
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1989

Replicated Data and Partition Failures Replicated Data and Partition Failures

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Susan B. Davidson, "Replicated Data and Partition Failures", . January 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-02.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/753
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76363474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/753
mailto:repository@pobox.upenn.edu

Replicated Data and Partition Failures Replicated Data and Partition Failures

Abstract Abstract
In a distributed database system, data is often replicated to improve performance and availability. By
storing copies of shared data on processors where it is frequently accessed, the need for expensive,
remote read accesses is decreased. By storing copies of critical data on processors with independent
failure modes, the probability that at least one copy of the data will be accessible increases. In theory,
data replication makes it possible to provide arbitrarily high data availability.

In practice, realizing the benefits of data replication is difficult since the correctness of data must be
maintained. One important aspect of correctness with replicated data is mutual consistency: all copies of
the same logical data-item must agree on exactly one "current value" for the data-item. Furthermore, this
value should "make sense" in terms of the transactions executed on copies of the data-item. When
communication fails between sites containing copies of the same logical data-item, mutual consistency
between copies becomes complicated to ensure. The most disruptive of these communication failures
are partition failures, which fragment the network into isolated subnetworks called partitions. Unless
partition failures are detected and recognized by all affected processors, independent and uncoordinated
updates may be applied to different copies of the data, thereby compromising the correctness of data.
Consider, for example, an Airline Reservation System implemented by a distributed database which splits
into two partitions when the communication network fails. If, at the time of the failure, all the nodes have
one seat remaining for PAN AM 537, reservations could be made in both partitions. This would violate
correctness: who should get the last seat? There should not be more seats reserved for a flight than
physically exist on the plane. (Some airlines do not implement this constraint and allow overbookings.)

The design of a replicated data management algorithm tolerating partition failures (or partition
processing strategy) is a notoriously hard problem. Typically, the cause or extent of a partition failure
cannot be discerned by the processors themselves. At best, a processor may be able to identify the other
processors in its partition; but, for the processors outside of its partition, it will not be able to distinguish
between the case where those processors are simply isolated from it and the case where those
processors are down. In addition, slow responses can cause the network to appear partitioned even when
it is not, further complicating the design of a fault-tolerant algorithm.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-02.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/753

https://repository.upenn.edu/cis_reports/753

REPLICATED DATA AND
PARTITION FAILURES

Susan B. Davidson

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

January 1989

Acknowledgements: This research was supported in part by NSF grants MCS-8219196-CER,
IR184-10413-A02, U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027 and by a grant from
AT&T's Telecommunications Program.

Replicated Data and Part it ion Failures

Susan B. Davidson*
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

January 5, 1989

1 Introduction.

In a distributed database system, data is often replicated to improve performance and availability.
By storing copies of shared data on processors where it is frequently accessed, the need for expensive,
remote read accesses is decreased. By storing copies of critical data on processors with independent
failure modes, the probability that a t least one copy of the data will be accessible increases. In
theory, data replication makes it possible to provide arbitrarily high data availability.

In practice, realizing the benefits of data replication is difficult since the correctness of data
must be maintained. One important aspect of correctness with replicated data is mutual consis-
tency: all copies of the same logical data-item must agree on exactly one "current value" for the
data-item. Furthermore, this value should "make sense" in terms of the transactions executed on
copies of the data-item. When communication fails between sites containing copies of the same
logical data-item, mutual consistency between copies becomes complicated to ensure. The most
disruptive of these communication failures are partition failures, which fragment the network into
isolated subnetworks called partitions. Unless partition failures are detected and recognized by all
affected processors, independent and uncoordinated updates may be applied to different copies of
the data, thereby compromising the correctness of data. Consider, for example, an Airline Reser-
vation System implemented by a distributed database which splits into two partitions when the
communication network fails. If, at the time of the failure, all the nodes have one seat remaining
for PAN AM 537, reservations could be made in both partitions. This would violate correctness:
who should get the last seat? There should not be more seats reserved for a flight than physically
exist on the plane. (Some airlines do not implement this constraint and allow overbookings.)

The design of a replicated data management algorithm tolerating partition failures (or partition-
processing strategy) is a notoriously hard problem. Typically, the cause or extent of a partition
failure cannot be discerned by the processors themselves. At best, a processor may be able to
identify the other processors in its partition; but, for the processors outside of its partition, it will
not be able to distinguish between the case where those processors are simply isolated from it and

*Parts of this were reprinted with permission from "Consistency in Partitioned Networks" by Susan B. ~ a v i & % a ,
Hector Garcia-Molina and Dale Skeen, ACM Computing Surveys 17:3 (Sept. 1985) pp. 341-370. This research was
supported in part by a grant from AT&T's Telecommunications Program at the University of Pennsylvania, and by
grants NSF MCS 8219196-CER.

the case where those processors are down. In addition, slow responses can cause the network to
appear partitioned even when it is not, further complicating the design of a fault-tolerant algorithm.

However, the problems associated with maintaining correct operation in a partitioned dis-
tributed database system are not limited to the problems associated with the correctness of data.
Due to the expense and complexity of maintaining replicated data, most distributed database sys-
tems limit the amount of replication to a few copies. Since data is not replicated at every site in
the network, it is possible to pose queries1 during network partitioning for which not all data are
available. Ideally in such a situation, the system should attempt to provide some level of service
by providing as good an answer as possible. For example, if a doctor a t a hospital wanted to query
a distributed Blood Bank database to find how many pints of blood were available throughout the
system, and only Blood Bank A were accessible due to a partition failure, a useful answer would
be "Blood Bank A has 20 pints, but there may be more at other (currently inaccessible) sites."

