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Abstract 

User modelling systems to date have relied heavily on user models that were hand crafted for use 
in a particular situation. Recently, attention has focused on the feasibility of general user models, 
models that can be transferred from one situation to another with little or no modification. Such 
a general user model could be implemented as a modular component easily integrated into diverse 
systems. This paper addresses one class of general user models, those general with respect to the 
underlying domain of the application. In particular, a domain independent user modelling module 
for cooperative advisory systems is discussed. 

A major problem in building user models is the difficulty of acquiring information about the 
user. Traditional approaches have relied heavily on information that is pre-encoded by the system 
designer. For a user model to be domain independent, acquisition of knowledge will have to be 
done implicitly, i.e., knowledge about the user must be acquired during his interaction with the 
system. 

The research proposed in this paper focuses on domain independent implicit user model acquisi- 
tion techniques for cooperative advisory systems. These techniques have been formalized as a set of 
model acquisition rules that will serve as the basis for the implementation of the model acquisition 
portion of a general user modelling module. The acquisition rules have been developed by studying 
a large number of conversations between advice-seekers and an expert. The rules presented are 
capable of supporting most of the modelling requirements of the expert in these conversations. 
Future work includes implementing these acquisition rules in a general user modelling module to 
test their effectiveness and domain independence. 
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Chapter 1 

Introduction 

Computer systems are reaching a point where they have begun to take on responsibilities that 
normally require significant human intelligence. Many expert systems encode the knowledge of 
humans recognized as experts in a field and are able to solve problems that normally required these 
human experts. In other areas, computer systems are being used to provide intelligent tutoring 
assistance, intelligent on-line help for computer systems and cooperative responses to data base 
queries that require knowledge and reasoning abilities. 

As computer systems begin to  play roles traditionally been associated with significant human 
intelligence, people will expect these systems to  exhibit other aspects of intelligent behavior. In 
particular, such systems will be expected to interact with users in an intelligent manner. One aspect 
of intelligent interaction is that an individual can recognize the level of knowledge conversational 
partners have, and use this information to guide his or her behavior. For computer systems to 
interact with people intelligently, they will need to maintain information about the individuals 
with whom they interact. 

Acquiring, maintaining and using information about the users who interact with a computer 
system is the focus of user modelling. User models have been incorporated in several systems 
to improve the level of interaction and the performance of the system. With this demonstrated 
success, user models have been recognized as important for supporting interaction between system 
and user. 

User modeling has many problems, however. One of the greatest is the difficulty in building a 
user model. Existing user modelling systems have needed a significant amount of knowledge about 
users to be hand-coded by the system designers. This hand-coding is time consuming, sometimes 
requiring more effort than the encoding of the underlying domain knowledge. At the same time, 
this information is very specific to a particular system. Thus when a new system is developed for 
a different application, the information previously encoded is of little or no use in building the new 
user model. 

Other user modelling problems include: determining what information should be represented in 
the model, how to represent the information, how to maintain information in the model, how the 
user model should be used, and many others. These problems are faced by each system designer 
who wishes to incorporate a user model into a system. The commonality of these problems has lead 
researchers to  look at the possibility of general user models, which have a defined set of features 
and which can be used in a variety of applications. 

The research discussed in this paper is concerned with general user modelling. A major problem 
with general user modelling is the difficulty of acquiring user models. The main point of this 
paper is that substantial amounts of information about the user can be acquired in a domain 



C H A P T E R  1. INTROD UCTION 5 

independent way. This makes possible the development of a general user modelling module that 
can be incorporated into a variety of systems with minimal effort. The following paragraphs outline 
the rest of this paper. 

Chapter 2 focuses on user models and general user modelling. One goal of this chapter is to  
provide a solid characterization of what a user model is-a task more difficult than one might 
think. A second goal of the chapter is to  discuss the notion of general user modelling. Three 
aspects of generality can be involved in a general user model: generality with respect to the range 
of possible users to  be modelled, generality regarding the form of interaction between system and 
user, and generality with respect to the domain of the underlying application. With the terms 
"user model" and "general user model" both well defined, the long range goal of research in general 
user modelling is discussed. This goal can be labelled "the general user modelling dream." 

Chapter 3 focuses on one problem of user modelling crucial to general user modelling: the model 
acquisition problem. Most existing user modelling systems have relied primarily on explicit user 
model acquisition. This means that information is placed directly into the user model, sometimes 
by the user, but more often by the system designers. For a user model to be truly general, it must 
be easily transferable from one system to another. If this transferal requires a large amount of 
re-coding of the knowledge in the user model, the goal of user model generality cannot be achieved. 

Developing a general user model thus depends on acquisition techniques that are not explicit. 
Chapter 3 goes on t o  discuss implicit user model acquisition. Implicit user model acquisition 
requires the user model to be built as the system interacts with the user. This means the user 
modelling component must be able to "eavesdrop" on the interaction between the system and the 
user, and extract as much information about the user as possible. If the implicit model acquisition 
techniques employed by the user model are independent of the type of the interaction, domain and 
type of user, a general user modelling module can be achieved. 

General, implicit user model acquisition is very difficult. In chapter 4 a class of systems called 
cooperative advisory systems are described. By focusing only on these systems, the range of inter- 
action is restricted, enabling the development of user model acquisition techniques that are domain 
general. Cooperative advisory systems were chosen because they form an interesting and useful, 
yet difficult class of systems for user modelling. 

Chapter 5 contains the major contributions of this research. Transcripts of a large number 
of conversations in an advice-giving setting were studied. These transcripts provide examples of 
interactions between advice-seekers and an expert who seeks to give cooperative help, providing 
a paradigm for how a cooperative advisory system might be expected to behave. From these 
transcripts, a collection of user model acquisition rules have been developed which, taken together, 
can generate a user model capable of supporting the behavior exhibited by the expert in the 
transcripts. 

These acquisition rules can be loosely organized into three categories: communication rules, 
model-based rules and human behavior rules. Communication rules focus on statements made by 
the user or the system, and include several rules inspired by Grice's cooperative principle [Grice 751. 
The model-based rules are triggered by certain configurations of information in the user and domain 
models. The human behavior rules depend on certain aspects of human behavior that seem to be 
universal. The acquisition rules are not infallible: exceptions to each can be found. Thus these 
rules should not be thought of as absolute inferences, but rather as reasonable rules that can be 
used to infer beliefs of the user. These inferences, however, may need to  be retracted on occasion. 

Chapter 6 describes my future research plans. The main goal of this research is to  implement 
and test the implicit user model acquisition rules. In doing so, I plan an implementation that can be 
augmented to  form a complete general user modelling module. Thus, in chapter 6, an architecture 
for such a module is sketched, and the portions that will be implemented are described. 



Chapter 2 

General User Models 

This chapter addresses the topic of general user modelling. Of necessity the process will be some- 
what iterative. An initial definition for "user model" is proposed that can serve as a basis for 
discussing the requirements of a user model, and the various generality criteria for user modelling. 
This discussion will identify weaknesses in the original definition, so a revised definition is proposed. 
Finally, the long range goals for general user modelling are briefly discussed. 

2.1 An Initial Definition of User Model 

Despite its apparent simplicity, the term "user model" is not easily defined. The main danger is 
that the definition can be so broad as to be useless. Intuitively, a user model is a collection of 
information a computer system keeps about a user. This information may be kept in a variety of 
forms, however. In fact, all computer programs have a user model, in that every program embodies 
an implicit model of the user, encoded by the programmer when writing the program. Wahlster 
and Kobsa [Wahlster 861 have proposed a definition that avoids such interpretations by requiring 
the knowledge of the user to be explicitly encoded. A slight re-wording of their definition is the 
following:' 

A user model is a knowledge source in a system that contains explicit assumptions on 
all aspects of the user that may be relevant to the behavior of the system. 

The range of knowledge a system might keep about the user is purposely not specified in this 
definition. Depending on the system, a user model may be required to keep not only information 
about what the user knows or believes about things in the world, but also information about beliefs - 

the user has about other people, the user's attitudes, capabilities, goals and plans. 
"Assumption" as used in the definition above should be interpreted as a belief about the user, 

whether justified or not. Thus some assumptions in the user model may be well supported by 
evidence from the behavior of the user (or from other sources), while other assumptions may have 
no justification beyond the fact that someone placed that information into the user model (the 
system designer, for instance). 

This definition will be adopted for now, although it is still quite broad. In practice, user models 
have been restricted in the range of information they can handle, or in the types of demands they 
are able to support. Nevertheless, a general definition is safer, otherwise, important aspects of user 
models might inadvertently be omitted. 

'The original definition was presented in the context of natural language systems only. That definition has been 
expanded to include user models in any context. 
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2.2 Generality Criteria 

Just as "user model" can be a slippery term, the use of "general" can lead to some confusion. There 
are actually three criteria of generality that are applicable to user modelling: 

User Generality: A user modelling system is general with respect to the users it can model if 
it can easily handle a variety of different types of users. 

Domain Generality: A user modelling system has domain generality if it can easily be trans- 
ferred to operate in a system with a different underlying domain. 

Interaction Generality: A user modelling system has interaction generality if can function 
well under varying types of interactions with the user. 

These criteria are discussed in the following sections. 

2.2.1 User Generality 

User generality has been addressed in existing user modelling systems. The main reason for de- 
veloping user modelling systems is to enable systems to tailor their behavior based on knowledge 
of the specific individual currently using the system. To handle a range of possible users, three 
techniques have been used. 

1. The range of possible information the user might believe is explicitly anticipated. This is the 
case with systems that incorporate a bug library [Johnson 841 or bad plan library [Sidner 811. 
An individual user model is built by selecting some subset of this range of possible information. 
Such systems attempt to keep a list of all the possible information or plans the user might 
have. 

2. The system may use a generic model. Frequently, system users will have a substantial amount 
of characteristics in common. For example, all users of a data base query system can be 
expected to  have a goal of obtaining information from the system. This common information 
can be kept in the generic model. When a new user is encountered, the generic model provides 
a basis for an initial set of assumptions about the user that would otherwise be unavailable. 

3. The system may employ stereotype models. Stereotype models are an extension to the idea of 
a generic model. Even when all users of the system do not share a large number of features, 
one may be able to  categorize them into various classes of individuals. A stereotype model 
can then be used for each class of user. When a new user is encountered, the system classifies 
the user into one of these categories, to be able to  use all the information contained in the 
stereotype for that class of user. 

2.2.2 Domain and Interaction Generality 

Previous user modelling systems have lacked domain and interaction generality. Most user models 
have been built to support specific applications. The model serves its purpose for the application, 
but its use in other applications is not considered. Often the user model is integrally linked to 
the rest of the system, such as the buggy procedures in DEBUGGY [Brown 781 or bug libraries in 
PROUST [Johnson 841. A general user model should be able to work in a variety of contexts, a 
change of domain should not result in the loss of user modelling capabilities. 
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Most user models support only a specific form of interaction. In natural language systems, most 
of the focus has been on question answering [Allen 80,Kaplan 82,Carberry 831. In intelligent tutor- 
ing systems, much of the study has concentrated on inferring plans by observing student behavior 
in arithmetic [Brown 781, algebra [Sleeman 821, or programming [Johnson 84,Murray 85,Reiser 851. 
The effectiveness of the user model depends on the type of interaction with the user, and on the 
underlying domain. 

Interaction with the user can take a variety of forms. It may be very restricted, such as a menu- 
based system on one with a simple command language, or it may be flexible, such as a natural 
language communication. The system might simply answer questions, or might be able to engage 
in mixed initiative dialogues with the user. In other situations the mode of communication could 
be visual or graphical. 

The type of user interaction influences how the user model acquires its information about the 
user. If the interaction is in natural language, the system can use an internal representation of 
the statements made by both the user and system. In some forms of dialogue the system may 
even be able to ask questions of the user in order to  augment the user model. On the other 
hand, an intelligent help system might be expected to acquire information about the user solely 
from observing how the user uses the system [Shrager 82,Zissos 851. In the latter case, the user 
modelling system may have more information available to work with than in a natural language 
interface, but the difficulty in determining what the user is doing can also be much greater. 

The type of interaction also influences how a system will make use of a user model. With 
an intelligent help system, the user model may be expected to detect misconceptions on the part 
of the user and "wake up" the help system so that it can decide whether to initiate a discussion 
with the user. Some interaction forms may require the user model to  simulate the user. For 
example, a natural language interface may want the model to simulate the user in order to anticipate 
ambiguities the user might perceive, or misconceptions the user might hold as a result of the system's 
utterance. 

