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Extrapolating Analog-to-Digital Converter

Abstract
We propose a new type of oversampled analog-to-digital converter. It uses digital extrapolators to predict the
analog signal before it is converted, and a coarse quantizer to convert the prediction error. Such converters are
expected to have reduced complexity in their analog circuitry, thanks to the processing in the digital domain.
General linear extrapolation algorithms are derived from the spline theory, and can be easily implemented
using digital filters. Simulations show that the speed-resolution trade-off is 2 bits per octave with simple linear
extrapolation. Noise-shaping can be added using a matched analog preemphasis filter, in which case the
converter behaves similar to a delta-sigma modulator of the same order.
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Extrapolating Analog-to-Digital Converter

Zheng Yang and Jan Van der Spiegel

Department of Electrical and Systems Engineering

University of Pennsylvania, Philadelphia, PA 19104

Abstract— We propose a new type of oversampled analog-to-
digital converter. It uses digital extrapolators to predict the analog
signal before it is converted, and a coarse quantizer to convert the
prediction error. Such converters are expected to have reduced
complexity in their analog circuitry, thanks to the processing in
the digital domain. General linear extrapolation algorithms are
derived from the spline theory, and can be easily implemented
using digital filters. Simulations show that the speed-resolution
trade-off is 2 bits per octave with simple linear extrapolation.
Noise-shaping can be added using a matched analog preemphasis
filter, in which case the converter behaves similar to a ∆Σ

modulator of the same order.

I. INTRODUCTION

For high speed, medium resolution applications, most

analog-to-digital converters (ADCs) employ a pipelined struc-

ture. Such converters are limited by a number of analog circuit

imperfections, such as capacitor mismatch, charge injection,

finite Opamp gain, gain dispersion, and comparator offsets.

These errors deteriorate the sample at each stage. If left

uncorrected, the errors will carry over across the pipeline

stages, result in differential nonlinearity (DNL) and integral

nonlinearity (INL). The problem is more significant with

newer CMOS technologies, as analog performance degradates

with lower supply voltages and smaller feature sizes. Current

approaches to the problem include using 1.5-bit stages that

are insensitive to offsets, reducing the number of stages, and

various calibration schemes [1].

In this paper we propose a new class of ADC that puts

less emphasis on converting the signal itself, but more on

predicting the signal before it is actually converted. Only

the difference between the prediction and the input signal is

converted, using a coarse quantizer. The idea is similar to the

differential pulse code modulation (DPCM) techniques used

in signal processing and telecommunications [2]. The ADC

resembles a DPCM transmitter in Fig. 1. The predictor (or

extrapolator) exploits the redundancy in the input, which is

removed by a difference operation, so that only the information

that can’t be predicted is quantized. In general, redundancy can

be created by oversampling the input, implying an inherent

trade-off between speed and resolution in this scheme.

The structure can be considered as a two-stage pipelined

ADC with a prediction stage and an error-correcting stage. The

first stage contributes to most of the ADC’s resolution since

the predictor is designed to closely track the input signal. The

second stage only needs to convert the remaining prediction

error, which would be small in amplitude, thus requring less

quantizer levels. By having only two stages, the accumulative

effect of errors in a multiple stage pipelined ADC is reduced.

II. EXTRAPOLATION SCHEMES

A. Predictor Modes

The predictor can be implemented either in the digital or

analog domain. A digital predictor (Fig. 2) is similar to the

one in a DPCM transmitter, which is simply a digital filter

that takes input from previously converted samples. It can

even be implemented separately from the analog circuitry,

for example on a DSP. Besides being error-free, the predictor

also has the advantage that its states are completely known

and ready to output as digital signals. However, a digital-to-

analog converter (DAC) is needed to convert the prediction

back to analog values. This DAC needs to have at least the

same resolution as the prediction stage, which could limit the

speed of the ADC.

Prediction can also be done directly on the analog input

signal, in a feed-forward configuration in Fig. 3. By tracking

the signal before a front end sample-and-hold (S/H), the

predictor has access to information that is usually ignored

by conventional ADCs. One example is the continuous-time

derivatives of the input, which are useful in many extrapola-

tion algorithms. Such quantities can only be estimated from

discrete-time samples, but they are available to an analog

predictor with the use of differentiators. As a disadvantage of

the analog domain implementation, the predictor states need

to be quantized in order to generate an output. They are not

explicitly known, or may not be reconstructible, from the

quantized values.
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+

Fig. 1. Block diagram of a DPCM transmitter.
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Fig. 2. Predictor in the digital domain. Dashed line indicates the digital
components that can be implemented outside the converter.
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Fig. 4. Block diagram of the proposed extrapolation scheme.

B. Signal Representing Spaces

Both analog and digital predictors may be designed to

exploit the redundancy of the input signal in the most suitable

representing space. In general, oversampling a signal creates

redundancy which shows up as a “smoothness” in the time-

domain waveform. Thus the simplest time-domain predictor

can be one that uses the current signal value as the prediction.

More complex linear predictors have been studied in signal

processing and adaptive filter theories.