In this chapter, we will first discuss the tradeoffs involved in designing a partition-processing
strategy. A formal notion of correctness in a replicated database system ("one-copy serializability")
will then be given, along with an overview of several "quorum-based" partition-processing strategies.
We will then shift our attention away from the problem of updating during partition failures to the
problem of answering queries, and present methods of providing partial answers in the face of
unavailable data.

Although the discussion on updating transactions is couched within a database context, most
results have more general applications. In fact, the only essential notion in many cases is that of a
transaction. Hence, these strategies are immediately applicable to mail systems, calendar systems,
object-oriented systems, and other applications using transactions as their underlying model of
processing.

2 Correctness Versus Availability

When designing a system that will operate when it is partitioned, the competing goals of availability
(the system's normal function should be disrupted as little as possible) and correctness (data must
be correct when recovery is complete) must somehow be met. These goals are not independent;
hence, trade-offs are involved.

Correctness can be achieved simply by suspending operation in all but one of the partition groups
and forwarding updates at recovery; but this severely compromises availability. In applications
where partitions either occur frequently or occur when access to the data is imperative, this solution
is not acceptable. For example, in the Airline Reservation System it may be too expensive to have a
high connectivity network and partitions may occasionally occur. Many transactions are executed
each second (TWA's centralized reservations system estimates 170 transactions per second at peak
time [GS]), and each transaction that is not executed may represent the loss of a customer. In a
military command and control application, a partition can occur because of an enemy attack, and
it is precisely at this time that we do not want transaction processing halted.

On the other hand, availability can be achieved simply by allowing all nodes to process trans-
actions "as usual" (note that transactions can only execute if the data they reference is accessible).
However, correctness may now be compromised. Transactions may produce "incorrect" results
(e.g., reserving more seats than physically available) and the databases in each group may diverge.

'Queries are transactions that do not perform updates, also called read-only transactions.

In some applications, such "incorrect" results may be acceptable in light of the higher availability
achieved: when partitions are reconnected, the problems may be corrected by executing transactions
missed by a partition, and by choosing certain transactions to "undo." If the chosen transactions
have had no real-world effects, they can be undone using standard database recovery methods. If,
on the other hand, they have had real-world effects, then appropriate compensating transactions
must be run, transactions which not only restore the values of the changed database items but also
issue real-world actions to nullify the effects of the chosen transactions (e.g., by canceling certain
reservations and sending messages to affected users). Alternatively, correcting transactions can be
run, transforming the database from an incorrect state to a correct state without undoing the effects
of any previous transactions. For instance, in a banking application, the correcting transaction for
overdrawing a checking account during a partitioning would apply an overdraft charge. Of course,
in some applications incorrect results are either unacceptable or incorrectable. For example, it may
not be possible to undo or correct a transaction that effectively hands $1,000,000 to a customer.

Since it is clearly impossible to satisfy both goals simultaneously, one or both must be relaxed to
some extent. Several partition processing strategies have been suggested that either relax correct-
ness, or rely on compensating or correcting transactions to regain consistency once the partition
is repaired [Dav,PPR*,GAB*,LB,KG,GK]. Other partition processing strategies have been sug-
gested that pre-analyze transactions or use type-specific information to increase availability while
guaranteeing correctness [Her,GK,BGR*,Wri]. Since most of these techniques require extensive
knowledge about what the information in the database represents, how applications manipulate
the information, and how much undoing/correcting/compensating inconsistencies will cost, we will
limit our discussion of partition-processing strategies to a class that guarantees correctness, and
does so in a syntactic manner (i.e., no semantic understanding of the database is required). A more
complete survey of these techniques can be found in [DGS], and an analysis of the limitations on
availability for strategies that guarantee correctness can be found in [COK].

3 The Notion of Correctness

What does correct processing mean in a database system? Informally, a database is correct if it
correctly describes the external objects and processes that it is intended to model. In theory, such
a vague notion of correctness could be formalized by a set of static constraints on objects and their
attributes, and a set of dynamic constraints on how objects can interact and evolve. In practice,
a complete specification of the constraints governing even a small database is impractical (besides,
even if it were practical, enforcing the constraints would not be). Consequently, database systems
use a less ambitious, very general notion of correctness based on the order of transaction execution,
one-copy serialiaability, and on a small set of static data constraints known as integrity constraints.

In this section, we examine the notion of correctness, beginning informally with examples il-
lustrating incorrect behavior, followed by a more formal definition of correctness in the traditional
database system. When referring to the state of the database, we use the terms "correct" and
"consistent" interchangeably.

3.1 Anomalies

Consider a banking database that contains a checking account and a savings account for a certain
customer, with a copy of each account stored at sites A and B. Suppose a communication failure

Savings: $200 Savings: $200

Checking:= Checking- $25
Checking:= Checking- $1 00

Checking:= Checking- $75

Savings: $200 Savings: $200

Figure 1: An anomaly resulting from concurrent write operations on the same data item in separate
partitions.

isolates the two sites. Figure 1 shows the result of executing a checking withdrawal a t A (for $100)
and two checking withdrawals at B (totaling $100). Although the resulting copies of the checking
account contain the same value, we know intuitively that the actions of the system are incorrect:
The account owner extracted $200 from a checking account containing only $100. The anomaly
is caused by conflicting write operations issued in parallel by transactions executing in different
partitions.

An interesting aspect of this example is that in the resulting database all copies are mutually con-
sistent, i.e., all copies of a data-item contain the same value.2 Thus, although it is commonly used
as the correctness criterion for replicated file systems and information databases, such as telephone
directories, mutual consistency is not a sufficient condition for correctness in a transaction-oriented
database system. It is also not a necessary condition: consider the example where A executes
the $100 withdrawal while B does nothing. Although the resulting copies of the checking account
contain different values, the resulting database is correct if the system recognizes that the value in
A's copy is the most recent one.

