
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

October 1987 

Motivating Time as a First Class Entity Motivating Time as a First Class Entity 

Insup Lee 
University of Pennsylvania, lee@cis.upenn.edu 

Susan B. Davidson 
University of Pennsylvania, susan@cis.upenn.edu 

Victor Fay-Wolfe 
University of Pennsylvania, wolfe@cs.uri.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Insup Lee, Susan B. Davidson, and Victor Fay-Wolfe, "Motivating Time as a First Class Entity", . October 
1987. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-87-54. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/288 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/288
mailto:repository@pobox.upenn.edu


Motivating Time as a First Class Entity Motivating Time as a First Class Entity 

Abstract Abstract 
In hard real-time applications, programs must not only be functionally correct but must also meet timing 
constraints. Unfortunately, little work has been done to allow a high-level incorporation of timing 
constraints into distributed real-time programs. Instead the programmer is required to ensure system 
timing through a complicated synchronization process or through low-level programming, making it 
difficult to create and modify programs. In this report, we describe six features that must be integrated 
into a high level language and underlying support system in order to promote time to a first class position 
in distributed real-time programming systems: expressibility of time, real-time communication, 
enforcement of timing constraints, fault tolerance to violations of constraints, ensuring distributed system 
state consistency in the time domain, and static timing verification. For each feature we describe what is 
required, what related work had been performed, and why this work does not adequately provide sufficient 
capabilities for distributed real-time programming. We then briefly outline an integrated approach to 
provide these six features using a high-level distributed programming language and system tools such as 
compilers, operating systems, and timing analyzers to enforce and verify timing constraints. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-87-54. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/288 

https://repository.upenn.edu/cis_reports/288


MOTIVATING TIME AS 
A FIRST CLASS ENTITY 

lnsup Lee 
Susan Davidson 

Victor Wolfe . 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 191 04-6389 

(revised October 1987) 

Acknowledgements: This research was supported in part by NSF grants DCR 8501482, 
DMC 851 2838, MCS 8219196-CER, U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027 
and a grant from AT&T's Telecommunications Program at the University of Pennsylvania. 



Motivating Time As A First Class Entity 

Insup Lee, Susan Davidson, Victor Wolfe 
Department of Computer and Information Science 

The University of Pennsylvania 
Philadelphia, PA 19104 

October 30, 1987 

Abstract  

In hard real-time applications, programs must not only be functionally correct but must 
also meet timing constraints. Unfortunately, little work has been done to allow a high-level in- 
corporation of timing constraints into distributed real-time programs. Instead the programmer 
is required to ensure system timing through a complicated synchronization process or through 
low-level programming, making it difficult to create and modify programs. In this report, we 
describe six features that must be integrated into a high level language and underlying support 
system in order to promote time to a first class position in distributed real-time programming 
systems: expressibility of time, real-time communication, enforcement of timing constraints, 
fault tolerance to violations of constraints, ensuring distributed system state consistency in the 
time domain, and static timing verification. For each feature we describe what is required, what 
related work has been performed, and why this work does not adequately provide sufficient ca- 
pabilities for distributed real-time programming. We then briefly outline an integrated approach 
to provide these six features using a high-level distributed programming language and system 
tools such as compilers, operating systems, and timing analyzers to enforce and verify timing 
constraints. 
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1 Introduction 

In many applications such as robotics or industrial control, programs must not only be function- 

ally correct, but must also meet timing constraints. These applications are referred to as hard 

real-time applications. Many real-time control systems are implemented as distributed computing 

systems to  match the distributed topology of the devices controlling the application, provide better 

performance through concurrency and improve system fault tolerance. Distributed real-time pro- 

gramming, however, has an additional complication over distributed non-real-time programming in 

that timing constraints must be-adhered to for correct performance. 

The problem we address in this paper is that the incorporation of timing constraints is not ade- 

quately supported in distributed real-time programming. Although work has been done to provide 

high-level constructs that make it easier to create functionally correct distributed programs (e.g. 

strong typing, abstract data types, exception handling, atomic actions, recovery blocks), little work 

has been done to allow a high-level incorporation of timing constraints into distributed real-time 

programs. Current real-time languages [GL83,BMR83,US 83,KS86,Wir83] lack in their ability to 

express timing constraints since not all possible timing constraints can be expressed explicitly or 

naturally as they are posed in the application and no high-level constructs are provided to incorpo- 

rate time into traditional distributed programming practices. Consequently, most of the proposed 

distributed real-time system support tools [CMMS79,DMV82,FR86,GLR82,RS82,SBWT85,TH86] 

still require the programmer to ensure that timing is met by low-level systems programming through 

constructs such as alarm events, watchdog processes, signals, and interrupts. Recent propos- 

als for an integrated system of high-level languages and run-time-system support tools, such as 

[BMM87,Yan86], have made progress in easing the burden on the real-time programmer, but fur- 

ther work on issues such as variable and nested timing constraints, system tolerance to missed 

constraints, and incorporation of time into distributed state consistency, is required. 



In this report we outline an integrated approach to elevating time to  a first class entity in real- 

time programming by expressing timing constraints explicitly in a high-level distributed program- 

ming language and using system tools such as compilers, operating systems, and timing analyzers 

to  enforce and verify timing constraints. The next section presents a model of the real-time control 

system we assume, and describes, as an example application, a real-time robot manipulator control 

application developed at the University of Pennsylvania. Section 3 describes six features that must 

be integrated to provide for a high-level treatment of time in distributed programming. Along with 

each feature, related work in the area is discussed. Section 4 briefly overviews our approach to 

providing an integration of these six features. 

2 Assumptions and Model 

This paper identifies necessary language constructs and tools for developing h a d  real-time applica- 

tions on a distributed computer system controlling physical devices such as a robot manipulator and 

associated sensors [SBWT85,PZ85,SE85]. Control applications are characterized by input which 

comes from the environment and output which affects the environment. In hard real-time control 

systems, input, output and computation are time constrained (various types of time constraints 

are discussed in Section 3.1.1) and these timing constraints must be met for correct performance. 

2.1 Assumptions About the Application 

This section describes a real-time robotics application that illustrates concepts in this paper. A 

detailed description of the current implementation is presented in [PZ85,PZ84]. Assumptions about 

the distributed computation system including its physical structure, software structure, and faults 

that can occur, are also presented. 



2.1.1 An Example  Application 

As an illustration of a hard-real-time control system we describe a robotic control application devel- 

oped at the University of Pennsylvania: a multi-sensor, six joint Puma robot [PZ85,PZ84,PDMSG]. 

The system control is performed by the processes shown in Figure 1. The coordinator process 

executes a user program that includes two kinds of operations: operations that define a world model 

and operations that define a task plan. The world model is described by positions and transforma- 

tions for the robot. Input determining the world model comes from integrated sensor data. The 

task plan is a set of high-level instructions commanding the robot. Commands and a description of 

the current world model are passed from the coordinator process to  the supervisor process through 

messages. The supervisor process interprets each command and plans a progression of Cartesian 

coordinates that the robot end effecter (hand) must reach to carry out the command. These Carte- 

sian coordinates, called a set point, are sent to the joint processes which compute corresponding 

joint coordinates and control the actuation. The sampling period is defined as the period for the 

generation of new set points. During each sampling period, a servo process for each joint process 

accepts the current joint position and the desired joint position and performs an interpolation to 

determine the actuation required for the joint. The servo processes execute at a period four times 

faster than the sampling period to allow more frequent actuation signals to be sent to the joints 

than the sampling period allows. 