2.2.3 Why General User Models? 

A general user model is attractive because of the cost of building user models. All the user mod- 
elling systems cited above rely on a large amount of knowledge about the user pre-encoded by the 
system designers. Frequently the amount of knowledge required for the user model exceeds the 
amount of knowledge in the underlying application knowledge base. Acquiring this knowledge is 
not easy. Unlike the domain knowledge of the application, where the correctness can be judged, the 
information in the user model is largely a result of guesswork and intuition. For example, the intel- 
ligent tutoring system GREATERP [Reiser 851 tutors students learning the programming language 
Lisp. The underlying knowledge of the Lisp language was not hard to come by, but identifying the 
misconceptions and bad plans of students learning to program in Lisp required several man-years 
of painstaking effort. 

2.3 User Modelling Requirements 

A general user modelling system will have many requirements. These requirements can be classified 
into five categories: the content of the model, how it is used, how the model information is acquired, 
how the information is represented, and how the user modelling component interacts with the rest 
of the system. 
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2.3.1 Content of the Model 

The content of the user model is the information about the user that may be useful to  an application. 
Different applications have different requirements for information. If a user model is to be general, 
it needs to  support any of these requirements. Thus a general user model must contain any type 
of information about the user that might be useful to an application. The potential contents of a 
user model can be classified into four categories: goals and plans, attitudes, objective properties 
and user  belief^.^ 

Goals and Plans A common problem for many applications is determining what the user really 
wants to achieve by using the system. This is particularly true of natural language systems, since 
the user frequently does not state his or her goal explicitly. Thus a user modelling system may be 
required to  discern and keep information about the goals of the user. In many cases the user will 
have a plan for achieving these goals. Some applications, such as intelligent tutoring systems, need 
to know user plans in order to  judge whether they are correct. This is also true for cooperative 
systems that seek to  correct a user's plan if the system recognizes the plan will not achieve the 
user's goal [Pollack 851. 

Attitudes People have definite opinions about certain things. For a system to  interact with 
the user in a natural manner, it sometimes must be sensitive to the attitudes held by the user. 
For example, systems that advise the user must be cognizant of user attitudes when making a 
recommendation, both to avoid suggestions the user will not accept, and to  reassure the user that 
particular requirements are being met [Pollack 821. 

Objective Properties Many applications need to know objective properties of the user. Often 
these properties, such as the user's name or age, can be ascertained without talking to the user. 
Objective properties could also include the user's physical capabilities, such as whether the user is 
capable of performing a certain action or test recommended by the system. 

Beliefs Most applications require some knowledge of the beliefs of the user. These beliefs en- 
compass not only beliefs the user has about the world or about the domain of the application, but 
also the beliefs the user has about the system and about other agents. Tutoring systems and help 
systems have a great need for knowledge about the beliefs of the user, since they must be able to 
accurately judge what the user does and does not know. Cooperative systems in general also need 
such knowledge to  help tailor responses made to  the user, to ensure that what the system says is 
understood by the user and is not misleading. 

2.3.2 Method of Use 

A user model may be used either descriptively or prescriptively. The descriptive approach treats 
the user model simply as a data base of information about the user. An application queries the user 
model to discover the current view the system has of the state of the user's goals, plans, attitudes, 
objective properties and beliefs. 

A user model is utilized prescriptively when it is used to "simulate" the user. For example, 
the HAM-ANS system [Hoeppner 831 employs the user model prescriptively during the generation 
of elliptical statements. HAM-ANS uses an anticipation feedback loop [Wahlster 861 to generate a 

2A much deeper discussion of these categories appears in [Kass 86,Kass 871. 
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proposed response, then check that response against the user model to see whether the user would 
find it misleading or ambiguous. 

How the user model will be used is an important point that is often overlooked. The working 
definition of user model calls it a knowledge source, corresponding to  the descriptive use of the user 
model as a data base. A major motivation for revising the definition for "user model" in the next 
section will be to explicitly discuss how the model is to  be used. 

2.3.3 Method of Acquisition 

The knowledge that a user model contains can be acquired in two ways: explicitly or implicitly. 
Knowledge is acquired explicitly when an individual provides specific facts to the user model. Ex- 
plicit knowledge acquisition most often occurs when a system designer builds generic or stereotype 
user models. Knowledge can also be explicitly acquired from the user. Part of the user modelling 
system GRUNDY [Rich 791 uses this technique. When a person uses the system for the first time, 
GRUNDY asks for a list of words that described the user. This list is used as a basis for triggering 
predefined stereotypes to  quickly build a robust model of the user. 

Implicitly acquired knowledge about the user is obtained by observing the behavior of the user 
and the system. This may mean "eavesdropping" on the conversation between user and system, 
or may involve observing how the user uses the application. Implicit knowledge acquisition is 
difficult, but, as discussed in chapter 3, essential to  produce effective user models that are domain 
independent. 

2.3.4 Representation 

Many issues arise in representing knowledge about the user. Most of these issues are shared with the 
general knowledge representation enterprise. Thus the problems of how to represent goals and plans, 
for example, are not unique to  user modelling. However, two issues merit special consideration here. 
These are the issues of representing beliefs about multiple agents, and the non-monotonic nature 
of belief modelling systems. 

User modelling is really subset of a larger field called agent modelling [Kobsa 861. Agent mod- 
elling is concerned with building models of entities a system might need to know about. These 
entities need not be human, they might be other computer systems, for example. A situation where 
multiple agents need to be modelled is a doctor consulting an expert system about the treatment 
of a patient. In this case the doctor is the user, but the expert system is primarily concerned with 
modelling the patient to determine what treatment to  ~ u g g e s t . ~  A user model is thus an agent 
model for the individual currently interacting with the system. 

A general user model must be able to represent the beliefs a user has about the beliefs of other 
agents. These beliefs can be arbitrarily complex. For example, it may be necessary to  represent 
a belief the user has about a belief the system has about the user, or even more deeply nested 
belief structures. A special case of this situation is when the nesting is infinite. This occurs when 
representing cases of mutual belief [Joshi 821, where two parties, call them S and U, believe a fact 
p (which we write SB(p) and UB(p) for S believes p and U believes p respectively), and further 
believe the other believes it (SBUB(p) and UBSB(p)), and believe the other believes they believe 
it (SBUBSB(p) and UBSBUB(p)), and so on. (Figure 2.1 illustrates the modelling S and U have 

3This example is taken from [SparckJones 841 and presents an unfortunate conflict in terminology. Sparck-Jones 
distinguishes between patient and agent models when discussing interaction with an expert system. The patient is the 
object of the discussion, in this example the medical patient. Sparck- Jones calls the individual directly interacting with 
the system the agent. Thus both Sparck-Jones's patient and agent models are agent models in Kobsa's terminology, 
while Sparck-Jones's agent model corresponds to Kobsa's user model. 
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Figure 2.1: S and U7s modelling of the mutual belief of p 

of the mutual belief of p.) Representing such arbitrary nestings of beliefs about the the same 
underlying basis of facts (the p7s) is a problem unique to agent modelling. 

The second representation issue important to user modelling is the inherent non-monotonicity 
of the information in the user model. Beliefs about the user that the system holds can change in 
two ways. First, the user modelling system may make an assumption about the user. Later, the 
system may discover the assumption is incorrect, and hence have to change the model, retracting 
the old assumption and adding a new one. Secondly, the user model may change simply because the 
user changes. During the interaction a user may learn information he did not know previously, or 
that corrects a misconception he had. No matter what the cause, the user modelling system must 
be able to deal with a model in which much of the information can change with time. The system 
must have effective ways of juggling alternative models of the user and changing assumptions when 
necessary. 

2.3.5 Communication with Other Modules 

Not only does the form of interaction with the user influence the user model, the user model's 
interaction with the rest of the system is important. Besides issues such as the communication 
language used and protocols for interaction, there is one important distinction in the types of 
inter-module communication. 

A user model may be either passive or active. A passive user model only responds to information 
and requests. On the other hand, an active user model may, on its own initiative, volunteer 
information to  another module. 

An active user model can be important because of the non-monotonicity of the knowledge in the 
user model. Suppose a module M requests information from the user model. The user modelling 
component U responds that currently the item p is believed. Later, new information is acquired 
that causes U to retract belief in p. If U is an active user model, it can volunteer to M the 
information that p is no longer believed, and perhaps provide new information in place of p. 
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2.4 Revised Definition of User Model 

The original definition for "user model" is flawed. The notion of the user model as a source of 
knowledge about the user is adequate for explaining what information a user model should contain, 
but cannot account for the ways the model is used, or the ways it interacts with the other modules 
in a larger system. 

2.4.1 Problems with the Initial Definition 

The original definition is inadequate because it fails to include the notion of "model." A model can 
be thought of as a partial image of the thing being modelled. A model enables analysis of an entity, 
or prediction of its behavior without directly manipulating the entity. In this context a user model 
is able to act as a substitute for the user. It should be not only a source of information about the 
user, but also be a "little copy" of the user that the application can use when reasoning about the 
user. 

The problem with the original definition is due to an incorrect distinction between the user 
model itself, and the machinery that manipulates the user model. Commonly, the user modelling 
portion of a system is divided into the user model itself, and a user modelling component. The user 
model is the information about the user, and nothing else. The user modelling component can be 
viewed as a kind of super data base or knowledge base manager. The user modelling component 
is the software that maintains the user model, acquires information for the model and supports 
information requests from other modules in the system. 

The distinction between a user model and the user modelling component is valid, but the line 
between the two has been drawn in the wrong place. The easiest way to illustrate this point is with 
an example.4 Suppose there are two individuals, S and U, and S wishes to communicate a piece of 
information to  U.5 To do so, S formulates an idea of what to say, call this p (see figure 2.2). Before 
uttering p, S will first consider what effect p will have on U, to make sure that U will understand 
p, and that U will not draw any incorrect conclusions because of S saying p. This step requires S 
to look at its model of U, and "try out" saying p to the model of U (figure 2.3). When U hears 
S say p, U interprets p with respect to the model U has of S (figure 2.4). Consequently, for S to 
"try out7' p on the model of U requires S's model of U to  reason as U would when U hears p. 

The point of this example is that the model S has of U must have strong reasoning capabili- 
ties, including knowledge acquisition capabilities and the ability to reason about multiple models. 
Knowledge acquisition until now has been considered part of the user modelling component, the 
support software of the user model. The reasoning used to interpret an utterance normally exists 
in the application. As the example illustrates, these forms of reasoning belong in the user model 
itself. 

The user model versus user modelling component distinction has a parallel in expert systems. 
Here the difference is between the domain rules of the expert system, and the control of the reasoning 
process of the expert system. In expert systems, knowledge of the domain itself is distinguished 
from meta-knowledge, knowledge about knowledge [Davis 841. In user modelling the distinction 
is between the goals, plans, attitudes, objective properties and beliefs held by the user, and the 
knowledge used t o  reason about this information. 
- - - - - - - - - - - - - - - 

4This example is an instance of a speaker attempting to prevent false inferences a hearer might make. See [Joshi 841 
for details of this issue. 

5Assume a natural language form of interaction for this example. 
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Figure 2.2: S considers saying p 

Figure 2.3: S "tries out" saying p to U 

Figure 2.4: S examines the expected effects of p on U 
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2.4.2 The Revised Definition 

With these criticisms of the initial definition in mind, a new definition for "user model" can be 
proposed. 

A user model is  an  explicit colEectioa of beliefs the system has about the goals, plans, 
attitudes, objective properties and beliefs of the use? together with beliefs the system 
has about the meta-knowledge and reasoning employed by the user in  manipulating that 
information. 

The inclusion of meta-knowledge in the user model addresses the problems raised in the previous 
section. The meta-knowledge in the user model gives it the ability to reason about its own knowledge 
(including the reasoning knowledge itself). Thus the user model can be used to  simulate the user, 
making it truly a "model." At the same time the user model is more than simply a knowledge 
source, since the model now has an active reasoning capability. Finally, the meta-knowledge that 
was hidden in the user modelling component or in the application has now been placed in the user 
model itself, where it belongs. 