A different type of anomaly on the same database is illustrated in Figure 2.This figure shows
the result of executing a checking withdrawal of $200 at site A, and a savings withdrawal of $200
at site B . Here, we assume that the semantics of the checking withdrawal allow the account to
be overdrawn as long as the overdraft is covered by funds in the savings account (i.e., checking +
savings 2 0). The semantics of the savings withdrawal are similar.

In the execution illustrated, however, these semantics are violated: $400 is withdrawn, whereas
the accounts together contain only $300. The anomaly was not caused by conflicting writes (none
existed since the transactions updated different accounts), but instead because accounts are allowed
to be read in one partition and updated in another.

Concurrent reads and writes in different partitions are not the only sources of inconsistencies
in a partitioned system, nor do they always cause inconsistencies. For example, if the savings
withdrawal in Figure 2 is changed to a deposit, the intended semantics of the database would not

'This is the narrowest interpretation of several uses of the term "mutual consistency" that appear in the literature.
Some authors use mutual consistency synonymously with one-copy equivalence (defined in the next section).

Savings: $200 Savings: $200

if Savings+Checking> $200 if Savings+Checking> $200
then then

Checking:= Checking- $200 Savings:= Savings- $200

Savings: $200 Savings: $0

Figure 2: An anomaly resulting from concurrent read and write operations in different partitions.

be violated. However, the above are typical anomalies that can occur if conflicting transactions
are executed in different partitions.

3.2 One-Copy Serializability

A database is a set of logical data-items that support the basic operations read and write. The
granularity of these items is not important: they could be records, files, relations, etc. The state
of the database is an assignment of values to the logical data-items. For brevity, logical data-items
are subsequently called data-items or, more simply, items.

A transaction is a program that issues read and write operations on the data-items, and either
terminates successfully (commits) or fails (aborts). In addition, a transaction may have effects that
are external to the database, such as dispensing money or displaying results on a user's terminal.
The items read by a transaction constitute its readset; the items written, its writeset. A read-
only transaction (or query) neither issues write requests nor has external effects. Transactions are
assumed to be correct, that is a transaction, when executed alone, transforms an initially correct
database state into another correct state [TGGL].

Transactions interact with one another indirectly by reading and writing the same data-items.
Two operations on the same item are said to conflict if at least one of them is a write. Conflicts are
often labeled either read-write, write-read, or write-write depending on the types of data operations
involved and their order of execution [BGa]. Conflicting operations are significant because their
order of execution affects the final database state.

A generally accepted notion of correctness for a database system is that it executes transactions
so that they appear to users as indivisible, isolated actions on the database. This property, referred
to as atomic execution, is achieved by guaranteeing the following properties:

1. The execution of each transaction is "all or nothing": either all of the transaction's writes and
external operations are performed or none are performed. (In the former case the transaction
is said to be committed; in the latter case, aborted.) This property is often referred to as
atomic commitment.

2. The execution of several transactions concurrently produces the same database state as some

serial execution of the same transactions. The execution is then said to be serializable.

The first property is established by the commit and recovery algorithms of the database system
(e.g., logging techniques [GMB*,Ver]); the second, by the concurrency control algorithm. For now,
we will concentrate on the concurrency control aspects of transaction processing and assume that
site and transaction failures are tolerated correctly.

EXAMPLE: As an example of how concurrent execution can produce incorrect results in a cen-
tralized database, consider the concurrent activity at site B in Figure 1. Here, two transactions, TI
and Tz, concurrently withdraw money from a checking account, which we will represent as x. A
withdrawal transaction Z could be represented by the following operations:

Ti : ri (x), w;(x),

where r; represents a read operation and w; a write operation of the new value of x by transaction
T;. For transaction TI, wl(x) writes a value of x that is $25 less than the value read by rl(x);
for transaction T2, w ~ (x) writes a value of x that is $75 less than the value read by r2(x). The
following sequence of operations (or history) represents an execution that is intuitively incorrect:

Although the customer withdrew a total of $100 from the account, H only reflects the execution
of one withdrawal transaction. Since both transactions read the same initial value of x ($loo), the
final value of x, written by T2, is $25. H is not serializable; there is also no serial execution of TI
and T2 that results in a final value of $25 for x. For example, the serial execution of TI before T2
would be:

Hs = r1(x), w1(x), r2(x), w2(x).

Since T2 reads the value of x produced by Tl ($75), the final value written by T2 is $0. This would
also be the final value for x if T2 were executed before TI.

One concurrency control technique that would have avoided the previous anomaly is strict two-
phase lockang[EGLT]: Before executing a write operation, the transaction must acquire an exclusive
lock on the data-item; before executing a read operation, the transaction must acquire a t least a
shared lock (if the transaction will later write the data-item, an exclusive lock may be obtained).
Exclusive locks are said to conflict with other shared or exclusive locks on the same data-item;
however, shared locks only conflict with exclusive locks on the same data-item. Under strict two-
phase locking, conflicting locks may not be granted, and any lock that is granted is held until the
transaction terminates. If this technique had been used in H , TI would have acquired an exclusive
lock on x before reading it, thus preventing T2 from reading x until TI had written its new value
for x. The result would have been the serial execution Hs.

Atomic transaction execution (the concurrent execution of transactions is serializable) together
with the assumption that transactions are correct (a transaction executed alone transforms an
initially correct database state into another correct state) imply by induction that the execution
of any set of transactions transforms an initially correct database state into a new, correct state.
While atomic execution is not always necessary to preserve correctness, most real database systems

implement it as their sole criterion of correctness. This is because atomic execution is simple
(it corresponds to users7 intuitive model that transactions are processed sequentially) and can be
enforced by very general mechanisms that determine the order of conflicting data operations (such
as strict two-phase locking, shown in the previous example). These mechanisms are independent
of both the semantics of the data being stored and of the transactions manipulating it.