2.1.2 Assumed Computa t ion  System 

The assumed distributed computation system is a collection of nodes that communicate with each 

other through a network. A node is a collection of one or more processors that share a common 

memory. The processor(s) of a node are multiprogrammed and work under the control of a resident 

operating system such as the TIMIX real-time kernel currently being developed at the University 
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of Pennsylvania [Kin87]. Each node possesses a local clock that is synchronized within a small 

fixed time interval of all other node clocks to  provide a consistent notion of time throughout the 

system. Nodes communicate by means of messages through a network; no physical memory is 

shared between nodes1. 

It is assumed the application program is composed of concurrent processes that are autonomous, 

asynchronous computation tasks that only occasionally synchronize and communicate with each 

other through messages. The processes are written in a high-level applications-oriented language 

independent of the system topology, configured offline, and started at system boot time; there are no 

dynamically created processes. It is assumed process placement on nodes and communication port 

addresses are specified in a configuration specification language such as DICON [Lee84]. Nothing 

is assumed about how and why processes are placed at a node, only that they remain at a node 

and do not migrate. Once the system is running, the operating system resident on each node is 

responsible for scheduling resources such as the node processors and communication medium. 

It is assumed faults may occur in the distributed system due to  hardware failures and errors 

due to software design flaws. Only detectable faults and errors are assumed to  occur and they 

do not completely prohibit system operation, that is, nodes fail cleanly. It is further assumed 

communication failures do not partition the network, implying there is always a communication 

path from one node to  another. 

3 Required Features For High-Level Real-Time Programming 

To elevate time to a first class position in real-time programming, we feel that (minimally) the 

following six features must be integrated into a high-level language and underlying support system: 

1. expressibility of time; 

'Building message passing is possible with a shared memory implementation within a node. This implementation 
is transparent to the processes, which appear only to communicate through messages. 



2. timed communication; 

3. system enforcement of timing constraints; 

4. tolerance to violations of constraints; 

5. ensuring distributed system state consistency in the time domain; and 

6. static timing verification. 

For each of these six features we describe what is required, what related work has been done in 

the area, and what further work is needed to incorporate time to distributed real-time program- 

ming. Other typical desirable characteristics such as program modularity, system expandability, 

portability, etc., are addressed elsewhere by Gligor and Luckenbaugh [GL83] and not addressed 

here. 

3.1 Expression of Timing 

3.1.1 Timing Constraints to be Expressed 

The first required feature is to make the expression of timing constraints in the high-level distributed 

programming language an explicit, natural reflection of the application specifications. In real-time 

processes, timing constraints are found on execution, input, output, and communication. Each 

constraint has an interval of validity denoted .by a start time interval and a deadline interval for 

completion. In addition, processes may have a period when they are to  be executed. 

A start time interval of timing constraints is denoted by a constraint stating when the process is 

allowed to start and one stating when it must be started by. Similarly, a deadline interval is denoted 

by two times: when the process is allowed to be terminated, and when it must be terminated. Each 

of these kinds of timing constraints may be expressed either absolutely in specific wall-clock time 

or relatively with respect to the current time the process is executing. Not all tasks in a real-time 



application have to  express all of these timing constraints. For example, the supervisor processes 

in the robot controller specifies only a period; the start time is inferred by the end of the previous 

period and the deadline by the end of the present period. 

System input is environmental and thus constrained by the environment. Since the environment 

is constantly changing, input may only be valid for a certain interval of time and must be accepted 

in that time to be correct. In the robot control example, the sensor data is only valid for an interval 

depending on the rate at which an object, which is being tracked by the robot, is moving. System 

output is also time constrained. The joint actuators in the Puma manipulator, for instance, require 

commands every 1 ms. Interprocess communication may also be time constrained as discussed in 

Section 3.2.2. 

Expected Execution Constraints Another form of timing constraint is the maximum expected 

execution time of a process. The maximum expected execution time of a process is different than 

its deadline. A deadline is an execution constraint set by the application specification stating when 

the process must finish to be correct. Waiting until the deadline to  detect incorrect performance 

can be inefficient because the process may have gone into an error state well before the deadline is 

reached. If a process's maximum execution time (without errors) can be bound, then this bound 

can be used to detect erroneous performance often well before the process' actual deadline. For 

instance, if the robot dynamics process has a period of 20ms and a worst case expected execution 

time of 5ms, then there is a 15ms interval between when the process should finish and its actual 

deadline for finishing. Waiting to detect the violation at the 20ms deadline, when it is known 

the process is in error after 5ms, wastes time that is often valuable in real-time systems. The 

expected execution time should not necessarily be programmer specified, techniques are available 

for compiler-generated expected execution times (see related work section) 



Variable Time Constraints. Timing constraints may be variable with their value depending on 

the state of the environment. Paul and Zhang [PZ85] describe a class of processes called kinematic 

processes which have variable periods that change with the environment. The sensor processes in 

our example a l l  have variable periods; the actual period value depends on the speed of a moving 

object being tracked by the robot. A faster object requires a faster period for sensor updates. 

Nested Time Constraints Timing constraints may be nested. A task in a real-time application 

may be time constrained and composed of nested subtasks that are themselves (further) time 

constrained. When a subtask is executing, the overall task is under by the subtask's constraints as 

well as its own constraints. An example of nested timing constraints are time constrained actions 

such as communication that may appear within processes that are also time constrained. When 

the process is executing the time constrained communication it will have tighter timing constraints 

than during the other segments of its execution. 

Nested timing constraints may take the form of timing constraints on concurrent nested actions 

or serial nested actions. Concurrent parallel activities are possible in a distributed system so it 

may be necessary to express timing constraints on a collection of concurrent actions. For instance 

in the robot controller dl six servo processes that actuate the joints must do so in the same lms 

period. These six processes may be distributed among six processors and executed concurrently 

with timing constraints expressed on the execution of the group of all six concurrent processes. 

An example of serial nested constraints is the action plan of a robot on an assembly line. It 

may be necessary to constrain a series of actions to happen within a specified time in order for 

the robot to conform to the dynamics of the assembly line. Each of the actions in the series may 

be individually time constrained by the dynamics of the robot. This series of robot-imposed time 

constraints are serially nested within the assembly-line-imposed time constraints. 

It is desirable that the incorporation of all timing constraints into the control program be done 



with high-level constructs. Incorporating program timing using low level constructs such as alarm 

events or external "watchdog" processes requires a knowledge of system implementation details 

that ideally the programmer should not be concerned with. Instead, the programmer should have 

the ability to  simply express the constraints that are part of the application specification and allow 

the operating system to  coordinate execution to meet those constraints. This high-level expression 

of timing reduces the complexity of program development and makes modification of timing easier. 

3.1.2 Related Work on Expression of Timing Constraints 

We now examine work related to the expression of timing constraints in real-time programs. 