2.5 The General User Modelling Dream 

Every researcher should keep in mind some long range goal toward which his or her current work is 
leading. It is useful from time to time to stop and look once again at that long range goal, if only 
to put the work into perspective and to  help focus efforts. In this case, since the field is so new, 
and so much work needs to be done, the goal is more of a dream. 

The general user modelling dream is simply this: to have a user modelling module that can 
be used effectively and easily by any system that could use a user model. This means that the 
modeller can support systems spanning the three dimensions of generality mentioned earlier: it will 
be able to deal with any kind of individual, support any form of interaction with the user that the 
system may use, and be effective, regardless of the underlying domain of the application. 

A completely general user modelling component can thus be thought of as an independent 
module functioning on its own behalf. The other modules of the system have no concern with 
how the user modelling module functions, they will simply use it as needed. A module-based 
approach means a well defined interaction language must be available for communicating with the 
user modelling module. This language defines the set of functions the user modelling component 
will support, as well as the requests a user modelling component can be expected to  make. These 
interfaces will be at  a general level, abstracted from domain or interaction specifics. A general user 
modelling module is thus a utility, one of several building blocks used in the construction of an 
overall system. 

A completely general user model really is a dream. The range of situations in which such a 
system might operate extends from children using a mouse to draw pictures, to pilots controlling an 
airplane through combinations of voice and body movements, to an order entry system, to  a system 
that gives advice about cooking dinner. Such a range of capabilities is beyond that of humans. 
Still, stretching the imagination helps when it aids analysis of the problems to  be faced. 

2.6 Terminology 

This is a good point to  clarify some of the terminology that has been and will be used in this 
paper. A variety of terms exist for referring to various aspects of user models or user modelling. 



CHAPTER 2. GENERAL USER MODELS 15 

kequently writers will use these terms interchangeably, resulting in some confusion for the reader. 
To avoid this, a short dictionary of user modelling definitions is presented here. 

Individual User Model The information a system keeps about a specific user of the system. 

User Model The formal definition is given earlier in this chapter. In practice, a user modelling 
system often will not keep information specific to  each user of the system. Rather, generic or 
stereotype models are kept. Hence "user model" often refers to all the information the user 
modelling system has about the system users. This is the sense in which it will be used here. 
"IndividuaE user model" will be used to refer to  the model that applies to  a specific user. 

User Modelling Component The software that maintains the user model and handles the in- 
terface of the user model to  other components in a system. 

User Modelling Module The user model together with the user modelling component. The user 
modelling module is simply that portion of the system that "does" the user modelling. 

User Modeller One who does user modelling. Generally this refers to the individual or individuals 
who explicitly encode information for a user model. 



Chapter 3 

Acquiring User Models 

The acquisition of user models is an important and interesting problem. Many authors have pointed 
out that the availability of a rich user model would enhance the performance of their systems, 
particularly in the area of natural language systems.' The major problem in making such user 
models available has been the difficulty in obtaining the knowledge that belongs in the user model. 
User model acquisition is interesting and challenging in a general sense because it touches on a 
number of fields important to Artificial Intelligence. These include knowledge representation, non- 
monotonic reasoning, cognitive modelling, and perhaps learning. 

A major distinction exists between techniques that emphasize acquiring information explicitly, 
and methods that emphasize implicit acquisition. Much of the emphasis in user model acquisition 
to date has been on the explicit acquisition of model information. This approach will be reviewed, 
and its major difficulties noted. On the other hand, implicit model acquisition has not been well 
studied. The second section will focus on the characteristics of implicit model acquisition. The 
goal of this work is to  demonstrate that implicit user modelling can be a powerful, general method 
for acquiring information about the user. Hence, the remainder of this paper will concentrate on 
the task of acquiring user models implicitly. Figure 3.1 presents a taxonomy of the user model 
acquisition techniques that will be discussed. 

3.1 Explicit Model Acquisition 

User models may be built either during or prior to interaction with the user.2 GRUNDY is an 
example of a system that explicitly acquires information during an initial interaction with a new 
user. In many cases this method of acquiring information is not a viable alternative. Brown and 
Burton [Burton 82b] have observed, in modelling students who have little knowledge of the domain, 
that direct questions about the student's knowledge are not helpful because the student doesn't 

'McCoy [McCoy 851 has expressed the need for acquiring extensive knowledge of the user to support the correction 
of user's object-related misconceptions. McKeown, in describing future work on tailoring explanations for the user, 
says [McKeown 85, p. 7981 

It seems likely, also, that better explanations will require a more complete user model incorporating 
static, global characteristics of the user as well as those dynamic, local characteristics available from 
the ongoing dialogue itself. 

'Actually, a user model could be acquired after interaction with the user occurred. For example, the model could 
be built from a history of the user's interaction with the system. Apart from issues of computational efficiency and 
time limitations, this form of acquisition is equivalent to acquiring the information during the interaction with the 
user. 
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Figure 3.1: Taxonomy of User Model Acquisition Techniques 

know enough t o  correctly answer the questions. If the system instead asks indirect questions, in 
an effort t o  infer the student's knowledge, the number of questions may quickly become excessive. 
Direct query of the user is also not viable in most natural language interactions, because such 
questions are often considered socially unacceptable. 

Because explicit model acquisition during an interaction is frequently impossible, the primary 
emphasis has been on acquiring information before interaction with the user. Acquiring user mod- 
elling knowledge before interaction with the user simply means that the knowledge in the user 
model must be hand-coded by an individual before the model is used. Section 2.2.1 discussed three 
techniques that may be used: 

1. Encode the range of possible information a user might have. 

2. Encode a generic model to  represent the information expected t o  be held in common by all 
users. 

3. Encode stereotypes that contain information expected to be held in common by classes of 
users. 

Generic user models are quite similar to stereotype models. In fact, a generic user model can be 
viewed as an instance of a stereotype model, in which only one class of users is considered. Thus 
generic models will be included in the discussion of stereotype models in the remainder of this 
section. 



C H A P T E R  3. ACQUIRING USER MODELS 

3.1.1 Models that Specify a Range of Information 

User models that encode a range of information may have a variety of forms. The basic approach is 
to  pre-encode a collection of information that may be applicable to  system users. During interac- 
tion, the user modelling component observes user behavior to try to identify pieces of pre-encoded 
inforniation that apply to  this particular user. Implicit model acquisition occurs, in that the user 
model for the specific individual is built during the course of interaction, but this implicit mod- 
elling is limited to  selecting previously encoded information that best fits the current user. Thus 
the explicit modelling activity is one of recognition. In fact, a recognition technique is used by all 
methods that emphasize implicit user model acquisition. The recognition process may be one of 
two types: the pre-encoded information may be a list of competing possibilities, of which only one 
may apply to the user, or some subset of the pre-encoded information may apply to the specific 
user. 

Selecting from Competing Possibilities 

Plan recognition is an example of selecting from a list of competing possibilities. Many systems 
assume that the user is motivated by a single plan to accomplish some goal. The task of a user 
niodelling system is to identify what plan the user holds. This technique is used frequently in intel- 
ligent tutoring systems. For example, PROUST [Johnson 84,Johnson 851 has a library of possible 
plans (both good and bad) a novice Pascal programmer might possess. When the student compiles 
a program, PROUST tries to  identify which plan the student is following. Similar approaches are 
used in GREATERP, a Lisp tutor [Reiser 851, the Geometry tutor [Anderson 851 and TALUS, a 
Lisp program debugger [Murray 851. In question answering systems, this technique for plan recog- 
nition has been used by Allen and Perrault [Allen 801 to  recognize plans of users at  a simulated 
train station information booth. 

Selecting from a list of competing possibilities has limited applicability. Even in the context 
of plan recognition, recent systems, such as ARGOT [Allen 821 and TRACK [Carberry 831, have 
emphasized the need to recognize multiple plans that a user holds concurrently. In most situations, 
many items of information about the user are important, so choosing only one is not possible. 

Selecting a Subset of Information 

The user modelling component may also need to recognize a subset of the pre-encoded information. 
In this situation an individual user model is built by using the behavior of the user to select which 
information applies to him. This process can be much more complex than simply selecting among 
alternatives. Since the process is incremental, each new action of the user can potentially cause the 
selection of a new item for the individual user model, with no way of determining a termination 
point. 

Overlay user models are a classic example of a technique that views the user model as a subset of 
some other collection of information. In the case of overlay models, the pre-encoded information is 
the domain knowledge of the underlying application employing the user model. Figure 3.2 illustrates 
an overlay model. Overlay modelling was used by Carr and Goldstein in WUSOR-I1 [Carr 771, an 
intelligent tutoring system for advising users playing the game "Hunt the Wumpus." The domain 
model for WUSOR-I1 was the knowledge base for an expert Wumpus player. An overlay model is 
also used by GUIDON [Clancey 821, an intelligent tutoring system for tutoring medical students in 
diagnosing cases of meningitis. 

Overlay modelling suffers from a serious drawback. An overlay model assumes that the knowl- 
edge a user has is a subset of the knowledge the system has. Thus an overlay model cannot correctly 
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Overlay User Model 

Figure 3.2: An overlay user model 

model a user whose behavior is motivated by information the system does not have. Even more 
problematic, the overlay model cannot recognize misconceptions a user has about information in 
the domain model. For example, if the user believes that whales are a kind of fish, an overlay model 
will not be able to  record that fact. 

Because of the drawbacks of the overlay model, an extension called a perturbation model has 
frequently been employed. The perturbation model still uses the domain knowledge of the applica- 
tion as a basis, but augments this knowledge with additional information, such as misconceptions, 
which the user might believe. The intuition behind this sort of model is that the user's beliefs may 
differ from the domain model, but not radically so. The individual user model is thus close to  the 
domain model, with some minor perturbations. Figure 3.3 illustrates a perturbation model. 

Perturbation models have been used extensively. A good example is the student modelling in 
DEBUGGY [Brown 78,Burton 82al. DEBUGGY seeks to  explain the procedural errors of students 
performing multi-column subtraction. Extensive analysis of student test results enabled them to 
build a skill lattice containing correct and incorrect skills that might be used in performing a multi- 
column subtraction. The performance of any given student was then modelled as a path through 
this skill lattice. 

Problems with Range of Possibilities Modelling 

All of these approaches share some common problems, including: brittleness, lack of domain gen- 
erality and slowness to  adapt to  a new user. 

Brittleness The success of range of possibility modelling depends crucially on the information 
that is pre-encoded. If the user model builders omit information that a user might believe, and 
that is important to the application, the performance of the user modelling module and of the 
application will be impaired. Supplying this information is a very difficult task, since the model 
builder must anticipate all possible system users. 

The brittleness problem has been recognized for some time. In dealing with this problem, Brown 
and VanLehn [Brown 801 have developed repair theory, in an attempt to provide a generative theory 
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Figure 3.3: A perturbation user model 

of the bugs students have about arithmetic. By "generative" they mean the theory is capable of 
simulating the behavior of the student on problems the student (and system) has not seen before. 
Repair theory still keeps the idea of a perturbation model, but rather than pre-encode all the 
"buggy" rules students might have, Brown and VanLehn propose a set of repair heuristics to 
explain the student behavior. They suggest that a student proceeds to  solve a problem using rules 
previously learned. When a student encounters a situation s/he doesn't know how to handle, the 
student attempts to "repair" the problem to get back to a situation that can be handled. Brown 
and VanLehn propose that these repair heuristics are small in number and commonly shared by all 
individuals. Repair heuristics can be used to avoid the brittleness problem, but are quite restricted 
in domain themselves. 

Lack of Domain Generality With the exception of the overlay model, changing the modelling 
domain require a substantial re-coding of information. An overlay model would be flexible in this 
regard, since it could simply use the new domain knowledge as the basis for overlaying user models. 
However, overlay models have their own problems, mentioned earlier. The amount of re-coding 
required for a change in domain depends on the set of information that is in the user model, but 
not in the domain model. Unfortunately, this set is often quite large in practice. 

Slowness to Adapt For a system to quickly adapt its behavior to  a new user, a robust user 
model is needed. The third problem with range of information modelling is that building individual 
user models can be very slow. Much of this slowness is due to the simple recognition techniques 
used. Typically, the implicit acquisition techniques are limited to simple rules such as: 

If the user mentions C ,  then the user knows about C. 