Similarly, if the signal is known to have certain charac-

teristics in a specifc signal representing space, the predictor

should be designed to work in that space. As an example,

for an amplitude-modulated (AM) signal, a frequency-domain

predictor may have a phase-locked loop that tracks the carrier

frequency, and an amplitude variable which it must predict.

The simplest predictor in this case would be one that uses the

current amplitude value as the prediction. Here the redundancy

lies in both frequency (constant over time) and amplitude

(varies slowly over time) components of the input.

Prediction is not limited to time-domain, even for signals

that do not conform to a known model. Besides the sinc-based

approach as with Shannon’s sampling theory, other methods

can also be used to represent the prediction. Candidates may

include wavelets or splines [3].

C. Proposed Scheme

1) Predictor Configuration: Our goal is to reduce analog

circuit imperfections by doing the processing in the digital

domain as much as possible. Therefore, the proposed scheme

is based on a digital predictor shown in Fig. 4. The extrap-

olation algorithm used by the predictor is derived from the

spline theory, which is commonly used in data analysis [4].

Before sampling the input data, the predictor constructs a

piecewise cubic spline from previously converted samples. It

then extends the last segment of the spline one step further, and

output that value as the prediction. This output is converted to

an analog value by the DAC. Right after sampling the input

signal, the difference between the sample and the prediction is

quantized using a coarse quantizer. The result is sent back to

the predictor, which uses it to correct the previous prediction,

and subsequently update the spline to predict the next sample.

Note that a linear amplifier is needed for the small prediction

error in order to match the range of the quantizer. Compared

to Fig. 2, the reconstruction step is replaced by a constant

multiplication and an addition in the digital domain.

In the algorithm, a piecewise cubic spline for the n data

points (t1, x1), (t2, x2)...(tn, xn) is a smooth curve that goes

through all the points and is twice continuously differentiable.

It consists of n − 1 segments connected end-to-end at the

n− 2 interior knots on t2, t3...tn−1. Each segment is a cubic

polynomial function of the form

x(t) = si,0 + si,1(t− ti) + si,2(t− ti)
2 + si,3(t− ti)

3 (1)

for the segment defined between ti and ti+1. si,0 through si,3

are coefficients that must be determined by the predictor. Since

samples are uniformly spaced, for simplicity we let ti = i; i.e.

the current time is t = n, while prediction is to be made for

t = n + 1.

Consider the last segment (i = n−1) which will be extended

to calculate the prediction. It must go through (n− 1, xn−1)
and (n, xn), reducing (1) to:

xn−1 = sn−1,0 (2)

and

xn = sn−1,0 + sn−1,1 + sn−1,2 + sn−1,3 (3)

Two extra equations are needed to solve for the 4 unknowns.

They must come from the conditions on the first or second

derivatives at the two end points. Since this information is

not directly available to the predictor (which might not be

the case for an analog predictor), the derivatives need to be

set arbitrarily, or estimated from the previous segments. For a

natural spline, the second derivatives at the two ends are set

to zero. This gives the following two equations:

2sn−1,2 = 0 (4)

2sn−1,2 + 6sn−1,3 = 0 (5)

Solving (2) through (5), we get sn−1,0 = xn−1, sn−1,1 =
xn − xn−1, and sn−1,2 = sn−1,3 = 0. Therefore the

polynomial (1) becomes:

x = xn−1 + (xn − xn−1)(t− (n− 1)) (6)

and the prediction at t = n + 1 is

xn+1 = 2xn − xn−1 (7)

which has reduced to a simple linear extrapolation of the

last two data points. It is not surprising, since we have set

the second derivatives to zero without making use of the

smoothness property between spline segments.

To estimate the derivatives from adjacent segments, an

extrapolated spline can be used. It assumes that the two ending

segments are part of, or extrapolated from, their neighboring

segments; otherwise known as the not-a-knot (NAK) condition.
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Fig. 6. Block diagram of the proposed scheme with noise shaping.

The shortest spline of this kind involves 4 data points that

belong to the same segment. Therefore two more equations

are created using the values at the two extra points. This gives

the following prediction on xn+1:

xn+1 = −xn−3 + 4xn−2 − 6xn−1 + 4xn (8)

which is the same as a polynomial extrapolation on the 4 data

points.

Alternatively, one may use the natural condition on the left-

end and the NAK condition on the right-end. The shortest

spline of this kind involves 3 data points and gives the

following prediction:

xn+1 = 2xn−2 − 5xn−1 + 4xn (9)

which is nontrivial and behaves according to intuition, when

testing with data points such as (1, 1, 1) or (1, 2, 3).
Fig. 5 shows the different spline functions constructed from

the same 4 data points. It can be seen that the splines with

NAK conditions behave less stable than those with natural

conditions outside the range of data points. This problem is

expected with polynomial extrapolation. On the other hand, the

splines with natural endpoint condition give the same value of

prediction at t = 4. For ease of implementation, we chose the

natural spline eq. (7) among the others, which can be done in

merely 2 simple operations.