Some systems allow additional correctness criteria to be expressed in the form of integrity con-
straints. Unlike atomicity, these are semantic constraints. They may range from simple constraints
(e.g., the balance of checking accounts must be nonnegative) to elaborate constraints that relate
the values of many data-items. In systems enforcing integrity constraints, a transaction is allowed
only if its execution is atomic and its results satisfy the integrity constraints. To simplify the
discussion, we will assume that integrity constraints are checked as part of the normal processing
of a transaction (e.g., the withdrawal transaction fails if the checking account balance becomes
negative).

Notice that we have not specified whether we were discussing a centralized or a distributed
database system; it has not been necessary to do so since the definitions, the properties of trans-
action processing, and the correctness criteria are the same in both. Of course, the algorithms for
achieving correct transaction processing differ markedly between the two types of implementations.

In a replicated database, the value of each logical item x is stored in one or more physical data-
items, which are referred to as the copies of x. Each read and write operation issued by a transaction
on some logical data-item must be mapped by the database system to corresponding operations
on physical copies. To be correct, the mapping must ensure that the concurrent execution of
transactions on replicated data is equivalent to a serial execution on nonreplicated data, a property
known as one-copy serializability. The logic that is responsible for performing this mapping is called
the replica control algorithm.

EXAMPLE: Continuing with the previous banking example, consider the situation in Figure 1.
Here, transactions TI and T2 execute at site B , while transaction T3 executes at site A. If the
concurrency control used at each site is strict two-phase locking, we know that the local execution
will be serializable. However, the global execution may be incorrect due to an incorrect replica
control algorithm. If we adopt a "read-one, write-one" replica control (the local copy of a data-item
is read and updated), we get the execution in Figure 1. Letting the copies of x at A and B be XA

and XB respectively, the withdrawal transactions become the following sequences of operations on
physical copies:

T3 : T ~ (X A) , w ~ (x A) ,

Ti : r i (x ~) , WI(XB).

T2 : ~ z (x B) , w ~ (x B) .

As shown in Figure 1, site A executes T3 while site B executes TI followed by T2. While mutual
consistency is preserved (XA = xg = $200), the result is incorrect since only $100 was withdrawn
from the logical data-item x. The execution is not one-copy serializable since the execution of TI,
Tz and T3 in the distributed system does not reflect a serial execution of the transactions on the
logical data-item x.

However, if the replica control algorithm used in were "read-one, write-all", this anomaly would
have been avoided: A transaction must read one copy of a data-item (usually, the nearest copy), but

must update a l l copies. In this case, the withdrawal transactions become the following sequences
of operations on physical copies:

Since each site uses strict two-phase locking as its concurrency control, if T3 and TI both read the
original value of x, deadlock will occur when they try to update the remote copies of x: T3 holds
an exclusive lock on XA and cannot release the lock until it acquires an exclusive lock on XB and
completes, while TI holds an exclusive lock on XB and cannot release the lock until it acquires an
exclusive lock on XA and completes. However, the following execution sequences at sites A and B
respectively would avoid deadlock and are one-copy serializable:

Note that the joint execution of HA and HB corresponds to executing T3, TI and then T2 using the
logical data-item x.

Similar reasoning will lead the reader to conclude that the anomaly shown in Figure 2 would
also be avoided using "read-one, write-all" replica control together with strict two-phase locking.

As a correctness criterion, one-copy serializability is attractive for the same reasons that (nor-
mal) serializability is: it is intuitive, and can be enforced using general-purpose mechanisms that
are independent of the semantics of the database and of the transactions executed.

3.3 Partitioned Operation

Let us now consider transaction processing in a partitioned network, where the communication
connectivity of the system is broken by failures or by anticipated communication shutdowns. To
keep the exposition simple, let us assume that the network is "cleanly" partitioned (that is, any
two sites in the same partition can communicate and any two sites in different partitions cannot
communicate), the database is c o m p l e t e l y repl icated (a copy of every item is a t every site throughout
the system), and one-copy serializability is the correctness criterion.

While the system is partitioned, each partition must determine which transactions it can execute
without violating the correctness criteria. Actually, this can be thought of as two problems:

1. each partition must maintain correctness within the part of the database stored at the sites
comprising the partition, and

2. each partition must make sure that its actions do not conflict with the actions of other
partitions, so that the database is correct across all partitions.

If we assume that each site in the network is capable of detecting partition failures, then correctness
within a partition can be maintained by adapting one of the standard replica control algorithms
for nonpartitioned systems. For example, the sites in a partition can implement a write operation
on a logical object by writing all available copies in the partition ("read-one, write-all-available").

This, along with a standard concurrency control protocol, ensures one-copy serializability in the
partition.

The really difficult problem is ensuring one-copy serializability across partitions: it is not suf-
ficient to run a replica control algorithm that is correct in each partition to ensure that overall
transaction execution is one-copy serializable.

EXAMPLE: Continuing with the banking example, suppose that a partition failure occurs before
T3 is executed at site A and TI and T2 are executed at site B. If a "read-one, write-all-available"
replica control strategy were used, the resulting execution would be the same as the "read-one,
write-one" strategy in the previous section. Although the execution of TI, T2 and T3 in their
respective partitions is trivially one-copy serializable, conflicting operations occurred in different
partitions, and the joint execution of both partitions is no t one copy serializable.