Rules of this sort don't make enough inferences about the user to build a robust model quickly. For 
example, suppose the user mentioned the term "windows" in talking to an intelligent help system 
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for the EMACS editor. The simple recognition methods would add the fact that the user knows 
about the term "window," but would fail to add a whole host of other information a human expert 
might assume the user believed because he used that term. In particular, a human expert might 
assume the user was more advanced than a novice, since knowing about windows isn't essential to 
using EMACS, that the user understands the concept of editing multiple files concurrently, and 
perhaps that he knows about buffers. The slowness t o  adapt of the user model is one of the major 
motivations for implementing stereotype models. 

3.1.2 Stereotype Models 

Encoding stereotypes in a user model provides an extra level of structure over simply listing a 
collection of possible information. With stereotype models, the list of information is still present, 
but is organized into units that are expected to more accurately model classes of users. The notion 
of a stereotype is intuitively appealing. Humans seem to use stereotyping to quickly categorize new 
people they meet. Since humans seem to do a good job of modelling other individuals, stereotyping 
appears to  be a promising technique to employ in user modelling as well. 

Stereotype modelling enables a system to  develop a large set of beliefs about a new user very 
quickly, by selecting a stereotype (or stereotypes) that characterize the user early in the interaction. 
Two techniques have been used. The first is the use of triggers, introduced by Rich in GRUNDY 
[Rich 791. Associated with each of the stereotypes in GRUNDY are one or more triggers. If the 
user mentions a trigger item, the entire stereotype is invoked. Thus a few pieces of information 
about the user can potentially cause the system to hold a large number of beliefs about the user. 

The second technique for selecting stereotypes uses a matching or "best fit" approach. Using 
this method, a stereotype that best explains the user's behavior so far is selected. Such an approach 
also allows stereotypes to  be refined or even changed as new information is acquired. An example 
of this approach is GUMSl [Finin 861, which organizes stereotypes into a hierarchy. Stereotypes 
lower in the hierarchy inherit information from those above, in addition to having more specific 
information as well. Selecting a stereotype for the user can thus be viewed as a c2asszfication 
process .3 

3.1.3 Problems with Stereotypes 

The stereotype approach to user modelling suffers from several difficulties. Like the method of 
listing potential information about the user, stereotypes are prone to brittleness and lack domain 
generality. They have other problems as well. The first problem only occurs with a particular form 
of stereotype model called a level stereotype. Although these models are intuitively attractive, they 
are frequently not appropriate. A second problem is that stereotype models can be very difficult 
to  build. Finally, reasoning based on stereotype models lacks adequate justifications. 

Inappropriateness  of Level Stereotypes 

A common stereotyping method is to classify users according to a range of skill levels with respect 
to the underlying domain. For example, users of an operating system might be classified as novice, 

31t is a classification process in two senses. Since stereotypes hold for various classes of users, the informa- 
tion obtained from the behavior of the user is used to determine which class the user belongs to, and hence 
which stereotype is applicable. It is also a process similar to the knowledge base classification used in KL-ONE 
[Brachman 85b,Lipkis 82,Schmolze 831. Here classification is based on the notion of subsumption. A subsumes B 
if and only if B(x)  e- A(x) for all x. A correct classification is accomplished by "pushing" an object down in the 
hierarchy as far as will go, based on testing subsumption relations at each level. 
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beginner, intermediate or expert, as is done by KNOME, the user modelling component for the 
UNIX Consultant [Chin 861. Using level stereotypes presumes that users learn information about 
the domain in a uniform manner. If the domain is such that users can become specialists in 
particular subdomains, level stereotypes will be inappropriate. For example, a new UNIX user 
might be curious about pipes, and thus learn a lot about them. His knowledge of pipes would 
imply the user was an intermediate or expert at using UNIX, when in fact he is still a beginner. 
Level stereotypes are used frequently because they are fairly easy to implement, but often user 
knowledge does not correspond to the "level hypothesis." 

Difficulty of Building 

Stereotypes are difficult to build-more difficult than the "collection of possible information" ap- 
proach. Stereotypes require not only that information about all potential users be encoded, but 
also that this information is organized into the proper stereotypes. Thus building stereotype models 
is more difficult than building a domain model for an application. Not only is more information 
required for the user model, each stereotype must be correctly organized, a task comparable to 
building several related domain models. 

Lack of Justifications 

Stereotype models cannot justify why a particular item belongs in an individual user model, other 
than to note that a stereotype containing the item has been invoked. Thus the justification for 
an item's presence in the individual user model may depend on a completely unrelated fact that 
triggered a stereotype, or it may be that this item is contained in a stereotype that happened to 
best explain the information available about the user.* 

Justifying the presence of information in the user model is important because of the non- 
monotonicity of this information. Often the arrival of new information about the user creates 
conflicts in the beliefs in the user model. Suppose two stereotypes are invoked that together hold 
inconsistent beliefs about the user. Rich dealt with the problem by using evidential reasoning in 
GRUNDY [Rich 791. An evidential reasoning approach is unsatisfying however, because of the 
number of possible places where evidence might be applied. For example, evidential weights might 
be affixed to each of the following items:5 

a The degree of belief in the trigger item 

a The degree of belief in whether the trigger item should trigger the stereotype 

a The degree of belief in the stereotype itself 

a The degree of belief in whether accepting the stereotype implies that an item in the stereotype 
should be believed (this could be different for each item in the stereotype) 

a The degree of belief in an item 

4Thus the presence of an item may depend on the fact that no other stereotype was a better fit, a very poor 
justification. 

5This problem is really a special case of a more general problem that arises when several reasoning steps occur 
between an explicit observation and a conclusion. Suppose a reasoning system draws two conclusions that are 
inconsistent with each other. If the chain of reasoning for each conclusion is not kept as a justification, the system 
has no way of determining which reasoning step (or steps) might be in error. Evidential reasoning systems suffer 
from this problem, because once an evidential weight is computed for a conclusion, there is no way to  recover the 
reasoning that led to the conclusion. 
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It  is hard enough to build stereotypes in the first place, applying even some of these weights would 
be excessive. 

3.1.4 Stereotypes are Like Procedural Knowledge Representations 

A parallel exists between stereotype user modelling and procedural knowledge representations. This 
parallel helps to explicate both the advantages and drawbacks of using stereotypes in modelling 
users. Three points in particular illustrate the similarities between stereotype user models and the 
procedural representation of knowledge. 

Efficient Procedural implementations are usually much faster than comparable declarative imple- 
mentations. Likewise, a user modelling system that employs stereotypes can more quickly 
develop a large number of beliefs about the user than a system that does not employ this 
additional structure. 

Compiled Procedures usually represent a group of information that has been collected into a 
single execution unit. Likewise a stereotype is a collection of beliefs about the user that have 
been collected into a unit. 

Lack Clear  Semantics  The criticism of procedural representations is that the only way to tell 
what they do is to  run them. On the other hand, a declarative representation is not only 
executable, its meaning can be ascertained by looking at it. In the context of stereotypes, 
the lack of justifications for particular items in the stereotype plays a similar role. It  is not 
possible to look at a single item in a user model and determine whether it should apply to a 
particular user. 

3.2 Implicit Model Acquisition 

Explicit user model acquisition techniques suffer from many problems. From the standpoint of 
general user modelling, the greatest is the need to encode new user model knowledge for each 
situation in which the model will be used. This severely limits the flexibility of the user modelling 
module, particularly since the explicit acquisition of model information is so difficult. If progress 
towards the dream of truly general user models is to be made, implicit model acquisition techniques 
will be needed. 

Implicit user model acquisition has not been well studied. There are several reasons for this. 
First, the field of user modelling itself is relatively new (most of the work has been done in the 
last ten years), and hence many areas have not been explored yet. More importantly, implicit user 
model acquisition has not seemed promising. The success of implicit user modelling is strongly 
constrained by two factors: the seeming lack of information that can be used to build a model of 
the user, and the lack of certainty in any implicit acquisition techniques. These limitations imply 
that any user model that relies on implicit acquisition techniques would be too slow in adapting to 
new users, and frequently wrong at that. 

The goal of this work is to show that implicit user model acquisition is a promising technique, 
one that can enable effective user models as well. I hope to show that the limitations on information 
obtained about the user is not too great, at least in many situations, and that a lack of certainty 
in the acquisition techniques can effectively be dealt with. This section characterizes implicit user 
model acquisition by discussing the sources of information available for a user modelling module, 
and the incremental nature of implicit user model acquisition. 
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User 

Figure 3.4: Sources of information for the user modelling module 

3.2.1 Source of Information 

In general, a user modelling module has two sources for acquiring information about the user: 
observable behavior of the participants during an interaction, and the existing knowledge of the 
system. Figure 3.4 diagrams the relation of the sources of information to the user modelling module. 

Observable Behavior 

The primary source of information for a user model is the observable behavior of the user. Generally 
this behavior is the actions taken by the user when interacting with the system. For a natural 
language system, the source of information about user behavior is the actual statements made by 
the user, perhaps as provided by the parser. In other situations the user modelling module may 
have access to the user's use of the application to perform tasks, such as the user's interaction with 
an operating system or editor. 

Another source of information is the system behavior observable by the user. Actions made by 
the system that the user observes will affect the user's beliefs. At the very least, system actions 
should cause the user's model of the system to  be modified. System actions can also be expected to  
cause a user to  revise beliefs previously held. This is particularly true in situations where the user 
approaches the system for information or advice. The response given by the system is information 
sought by the user, and hence information that should modify the user's beliefs. 
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Existing Knowledge 

A large source of information for the user modelling module is the domain knowledge of the un- 
derlying application in the system. The overlay modelling technique is an example of this. The 
domain model serves as a basis for interpreting the beliefs and intentions of the user. A more 
sophisticated technique is the diflerential model approach. Differential modelling uses the domain 
model to simulate what the system would do in the same situation as the user, in order to iden- 
tify not only the things in the domain the user knows (as in overlay modelling), but also things 
the user should know (according to  the system's simulation) but doesn't. Differential modelling 
is used in the WEST tutoring system [Brown 75,Burton 82b] where students play a board game 
in which players7 moves depend on certain arithmetic skills. The expert (system domain model) 
always knows the best move and thus can detect lack of knowledge on the part of a student who 
consistently makes inferior moves that can be attributed to the lack of a particular arithmetic skill. 

Another source of information is the user model itself. Recognition-based modelling uses the 
collection of pre-defined information in the user model as a source for selecting which information 
applies to the particular user. The current individual user model can also be important in interpret- 
ing new information about the user, and hence a source of information for the future user model. 
This is definitely true of the modelling people do. A person's current beliefs about an individual 
strongly influence any future beliefs they might hold. 

3.2.2 Incremental Acquisition of the Model 

Implicit user model acquisition is almost always incremental. Although some systems do implicit 
model acquisition in a non-incremental fashion: this is usually not the case. In general, the user 
model is present in a system to enhance the interaction capabilities. This means that the user 
modelling module must be actively acquiring the user model as interaction progresses, to be able 
to support requests for information the system can use to improve its interaction. 

The incremental nature of the acquisition process means the user modelling module must cope 
with incomplete information. At any given moment another module in the system may request a 
piece of information to which the user modelling module must respond to the best of its ability. 
The fact that the user model is continuously changing means the user modelling component must 
have some way of managing the possible choices for beliefs about the user. A truth maintenance 
system (TMS) [Doyle 791 is a good way to support these requirements. The TMS maintains the 
current beliefs held by the system (in this case beliefs about the user), along with justifications for 
those beliefs. As new information is learned the justifications serve as a basis for revising beliefs 
held by the system. 

The fact that acquisition is incremental also simplifies the implicit model acquisition task. As 
new information arrives, the user model does not need to be re-built from scratch. Rather, the 
existing model is modified to incorporate this new information. In most cases the addition of this 
new information will cause only minor changes to  the overall model. Thus incremental acquisition 
restricts the amount of work a user modelling module must do. 

- - 

6An example is a user modelling module that uses transcripts of interaction between the user and the system to 
build a model of the user. The Macsyma Advisor [Genesereth 79,Genesereth 821 is such a system. The Macsyma 
Advisor analyzes a transcript of the user's session with Macsyma to generate a user model when the user asks for 
help. 
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Cooperative Advisory Systems 

The purpose of this work is to pursue implicit user model acquisition techniques that support a 
general user modelling module. Unfortunately, such a task is extremely difficult. The requirements 
of interaction and domain generality1 combine to make completely general user model acquisition 
at present seem an insurmountable task. In light of this difficulty, the rest of this paper will focus 
on implicit user model acquisition where the form of interaction has been restricted to cooperative 
advisory systems that use a natural language interaction. The remainder of this chapter discusses 
why the form of interaction was restricted (as opposed to restricting the domain), and why coop- 
erative advisory systems were chosen. The final section discusses what type of information will be 
considered in modelling the user. 

