to be characterized by a set S of HML formulas
if the following holds:

x y * V$ E S.(x (= $ iff y + $)

For example, it is known that bisimilarity is characterized by the set of all HML formulas
and that trace equivalence is characterized by the set of all HML formulas of the form

(a1) . . - (an) t .
We now give a translation of HML into noncommutative linear logic. The translation

is based on the induction of the construction of HML formulas. The translation of logical
connectives in HML are rather direct. We will translate HML formulas t and f into T and
0, respectively. If an HML formula $ (resp. 4) is translated into (resp. $), then Il, A 4
(resp. $ V 4) will be trasnlated into $&$ (resp. $ $3). The modalities of HML will be
encoded by multiplicatives 8 or p. If an HML formula $ is translated into g, then (a)$
(resp. [a]$) will be translated into a 8 (?&I) 8 T (resp.op(3$ l) p a L .) By definition, we
can check that

Notice that [a]-free fragment of HML will be translated into the intuitionistic fragment of
linear logic.

When the equivalence relation N is the equality on X, we easily see that, for any HML
formula $, x i= $ * (x, x) /= $. But, in general, the situation can be more complicated.
The following lemma shows how the interpretation of HML formulas is related to that of
translated linear formulas. Notice that we here pose a special restriction on the occurrence
of [a]. Interestingly, the same restriction appears in the modal charcterization theorem of
ready simulation preorder.

Lemma 1 Let - be an equivalence relation characterized by an HML fragment S i n which
[a] occurs only i n subformulas of the form [alf. Suppose that S satisfies the following
conditions:

Then, for $ E S, x b + if and only if (x, x) + T.

The proof will be done by induction on the structure of HML formulas.
As bisimilarity is characterized by the set of all HML formulas, the above lemma is not

applicable to bisimilarity. But, we can establish the same conclusion in this case.

Lemma 2 Let - denote bisimilarity. Then we have x b $ u (x,x) /= 3 for any HML
formula $.

Now we state our main result, which is a linear logic analogue of modal characterization
theorems. This theorem applies to all process preorders listed on page 15 of [AbrVick].

Theorem 2 Let an equivalence relation N on X be bisimilarity or satisfy the conditions
listed in Lemma 1. Then,

Proof We already observed the implication J. Suppose that x and y satisfy the condition
of the RHS. In the case that N is bisimilarity, let S be the set of all HML formulas. In
the case that N satisfies the conditions in Lemma 1, let S be as in the lemma. By the
assumption, for any HML formula $ S, (x, x) 3 * (y , y) 3. By the above lemmas,
this is equivalent to V$ E S.(x b $ u y + $), which means x - y by the definition of S.

6 Conclusion and Related Work

The applications of linear logic to concurrency theory obtained so far are mainly concen-
trated in Petri-net theory (e.g. [EngWin]). In this note, we proposed a simple semantics of
noncommutative linear logic and showed that the model can be related to observations in
process calculi like CCS or CSP. We expect that our result may shed some light on further
relationship between linear logic and concurrency theory.

Technically speaking, the model we discused here can be viewed as a kind of relational
quantale model according to the terminology of [BrownGurr]. Brown and Gurr discussed
the relational quantale model and showed that noncommutative linear logic was complete
with respect t o their semantics. But their technique heavily relies on representation theorem
of quantales and their result is little suggestive for the relationship between linear logic and
concurrency theory.

Abramsky and Vickers [AbrVick] discussed an algebraic formulation of concurrency
theory. They constructed quantales corresponding to various process preorders and viewed
processes as modules over quantales. Compared to their work, ours is more logical rather
than algebraic. We hope our formulation is easier to understand and gives intuitive picture.
And our formulation is also applicable to bisimilarity, but they were not able to construct the
quantale for bisimilarity. On the other hand, they established characterization theorem for
process preorders, but our characterization theorem is for the corresponding equivalences.

References

[AbrVick] S. Abramsky and S. Vickers, Quantales, Observational Logic, and Process Se-
mantics, Imperial College Research Report DOC 9011, 1990.

[BFSS] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott, Functorial polymorphism,
Theomtical Computer Science, 70:35-64, 1990.

[BrownGurr] C. Brown and D. Gurr, Relations and Non-commutative Linear Logic, Uni-
versity of Arhus Technical Report DAIMI PB-372, 1991.

[EngWin] U. Engberg and G . Winskel, Petri nets and models of linear logic, in A. Arnold
(ed) CAAP'SO, 147-161, LNCS 431, Springer Verlag, 1990.

[Girard] J-Y. Girard, Linear logic, Theoretical Computer Science, 50:l-102, 1987.

[HennMil] M. C. B. Hennessy and R. Milner, Algebraic laws for nondeterminism and
concurrency, J. of ACM, 32(1):137-161, 1985.

[Yetter] D. N. Yetter, Quantales and (noncommutative) linear logic, J. of Symbolic Logic,
55(1):41-64, 1990.