Alarms and Low-Level Programming. The most widely used technique of incorporating 

timing constraints into real-time programming is by alarm clocks or delays. The software for the 

robot controller, described by Paul and Zhang in [PZ85], is coded in C with low-level system calls 

implementing alarms to specify timing constraints. The alarm method uses a "watchdog process" 

that treats alarms as events, watches for the time of events, and signals processes when their time 

events occur. Each process sets alarms in the watchdog process through low-level system calls. The 

alarms are signaled by means of interrupts from the watchdog process and handled in assembly 

language. The result is the application program timing is not evident in the program itself, but 

instead is hidden in low-level code and other processes, making verification and modification of the 

timing difficult. 

Real-time High-Level Languages. We now examine the ability to express timing constraints 

in four high-level real-time languages: 

Ada. Although it uses the notion of time, Ada [US 831 has no constructs for explicitly es- 

pressing execution timing constraints. The expression of time is limited to a delay primitive which 
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allows execution suspension for at least a specified time. The delay primitive is also used to specify 

message transmission deadlines which allows for communication timeouts. There is, however, no 

explicit support for specifying absolute start times, deadlines, and periods of tasks; no direct way 

of expressing nested timing constraints; and no direct way to handle variable constraints. 

Modula-2. Modula-2 [Wir83] also supports the notion of time by allowing the programmer 

to  explicitly specify scheduling through the use of "co-routines" which implicitly incorporate timing 

and do not explicitly express timing constraints in the program. This use of co-routines requires 

the programmer to maintain system timing using scheduling and precedence specifications to  syn- 

chronize processes to  meet timing constraints. This added burden on the programmer of having to 

schedule execution complicates real-time program development and modification. 

PEARL; PEARL [Mar781 is a widely used language for real-time control applications which 

allows the expression of time. Absolute and relative start times, deadlines, and periods may be 

expressed. Pearl has an excellent facility for variable constraints using an abstract data type called 

"duration" with well defined rules for setting constraint values. Timing constraints may be nested, 

but since the scheduler is not part of the language, the semantics of the enforcement of these nested 

constraints are not clear. Pearl is not designed for distributed systems and thus lacks distributed 

synchronization and communication. 

Real-Time Euclid. Real-Time Euclid [KS86] is a recent real-time language which incorpo- 

rates the notion of schedulability into the language. The expression of process periods is handled 

through activation information provided with each process that specifies a period, and an absolute 

start time. The period specification mechanism may be used for a limited notion of deadlines as- 

suming the deadline is the same as the period. It does not, however, provide explicitly for deadlines, 

start time intervals, nested constraints, or variable constraints. The language is also not designed 

12 



for distributed systems. 

Specification Language Timing Constraints Barbacci and Wing [BW86] describe a task 

level specification language which describes high level properties of tasks by integrating functional 

descriptions with timing constraints. The Larch specification language is used to describe the 

names, interfaces, pre-conditions and post-conditions of blocks in the language. Timing constraints 

including earliest and latest start time, event triggering, and durations of execution, both minimum 

and maximum, are specified.. Their timing expression is complete for execution constraints, but 

since the timing expression is for a static specification language, not for a programming language, 

it  does not provide for variable or nested constraints. Although their timing expression is designed 

for a specification language, it  is expressive and does capture execution timing constraints well. 

Communication, input, and output constraints are not directly expressible. 

Work on Expected Execution Times Worst case expected execution time is a form of tim- 

ing constraint that should be enforced to efficiently detect errors. It should be possible for the 

programmer to specify worst case execution times, but not necessary. In the event of no specified 

expected execution time the compiler should generate a worst case estimate. 

None of the above languages allow for programmer specified expected execution time and none 

of them enforce expected execution time as a constraint. 
I 

Real-Time Euclid does allow for calculation of worst case execution times for analyzing scheduliz- 

ability of processes. The language places worst case bounds on execution times by eliminating some 

programming constructs and adding others. Recursion and dynamic data structures are eliminated 

because they make estimating execution time difficult. A construct is added to time bound loops 

so that arbitrary time of event-controlled loops is limited. Processes are also time bounded through 

period specifications that denote the end of the period as a worst case time bound for the process. 



The refinements are valuable for calculating expected execution times and could easily be altered 

to be a form of timing constraint in addition to a schedulizability tool. 

Yang [Yan86] and Wei [Wei81] also propose the use of compiler-generated expected execution 

time to  aide in scheduling decisions. The expected execution time is arrived at using worst case 

estimates on loops (which are time bounded), conditionals, subprogram calls, branching, and I/O. 

The estimates are arrived at using execution times of the host processor and pessimistic worst case 

assumptions about operations, such as conditionals, that may have a varying number of operations. 

This work is also useful and can easily be altered to form an execution constraint bound. 

In both Red-Time Euclid and the work of Yang and Wei the estimated execution time is often 

a very pessimistic worst case, possibly too pessimistic to be useful as a constraint. Although their 

methods do allow estimation of execution times, more realistic, possibly probablistic, expected 

execution times need to be derivable from the program in order for expected execution time to be 

a useful constraint. 

We have seen that none of these languages treat the explicit expression of timing constraints 

completely, so as to  make their incorporation into real-time programs an easy, natural reflection 

of the application specifications. Real-time Euclid and Pearl have made progress, but still lack 

capabilities in addition to not being designed for distributed applications. 

3.2 Timed Communication 

This section presents requirements of real-time distributed interprocess communication. We derive 

real-time communication requirements and examine how the work on distributed communication 

must be augmented to  support real-time. 



3.2.1 T imed  Communicat ion Requirements 

Since real time systems must respond to external stimuli, capabilities must exist for 'fast communi- 

cation among processes. Often more important than actual speed of communication is predictably 

fast communication. Predictably fast communication implies that the communication must adhere 

to some timing constraints that were assumed when the system was designed. In most cases these 

communication timing constraints are tight so that physically fast communication may be required, 

but as long as the communication is predictable within the assumed timing constraints the system 

will function as designed. 

Predic table  Communication. Since real-time systems must adhere to timing constraints, un- 

bounded communication delays are not acceptable. It is desirable to have a communication medium 

which has predictable data transmission delays and communication primitives that bound delays 

in message queues. Predictably fast communication is supported by asynchronous messages and 

by concurrent shared data. Both forms of communication are low overhead and thus physically 

fast. Neither form requires waiting in a queue or buffer (or at most a small buffer for asynchronous 

messages) thus the delay of messages is predictable. Asynchronous messages may get lost and are 

thus unreliable, and concurrent shared data may not be consistent. Other forms of communication 

such as half-synchronous messages, full synchronous messages, and remote procedure calls can be 

made predictable by adding timing constraints to their protocols. 

T i m e  Constrained Communication. Meeting timing constraints is a topic not addressed by 

the traditional distributed communication primitives. Adding timing constraints to communication 

is important to add predictability to communication primitives. Also the dependency of hard real- 

time applications on time implies that messages often have a specific interval when they are valid. 

In the robot control processes for example, the set point which is communicated from the supervisor 



process to the joint processes is only valid during the sampling period in which it was generated. 

For the send primitive the ability to  stamp a message with a validity time interval is required; for 

the receive primitive the ability to specify a deadline for waiting for a message is required. 