4.1 Why Restrict Interaction? 

The form of interaction will be restricted because implicit user model acquisition is very dependent 
on the type of interaction used. Varying the form of interaction can drastically alter the forms 
of information representing the behavior of user and system. Since the implicit user model ac- 
quisition process is driven by the information obtained from the behavior of the user and system, 
different forms of interaction necessitate different model acquisition methods. These techniques for 
model acquisition do not share much in common. For example, there is little overlap between the 
techniques used to acquire knowledge about the user in a natural language system, and in those 
used in a system where the user modelling module learns about the user by observing how the 
user interacts with the underlying application. At least for now then, acquisition generality across 
different forms of interaction does not seem likely. Thus limiting the form of interaction will restrict 
to  a reasonable size the range of acquisition techniques that must be considered. 

A second reason for focusing on domain generality rather than interaction generality is the 
existing trend in this direction. A good example of this is the field of expert systems. The expert 
system shell serves to restrict the forms of reasoning the system can perform, as well as the forms 
of interaction with the user. This shell can then accept, and perform well with, varying domains 
of information in its knowledge base. Focusing on domain independence in user model acquisition 
will thus enhance the capabilities of other systems that attempt to achieve domain generality. A 
domain-general user modelling module can be incorporated into other domain-general systems to 
enhance the interaction with the user. 

'1 am taking as given that user generality is a requirement for any user modelling system. 
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4.2 Why Cooperative Advisory Systems? 

There are several reasons for restricting the range of interaction to cooperative advisory systems. 
Following a brief description of these systems, the reasons for focusing on cooperative advisory 
systems will be discussed. 

4.2.1 Cooperative Advisory Systems 

Cooperative advisory systems are systems that seek to provide advice to the user about a domain 
in which the advisory system has a body of expert knowledge. The systems are cooperative in that 
they try to  be as helpful as possible: by providing explanations, correcting user misconceptions, 
trying to satisfy goals of the user that have not been directly stated, and so on. Clearly a user 
modelling module can be useful to such a system. 

An advisory system has a mixed initiative interaction. Usually a user initiates the interaction 
by expressing a problem situation and asking the system for help. The system may then begin to 
ask a series of questions of the user while reasoning about the problem, finally giving its solution or 
advice. At any point the user may interrupt to question the system's reasoning or provide additional 
information. Once a solution has been given the user may wish to explore related alternatives, or to 
qualify the original goal.2 Thus an advisory system differs significantly from a question answering 
system, since question answering systems generally do not take initiative in a dialogue. 

An advisory system will usually have an expert system as the underlying application. The 
expert system is usually goal-directed: it will have a specific goal (recommending some form of 
advice about the domain) and then proceed to reason about the problem, requesting information 
as necessary. Both knowledge of the structure and components of the domain, and the reasoning 
used by the expert system are available in the application knowledge base. 

4.2.2 Advantages of Studying Cooperative Advisory Systems 

There are several reasons for focusing on user model acquisition in cooperative advisory systems. 
These reasons can be divided into two classes: reasons why this form of interaction enables better 
model acquisition techniques, and general reasons why user modelling in such systems is interesting, 
useful and still quite challenging. The following paragraphs present some of the primary reasons 
for studying user model acquisition in the context of cooperative advisory systems. 

Accessible Information 

A major advantage of cooperative advisory systems that communicate in natural language is the 
accessibility of information for the user modelling module. The previous chapter discussed four 
sources of information that can be used in implicit user model acquisition: user behavior observed 
by the system, system behavior observable by the user, the system's domain model and the user 
model itself. Any user modelling module will have access to the user model itself, but the availability 
of other sources of information may be limited by the type of system in which the user modelling 
module must work. 

The natural language interface provides the user modelling module with an easily accessible 
source of information about both user and system behavior. Usually the parser will produce some 
form of meaning representation language ( M R L )  that has a well-defined semantics, such as first 

'See [Pollack 821 for an analysis of the types of interactions that occur in an advice-giving situation involving a 
human expert. 
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order predicate c a l c ~ l u s . ~  This MRL provides an easily interpretable source of information about 
user behavior. With a natural language interface the user modelling module should also have access 
to  the response generated by the system. This information may be in a form used by the system 
when composing the contents of the response, or might be obtained by feeding the natural language 
text generated by the system back through the parser to  obtain MRL statements representing the 
system's behavior. 

An advisory system also has a readily accessible source of domain information. Since the advi- 
sory system is based on an expert system, a user modelling module can access not only knowledge 
about the contents and structure of the domain, but also the reasoning rules used by the advisory 
system. Although it may not be the case for all advisory systems, this work assumes the domain 
knowledge is relatively robust. This seems reasonable since a natural language interface is fairly 
sophisticated and would benefit from a robust domain model as well. Although not obvious now, 
the availability of the reasoning knowledge of the advisory system (as opposed to just the struc- 
tural knowledge of the domain) will be very important in enhancing the user model acquisition 
capabilities of the system. 

Mixed Initiative 

In a mixed initiative dialogue, either participant can establish a new topic or goal of the discussion. 
Following Grosz and Sidner [Grosz 861, either participant can establish a new discourse segment in 
a conversation. This characteristic of cooperative advisory systems is important to  the user model 
acquisition process. 

In a mixed initiative dialogue, the user is free to  volunteer information at any time. What 
is volunteered and when can provide significant information about the beliefs held by the user. 
Further, in an advisory system it is acceptable for the system (advisor) to  ask for further information 
from the user. The system is able to ask questions to  obtain information it deems necessary, and 
even ask follow-up questions to clarify information the system is uncertain about. Thus a user 
modelling module could even generate questions to ask the user, perhaps to resolve an inconsistency 
detected in the user model. 

A second advantage of mixed initiative interactions in an advisory system is the ability to re- 
cover from mistakes. Frequently, participants in a conversation make incorrect assumptions about 
their conversational partner. In a mixed initiative interaction, both participants share responsi- 
bility for ensuring the validity of the communication. This shared responsibility means that each 
participant can make assumptions about the other individual that seem plausible but for which 
there is insufficient evidence, knowing that if the other participant detects an error he or she will 
mention and correct the mistake. Thus a mixed initiative dialogue allows more freedom for an 
advisory system to make assumptions about the user, trusting that the user will attempt to correct 
any assumptions that are in error. 

A third advantage of mixed initiative interactions in an advisory system is that users may 
sometimes make direct statements about their own beliefs. Thus a user might directly tell the 
system that s/he does not know much about a certain aspect of the domain. Such statements can 
be very helpful in modelling the user. 

Cooperative 

The fact that the user is cooperating with the system in the dialogue will prove important in 
acquiring information about the user. The user modelling module can assume that the user is 

3At least, ideally the semantics are well defined. This assumption will be made for the remainder of this paper. 
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obeying the cooperative principle [Grice 751, in particular, the Gricean maxims of quantity, quality, 
relation and manner. The assumption of cooperativity places strong constraints on the interaction 
between user and system, constraints the user model can greatly benefit from. 

Interesting and Useful 

Although the type of interaction to be considered has been greatly restricted, cooperative advisory 
systems still constitute an important and interesting class of systems. Advisory systems are becom- 
ing more commonly used. Many of the expert systems now being developed attempt to capture the 
expertise of knowledgeable individuals. The system domains range from analysis of memory dumps 
taken following computer system crashes, to medical diagnosis, to industrial soup cooker repair. In 
each of these systems the goal is to create an advisory system with the expert's knowledge to aid 
other humans in dealing with the problems they face. Thus the class of systems to be considered 
is still a broad and important one. 

User modelling can be very useful in cooperative advisory systems. Current advisory systems 
for the most part are not very cooperative. They require a certain level of knowledge on the part 
of the user, and frequently will not accept information volunteered by the user until the system 
explicitly asks for it. A user model can enhance the interaction capabilities of such systems by 
providing a source of information about the user's beliefs and goals in the current situation. This 
knowledge can be used to help tailor explanations, recommendations, and even the reasoning of 
the system. 

Finally, although the range of interaction has been restricted, the problem of user model acquisi- 
tion is still quite challenging. In fact, user modelling in such a domain has seldom been attempted,4 
and never has implicit model acquisition in such a domain been emphasized. One reason for the 
lack of work in this area has been the general impression that it is too complex. Certainly the 
requirements for communication in natural language in such a context are more difficult than, say, 
question answering systems. Consequently user modelling in the domain seemed more difficult as 
well. Despite the greater complexity of the domain however, the form of interaction can provide 
more information about the user, information that a user modelling module can acquire implicitly. 

Good Paradigm for Study 

A last advantage for studying cooperative advisory systems is that a good paradigm for study 
exists. People frequently seek advice from others. These interactions serve as a basis for studying 
the modelling that a human expert does while responding to a request for advice. The next chapter 
contains a collection of rules that a user modelling module can use in acquiring information about 
a user from a cooperative advisory interaction. These rules were obtained by analyzing transcripts 
of human advice giving. 

4.3 Long Term Models 

Since the focus of this work is on implicit model acquisition techniques, the types of models to be 
considering are individual models of the user. Furthermore, the kind of information of interest is 
information that remains true about the user for some period of time. Thus the goal is to  build 
models that remain useful over many interactions between the user and the system. 

*The primary example of user modelling in an advisory domain is GUIDON [Clancey 82,London 821, which mod- 
elled the medical reasoning knowledge of students learning to diagnose forms of meningitis. 
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This long term nature of the model minimizes the importance of some types of model infor- 
mation. In particular, system beliefs about user goals and plans tends to be relatively short term 
inf~rmat ion .~  For this work, the acquisition of knowledge for the user model will focus on beliefs 
held by the user-in particular, beliefs the user holds about the domain of the system. This is 
appropriate for an advisory system, since much of what the system advisor would want to know 
about the user is what the user knows about the domain. 

5Actually, some goals and plans may persist for long periods of time; these will not be consisdered here. 



Chapter 5 

User Model Acquisition in 
Cooperative Advisory Systems 

This chapter presents the central contributions of the paper. The previous chapters have included 
criticisms of explicit model acquisition techniques, and arguments for acquiring user models im- 
plicitly. Here a set of implicit acquisition rules for user modelling is presented. The rules as stated 
cannot be directly implemented in a user modelling system, but will serve as a basis for such an 
implementation. Thus, this chapter presents a foundation on which a domain-general user mod- 
elling module can be built. In sections 5.1 and 5.2 the nature of these rules and how they were 
obtained is discussed, while in sections 5.3-5.6 the rules are presented. 

5.1 The Transcripts 

The acquisition rules for the most part have been developed by examining transcripts of a large set 
of interactions (close to 100) between individuals and an expert. These transcripts were made from 
recordings of a radio talk show entitled "Harry Gross: Speaking about Your Money" broadcast by 
radio station WCAU in Philadelphia, on February 1-5,1982.' The examples relating to  investments 
in the remainder of this chapter are drawn from these transcripts. 

Several similarities between the radio program and computer advisory systems make study 
of these transcripts useful. In both cases the medium of communication is strongly restricted. 
Human interaction with a computer expert is generally limited to a keyboard and display screen. 
On the radio program the communication is verbal, primarily spoken language between the two 
participants. This means a transcript can capture most of the information communicated between 
participants. Thus the transcripts from the radio program are quite similar to the type of interaction 
between human and computer. 

A second advantage of studying the radio program transcripts is that the callers vary quite a 
bit in their knowledge of the domain of their questions. For example, the expert must deal with 
people who know quite a lot about investing, as well as people who have almost no knowledge of 
the subject. Thus the expert cannot rely on some common model for all callers, but instead must 
actively model each new caller in order to deal with them effectively. 

A final advantage of studying the radio program transcripts is that the expert generally has 
not dealt with the caller before. Thus the expert must construct a model of each caller during the 
course of the conversation, based only on the information available in the conversation. The model 

'These transcripts were also used as a basis for the findings in [Pollack 821. Many thanks to Martha Pollack and 
Julia Hirschberg who recorded and transcribed the show. 
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of the caller that the expert develops is therefore solely a result of the interaction recorded in the 
transcripts. 