Asynchronous Communucation Model Based on
Linear Logic

(Extended Abstract)
Naoki Kobayashi Akinori Yonezawa

Department of Information Science
The University of Tokyo

7-3- 1 Hongo Bunkyo-ku Tokyo, 113 Japan
{koba, yonezawa)@is.s.u-tokyo.ac.jp

7 Introduction

Recently, several applications of Girard7s linear logic[Gir87] to logic programming were
proposed and shown that they correspond to reactive paradigms[AP9la][AP91b][Mi192].
We propose a new framework called ACL[KY92] for concurrent computation along this
line.

Computation in ACL is described in terms of proof construction in linear logic. We
restrict inference rules and formulas in linear sequent calculus so that restricted rules have
a proof power equivalent to the original rules for the restricted formulas(given in the defi-
nition 1). The resulting computational framework contains rich mechanisms for concurrent
computation, such as message-passing style asynchronous communication, identifier cre-
ation, and hiding operator. They are all described in a pure logical form. We also give a
model-theoretic semantics as a natural extension of phase semantics, a model of linear logic.
ACL inference rules can be proven to be sound and complete w.r.t. this model-theoretic
semantics. Our framework well captures concurrent computation based on asynchronous
communication. It will, therefore, provide us a new insight into other models of concurrent
computation from a logical point of view. In fact, the actor model[Agh86] and asynchronous
CCS[Mi183] can be directly translated into our ACL framework. We also expect ACL to
become a formal framework for verification, reasoning, and transformation of concurrent
programs with techniques used in traditional logic programming. ACL also exhibits attrac-
tive features as a programming language.

8 ACL Framework

In this section, we introduce the basic (propositional) fragment of ACL. We give transition
rules in a form of restricted inference rules of linear sequent calculus.

8.1 Program Syntax

First, we define the ACL progmrn clause.

Definition 1 A program is a set of clauses, which are defined as follows:

Clause ::= Head Q- Body
Head ::= Ap
Body ::= Statement I Choice
Choice ::= Guarded-Statement1 Choice $ Guarded-Statement
Guardedstatement ::= Guard 8 Statement
Guard ::= AA I Guard 8 A;
Statement ::= T I I 1 Ap I A, I Body @ Body I Body & Body 1 ?A,
Ap ::= P, Q , R, . . . (process predicates)

..- A, ..- m, n, . . . (message predicates)

Example. A buffer process with one capacity can be defined in ACL as follows:

EmptyBu f f er O - ~ U ~ ' @I FullBu f f e r

FuIlBu f f e r ~ - ~ e t ' 8 (reply Q EmptyBuf fe r)

This definition is quite similar t o the following description in CCS[Mil89a],

EmptyBuf f e r = put.FullBuf f e r

FullBu f f e r = get.reply.EmptyBu f fe r)

though there is a significant difference that communication in ACL is asynchronous as is
described below, whereas it is synchronous in CCS.

8.2 Operational Semantics

Transition rules are given as a restricted form of inference rules in linear sequent calculus.
Please note that the rules should be read that the conclusion of an inference rule transits to
its premise formula. For instance, rule (C2) should be read as ~ ~ (r n j l @Aj), m;, F - A;, I'.

ACL Inference rules are given as follows:

a Structural Rules

k A (Sl) =(A is a permutation of I') . . . (Exchange)

a Parallel

I - A B I ' (PI) . . . (parallel)
7

(P2) ' B'rB' I' - . . (fork)
9

A 8 B is an ordinary parallel composition of A and B, whereas A & B is a process
which copies the entire environment and executes A and B independently.

Communication Rules

I - m B I '
(C l) - - - (message send)

?

(C2) I- ' 7 I- ' I' (normal message reception)
I- CBj(mj 8 Aj)ymiyI'

(C3)
I- mj,mf I- Ai,?m;,I'

(modal message reception)
I- bj(m: @ Aj), ?mi,

a Termination Rules

(TI) . . (program termination)
9

I- A (T2) A. . . (suicide)

a Clause Rule

I - B r (Cll) -(if A 0-B E P)
?

Context Rule

(Col) =(if is derived from the other rules)

C[1, called positive context, is defined as follows:

where F is any formula of linear logic.

Rules (C1)-(C3) are rules for communication. m @ A in rule (Cl) represents a sender
process which sends message m. This operation is asynchronous, because I- m, A and I- m@A
are logically equivalent in linear logic. $ j(m; @Aj) in rule (C2) represents a receiver process
which waits any one of messages ml, . . . , mk and becomes A; when receiving m;. ?m, which
we call a modal message, is a message which can be copied unboundly, hence may be used
several times by several processes.

The following proposition states that the above inference rules have an equivalent proof
power to the original inference rules in linear sequent calculus for the restricted formula.

Proposition 3 Let P be a program and A be a body formula. I- A is provable by the above
inference rules if and only if I-?PI, A is provable in linear sequent calculus.

9 Model based on Phase Semantics

In this section, we give a model for the body formulas defined in the previous section by
extending the phase semantics[Gir87] of linear logic.

9.1 Model for ACL

A set of program clauses is written in the form of

where F is a monotonic function on phase space, which is composed of projection, product,
and connectives of linear logic (0, &, $, @, ?).