3.2.2 Related Work on Time Constrained Communication 

There has been some work done toward providing for time constrained communication. Lee and 

Gehlot [LG85] propose a set of real-time distributed communication primitives that allow for spec- 

ifying an absolute or relative deadline on message reception. They touch on timed synchronous 

two-way communication and provide primitives to express it. Lee and Davidson [LD87] present a 

method for incorporating time to  full synchronous communication using deadlines for message and 

reply reception. 

The MARS system [KM85] introduced the idea of "time tagged messages" in a distributed 

cluster of processors. Each message comes with a time stamp indicating the interval it is valid for. 

The operating system is assumed to  discard messages after their validity period is up. A process 

may also specify a deadline on message reception. Yang [Yan86] also incorporates time tagged 

messages to distributed real-time programming and proposes primitives for a non-blocking send 

and a blocking receive. 

RNet [BMM87] provides for time constrained communication ports as its primary method of 

supporting timing constraints. In RNet, execution is modeled as processes started with message 

reception and terminated by message sending. All message communication is done to ports. Special 

ports are provided for sporadic process invocation, periodic process invocation, missed deadlines, 

and exceptions. All communication may be time constrained primarily through the receiving pro- 

cess. There is no provision for time stamping the validity of messages from a send operation. 

The language ADA [US 831 provides for a time out on its synchronous communication "ren- 



dezvous". The single time primitive "delay7' bounds the time an executing process is willing to 

wait for a rendezvous. Other real-time languages such as Real-Time Euclid, Modula-2, and PEARL 

do not provide for timed distributed interprocess communication. 

3.2.3 Communicat ion Requirements of Real-Time Process Interact ion 

Shin and Epstein [SE85] present four classifications of real time processes: 

1. Independent  - Independent process run independent of other processes in the system and 

almost never need to  be synchronized. Communication, both sending and receiving, is dom- 

inated by asynchronous periodic updates. Messages are usually periodic and not critical. In 

the robot control example the dynamics process is independent. It  runs on its own period, 

asynchronously receiving set points from the supervisor process and asynchronously sending 

updates to the servo processes. 

2. Loosely coupled - Looslely coupled processes are characterized by small volume communi- 

cation that often requires synchronization. Since the communication is low volume, efficiency 

considerations are usually not important, but communication must satisfy time constraints. 

The collector process in our example is loosely coupled with the joint process. It synchronizes 

the joint processes to  collect the joint error information that is sent to the servo processes. 

3. Tightly coupled - Tightly coupled processes are characterized by infrequent high volume 

communication. Communication is usually critical and must be quick. An example is the 

interaction between the supervisor process and a critical sensor process at a critical period 

of the application. During a critical period, such as grasping a moving object, the sensor 

process will require a fast period. This fast period implies that the communication with the 

supervisor is fast, and high volume. 



4. Serialized - Serialized processes imply that one process depends on the completion and 

results of another. These processes require synchronization and communication which must 

be reliable, but not necessarily time critical. The supervisor process and joint processes are 

serial in our example. The joint processes must wait for the supervisor to generate a set point 

before performing their computation. 

The class of independent processes don't necessarily require reliable or consistent communica- 

tion. For independent processes, the predictable speed of concurrent shared memory and asyn- 

chronous message communication outweigh their disadvantages of reliability and consistency. If a 

message does not arrive or is erroneous, the system might lose performance, but as long as the 

next independent process update arrives within the receiver's timing constraints the application 

still functions correctly. 

For loosely coupled processes a reliable and consistent form of communication is needed such as 

a half synchronous message passing scheme, where the receiver waits and the sender does not. Half- 

synchronous communication is more reliable than an asynchronous scheme because the receiver, 

waiting for a message, can detect that the message did not arrive by timing out; in asynchronous 

communication neither process waits, thus neither can detect that a message did not arrive. The 

advantage of half-synchronous over synchronous communication is that the sending process contin- 

ues executing and has no arbitrarily long waits which effect predictability. Depending on the level 

of consistency required and the placement of the processes on the same node, concurrent shared 

memory may also be acceptable. 

Some form of synchronization must be provided by the primitives of any distributed system and 

real time is no exception. Serialized processes require exact synchronization to ensure the order of 

process execution. Other classes of processes require some form of limited synchronization. Copper 

[CK85], however, claims that real-time applications are dominated by asynchronous communication. 



Since synchronization may be achieved without explicit synchronous primitives, he feels that it is 

possible to exclude full synchronous primitives from real time operating systems. 

From the discussion of real time requirements and the wide range of primitives provided by 

proposed real time systems, we see that no one form of communication is sufficient. The four classes 

of real time processes each have different communication requirements. Some form of asynchronous 

communication, either asynchronous messages or concurrent shared memory, is needed to provide 

the predictable speed needed in real time. In addition every distributed system needs some form 

of synchronization. All primitives should also provide predictable performance and must also have 

the ability to  be time constrained to reflect the validity interval of the conlmunication. 

3.3 Enforcement of Timing Constraints 

3.3.1 Goals for  Enforcement of Timing Constraints  

In order to relieve the programmer of the burden of ensuring that timing constraints are met in 

real-time programs, it is necessary to provide system support to enforce timing constraints. System 

support includes: 

The underlying system detecting violations of timing constraints and invoking appropriate 

action (see Section 3.4) when they are violated; 

The run-time system changing timing constraints due to nesting of constraints, propagation 

of constraints from a sending process based on the urgency of messages, and the setting of 

values for variable constraints; 

The run-time scheduler scheduling processes based on their current timing constraints so that 

all system constraints can be met. 

Thus, to properly enforce timing constraints processes must be scheduled based on a system view 

of dynamic timing constraints, including nested and propagated timing constraints. 
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3.3.2 Related Work on System Enforcement of Timing Constraints 

Several real-time operating system scheduling strategies have been proposed that are useful for 

timing constraint enforcement [LL73,Mar82,Nag80,ZRS87,RS84,SLR86]. These scheduling meth- 

ods all use process deadlines and expected execution time for meeting timing constraints through 

scheduling based on their deadlines. 

Naghibzadeh [Nag801 has proven that Earliest-Deadline-First- With- Preemption is the optimal 

scheduling strategy for uni-processor systems with dynamic priorities. His work is useful with 

our assumed model of a system with distributed multi-programmed nodes, dynamic constraints, 

and no process migration. Zhao, Ramamritham and Stankovic [ZRS87] discuss implications of 

the non-preemptive and preemptive scheduling and conclude that preemptive scheduling is better 

for meeting system constraints, but is harder to implement and incurs high overhead. They also 

describe a weighting function for determining the next process to run which incorporates other 

factors such as resource allocation in addition to straight deadlines. 

Real-Time Euclid [KS86] incorporates the notion of system enforcement by making schedula- 

bility a main goal of their language. To achieve schedulability (their method is described in Section 

3.6.2) they have added constructs to time bound most computation and removed features such as 

dynamic data types and recursion so that the system can get an accurate estimate of expected 

execution time of processes (their expected execution time was described in Sectin 3.1.2). 

No work has been done explicitly to expand the area of traditional scheduling algorithms to 

include the handling of nested and propagated timing constraints. It is possible to add this notion 

to  scheduling strategies that support variable timing constraints by allowing timing constraints 

of a process to be altered by a nested or propagated timing constraint. With a run-time system 

that is capable of setting variable constraints based on nested or propagated constraints, real-time 

scheduling methods such as those presented by Ramamritham and Stankovic [RS84] and Zhao et 



al. [ZRS87] can handle nested and propagated timing constraints. 