In addition to solving the problem of global correctness, a partition processing strategy must
solve two problems of a different sort. First, when the partitioning occurs, the database is faced with
the problem of atomically committing ongoing transactions. The complication is that the sites exe-
cuting the transaction may find themselves in different partitions, and thus unable to communicate
a decision regarding whether to complete the transaction (commit) or to undo it (abort). In many
cases, it is impossible to make a decision within each partition that is consistent across partitions,
and the transaction is forced to wait until the failure is repaired. In this case, the transaction is said
to be blocked. Blocking is clearly undesirable since the availability of data is reduced; for exam-
ple, locks on data-items cannot be released until the transaction terminates. Unfortunately, while
there are methods of reducing the likelihood of blocking, there are n o nonblocking c o m m i t protocols
for network parti t ions [Ske]. Note that the problem of atomic commitment in multiple partitions
does not arise for a transaction submitted after the partitioning occurs (such a transaction will be
executed in only one partition), and that this problem arises in any partitioned database system
whether it is replicated or not.

Second, when partitions are reconnected, mutual consistency between copies in different parti-
tions must be reestablished. That is, the updates made to a logical data object in one partition
must be propagated to its copies in the other partitions. Conceptually, this problem can be solved
in a straightforward manner by extra bookkeeping whenever the system partitions. For example,
each update applied in a partition can be logged, and this log can be sent to other partitions upon
reconnection. (Such a log may be integrated with the "recovery log" that is already kept by many
systems.) In practice, an eff icient solution to this problem is likely to be intricate and to depend
on the normal recovery mechanisms employed in the database system. For this reason, we do not
discuss it further.

3.4 Modeling Partitioned Behavior

To model the conflict between transactions in partitioned systems, we will use a precedence graph
[~ a v] . ~ A precedence graph models the necessary ordering between transactions, and is used to
check serializability across partitions. They are adapted from serialization graphs, which are used to

3~ more complete modeling of partitioned behavior is replicated data serialization graphs [BHG]; however, prece-
dence graphs are sufficient for this discussion.

check serializability within a site [Pap]. In the following, we assume that the readset of a transaction
contains its writeset. (The reason for this assumption is to avoid certain NP-complete problems in
checking serializability, see [Ull].)

The transactions executed in each partition group during the failure are represented by a serial
history of transactions, their readsets and writesets. Such a history must exist since, by assump-
tion, transaction execution within a partition is seridizable. For partition i , For partition i , let
Ti1, Ti2, ..., Ti, be the set of transactions, in serialization order, executed in i .

The nodes of the precedence graph represent transactions; the edges, interactions between trans-
actions. The first step in the construction of the graph is to model conflicts between transactions in
the same partition with precedence edges. A precedence edge (T,j - z k) represents the fact that
T,j wrote a copy that was later read by T,r, (write-read conflict), or that zj read a copy that was
later changed by Zk (read-write conflict). Since we are assuming that the readset of a transaction
contains its writeset, write-write conflicts are subsumed by the write-read conflicts. In both cases,
an edge from Tij to Tik indicates that the order of execution of the two transactions is reflected in
the resulting database state, and that any equivalent execution must maintain this order. Note that
the graph constructed so far must be acyclic since the orientation of an edge is always consistent
with the serialization order.

To complete the precedence graph, conflicts between transactions in different partitions must
be represented. This is modeled by interference edges. An interference edge (Z j - Tjk, i # I)
indicates that T,j read an item that is written by Tjk in another partition (READSET(T,j) n
W R I T E S E T (z k) # 0). The meaning of an interference edge is the same as a precedence edge: an
interference edge from zj to Tlk indicates that T,j logically "executed before" zk since it did not
read the value written by Tlk. An interference edge signals a read-write conflict between the two
transactions, and indicates that any equivalent execution must maintain this order. (A write-
write conflict manifests as a pair of read-write conflicts since each transaction's readset contains its
writeset .)

EXAMPLE: Suppose the serial history of transactions executed in PI is Tl1, T12, T13, and that of
P2 is T21, T22. The precedence graph for this execution is given in Figure 3, where the readset of
a transaction is given above the line and the writeset below the line. (Thus, transaction Tlz reads
b , ~ a n d writesc:) Note that the precedence graph contains the cycle

Intuitively, cycles in the precedence graph are bad: if Tij and Tkl are in a cycle then the database
reflects the results of Tij executing before Tkl and of Tkl executing before T,j, a contradiction.
Conversely, the absence of cycles is good: the precedence graph for a set of partitions is acyclic i f
and only if the resulting database state is consistent [Dav]. An acyclic precedence graph indicates
that the transactions from both groups can be represented by a single serial history, and the last
updated copy of each data-item is the correct value. A serialization order for the transactions can
be obtained by topologically sorting the precedence graph. Thus, the combined execution within
the two groups is one-copy serializable.

In the previous example, since a cycle resulted in the precedence graph, the combined execution

Partition 1 Partition 2

Figure 3: Conflict between transactions executed in different partitions indicated by cycle in prece-
dence graph.

within the two partition groups is not one-copy serializable. In the next section, we will discuss
quorum based partition processing strategies that guarantee acyclic precedence graphs.

4 Quorum-Based Approaches

Quorum-based partition processing strategies attempt to increase the availability of data while
guaranteeing one-copy serializability by adjusting the number of copies that must be accessed to
successfully read and write within a partition. For example, in "read-one, write-all" replica control,
data-items cannot be written by transactions in either partition after a single failure since at least
one copy becomes inaccessible in both groups.4 However, if a replica control strategy required
that only some copies be accessed, write operations could be performed in a group that contained
enough copies after a partition failure.

Quorum-based approaches also model the varying "importance" of different copies of data-items
by assigning each copy some number of votes. A replica control strategy then uses the total number
of votes assigned to a data-item to dictate a read-quorum r and write-quorum w; that is, it dictates
how many votes must be "collected" to read and write a data-item. If access is granted to a copy
that has a vote of n , the transaction collects n votes from that copy. For example, to model the
fact that a customer withdraws money from site A more frequently than site B, more votes could
be assigned to X A than to XB.