2) Noise Shaping: As with DPCM coders, noise shaping

can be added to the ADC with the use of an analog preem-

phasis filter [5]. Fig. 6 shows this configuration, where the

quantizer has been replaced by an addition with noise e. The

z-domain expression for the output y can be shown to be

Y (z) = H(z)(1− P (z))X(z) +
1− P (z)

A
E(z) (10)

The signal transfer function (STF) for the input x is equal

to unity when H and P are matched, such that

H(z) =
1

1− P (z)
(11)

The noise transfer function (NTF) for the quantization noise

e consists of a constant factor 1/A and a shaping function

1−P (z). If the prediction error is small, A can be made large,

implying a large uniform noise suppression. The predictor

function derived from natural spline (eq. 7) is Pnatural(z) =
2z−1

− z−2, which gives

1− Pnatural(z) = (1 − z−1)2 (12)

Similarly, from eq. (8), we get

1− Pextrap(z) = (1 − z−1)4 (13)

Interestingly, these shaping functions are identical to the

loop filters implemented in a delta-sigma (∆Σ) modulator of

order 2 and 4 respectively. Although originally designed from

a extrapolation perspective, the spline-based algorithms also

perform ideal high-pass noise shaping. In the case that H and

P are ideally matched according to eq. (11), the final converter

output can be obtained by a digital decimation filter connected

to the y signal. The system could perform better than its ∆Σ
counterpart because of the additional noise suppression factor

1/A. However, in practice these matched filters are difficult

to implement, because the Hs need to have poles at z = 1,

which make them unstable.

We have ignored the DAC noise in the above derivation.

In fact, it can be mapped to the port of the quantization

noise, and would still be shaped by 1 − P (z), albeit without

the 1/A factor. Another source of nonlinearity may come

from the amplifier itself. This effect can be minimized using

a 1-bit quantizer, which is possible as was demonstrated in

simulations.

III. SIMULATION RESULTS

We performed Matlab simulations on the proposed ADC

scheme. Without noise shaping, we used a band-limited white

Gaussian noise as the analog input signal. The noise source

outputs at the sampling frequency, but is low-pass filtered to

the desired signal bandwidth. The input is compared with the

output of the ADC to obtain the signal-to-noise ratio (SNR).

In all our simulations, natural spline prediction (eq. 7) re-

sulted in the smallest amplitude error among the other splines.

The extrapolated spline (eq. 9) has the largest prediction error,

which must be correct using a smaller amplification factor A,

or equivalently by using more bits in the quantizer. Otherwise,

if the prediction error exceeds the range of the error-correcting

stage, the predictor would lose track of the input, and the

loop could become unstable. In most cases, the extrapolated

spline needs 2 more quantizer bits in order to achieve the same

overall resolution of the natural spline.
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With fixed sampling rate and quantizer bits, the optimal

value of A is found by increasing it until the system becomes

unstable. Each octave increase of A represents a 1-bit increase

in overall resolution, since the second stage would be twice as

accurate. This resolution is taken as the effective number of

bits (ENOB) of the ADC. For a natural spline predictor and a

3-bit quantizer, the results is summarized in Fig. 7, where the

data point on the top of each column represents the optimal

operation condition.

It can be seen that the ENOB increases by 2 bits for

each doubling of sampling rate. Therefore the speed-resolution

trade-off is 2 bits per octave. We have observed that this trade-

off is independent of the number of quantizer bits. In other

words, a 1-bit quantizer can be used, whose ENOB simply

shifts down by 2 bits in Fig. 7.

The proposed ADC with noise shaping is simulated with

a sinusoidal input. Natural spline prediction is again used,

while a sign function replaces the amplifier and 1-bit quantizer.

The preemphasis filter function is H(z) = (1− 0.999z−1)−2,

where the poles are moved to keep the filter stable. The output

spectrum is shown in Fig. 8, which agrees well with the output

of an ideal second-order ∆Σ modulator in Fig. 9. The SNR

in both simulations is around 70dB assuming an OSR of 64.

Since no amplification is needed for a 1-bit quantizer, we do

not see the effect of additional noise suppression.

IV. DISCUSSION

Our proposed ADC scheme requires only minimum analog

circuitry, and demonstrated a gain in resolution using very

simple digital extrapolation algorithms. With noise-shaping,

it has the potential to outperform ∆Σ converters of the

same order. However, a number of factors could limit its

performance. First, the DAC puts a cap on the accuracy of the

prediction. It also operates at the full sampling rate, which may

limit the OSR. Also, the current algorithm requires that input

samples must not change significantly over time. Therefore a

slow start-up from a known initial state is needed. Moreover,

the analog preemphasis filter for noise-shaping is difficult to
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Fig. 8. Output spectrum of the proposed ADC with noise shaping.
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Fig. 9. Output spectrum of a second-order ∆Σ modulator.

implement. In practice a compromise must be made between

the shape of NTF and the level of mismatch.

Extrapolating ADCs provide a new direction where various

signal processing techniques can be incorporated. It may prove

to be a viable approach for signals that can be modeled prior

to arrival. It also opens up the possibility to new sampling

methods and calibration schemes.
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