3.3.3 Related Work on Programmer-Specified Scheduling 

Some of the real-time languages mentioned in Section 3.1.2 integrate the notion of scheduling into 

high-level languages. These languages allow the programmer to  explicitly control scheduling of 

processes. 

Ada. Ada [US 831 requires very limited run-time support for scheduling. Task synchronization is ' 

done through "rendezvous" where tasks wait for each other before communicating. Task priorities 

may be specified. Since Ada has no method of specifying timing constraints, scheduling is not 

driven by timing constraints and thus is not used to enforce timing constraints. 

SSS Co-Routines Berry et al. [BGMT82] describe a method called SSS which uses "co-routines" 

to allow the programmer to  control scheduling. Co-routines are sequential processes which time- 

share a processor and synchronize through explicit synchronization primitives. Berry et al. contend 

that system-provided scheduling is non-deterministic and can not guarantee that timing constraints 

of real-time processes can be met. They allow the programmer to specify scheduling in a separate 

module of the program. This separation of -code and scheduling concerns allows the code to be 

developed without reguard to  timing constraints; timing constraint enforcement is then added 

through the scheduling module. Scheduling can be modified to allow for message reception. The 

scheduling is done through synchronization primitives that allow waiting and signaling conditions. 

A process may also resume other processes. 

Berry's description does not discuss the use of actual timing constraints. Instead they assume 

that timing constraints will be met implicitly through synchronization of processes. Enforcing 

timing through synchronization complicates real-time programming by requiring the programmer to 



translate explicit constraints that are part of the application to implied synchronization primitives. 

Modifying constraints and verifying correctness in time is also difficult. Making the programmer 

responsible for all scheduling also further complicates program development. 

Modula-2. Modula-2 [Wir83] also places a large part of the scheduling burden on the programmer 

by requiring him to  explicitly schedule all co-routines through scheduling primitives. Modula-2 was 

designed for single processor systems so that processes are made quasi-concurrent by time sharing. 

Scheduling is handled in the processes through the use of the transfer primitive which explicitly 

transfers control of the processor to another process. As with the co-routines of SSS, Modula-2's 

co-routines complicate real-time program development, verification, and modification by forcing 

the programmer to translate explicit constraints to implicit scheduling. 

None of these languages is acceptable for system enforcement of timing constraints because 

constraints are not explicitly expressed. If constraints are expressed, then scheduling algorithms 

such as those proposed in [RS84,CSK86], properly augmented to support dynamic constraints, can 

be useful in relieving the programmer from having to enforce timing constraints. 

3.4 Time Fault Tolerance 

All real-time control systems should be capable of handling all events, including faults and unusual 

environmental input, without loss of control. Faults are expected but highly undesirable outcomes 

that, if untreated, cause incorrect system behavior. Violation of timing constraints should be viewed 

as expected outcomes that must be handled to avoid incorrect system performance. Violations of 

timing constraints are called time faults. In order to provide complete control, the system must be 

time fault tolerant by handling missed timing constraints. 



3.4.1 Goals  for  T i m e  Fault Tolerance 

If a time fault occurs for any of the time constraints present in the application, an action appropriate 

to  the particular time fault should be invoked. For instance, if an input constraint of one of the 

sensor processes is missed, perhaps due to  an extreme change in speed of a moving object being 

tracked, a possible action would be to send old or partially updated information. If an output 

constraint of the set point process is missed, then the robot should be stopped immediately. 

It is possible to extend the notion of time fault tolerance to incorporate tolerance of hardware 

failures and software errors as well. The traditional approach to  detecting these types of faults 

has been t o  identify data  with bad values, either by having redundant processes vote on values or 

testing for known values. Values in real time systems have a time interval of validity associated 

with them and thus it is possible to detect faults not just by bad values but by bad timing. A 

timeout is used to detect faults in many existing systems. For instance if the supervisor process 

fails it would not send a set point to  the joint processes. The joint processes would then miss their 

receive deadline and signal a fault by the supervisor process. By providing for time fault tolerance, 

a powerful method of treating not only time faults, but faults that can be detected by timeouts, is 

also provided. 

3.4.2 Rela t ed  W o r k  o n  Except ion  Handl ing  

There has been work done on exception handling in sequential programming that is applicable 

to  handling time faults. The languages Ada [US 831, CLU [LS79], and Real-Time Euclid [I<S86] 

are examples of languages that provide some form of exception handling capability for traditional 

software exceptions. 

Both Goodenough [Goo751 and Yemini [YB85] discuss relevant issues concerning syntax and 

sen~antics for raising, handling, and propagating exceptions. They call for the following actions to 



be provided: resume, terminate or retry the signaling process, propagate the exception, or transfer 

control - all of which are viable actions for treating time faults. 

Ada has an excellent facility for handling exceptions. Exceptions may be enumerated, control 

flow is switched from the process to  the exception handler, and exceptions may be propagated 

from the process in which they occurred to a calling process. Ada's exception mechanism does not, 

however, help with time fault tolerance since timing exceptions (except limited timeout capability 

on communication) are not part of the language. 

Klingerman and Stoyenko [KS86] present an exception handler in Real-time Euclid that provides 

for handling timeout exceptions. They identify the form of the timing constraint that was violated 

as part of the exception signal. Due to the limited timing constraints that are expressed by the 

language, the number of timing exceptions is also limited therefore limiting the flexibility of treating 

different timing violations. They do not provide actions specificly for dealing with time faults. Their 

exception handling, however, is a good mechanism for providing time fault tolerance since actions 

appropriate to all time faults they allow can be treated in a user-specified way. 

Other than limited work in the RNet system [BMM87] and by Yang [Yan86] discussed later, no 

work has been done in handling timing exceptions in a distributed real-time environment where it 

might be necessary to  propagate exceptions to other nodes. 

3.4.3 Related Work o n  Process Redundancy 

Systems such as the real-time kernel described by Natarajan and Jian [NJ] use redundant processes 

to detect faults and provide fault tolerance. The processes perform parallel, identical computation 

and vote on the result. The advantages of redundancy is that there is a higher probability of a good 

process surviving and recovery is quick. The disadvantage is the high overhead due to replication 

of computation and coordination of the redundant task execution in a distributed environment. 



Natarajan and Jian address some of these disadvantages in their work. The issue of the meaning 

of timing constraints on the redundant processes is not addressed, and this work is not directly 

applicable to time fault tolerance. 

Time fault tolerance is important for ensuring a reliable real-time system. No current real-time 

languages support high-level constructs for providing time fault capability. What is required is an 

investigation of adding time fault handling to traditional fault tolerant techniques such as exception 

handlers and process redundancy. 