In order to guarantee one-copy serializability, quorums must satisfy two constraints [Gifl:

1. r + w exceeds the total number of votes v assigned to the item, and

4Recall that we are assuming that data-items are completely replicated

Figure 4: Correct transaction processing during partitioning using voting.

The first constraint ensures that there is a non-null intersection between every read quorum
and every write quorum. Any read quorum is therefore guaranteed to have a current copy of the
item. The most recent copy can be identified by version numbers; the copy with the highest version
number is the copy read.

In a partitioned system, the first constraint guarantees that an item cannot be read in one
partition and written in another; the second constraint ensures that two writes cannot occur in
two different partitions on the same data-item. Hence, no interference edges can appear in the
precedence graph of any execution, and one-copy serializability is guaranteed by the fact that
correctness is maintained within each partition.

EXAMPLE: Suppose that sites A, B and C all contain copies of items x and y, and that a
partition PI occurs, isolating A and B from C. Initially, x = y = 0, each site has 1 vote for each
of x and y, and r = w = 2 for both x and y (see Figure 4(a)).

During the partitioning, transaction Tl wishes to update y based on values read for x and y.
Although it cannot be executed at C since it cannot obtain a read quorum for x , or read and write
quorums for y, it can be executed at A, and the new value y = 1 is propagated to B (see Figure

4(b)).
Now suppose PI is repaired, and a new failure P2 isolates A and B from C. During this new

failure, transaction Tz wishes to update x based on values read for x and y. It cannot be executed
at B since it cannot obtain a read quorum for y, or read and write quorums for x. However, it can
be executed at C. Using the most recent copy of y = 1 (obtained by reading copies at both A and
C and taking the latest version) T2 computes the new value x = 1 and propagates the new value
to A.

Note that read-accessibility can be given a high priority by choosing r small; if r < v/2 , it
is possible for an item to be read-accessible in more than one partition, in which case it will be

write-accessible in none. Note also that the algorithm does not distinguish between communication
failures, site failures, or just slow response.

4.1 Assigning Votes

Different choices of vote assignments and quorums yield different "flavors" of partition processing
strategies with different performance characteristics. For example, if all v votes are assigned to one
copy, xp, and r = q = v , then a "primary copy" strategy is emulated [AD,Sto]: xp is responsible
for all the read and write activity on x in the system. During a partition failure, only the partition
group containing xp can process transactions accessing x. Unfortunately, if the site containing the
primary copy of a data-item fails and site failure cannot be distinguished from network partitioning,
the data-item becomes inaccessible everywhere. As another example, if every copy is given a single
vote, and r = w = L;j + 1, we have a simple "majority consensus" algorithm [Tho]: in the event of a
partition failure, a partition containing a majority of sites can process transactions. In this scheme,
the data-item may become inaccessible everywhere if the network fragments so that no group
contains a majority of the sites; however, since partition failures are assumed to be "infrequent
catastrophes", this is an unlikely occurrence.

Although the "majority consensus" approach might seem natural, there are cases in which it
does not perform well [GB]. For example, consider a system with data-item x replicated at four
sites A, B , C and D. Each copy is given a single vote, and r = w = 3. The set of groups of nodes
that could execute transactions against x would be:

However, if we assigned XA a vote of 2, and other copies a single vote, the majority is still 3
(r = w = 3), we get a better vote assignment. There are more groups of nodes that can execute
transactions against x in the event of a network partition:

= {{A, B l , {A, Cl, {A, D l , {B, C, D l .

Note that every group of nodes that can operate under S can operate under R , but not vice versa.
It is therefore important to carefully consider the vote assignments and failure characteristics of
the network to choose the best assignment for a given application.

Another "quorum-like" partition processing strategy that appears to be similar to this simple
form of voting is coteries [Lam]. In this approach, groups of nodes are selected that may perform the
read and write operations for each data item. Each pair of groups must have a node in common to
guarantee mutual exclusion. For example, R (given above) is a coterie; if read and write operations
are only allowed to be performed in partitions that are a superset of one of the groups in R , one-copy
serializability is guaranteed. Surprisingly, it turns out that coteries are more powerful than vote
assignments [GB]: there are sets of groups for which there exists no vote assignments. However,
since voting is easier to implement, most systems do not use coteries.

A weakness of static vote and quorum assignments is that reading an item can be expensive.
Furthermore, it is unnecessarily expensive when there are no failures [ES,BGb]. In the next sub-
sections, we will discuss ways of reducing this overhead by dynamically adjusting the read- and
write-quorums.

4.2 Failure-Mode Quorums

Requiring a readset quorum significantly degrades performance when there are no failures, but is
necessary to guarantee correctness when there are failures. Thus, an enhancement of the "static"
voting strategy is to allow transactions t o run in two modes, normal and failure. When in normal
mode, transaction T reads one copy of each data-item in its readset, and updates all copies in its
writeset. If some copy cannot be updated, T becomes "aware" of a missing update, and must run
in failure mode, in which quorums must be obtained for each data-item in the readset and writeset.
This "missing update information" is then passed along to all following transactions that need
the information, i.e., all transactions in the precedence graph of future execution connected to T
by a path of precedence edges originating at T. These transactions also become aware of missing
updates, and must run in failure mode. Since T cannot see the future and does not know what later
transactions will be affected, a level of indirection is used: missing update information is posted
at sites along with a description of what transactions need the information. When the failure is
repaired, the missing update information will eventually be posted at the sites that "caused" the
missing updates, i.e., those that did not receive the updates. The updates can then be applied,
and postings removed from other sites throughout the system.