The fact that the transcripts are of a radio program does not detract from the information 
gained about modelling. It might seem that the radio show format would be too artificial to 
demonstrate normal human behavior. This is partly true, but does not affect the modelling aspects 
on the part of the expert. The main effect the radio show format seems to have on the interactions 
is a tendency for the expert to omit detailed explanations that would be boring to  the audience as a 
whole. For example, the expert frequently recommends investment in a money market fund. Many 
of the callers are unfamiliar with money market funds, yet the expert will often omit a detailed 
explanation, because he has already made a similar explanation earlier in the show. This brevity 
of explanation does not affect the actual processes used to  model the knowledge of the caller. 

Although the rules to be presented here were developed by analyzing the radio program tran- 
scripts, that does not mean that these rules, and only these rules, were used by the expert. In 
fact, there is ample evidence that the expert makes use of certain stereotypes, such as for "senior 
citizens" or "widows," in reasoning about a caller's situation and knowledge. On the other hand, 
the rules to be presented will account for most of the information about the caller used by the 
expert in the course of the conversation. 

5.2 Effectiveness Versus Efficiency 

It is useful to  draw a distinction between effectiveness and eficieacy in user modelling. The expert 
in the transcripts is experienced in advising a variety of individuals about investments. Through 
experience he has formed stereotypes or rules of thumb such as "Widows usually don't know much 
about securities other than those available from a bank." These stereotypes enable the expert to 
very quickly form a model of a new caller, based on his experience with previous individuals. Thus 
experience enables the expert to be a very efficient modeller, in that he can quickly develop a 
robust model of the caller without a great deal of reasoning. 

A general user modelling module is in a situation similar to a person trained to repair computers, 
but who has never worked in the field. Such a person knows circuit theory and how the computer 
works, but does not have the practical knowledge of which components are likely to fail that is 
gained through experience. Likewise, a general user modelling module has available the domain 
knowledge of the application, but does not know the correlations between classes of users and 
knowledge of concepts or rules in the domain model. Thus a general user modelling module cannot 
make the quick, efficient leaps that are possible with a stereotype-based user model. 

Although the efficiency of a general user modelling module may be limited, it can still be 
eflective. In fact, the rules to be presented in this chapter, taken together, are sufficient to provide 
most of the user modelling necessary to support the cooperative and helpful behavior of the expert 
in the conversations analyzed. The user modelling module may perform many more inferences to 
arrive at  a model of the user than a stereotype-based user modelling system might, but the rules 
are domain independent. Thus the user modelling module can maintain its effectiveness when the 
underlying domain is changed, something a stereotype-based user modelling system cannot do. 

The beliefs about the user obtained by applying these rules are not absolute. As with any 
user model, the information believed about the user may be wrong. In addition, it is possible 
for the rules to draw conflicting conclusions about the user's knowledge. These potential conflicts 
will necessitate some means for arbitrating among sets of beliefs. The rules to be presented here 
were written with no assumptions about the arbitration technique. It is convenient to think of the 
modelling rules as being default rules [Reiter SO], but other techniques could be applied as well. 
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For example, evidential reasoning could easily be accommodated by adding evidence weights to the 
rules, if this were desired. 

Exceptions to the acquisition rules exist. For each of the rules, situations in which the rule 
makes an incorrect conclusion about the user's beliefs can be constructed. In fact, such exceptions 
are frequently easy to find. The important point is that such situations are exceptions. The goal 
of this work is to present reasonable rules, rules that draw correct conclusions most of the time. 
Furthermore, when an incorrect conclusion is drawn by the user modelling module, the error should 
be a reasonable mistake. Often people develop beliefs about others that are incorrect. Thus this 
model acquisition technique reflects the imprecision humans experience in modelling individuals. 

The rules to be presented can be loosely divided into three categories: communicative rules, 
model-based rules and human behavior rules. Communicative rules are based on aspects of the 
communication between user and system. Thus rules that infer portions of the user model directly 
from a user's statement, and rules based on the assumption that a user is cooperating with the 
system are communicative rules. Model-based rules are rules that depend on certain relations 
between information in the user model, or on certain characteristics of the domain model. Although 
domain related, these rules are independent of the contents of the domain. Human behavior rules 
depend on the way people behave, such as how they reason or take action. Note that these categories 
do not form firm divisions between the various classes of rules. There is a lot of overlap, for example, 
between human behavior rules and communicative rules. 

The communicative, model-based and human behavior rules are presented in the next three 
sections. In this discussion, only three of the sources of information for a user model will be used: 
the statements made by the user, the current user model and the domain model. The statements 
made by the system will be omitted. Statements made by the system have little impact on most 
of the implicit acquisition rules. The final section contains a brief discussion of what information 
can be obtained for the user model from system statements, and how previously defined rules can 
be used to handle these situations. 

5.3 Communicative Rules 

The communicative rules can be subdivided into two classes: direct inference rules and implicature 
rules. The direct inference rules draw conclusions based solely on the statement made by the user. 
The implicature rules are inspired by Grice's maxims, and assume that the user is behaving in a 
cooperative manner. 

5.3.1 Direct Inference Rules 

There are two direct inference rules. The direct statement rule updates the user model with 
the content of statements made by the user. The presupposition rule adds information that is 
presupposed by user statements. 

Direct Statement Rule 

The direct statement rule says: 

Rule 1 The user modelling module can assume that a statement made by the user is believed by 
him.2 

'For future reference, the implicit acquisition rules presented in this chapter are summarized in appendix A. 
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3x1 (investment(xl) A 

3x2(investor(xl, x2) A x2 = user) A 

3x3(instrument(xl, 23) A moneymarket(x3)) A 

3x4(amount(xl, x4) A dollar(x4) A 2 4  = 40,000)) 

Figure 5.1: MRL for "I have $40,000 in money market" 

Many beliefs of the user can be asserted to the user model by this rule. In fact, there is a straightfor- 
ward method for extracting individual beliefs that can be attributed to the user from the statements 
made by the user. 

To demonstrate how the direct statement rule works, consider the statement: 

I have $40,000 in money market. 

Figure 5.1 illustrates the MRL that a parser could produce for this ~ t a t e m e n t . ~  This logical ex- 
pression reflects the fact that the user has made a statement about an investment. Investments 
have investors, instruments and amounts. In this case the investor is the user, the instrument is 
money market (securities) and the amount is $40,000. From this logical expression 15 component 
sub-expressions can be derived, corresponding to individual beliefs held by the user. Each expres- 
sion, and an interpretation in English, is given in figure 5.2. These component beliefs derived 
from the user's statement may now be used to update the user model. Assuming a KL-ONE 
[Brachman 85a] type of knowledge representation for the beliefs the user holds about objects and 
concepts, the taxonomy in figure 5.3 can be produced.4 

Do not be misled by the seeming richness of the representation produced. Terms like "invest- 
ment" and "instrument" have been used as labels for the concepts that the user knows. These 
labels are really just convenient names to use when referring to  particular concepts. The notion 
of "instrument" might imply that the user has a fairly deep knowledge of the domain and a firm 
understanding of various aspects of investments. This need not be the case. Rather, the user may 
simply have the notion of "having put money" in a particular place. An expert would interpret 
this act as having invested in a certain financial instrument, but would not assume the user also 
held knowledge about investments or financial instruments in general. The user model then, should 
be interpreted on the basis of the structure of concepts and roles, and their relationships in the 
knowledge representation hierarchy. This point is also made by Brachman in describing how to 
interpret representations of knowledge in KL-ONE. 

There is an interplay between the natural language understanding (NLU) component of a system 
and the user model. The NLU component must use knowledge in the system to interpret what the 
user says. If only domain knowledge is used, the MRL produced may not be representative of the 
beliefs of the user. A better approach might have the NLU component use knowledge from the user 
model, as well as domain knowledge, when interpreting user statements. 

The direct statement rule is not new. Other systems have produced output from the parser 
that can be directly applied to the user model. Examples include HAM-ANS [Hoeppner 831, the 

3For simplicity, assume the MRL is first-order predicate calculus. 
'The steps described here have already been implemented as a Prolog program. This program will take as input 

a logical expression such as the one in figure 5.1 and produce the list of individual clauses in figure 5.2. The program 
then uses these clauses to generate assertions to a NIKL [Moser 831 knowledge base, producing the structure in 
figure 5.3. The program runs on a Symbolics Lisp Machine. 
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3x2(x2 = user) 

3x4(x4 = 40,000) 

3x1 (investment(x1)) 

3x3(moneymarket(x3)) 

3z4(dollar(x4)) 
3x1, x2(investor(x1, x2)) 

3x1, x3(instrument(xl, 23)) 

3x1, ~4(amount(xl, 54)) 
3x1, x2(investment(xl) A investor(xl, x2)) 

3x1, xs(investment(xl ) A instrument(x1 , 53)) 

3x1, x4(investment(x1) A amount(xl , 24)) 

3x1, xs(instrument(xl , 23) A moneymarket(x3)) 

"User" is an entity 

40,000 is an entity 

Investment is a concept 

Moneymarket is a concept 

Dollar is a concept 

Investor is an attribute 

Instrument is an attribute 

Amount is an attribute 

Investments have investors 

Investments have instruments 

Investments have amounts 

Moneymarket can be 

an instrument 

Dollars can be an amount 

Moneymarket can be the 

instrument of an investment 

Dollars can be an amount 

of an investment 

Figure 5.2: Decomposition of "I have $40,000 in money market" 

Figure market" 
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UNIX Consultant [Wilensky 861 and VIE-LANG [Kobsa 841. Some systems, such as the UNIX 
Consultant, directly generate a knowledge representation structure for the user's statement. This 
knowledge representation structure can then be directly asserted to the user model. 

The direct statement rule provides some basic information about what concepts the user is fa- 
miliar with. One advantage of this rule is that the results are usually quite certain, since statements 
made by the user usually reflect what is believed. On the other hand, the direct statement rule 
alone only gives information about concepts specifically mentioned in the interaction. This leaves 
vast amounts of information about the user untouched. 

The Presupposition Rule 

A presupposition of a statement is something that must be true in order for the statement to make 
sense. Formally, P presupposes Q if and only if (P + Q )  V (-IP + Q).  Presuppositions can be 
especially important in dealing with questions from the user. For example, the question 

Which students received A's in CIS577 last fall? 

presupposes, among other things, that CIS577 was taught during the fall, and that an "A" was a 
potential grade for the course. 

Presuppositions have been studied for some time. Kaplan's COOP system [Kaplan 821 focused 
on identifying incorrect presuppositions in user queries to  a database system in order to provide 
more cooperative negative responses. For example, if CIS577 was not offered last fall, a valid answer 
to the preceeding question would be "none." This would reaffirm the user's incorrect belief that 
CIS577 had been offered. A more cooperative response would be "None, CIS577 was not offered 
last fall." 

Kobsa has addressed computing presuppositions in the context of modelling the user in the 
VIE-LANG system [Kobsa 841. For example, from the question 

To whom does Peter give the book? 

the following assumptions can be made. 

1. The user believes Peter and the book exist, and that Peter gives the book to someone unknown 
to the user. 

2. The user believes that the system believes that Peter gives the book to  someone. The user 
also believes that the system knows the recipient. 

3. The user wants to be in a situation in which both the user and the system know who Peter 
gave the book to. 

With these examples, the presupposition rule can be stated as follows. 

Rule 2 The user modelling module can assume that presuppositions of statements made by the 
user are believed by him. 

5.3.2 Implicature Rules 

The implicature rules are based on Grice's cooperative principle. Grice has observed that humans 
obey certain conventions when communicating with each other [Grice 751. One such convention 
is that they strive to  be cooperative during conversations with each other. He has stated this 
cooperative principle as follows: 
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Make your conversational contribution such as is required, at  the stage at which it 
occurs, by the accepted purpose or direction of the talk exchange in which you are 
engaged. [Grice 75, p 671 

The implicature rules are based on the assumption that the user of the system is observing this 
cooperative principle. 