3.5 Maintaining Consistency in Distributed Real-Time Systems 

Another feature needed for high-level treatment of time in a distributed environment is the ability 

to incorporate time into the process of ensuring that system stateware consistent. An invari- 

ant constraint is a predicate, required as part of the application, which must be true for correct 

performance. A system state which satisfies all invariant constraints is said to be consistent. In 

distributed systems these invariant constraints usually take the form of integrity constraints which 

place restrictions on the data stored in the system. In distributed real-time systems, there are 

additional constraints - timing constraints - which are invariant constraints that must be adhered 

to for a system to perform correctly. Thus, state consistency in distributed real-time systems 

must be expanded with the notion that a state must be reached within its timing constraints to 

be consistent. Consistency that incorporates timing constraints is called consistency in the time 

domain. 

3.5.1 Timed Atomic Actions 

The state of a distributed system depends on the states of individual nodes. It is possible that, when 

changing the system state, a node may take the system to an inconsistent state before completing 

its action and creating a new consistent state. To guarantee a consistent global state, some changes 
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to the system state must be carried out completely or not carried out at all so as not to leave 

the system in an inconsistent state. The traditional solution is to provide atomic actions with 

the property that the actions either complete entirely or have no effect. Atomic actions which 

appear to have no effect in the event of a fault are said to  be atomic with respect to faults. Adding 

atomicity with respect to time faults leads to  the notion of a timed atomic action for ensuring state 

consistency in the time domain for distributed real-time program development. 

A timed atomic action either performs completely within its timing constraints or appears as 

if it never executed. For instance, the joint actuation of the robot manipulator has the invariant 

constraint that all six joints must be actuated correctly within the same 1 ms deadline. It is 

therefore desirable to have all of the joint actuation be a compound timed atomic action so that 

either all six joints actuate correctly within their common deadline or none actuate. This use of 

a timed atomic action avoids the problem of five joints executing correctly within their deadlines, 

but having the sixth violate its invariant timing constraint creating a state which is inconsistent in 

the time domain. The result of the inconsistent state could cause the manipulator to  unexpectedly 

strike an object that the sixth joint would have made i t  avoid. 

Although it may be possible to implement timed atomic actions at the application level, the 

program structure becomes complex and incurs high overhead. The notion of timed atomic action 

should be provided as a basic primitive for supporting a time fault tolerant system. 

3.5.2 Related Work on Distributed Consistency 

No work has been done on incorporating the notion of time into distributed state consistency 

and no real-time languages provide any form of high-level constructs related to distributed state 

consistency in the time domain. Work which has been done on traditional distributed consistency 

without the notion of time does, however, provide insight into the goals of obtaining consistency 



in the time domain. We now examine some of that work. Due to our assumed model we omit 

discussion of methods that involve special or redundant hardware and process migration. 

Atomic Transactions. Liskov, [Lis82], Lampson [LPS86] and Bennett [Ben841 discuss the notion 

of atomic transactions for distributed state consistency. An atomic transaction (or atomic action) 

is composed of one of more actions, with the transaction having the property that the transaction 

is executed entirely or not at all. This atomic property ensures that the system is transformed 

from one consistent state to another. They assume that atomic actions may be "undone", which 

is not the case in real-time control applications where output affects the environment. The notion, 

however, is still useful for timed atomic actions when time is incorporated into the definition of 

consistency. 

Moss [Mos85] does an excellent job of extending the notion of atomic transactions to nested 

transactions where atomic transactions are nested within other atomic transactions. He presents a 

version of the two phase commit protocol which is useful for compound concurrent atomic transac- 

tions across a distributed system and discusses how restoration to a consistent state can be done 

when nested transactions are used. Since timing constraints can be nested, Moss's work is applica- 

ble to timed atomic actions once the notion of time is incorporated into the definition of a system's 

consistent state. 

Ramarnritham and Stankovic [RS84,CSK86] have investigated schedulers which determine the 

node to run a process on (assuming process migration is possible). They assume an expected 

execution time is available and determine if a given process can execute within that time on a 

particular node. This work is useful for implementing timed atomic actions where it is necessary 

to determine if an action can perform within its deadline before executing irrevocable operations. 



Recovery Blocks. A recovery block is a construct for aligning computation to ensure software 

consistency. In a recovery block, blocks of code are ended with a software acceptance test that 

must be passed to  ensure that the computation adheres to consistency constraints. If the test fails, 

the process falls back to  the state before the recovery block and a different method of computing 

the same result is tried. Only after the acceptance test is passed can the process(es) proceed out 

of the block. Recovery blocks [RLT78,Lom77] for uniprocessor machines have been extended to 

dis-tributed computing in TCN [Kim841 and CMS [We1831 using variations on this scheme. Randell 

[Ran75,Shr85] and Yang [Yan86] also conceptually extend the notion of recovery blocks to dis- 

tributed systems by using the idea of a conversation scheme which links recovery blocks to ensure 

that related blocks either all pass the acceptance test or all are retried. 

Time in recovery blocks is mentioned briefly by Kim [Kim841 who states that a watchdog process 

may be used along with recovery blocks. However it is not a built in feature of recovery blocks and 

is not considered an attribute of the state consistency which recovery blocks aim to achieve. 

Recovery blocks can used to implement atomic actions, as well as supplement them with addi- 

tional capabilities. If the recovery block fails to pass its acceptance test it falls back to a previous 

state, thus it either executes correctly or does not execute. This is semantically equivalent to an 

atomic action. In addition to not executing the action, the recovery block provides for alternate 

actions that are tried upon failure, a capability that atomic actions do not provide. This extra 

capability, however, adds restrictions to distributed programming since the only alternative is to 

try another method of computing the new state. This is more restrictive than allowing an exception 

handler to handle the case that an atomic action does not execute. Randell [Shr85] g' lves a com- 

parison between exception handling and the recovery block approach to software consistency. His 

discussion shows that exception handlers are a more general form of providing software consistency. 

Recovery blocks, he points out, are a more formal and structured construct and more natural to 



I 
I 
I 
I 
1 use, but provide only a proper subset of the power of exception handlers. 
I 
1 Ensuring consistency is an important part of programming in a distributed environment where 

I independent processes are acting concurrently. Constructs such as atomic actions and recovery 
I 
1 blocks have provided a high-level, structured way of dealing with consistency in traditional dis- 

I 
I 

tributed programs. As we saw from the example of the actuation of the six joints, timing con- 

I straints must also be considered in determining consistent states. For this reason the incorporation 

I 
I of time into traditional techniques such as atomic actions and recovery blocks is needed to produce 

I reliable, consistent distributed real-time programs. 
I 
I 3.6 Static Timing Verification 

1 3.6.1 Goals For Static Timing Verification 

As a final feature we would like to be able to provide offline static verification of real-time programs. 

It is difficult to debug a real-time control system on the actual application because the loss of control 

that might result from system bugs could cause damage. Also the program may appear to be correct, 

but due to  an unanticipated timing error, will perform incorrectly after testing. The robot arm, for 

instance, could be damaged by striking an object as the result of a control program timing error 

that was not detected by traditional debugging tools. Often real-time control systems must be 

tested and debugged before attempting to use them in an actual application. Since hard-real-time 

requires timing to be correct for correct system performance, it is desirable to be able to perform 

static timing verification. Static timing verification tools examine the timing that was expressed and 

determine if the timing constraints can be met. Since timing depends on system conditions, such 

as the environment of the robot, it is useful for the timing verification tool to  provide information 

explaining what (if any) of a set of system conditions causes timing to be violated. For instance, 

the verification tool should be able to help to place a bound on the maximum speed of a moving 

object that the robot can track based on the fastest allowable period that the sensor processes can 
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operate at. With information concerning what environmental conditions cause time faults, time 

fault tolerance may be added to the system to  handle the conditions, or the conditions can be 

designed out of the application. 