The algorithm hinges on the ability to recognize "missing writes", and to propagate the infor-
mation to later transactions so that cycles in the precedence graph of committed transactions are
avoided. Note that certain transactions may be able to execute without restriction even if there are
partition failures present in the system; there is no harm in allowing read-only transactions to "run
in the past" during a failure, i.e., read an old value of a data-item, as long as no cycles result in
the precedence graph of committed transactions. This ability to run in the past allows a site that
has become isolated from the rest of the network to execute read-only transactions even if updates
are being performed on remote copies of the data-items stored at that site.

EXAMPLE: Suppose that there are four sites in the system A, B , C and D. Sites A, B and C
contain copies of data-item x; site B, C and D contain copies of data-item y. Now suppose a failure
occurs, isolating sites A and B from site C and D; transactions TI, T2, T3 are initiated at site A (in
that order), while transaction T4 is initiated a t D. The readsets, writesets and precedence graph
are depicted in Figure 5. (The graph shown is of uncommitted transactions since cycles in the graph
of committed transactions will obviously be avoided.)

TI is unaware of the failure, since it can obtain a copy of x and y at A; it can happily run
in the past. T2 becomes aware of the failure when it is unsuccessful at updating the copy of x at
C; it is allowed to commit, however, since it can receive a quorum for each data-item in its read
and write sets (assuming that each copy has a weight of 1). T2 is then required to pass all of its
missing update information to transactions that are incoming nodes for outgoing edges from T2,
such as T3 in this example. If T3 were to successfully commit, it would also be required to pass on
the missing update information. However, in this example, T3 is not allowed to commit; since it
is aware of missing updates, it is required to obtain a quorum for data-items in its readset, which
it cannot for y (its group only contains the copy y ~) . Transaction T4 would also not be allowed
to commit since although it can obtain a quorum for y, it finds that it cannot update the copy
of y at B, and must then run in failure mode. Since it cannot obtain a quorum for x, it cannot
complete successfully. Thus, in this example (as well in all others), there are no cycles in the graph
of committed transactions. Note that the restriction that T2 and T4 be rerun in failure mode is

Partition 1 Partition 2

Figure 5: Potential conflict between transactions in different partitions is avoided by requiring
transactions aware of missing updates to collect read and write quorums.

necessary: suppose that T2 and T4 both read x and y, but T2 updated x while T4 updated y. If
they both executed in normal mode and did not switch to failure mode when they became aware
of missing updates, a cycle would result in the graph of committed transactions.

Using different techniques, this scheme can be generalized to multiple levels of quorums. That is,
"normal" transaction processing is level 1, and levels 2, 3. . . . correspond to various vote assignments
that optimize availability for different failure modes [Her]. It can also be adapted to use abstract
data type information for increased availability [Her].

4.3 "One-Copy" Reads

A disadvantage of the previous "failure-mode" quorums is that a read quorum must still be accessed
in the event of a partition failure. Virtual partitions [ESC,ET] ensure that a transaction never has
to access more than one copy for a read operation.

In this partition processing strategy, each site S maintains a "view" (or virtual partition) of
what sites it believes it can communicate with, called view(S). To be able t o process a read (or
write) operation on item x, view(S) must contain a read- (or write-) quorum for x. To read x , a
transaction executing at S accesses the nearest copy in its view; w;(x) is translated t o writing every
copy in view(S). Note that determining whether a read- and write- quorum are available can be
determined using local information (i.e., by consulting its view).

Since views only approximate the actual state of the network, site S may discover that view(S)
is out of date. This may happen, for example, when a transaction executing at S is unable to update
a copy in view(S), or when a transaction originating a t a site that is not in view(S) attempts to
write some copy at S (in which case the write will be rejected). S must then abort all active
transactions originating at S and initiate a creation protocol to update its view. This protocol

Partition 1 Partition 2

Figure 6: Conflict involving queries.

ensures that all sites in the new view agree on the view, and that all copies of data-items for which
there is a read quorum in the new view are up-to-date.5

To motivate the correctness of this approach, recall that the basic property of read- and write-
quorums is that they are mutually exclusive: If one partition has a read-quorum, then no other
partition can have a write-quorum. If site S believes it has a write-quorum but in fact does not,
the fact that view(S) is incorrect will be discovered a t the time a "write-all" is attempted. If site
S incorrectly believes i t has a read-quorum, however, it may read an old value and not discover the
mistake until an inaccessible update is performed in its view. Fortunately, these "incorrect" read
operations can safely be "run in the past", as in the previous scheme.

5 Querying in the Face of Partitions

In the previous section, we concentrated on the problem of updates, and how to maintain the
correctness of data in the face of partition failures. The observant reader will have noticed that
even read-only transactions or quer ies for which al l da ta i s available may be forced to wait if one-
copy-serializability is the correctness criteria. For example, consider a database containing two
data-items, x and y, that is completely replicated over two sites, A and B. A partition failure
occurs so that A and B can no longer communicate. During the failure, transactions TI and T2
execute at site A: TI updates x; T2 then reads the values of x and y. Meanwhile, transactions T3
and T4 execute a t site B: T3 updates y ; T4 then reads the values of x and y. Note that the query T2
requires TI to be serialized before T3 in an equivalent global schedule, while the query T4 requires
T3 to be serialized before TI , a contradiction (see Figure 6).

Although such anomalies are theoretically disturbing, in practice queries are frequently allowed
to execute without restriction despite the fact that they may see an inconsistent database state.
In this section, we will therefore ignore the problem of updates and serializability. That is, we will
assume that the database is s ta t i c during the failure, and concentrate on providing approximate
answers to queries in the face of network partitions. Furthermore, we will limit our attention to

5 ~ h e creation protocol given in [ESC,ET] tolerates additional partition failures occurring during its execution.

systems in which data is stored as simple tables or relations, although the results are applicable to
a variety of other types of systems.