Given a phase model (M, T, m*) where m* is an assignment of facts to message predi-
cates, we define the model P*, Q*, R*, . . . of process predicates P, Q, R, . . . by the following
equation:

< P*, Q*, R*, . . . >= @ (P)"(O'*)
nEw

We can prove that the ACL inference rules are sound and complete w.r.t. this model.
Proofs are given in [KY92].

Proposition 4 (Soundness) The ACL inference rules are sound w.r.t. extended phase
model in the following sense: Let G be a body formula. If G is provable, then G is valid
(i.e., 1 E G*) in all the extended phase models.

Proposition 5 (Completeness) ACL inference rules are complete w.r.t. the extended
phase model i n the following sense: Let G be a body formula. If G is valid (i.e., 1 E G*) in
all the extended phase models, G is provable by ACL inference rubes.

10 Extensions of ACL

10.1 First Order Extension

First order existential quantification and universal quantification provide mechanisms for
value passing and identifier creation respectively.

10.1.1 First-Order Existential Quantification for Value Passing

We introduce first-order existential quantification to the receiver part of a message. Then,
communication rules (C2)-(C3) are modified as follows:

The formula 3 ~ (m (~) l @ P(X)) represents a process which waits for the values of X
via m, and becomes P(a) after receiving message m(a). This extension allows processes to
send values in messages.

10.1.2 First-Order Universal Quantification for Identifier Creation

First-order universal quantification works as a mechanism for identiper creation. Identi-
fier creation is often very important in concurrent computing environment [Agh86][Mi189b].
Identifiers work as pointers to access resources including processes such that resources can
be accessed only by processes which know their pointers. By passing identifiers in messages,
acquaintences can be dynamically changed.

Let us look at V-rule in linear sequent calculus:

x not free in T
t- VX.A(X), I'

We modify this rule as

where id is a unique identifier which does not appear in A(X) and r.

10.2 Second-Order Universal Quantification as Hiding Operator

In this section, we introduce second-order universal quantification for message formulas. It
works as a hiding operator as in CCS. Here is an original rule in linear sequent calculus:

I- A , r
X not free in I'

I- AX.A, I'

We use the symbol A, instead of V to distinguish from the first-order universal quantifi-
cation. Notice the side condition. Quantified variable cannot be free outside the scope of
A. It is, therefore, invisible from outside. We introduce the following ACL rules instead of
the above original rules in linear sequent calculus.

Hiding Rules

(HI) where n contains neither m nor process predicates.

(332) ' Am'[A)7 y, I'
t- Am. A, n , I'

C [] in context rules are also extended to include the form hrn.(C[I). Then, again this
extension can be proven to be equivalent to linear sequent calculus.

11 ACL as a Programming Paradigm

ACL has the following attractive features as a progarmming paradigm.

1. Waiting multiple messages

2. Encapsulation mechansim by hiding operator

3. Modal messages for sharing information

4. Dynamic restructuring of processes

Details are given in [KY92].

12 Conclusion

We have proposed a logical framework ACL for concurernt programming languages based on
linear logic. We gave the operational semantics of ACL by restricting inference rules in lin-
ear sequent calculus and model theoretic semantics by extending phase semantics. In ACL,
message passing style communication, identifier creation, and hiding operator are formu-
lated pure logically, hence these mechanisms are uniformly treated by the logical semantics.
Future work includes the application of techniques for traditional logic programming to
transformation, reasoning and verification of concurrent programs written in ACL. More
detailed accounts of our ACL are given in [KY92].

References

[Agh86] Agha, G., Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[APgla] Andreoli, J.-M. and R. Pareschi, "Linear Objects: Logical processes with built-in
inheritance," New Generation Computing, 1991.

[APglb] Andreoli, J.-M. and R. Pareschi, "Communication as Fair Distribution of Knowl-
edge," in Proceedings of OOPSLA '91, pp. 212-229, 1991.

[Girt371 Girard, J.-Y., "Linear Logic," Theoretical Computer Science, vol. 50, pp. 1-102,
1987.

[KY92] Kobayashi, N. and A. Yonezawa, "Asynchronous Communication Model Based on
Linear Logic," tech. rep., Department of Information Science, University of Tokyo, 1992.

[Mi1921 Miller, D., "The R-calculus as a theory in linear logic: Preliminary results," Tech.
Rep. MS-CIS-92-48, Computer Science Department, University of Pennsylvania, 1992.
To appear in the 1992 Workshop on Extensions to Logic Programming, LNAI Series.

[Mi1831 Milner, R., "Calculi for Synchrony and Asynchrony," Theoretical Computer Science,
vol. 25, pp. 267-310,1983.

[Mi189a] Milner, R., Communication ~ n d Concurrency. Prentice Hall, 1989.

[Mi189b] Milner, R., J. Parrow, and D. Walker, "A Calculus of Mobile Processes, Part I,"
Tech. Rep. ECS-LFCS-89-85, University of Edinburgh, 1989.

	Proceedings of the Workshop on Linear Logic and Logic Programming
	Recommended Citation

	Proceedings of the Workshop on Linear Logic and Logic Programming
	Abstract
	Comments

	tmp.1185298954.pdf.njcD7