3.6.2 Related Work  o n  Sta t ic  Timing Analysis 

There has only been limited work in real-time static verification (see [GL83] for a brief overview of 

early verification work). The two principal methods for performing verification are analysis, where 

assertions about the relationships among constrained processes are tested; and simulation, where 

an abstract model of the real-time process interaction is simulated to detect violations. 

Simulation-based Analysis The RNet system [BMM87] (described further in section 3.7.2) has 

implemented a simulation-based static verification tool that checks timing of a specification lan- 

guage. First the worst case real-time behavior of every periodic and sporadic task is defined. The 

scheduling algorithm is then simulated by performing every task activation relationship, with vio- 

lations of the constraints being reported. This static verification technique often makes pessimistic 

assumptions, particularly for sporadic processes. RNet's exhaustive search method is also complex 

for systems with many process interactions. There is no provision for variable or nested constraint 

verification or identification of conditions that cause violations. 

Analytical Techniques Some analysis has been done concerning assertions about real-time be- 

havior [Yan86,Wei81,LY86,Haa81]. This type of analysis requires a known, often worst case, bound 

on the execution time of processes. Yang [Yan86], Wei [WeiSl], and Real-time Euclid [I<S86] have 

all made significant advances in eliminating or bounding programming constructs of unknown time 

as discussed in Section 3.1.2. These bounding techniques are usually either limiting, such as Real- 

time Euclid's elimination of recursion and dynamic data structures; or pessimistic such the bounds 



placed on loop statements; but necessary for creating analyzable programs. 

Real-time Euclid uses the information provided by expected execution times to analyze scheduliz- 

ability of real-time programs. They employ an equation which relates CPU requirements of inter- 

ruptable and non-interruptable parts of program segments, communication and I/O time, blocking 

and waiting time, process periodic timing constraints , and relative speed of the processes. Allow- 

able process periods can then be determined given the rest of the information which can be derived 

from the bounded language and hardware characteristics. The equation can determine scheduliz- 

ability assuming that blocking can indeed be estimated. The analysis may, however, suffer from 

the worst case assumptions necessary in time bounding computation. They do not extend their 

analysis to distributed programming. 

Yang [Yan86] first develops rules for bounding execution times of language constructs in Concurrent- 

Pascal and then proposes a set of assertions concerning deadlines and expected execution times that 

the verification tool checks. These assertions, however, are not rigorous, only do simple checking, 

can not do checking in a distributed environment, and make no provision for checking which system 

conditions cause time violations. 

Jahanian and Mok [JM86] address the problem of formalizing analysis of determining if tim- 

ing specifications meet safety assertions in real-time programs. They model computation in an 

event-action model where events cause actions to transform the system state. This model is then 

transformed to first order logic called Real-time Logic (RTL) which has time incorporated. RTL 

has a clean syntax for expressing system specifications of time, events, and nesting of actions. In a 

later paper [JM87] Jahanian and Mok discuss a graph-theoretic approach for analyzing RTL speci- 

fications to determine if they meet safety assertions. Although the event-action model is espessive 

for system specification, it does not reflect system operation and the result is that the associated 

analysis techniques are not directly applicable to offline verification of timing constraints. Due to 



the expressibility of RTL, an extension to formal verification of timing constraints is possible. Bar- 

bacci and Wing [BW86] translate specifications in their task-level specification language (described 

in section 3.1.2) into RTL so that specifications can be analyzed. 

3.7 Integration of Features 

3.7.1 Goals of Integrat ing Features 

The characteristics of the previous six sections provide a distributed real-time programming en- 

vironment where program development is easier, with programs being verifiable, fault tolerant, 

and able to ensure consistent behavior - all in the time domain as well as the typical functional 

domain. In order to provide an environment which allows a high-level incorporation of timing, the 

six characteristics must be integrated in a system which provides: 

A high-level language which expresses timing constraints, naturally and explicitly. The lan- 

guage should also specify explicitly what action to take when timing constraints are violated. 

Along with the language, an associated compiler is needed to  interpret the high-level con- 

structs, extract timing constraints, and determine expected execution time. 

An operating system, capable of providing timed communication, detection of time faults, 

enforcement of timing constraints, and timed atomic actions. 

A verification tool capable of statically verifying system timing and evaluating conditions that 

would cause violated timing. 

3.7.2 Related Work  o n  Integrated Systems 

We now examine two proposed integrated approaches to real-time programming which involve 

adding timing expression to existing distributed programming languages and developing system- 

level support tools. 



RNet Programming System. RNet [BMM87] is a system for developing hard real-time pro- 

grams for distributed systems, which provides an integration of high-level expression of timing con- 

straints and system level support tools to handle the enforcement and verification of the constraints. 

Applications are developed in Real-time EUCLID augmented by RNet constructs for expressing 

timing constraints. The system provides run-time scheduling based on timing constraints and static 

timing verification. 

In RNet, execution is modeled as processes started with message reception and terminated by 

message sending. All message communication is done via ports. Special ports are provided for 

sporadic process invocation, periodic process invocation, missed deadlines, and exceptions. All 

communication may be explicitly time constrained. Computation is implicitly time constrained by 

modeling process execution as computation between a receive and a send. When the receive 

is constrained to happen by a certain time, the computation is implicitly constrained to start by 

that time. Similarly, when the send must happen by a certain time, the computation has an 

implied deadline. RNet's model naturally supports data flow methods of programming. Data 

flow programming, however, requires work on the part of the programmer to translate the real- 

time execution constraints specified in the application to implied computation time constraints 

associated with the communication. It is also not possible to express nested constraints, constraint 

intervals, or variable constraints because they are not provided for in RNet's constructs. 

RNet provides a deadline driven scheduler with a modified Earliest-Deadline-First- With-Preemption 

scheduling algorithm. RNet's scheduler takes advantage of the explicitly expressed constraints and 

is satisfactory at providing one-level constraint enforcement. Since RNet's constructs do not pro- 

vide for nested, propagated, or variable timing constraints, it is'not clear that the RNet scheduler 

can enforce them. 

Time fault tolerance is provided by a timing exception port. The exception port receives a 



time-out signal from the kernel and invokes a sporadic process to handle the exception. Although 

the port-based exception mechanism is useful, by having another process to  handle the exception, 

important state information of the executing process is lost. State information must be retained 

by handling the exception in the process itself. RNet's exception mechanism can not determine 

which constraint caused the port to be signaled, which makes invoking action appropriate to that 

constraint difficult. 

RNet makes no provision for preserving state consistency nor for traditional fault tolerance. 

Another feature of RNet is a static timing verification tool. It uses worst case execution times, 

the explicit constraints, and applies a simulated scheduling algorithm. The static verification tool 

is a useful addition to the system, it is currently being refined to provide more accurate analysis. 

Yang's Approach. In his dissertation Yang [Yan86] describes an integrated system capable of 

handling real-time program development. He adds timing specification constructs to Concurrent 

Pascal, describes real-time scheduling support, fault tolerance, and static timing verification. 