5.1 Approximating Queries

Due to the expense and complexity of maintaining replicated data, most distributed database
systems limit the amount of replication. Data is fragmented to mirror the usage patterns in the
database, and partially replicated to minimize cost and provide fault-tolerance [CP]. Since data is
not completely replicated, it is possible to pose queries during network partitioning for which not
all data are available.

Queries which require access to unavailable data are typically either delayed until the data
becomes available (the partition is repaired), or are aborted with some explanation to the user. If
the query is aborted, the user may decide to rephrase the query using only data that is available
within the partition. However, this requires a knowledge of system-level issues, such as what nodes
are within the same partition group and where data is stored. This not only violates the notion of
transparency of data, but may be impossible to determine if the state of the network is changing.
What is needed is an automatic method of providing an approximate answer to the original query,
using the available data. The approximate answer should be monotonic in the sense that any fact
which is said to be true remains true as data structures become available, and any fact which is said
to be false remains false. In other words, if we call the answer that would be given if the network
were not partitioned the complete answer, we require that anything the approximation says to be
true be true in the complete answer, and anything the approximation says to be false be false in
the complete a n ~ w e r . ~

To illustrate what we mean by monotonic computation, we will digress from databases for the
moment and consider the bisection method for obtaining the root of a function, f . For simplicity, f
is assumed to have exactly one root, r. At any point in computation, r is represented by an interval,
(a , b), where a 5 r 5 b. The computation successively halves the interval: If f(a) - f (q) 5 0,
the new interval becomes (a, q); otherwise the interval becomes (9, b). Assuming that the
initial estimate of r is correct, a t any later point in computation the interval is correct: The root
is possibly any of the points between a and b, and definitely not any of the points outside of that
interval. Furthermore, the answer improves as computation progresses.

Since the answer to a query in a database is a set of tuples, an obvious analogy of an "interval"
in the database realm is a bounding pair (A, B), where A is a "superset" of the answer T and
B is a "subset" of T. A is called a complete approximation of T: Every tuple in A is possibly
an approximation of one or more tuples in T, and anything not approximated by something in A
is definitely not in T. B is called a consistent approximation: Every tuple in B is definitely an
approximation of one or more tuples in T.

More precisely, we say that a tuple x approximates another tuple y (written x C y) if every field
(or attribute) in x is contained in y and agrees on the value; however, y may contain additional
fields as well. For example, if x and y are given as

x = [Name+'John Doe'], y = [Name~ 'John Doe';Age+21],

'Recall that we are assuming a static database for now, and are ignoring any updates that may be performed in
other partitions.

then x C y since x is not defined on Age but agrees on the Name value. However, if

u = [Name~'John Adams']

then neither x nor y are related to u since they disagree on Name. Finally, if

then x 5 v, but y and v are unrelated. Extending this ordering to sets, if A, B and T are sets of
tuples, we say that A is a complete approximation of T if for every t in T there exists an a in A
such that a 5 t. B is a consistent approximation of T if for every b in B there exists a t in T such
that b C t . If A is a complete approximation for T and 3 is a consistent approximation for the
same set T, then (A, 3) is a bounding pair for T.

Using this ordering of approximation, the smallest tuple is [1: [] approximates every other tuple
since no attributes are known. The set containing no tuples (empty set) is the smallest consistent
approximation for any set T (trivially); and the set containing the smallest tuple, {[I} , is the
smallest complete approximation for any set T since every tuple in T is approximated by [I .

Note that if a bounding pair (A , B) approximates T, and A, B and T are all stored within
the distributed database, the statement "(A, 3) approximates T" is an integrity constraint, and
expresses implicit redundancy. Since A is a complete approximation of T, every tuple in T must
agree with some tuple in A on common attributes. Since B is a consistent approximation of
T, every tuple in B must agree with some tuple in T on common attributes. I t is due to this
implicit redundancy that we will be able to provide useful, approximate answers in the presence of
unavailable data.

In the past five years, attempts to "marry" knowledge-base systems and database systems have
provided powerful logic-based languages for expressing a semantic understanding of data in addition
to expressing queries [GMN]. In the next section, we will give an example of how a "rule based"
system [Ull] could be used to give an approximate answer in the face of partition failure^.^ It
should be emphasized that providing approximate answers is a current area of research, and that
such techniques are not currently being used in the commercial world.

5.2 Example of an Approximating Query

Suppose we have five tables of information distributed throughout the system: one for teaching
fellows, one for graduate students, one for university employees and one each for all the teachers of
all sections of the classes CS4 and CS5. (Please see Figures 7, 8 and 9 for the particular example
tables we will use.) These tables have the following column entries:

TF- (Teaching Fellows) Name, Salary and TPhone.

GS - (Graduate Students) Name, Degree and Phone

WE - (University Employee) Name and Salary

CS4 - (Teachers of CS4) Name, Section and Ofice

CS5 - (Teachers of CS5) Name, Section and TPhone.

1 Name I Salary I TPhone 11

Ella 8789
Burt 1423

Figure 7: The teaching fellows (TF) relation.

Nancy 3214
Chuck I MS

I

I 1342 n

Phone

1324
3241

Name

Joe
Marv

I I

Liza (PhD 1 1432

Degree

PhD
PhD

Name I Salary

Figure 8: The graduate students (GS), and university employees (UE) relations.

Figure 9: The CS4 and CS5 Relations.

OfJice

023
126

Name

Joe
Burt

-
CS4Section

2
1

CSSSection

2
1

Name

Ella
Burt

TPhone

8789
1423

	Replicated Data and Partition Failures
	Recommended Citation

	Replicated Data and Partition Failures
	Abstract
	Comments

	tmp.1195524186.pdf.ol4to