The term "implicate" holds a specialized meaning in Grice's usage. Information that is impli- 
cated by a statement cannot be directly inferred from that statement. Using an example given by 
Grice, suppose A and B are talking about a mutual friend C who is now working at a bank. A 
asks B how C is doing in his job and B replies "Quite well, he likes his colleagues, and he hasn't 
been to  prison yet." The statement seems to imply something beyond the simple fact that C has 
not been t o  prison yet, perhaps that A is trying to suggest that C will be going t o  prison because 
he is stealing money from the bank, or because his colleagues are crooked. The information impli- 
cated by a statement is thus beyond the logical content of the statement itself, and hence cannot 
be directly inferred from the statement. Being able to recognize what is implicated by a user's 
statements could furnish a great deal of additional information about the user. 

Grice proposes four categories of maxims that cooperative people observe when making an 
utterance. These categories are the maxims of quantity, quality, relation and manner. Grice has 
stated the maxims as rules that people tend to follow when making an utterance. These maxims 
are important for implicit user modelling because they provide guidelines for the expected behavior 
of the user. In the following paragraphs each of the maxims is stated, along with a paraphrase 
reflecting the user modelling perspective. 

Quantity The maxims of quantity are: "make your contribution as informative as is required," 
and "do not make your contribution more informative than is required." From the standpoint of a 
user modelling module, this maxim can be paraphrased as follows. 

The user believes that his statement provides suficient information to accomplish his 
current goal or goals, and does not include information extraneous to accomplishing 
those current goal or goals. 

Assume that the "current goal" of the user can be easily recognized. In an advisory system, this 
will generally be true. Often the system will have asked the user a question, so that the current 
goal held by the user should be to provide enough information to answer the question posed by 
the system. Other goals might be higher-order goals such as giving or receiving advice about 
investments, or making a judgment about a particular aspect of the overall goal. 

Quality The maxims of quality are: "Do not say that which you believe to be false" and "Do 
not say that for which you lack adequate evidence." From the viewpoint of a system modelling the 
user, the maxim of quality can be quite simply paraphrased: 

The user believes his statement is true. 

The maxim of quality has already been assumed by the direct inference rules. These rules depend 
on the assumption that the user believes what he says. 

Relation The maxim of relation is simply "be relevant.'' From the viewpoint of the speaker this 
maxim is the least specific. I t  does not provide any means for identifying how to be relevant, or 
even determining what information is relevant to say. Fortunately, from the standpoint of a user 
modelling module for an advisory system, the maxim of relation is less problematic. In this context, 
the maxim can be paraphrased to  say: 
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The user believes the information he has provided is relevant to his current goal or goals. 

In an advisory system, the user's goals will always center on obtaining advise about a particular 
problem or situation. The knowledge base for the expert advisor will include rules that reason 
about various facts that lead to conclusions used in responding to  the user. The information the 
user believes is relevant is thus information the user believes will be used in the advisor's reasoning 
process. 

Manner The maxim of manner pertains to how information is communicated. Grice lists several 
rules that a speaker should observe in order to abide by the cooperative principle, including: 

a Avoid obscurity of expression. 

a Avoid ambiguity. 

a Be brief. 

a Be orderly. 

From the standpoint of user modelling, the maxim of manner is the least interesting, since it 
primarily affects the form of the utterance, not the contents. However, some use may still be made 
of this maxim. The maxim of manner can be paraphrased as follows: 

The user believes his statement is clear, concise and well ordered. 

This maxim will be of use to  a user modelling module when the statement made by the user in fact 
violates the maxim. For example, if the statement made by the user is ambiguous, it indicates a 
lack of knowledge on the part of the user. 

The paraphrases of Grice's maxims provide a basis for implicit user model acquisition rules that 
go beyond the direct inference rules discussed earlier. In particular, the maxims sometimes enable 
the user modelling module to identify reasoning the user has performed, as well as information 
the user does not know. This information can be obtained for two reasons. First, the cooperative 
principle provides a basis for establishing certain expectations about the user's behavior. Secondly, 
the domain knowledge base supplements these expectations with specific domain knowledge the 
user may be expected to have. Taken together, a powerful form of differential modelling can be 
achieved. 

Grice's maxims inspire three implicature rules, based on the maxims of relation, quantity and 
manner, but the correspondence is not total. Each rule relies to some degree on the other maxims 
as well. 

Relevancy Rule 

The relevancy rule is inspired by the paraphrase of the maxim of relation: the user believes that 
what he says is relevant to his current goal. The rule says: 

Rule 3 If the user says P,  the user modelling module can assume that the user believes that P ,  in 
its entirety, is  used in reasoning about the user's current goal or goals. 

The use of the relevancy rule can be illustrated with an example. The following statement is 
made at the beginning of a call to the expert. 

(1) C. I have an $18,000 golden passbook account which pays me 7$% 
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(2) which is going to  mature in April of this year. 

(3) Now I'd like to know what to do about it. 

Here, although somewhat unclear, the caller wants advice from the expert on how to  invest the 
$18,000 once it becomes available. The caller believes that the amount of money, the due date and 
the current interest rate are important factors in making a decision about how to  invest the money 
so she states them with the initial request for advice. Thus the expert, in modelling the caller, can 
conclude that the amount, interest rate and due date of the golden passbook account are believed 
by the caller to be used in the reasoning about how to reinvest the money. 

In addition t o  claiming that the user believes what is said is relevant, the relevancy rule states 
that the user believes that everything in the statement is relevant. This can be illustrated with 
another example. 

(4) C. I just retired December first, 

( 5 )  and in addition to my pension and social security 

(6) I have a supplemental annuity 

(7) which I contributed to while I was employed 

(8) from the state of New Jersey mutual fund. 

(9) I'm entitled to a lump sum settlement which would be between $16,800 
and $17,800 

(10) or a lesser life annuity 

(11) and the choices of the annuity would be $125.45 per month. 

(12) That would be the maximum with no beneficiaries. 

(13) E. You can stop right there, take your money. 

In this example the caller provides a large amount of information in stating her problem. The 
expert recognizes that the only information relevant to  the question of how to  take her supplemental 
annuity is the value of the annuity if taken as a lump sum versus the monthly payments that could 
be received. Once the expert has this information (and has identified the goal the caller has) he 
interrupts and provides the answer. Meanwhile, in modelling the caller the expert can conclude 
that she has little knowledge of the reasoning involved in making the decision. She feels that all the 
information she has listed may be relevant to the reasoning process, while in fact it is not. Thus the 
relevancy rule can be used to  acquire information about incorrect reasoning a user may perform. 

Sufficiency Rule 

The sufficiency rule is inspired by the maxim of quantity. The system can reason as follows: if the 
user were completely knowledgeable about the domain, he would provide information sufficient for 
the system to satisfy the user's goal. Suppose what the user says turns out to  be insufficient? In 
this case the user must lack some knowledge that the system has. A user may have three types of 
knowledge about entities in the domain knowledge base: 
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1. The user may know of the entity. For example, from the statement "I have $40,000 in money 
market" the direct statement rule concludes that the user knows of the concept "money 
market ." 

2. The user may know the relevance of the entity. This means that the user knows the entity is 
used in reasoning about the current goal. 

3. The user may know the value of a property. Concepts that represent actual entities in the 
world have roles that take on real values. Thus 40,000 is the value of the amount role for the 
concept "investment 1" in figure 5.3. 

When the user is cooperative, yet omits a piece of information that the system knows is relevant, 
it is due to a lack of knowledge of one of these three types. 

The sufficiency rule is stated as follows: 

Rule 4 If the user omits a relevant piece of information from a statement, then either the user 
does not know of that piece of information, does not know whether that information is relevant to 
his current goal or goals, or does not know the value for the piece of information. 

Once again an example will illustrate this rule. 

(14) C.  I've got $2250 to invest right now in an 18 month certificate 

(15) and I don't know whether to go 

(16) the variable rate or the fixed rate now or the fixed rate later. 

(17) E. Let me ask you a couple of questions. 

(18) C. OK. 

(19) E. Have you any money invested now? 

(20) C. Yes, I do. 

(21) E. In what? 

(22) C. I've got $5000 in a money market fund. 

(23) E. Have you anything in certificates or anything else? 

(24) C. I've got three stocks. 

(25) E. Three separate stocks? 

(26) C. Yes sir. 

In this conversation, the caller believes his initial statement of the problem is sufficient for the 
expert to make a decision. Instead, the expert realizes a lot more information about the caller's 
investments are needed. The expert proceeds to ask questions to obtain this information. Even 
then, the caller provides minimal answers because he does not know what additional information 
is relevant until the expert specifically asks for it. In this case it seems obvious that the user knows 
the additional information, he just does not realize it is relevant. 

In using the sufficiency rule, the user modelling module must be able to  "turn around" the 
reasoning rules in the domain model, in order to identify properties that are relevant. This collection 
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of relevant properties creates an expectation of the information the user should provide. Information 
in the set of expectations that is not provided thus must be information the user lacks knowledge 
of. 

The sufficiency rule might be strengthened further. If the user is being fully cooperative he will 
try to  be as helpful as possible. Suppose the user knows a piece of information, but does not know its 
value. For example, the user might know that the due date of a money market certificate is relevant 
information, but not know the actual due date. A truly cooperative user would tell the system that 
he does not know the due date. Thus the sufficiency rule might be limited to  conclude that either 
the user does not know of the information, or does not know that it is relevant. Furthermore, if the 
user does not know of the information, he certainly cannot believe it is relevant, so the sufficiency 
rule could make a definite conclusion in this case. 

Although the strengthened sufficiency rule seems attractive, that level of cooperation by the 
user does not seem likely. People are reluctant to  display their ignorance. Thus, when they don't 
know something, they avoid mentioning it, even when they believe it is relevant. 

Ambiguity Rule 

The ambiguity rule is based on the maxim of manner. A portion of the paraphrased maxim states 
that the user believes what he says is unambiguous. Suppose the system finds the user's statement 
to be ambiguous. In this case, the user must lack knowledge of interpretations of the statement 
other than the one intended. Thus the ambiguity rule provides the user model with information 
about objects, concepts and rules in the domain that the user does not know. The ambiguity rule 
can be stated as follows. 

Rule 5 If the user makes ca statement that the system finds ambiguous in the current context, then 
the user lacks knowledge of one or more of the alternative meanings for his statement. 

The ambiguity rule can be illustrated in the following example. 

(27) C. We have $40,000 in money market, 

(28) one is coming due, a $10,000 money market. 

In this example, the first line could be interpreted to mean that they have a total of $40,000 invested 
in money market instruments. However, the use of "money market" in the second line indicates 
that the term is not being used in that sense. In this conversation the expert did not seek immediate 
clarification of what was meant by "money market." Rather, by letting the conversation progress it 
became obvious that the caller was referring to money market certificates that are issued by banks, 
and had no knowledge of other money market securities. 

The most common ambiguities seem to be related to the use of individual terms. In these cases 
the speaker will tend to  use a term that is more general than the appropriate term. This confusion 
usually arises because the speaker is not aware of some of the specializations of the more general 
term that is used. This is the case in the example, where the caller thought the term "money 
market" was a synonym for the term "money market certificate." 

5.4 Model-Based Rules 

While the communication rules are triggered by statements made by the user, the model-based 
rules depend on features of both the domain model and the current user model. The model-based 
rules look at what the system currently believes the user knows in order to  find plausible extensions 
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to  the user model. Thus the model-based rules compare the user model to  the domain knowledge, 
in order to augment the user model with domain knowledge. 

The model-based rules (in fact any rule that uses domain knowledge) assume certain constraints 
on the knowledge representation used. This work assumes that domain knowledge is of two types: 
knowledge about concepts, properties and their relationships (conceptual knowledge); and reasoning 
knowledge used in the advisory process. The examples of conceptual knowledge in this paper use 
a KL-ONE type of representation, but the essential features are the association of properties with 
concepts, a subsump tion hierarchy for concepts, and property inheritance in that hierarchy. Thus 
a frame-based representation could be used as well. The reasoning knowledge is assumed to use 
a rule-based representation. Here it is important to identify the properties used in reasoning, and 
the dependencies between them. 

There are eight model-based rules that will be discussed in the following section: the action 
rule, the consequence rule, the concept generalization rule, the consequential generalization rule, 
the distribution rule and three entailment rules. 

5.4.1 Action Rule 

The action rule relates an action to  its preconditions and postconditions. Sometimes a user's 
statement will indicate that he knows of an action. Consider, for example, the statement: 

(1) C. We just rolled over two money market certificates. 