Yang's description of timing constraints is similar to that of Lee and Gehlot[LG85] (which 

provided preliminary work for this report). He arrives at language constructs to explicitly express 

start-time constraints, termination deadlines, and periods. He reduces all possible primitives to 

a set of primitives (equivalent to those given in [LG85]) that completely express all of timing 

constraints described in Section 3.1.1. He shows that the set is orthogonal. He also provides for 

time constrained communication. His description does not elaborate on the semantics of nested 

constraints, nor variable constraints. 

Two scheduling hueristics are described, one based on static priorities and another on dynamic 

conditions. The static scheduler is not useful in a real time environment with variable constraints. 

The dynamic scheduler uses Earliest-Deadline-First-With-Preemption and is a good enforcement 

tool. Yang does not mention how his scheduling strategy handles nested constraints, propagated. 
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constraints, or variable constraints. 

Although fault tolerance and consistency is thoroughly discussed by presenting a "conversation" 

scheme that ensures software consistency, time fault tolerance is not treated. Time is not used as a 

factor in determining consistency in the conversation scheme. Atomic actions are possible with the 

conversation scheme, but timed atomic actions are not explicitly provided for. Timing exceptions 

are handled by an "else" clause of a timed Pascal statement; this "else" clause is barely described 

and does not have the robustness of a full exception handler with the ability to invoke state recovery 

action, propagate exceptions, signal other exceptions, or handle exceptions by default. 

Yang also presents methods for determining worst case execution time of processes and using 

it to  analyze timing properties. The work is summarized in Sections 3.1.2 and 3.6.2 

4 Current Research Directions 

Our current approach to incorporating time as a first class entity consists of extending the temporal 

scope language construct presented by Lee and Gehlot in [LG85] to provide for the features outlined 

in the previous section. This extension is resulting in the development of the timed action concept. 

We have also been developing a model of distributed real-time programming to  identify and describe 

abstract properties that the eventual language construct should have. 

Our model of a distributed real-time process is an initial state, a series of sequential and/or 

concurrent actions each transforming the system to a consistent state and then to a final (con- 

sistent) state. Consistency is determined by integrity constraints imposing physical constraints 

of the application on state variables, sequencing constraints on the state transitions, and timing 

constraints on the states (lifetimes of state variables) and on the transitions. For complete state 

transitions, actions must be provided for when consistency is violated. 

From the model we have derived the timed action language construct. A timed action is a 



-ypaA PUT Sugnpay3s amyl-lsal xual~n3 asn 03 alqo aq ~T!M q3nqsu03 ayq 'paluama1dm! uayM 

-a3uolalol ?1nq am!? aprhold pus rl3uaqsysuo3 alolsal oy papy~old are suo!ps blaA03al alqs 

%ualsysuo:, @pads -suoylda3xa pnsn 03 uo!l!pps u! suoylda3xa paqe1al am!$ jo sapas s azydto3al 

ol pau%ysap sy lalpusy uo!lda3xa ayJ -[g8 SO] vp~ U! "3 pap!~od asoyq 0% ~zl!m!s lalpuoy 

uorldasxa us ySno~y7 sllnoj am!) salpmy uo!g3z paw13 y3og -a~!$py~d ayl jo r)xd 3ymq s m 

papyilold a;rs suo!ps 3pols pan!$ 3uypnpuy 'suo!l3o 3!molv 'alols $ua?s!suo3 o 03 ma$sds ayl 

unojsus~l suo!l3o ayl 'am!? uo pam~oj~ad uayM .suoy$3a pamy paqsau uyuoz~ dsm suops 

jo Apoq ay& -suo!q3o jo Apoq s uo sluplqsuo:, Su!m!y (a~qapo~ Alqyssod) Su!ssa~dxa q~n.~qsuoz~ 

ayl Aq palouap sy uoy?!suolg syy~ .laylous 01 upmop am!$ ayl uy luaqsysuo:, s! lsyl apgs 

malsrls palnqyllsyp auo mog uorlysuolq 3uypyhord Aq ml%old ayg jo lo!Avyaq lualsysuo3 

Su!.rnsua ~oj poyqam pa~nlz~n~gs o puz saylg!qodw a3uslalol llnoj amyl ap!aold suoypo pan!& 

.papy~old s! alqo!xm auI!l ayl jo 

a%uw ayl %u!lopap loj poylam v .amyl-uw 1s ?as sanp lray? yly~ saIqs!nn so paluamaldm! 

aq dew saw!$ q~ols pus 'popad 'augpvap ayL 'rllpopd sz y3ns uoyyem~ojuy Su!ppay:,s ss IIaM 

ss 'amyg llels 'popad 'augpoap apnpu! slu!sqsuo3 Su!my~ -uoy~e~~nmmo:, puo 'uoyn3axa 

'qndqno 'qndu! uo uoilomloju! %u!m!l jo uo~ssa~dxa pxnlou 'qy3gdxa sap~~oxl UO!~~JE pamy v 

.suo!~s3y!3ads uo!lo3gddo mog papal:, d1pa aq 03 sms~%ord sfior uoy3o pan!? v 

:s3!3~!.1aps~sy:, %u~~ol~oj ayl yl!~ lapom ays uy uoyq3o 

uo jo UO!~OU ayl sq3a~a.1 uorlrn pamy v -sluatrrapls ayl uo s$up?l$suo3 Suymiq sassaldxa dllp~ld 

-xa puz suoylo~ap!suo3 Alpslnpom uo paszq s$uamalols sdnol3 !)syl (q301q) a[npour 8u!mmaold 



kernel support such as communication. TIMIX possesses an alarm package capable of detecting 

timing events and a provides for signal handlers to specify action in the event of an alarm signal. 

Time constrained communication is also supported. 

Static time verification tools are also being developed to take advantage of the expression of 

constraints and expected execution time [ZL86,DL87]. The verification tools check which system 

conditions cause system timing constraints to be violated. Those conditions that cause timing to 

be missed are handled as exceptions, or the system is redesigned to alleviate timing violations. 

5 Conclusion 

This report has presented six features: 

1. Explicit, natural expression of timing constraints on execution, communication, input, and 

output; including variable and nested constraints; 

2. Provision for timed communication, which is predictable and may be time constrained, to 

support all classes of real-time processes; 

3. System Enforcement of timing constraints including detection of timing violations and schedul- 

ing to  meet dynamic timing constraints that may be variable, nested, or propagated. 

4. Time fault tolerance that provides action appropriate to a particular time fault and the 

current system state; 

5. Distributed state consistency in the time domain; and 

6. Static verification of timing constraint compliance. 

In examining related work we have found no system that provides for all of these six features. 

By creating appropriate language constructs such as timed actions for incorporating time into 

traditional distributed programming, we can create tools which allow for timing to be treated 



on a high-level. We are implementing the timed action construct through close interaction with 

the TIMIX distributed real-time kernel and other run-time support tools. With this integrated 

approach, the programmer no longer must be concerned with how timing is to be met; he/she 

simply expresses the constraints naturally as deadlines and periods, which are part of the application 

specification, and allows the system to handle the timing. This high-level treatment of timing means 

that the development, verification, and modification of reliable distributed real-time systems is 

easier. 
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