Here the user makes explicit reference to  the action of "rolling over" a money market ~ert i f icate .~ 
The direct statement rule would assert that the user knows a concept corresponding t o  the roll over 
action, but nothing else about that action. It  is reasonable to assume that if a user knows about 
an action, then he knows about conditions that must be true for that action to be performed, as 
well as the consequences of the action. The rule can be stated as follows: 

Rule 6 If the user model includes the belief that a user knows an action, then the user modelling 
module can attribute to the user knowledge of the pmconditions and postconditions of that action. 

Consider the statement 

(2) C. I was thinking of buying a treasury note. 

The caller has expressed knowledge of the action of buying a treasury note. The action rule will 
assert that the user therefore knows that to buy a treasury note requires that the agent possess 
a certain amount of money (equal to the face value of the denomination of treasury note being 
bought). Further, the action rule will assert that the user knows that the result of buying a 
treasury note is that the agent possesses a piece of paper with a face value equal t o  the value of 
the denomination purchased. 

5.4.2 Consequence Rule 

The consequence rule might be considered the reverse of the action rule, relating the results of an 
action to the action itself. The consequence rule has two parts, affecting not only the user model, 
but the domain model as well. If the user believes in the consequence of an action, it is plausible to 
assume that the user believes that the action has occurred. The consequence rule also affects the 

5To roll over an investment is to remove money from an investment in one security and immediately reinvest that 
money in another security, so as to avoid paying taxes. 
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domain model by indicating that the action has occurred. If the system believes in the consequence 
of an action, then the domain model should be updated to believe that the action has occurred as 
well. Such actions may subsequently trigger the agent rule (one of the human behavior rules to be 
discussed later) to add additional information about the beliefs of the user. 

The two parts of the consequence rule can be stated as follows. 

Rule 7 

i If the user believes a fact that can only result from one of a small set of actions, then the 
user believes that one or more of those actions has occurred. 

ii If the system knows a fact that can only result from one of a small set of actions, then the 
system believes that one or more of those actions has occurred. 

Determining the size of a "small set" is a matter of preference. If the set of possible actions that 
caused an event were very large, asserting that the user knew one of these actions would not provide 
much information to  the user model. If the set consists of a very few items, other acquisition rules 
might be used to eliminate some possibilities, or to strengthen justifications for others. The ideal 
"small set" is a set of one, since then the action causing the event can be completely identified. 
Even when the set consists of more than one action, there may be common subparts t o  the actions 
that can be believed with greater certainty. 

An example of the use of the consequence rule can be seen in the following statement. 

(3) C. I have $2300 in a passbook account. 

The direct statement rule will assert that the user believes that she has $2300 in a passbook 
account. The presence of this money in the account is dependent on the fact that someone must 
have deposited money into the account. In this case, the action of opening an account is a necessary 
prerequisite for depositing money in the account, so the consequence rule will conclude that an 
account was opened, and that money was deposited to the account. 

5.4.3 Concept Generalization Rule 

The concept generalization rule seeks to  fill out the concept hierarchy of the user model with 
information from the domain model. Although the user model need not mirror the domain model, 
if the user model develops several beliefs that seem to match those of the domain model, the concept 
generalization rule will attempt to augment the user model with pieces of the domain model. The 
formal statement of the concept generalization rule is: 

Rule 8 If the user model indicates that the user knows several concepts that are specializations of 
a common, more general concept i n  the domain model, the user modelling module may conclude 
that the user knows the more general concept, and the subsumption relationship between the more 
general concept and the more specialized concepts as welL6 

For example, suppose the user has indicated knowledge of "red," "blue," "green" and "yellow." 
The concept generalization rule would use the knowledge in the domain model to assert that the 
user knows the concept "color." Further, the rule would assert that the user knows that red, blue, 
green and yellow are kinds of colors. 

61 am assuming a KL-ONE type of knowledge representation. A concept A subsumes a concept B if and only if 
every instance of B is an instance of A. In KL-ONE, concepts are placed in a lattice, with directed links representing 
the subsumption relations between them. 
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Figure 5.4: A sample rule graph. An arc from node A to node B indicates that A supports B. '+' 
indicates positive support, while '-' indicates negative support. 

The concept generalization rule is triggered when the user knows several concepts that have a 
common generalization. The actual number of concepts is probably quite small, perhaps 3 or 4. 
People tend to  quickly draw generalizations, so if the user indicates knowledge of 3 or 4 concepts, 
it is reasonable to assume that he also knows of a more general concept that subsumes them. 

5.4.4 Consequential Generalization Rule 

The consequential generalization rule is similar to the concept generalization rule, only it operates on 
rule-based knowledge. The concept generalization rule works by using the subsumption hierarchy 
to discover immediate subsumers of concepts believed to be known by the user. Likewise, the 
consequential generalization rule uses the graph structure of rules to find immediate consequences 
the user is likely to  know. 

Before presenting the consequential generalization rule, an explanation of the rule structure is 
necessary. The rule base of an expert system can be viewed as a graph structure. The nodes of the 
graph are properties used in reasoning by the expert system. The links represent the dependencies 
between properties that are induced by the rules. For example, an expert system that gives advice 
about investments would have rules relating properties of the user such as age, income and number 
of dependents to  the amount of risk they can accept. Acceptable risk then determines the classes of 
investment vehicles that should be considered in a particular situation. This example is illustrated 
in figure 5.4. 

The consequential generalization rule reasons on the dependency graph of properties for the 
expert system. If the user believes that a certain set of properties is relevant, then a property 
affected by this set, and the links from the set to this property may be known by the user. The 
consequential generalization rule is: 

Rule 9 If the user model indicates that the user believes that several properties having a common 
consequence are relevant, then the user modelling module may assert that the user knows of the 
common consequent, believes that it is relevant, and knows of the links between the set of properties 
and the common consequent. 
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Consider the following conversation. 

(4) C. I would like to  get your advice today on what I should do 

(5) with some of my assets. 

(6) E. Sure. 

(7) C. OK. I'm 27, recently married. 

(8) My wife makes $20,000 a year. 

(9) I make about 23 or 24 thousand depending on commissions and bonuses. 

(10) We have some certificates. 

(11) We have an All Savers certificate that's due next October. 

In this conversation the caller happens to be fairly knowledgeable about investments. Thus he 
supplies information pertinent to determining how much risk he and his wife can accept, what 
their total income is, and so on. The consequential generalization rule will allow a user modelling 
module to conclude that this person knows about properties such as risk and investable income, 
and perhaps others as the conversation progresses. 

Although the consequential generalization rule can indicate that the user recognizes dependen- 
cies between properties, it cannot indicate what kind of dependency exists. Dependency links may 
supply either positive or negative support for a property. For example, in figure 5.4, both "retired7' 
and "dependents7' influence the financial obligations a user has, but in opposite ways. If the user 
has dependents, his obligations tend to be greater, while a retired user would tend to have fewer 
obligations. If the user provides information about retirement status and number of dependents (as 
well as other properties that influence financial obligations), the consequential generalization rule 
will be able to  conclude that the user knows of the "obligations" concept, and of the dependency 
links connecting "dependents" and "retired" to "obligations." However, the rule is not capable 
asserting whether the user knows that being retired tends to reduce obligations-only that the user 
knows that retirement status influences obligations. 

5.4.5 Distribution Rule 

The distribution rule depends on the structure of the knowledge representation, but in a way 
different from the generalization rules. The distribution rule relies on the current user model, 
the domain model, and the user's statements to augment the user model. In some situations the 
system will expect a response from the user. The domain model will specify the range of possible 
responses. If the user's response is limited to some subset of this range, it is evidence that the 
user lacks knowledge of the other possible items for the response. The distribution rule is stated 
as follows. 

Rule 10 Given a situation in which the user is to provide a list of items from a class for a response, 
if the user's response consists only of a particular subset of those items, then the user modelling 
module can assert that the user lacks knowledge of the other items i n  the class. 

Again an example will illustrate the rule. 
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(12) C. We have $40,000 in money market. 

(13) One is coming due, a $10,000 money market. 

(14) We have $2300 each in a savings account at 6% 

(15) and then we have $1000 each in a credit union at 7%. 

(16) What I'd like to  know is whether you think this is good savings, 

(17) or how you think we might do better, 

(18) maybe on a treasury bill? 

The expert's goal, which is determined at the end of the caller's statement, is to  evaluate the caller's 
investments. The expert thus expects the caller to list her investments, which should be in the range 
of investment securities. The caller has provided this list, but the items listed all fall under a small 
subcategorization of securities, fixed income debt securities. Further, all the investments currently 
held are obtainable from banks, credit unions or savings and loan institutions. The distribution 
rule would conclude from this example that the user does not know much about non-fixed income 
securities, investments such as stock, commodities or options. In fact, she may not have knowledge 
of securities beyond those available at bank or bank-like institutions. 

The effectiveness of the distribution rule depends on three restrictions on the selection of items. 
First, the selection should not call for a limited set of items. For example, if the user is asked to 
choose only three from a class of items, the fact that some items were omitted cannot be attributed 
to lack of knowledge, it might be due to the selection limitation. Likewise, the items in the selection 
class should not be interdependent. If the choice of item A precludes choosing B, then B7s omission 
may be due either to  lack of knowledge or to the fact the A was chosen. Finally, the selection process 
should not be externally influenced. For example, if personal preferences influence the selection, 
items may be omitted because they are not preferred, not because of lack of knowledge. 

The distribution rule can be a powerful technique for identifying large areas in which the user 
lacks knowledge. However, it must be used with caution. The restrictions on the rule are significant 
and must be observed. If not, the user model could hold drastically incorrect beliefs about the user. 

5.4.6 Entailment Rules 

The three entailment rules make assertions to the user model based on logical inferences the user is 
expected to  perform. They are included with the model-based rules because their conclusions are 
implicit in the representational structures. The entailment rules consist of the transitive subsump- 
tion rule, the inheritance rule and the transitive reasoning rule. 

Transitive Subsumption Rule 

The transitive subsumption rule states: 

Rule 11 If the user believes A subsumes B, and that B subsumes C ,  then the user believes that A 
subsumes C.  

For example, if the user believes that treasury bonds are U.S. government securities, and that U.S. 
government securities are debt securities, then it is reasonable to assume that the user believes 
that treasury bonds are debt securities. Using a KL-ONE type of knowledge representation for 
concepts, the conclusions of this rule are implicit: if there is a path of directed links from C to A, 
then A subsumes C. 
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Inheritance Rule 

The inheritance rule also involves inferences about concepts the user believes. 

Rule 12 If the user believes a concept A has property P ,  and further believes that A subsumes 
concept B,  then the user believes B has property P .  

For example, if the user believes that stock share; have a par value, and that a share of IBM is a 
share of stock, then it is reasonable to expect that the user believes a share of IBM has a par value. 

Transitive Reasoning Rule 

The transitive reasoning rule is similar to the transitive subsumption rule, but works with the rule 
dependency graph. 

Rule 13 If the user believes PI depends on P2, and that P2 depends on P3, then the user believes 
that PI depends on P3. 

This rule merely assumes that the user is able to chain together the individual dependencies he 
believes. 

General Entailments 

The entailment rules stated here are only explicit cases of more general entailments the user might 
perform. With a large body of existing knowledge, it is reasonable that the user will apply his 
logical reasoning capabilities to develop new beliefs. Unfortunately, the reasoning that humans 
perform is significantly different from formal logic. Thus it is not possible, for example, to ap- 
ply an automatic theorem prover to a user model in order to discover further beliefs of the user. 
Such an approach would result in asserting to the user model many beliefs that the user did 
not have. Although it is quite likely that other entailment rules exist, they are not apparent. 
Many researchers are studying formal methods to model the knowledge and beliefs of agents 
[Fagin 85,Halpern 85,Konolige 83,Moore 841. Progress in this area should lead to further, more 
robust entailment rules. 

5.5 Human Behavior Rules 

The human behavior rules are rules inspired by certain common aspects of human behavior. Many 
of these aspects are a result of the type of interaction that occurs between an advice-seeker and 
an expert, yet they are not general communicative rules. Instead, these rules are based on aspects 
of human behavior that go beyond maintaining a cooperative conversation. Five specific human 
behavior rules are presented in this section: the agent rule, the direct meta-statement rule, the 
evaluation rule, the shared reasoning rule and the misconception rule. 

5.5.1 Agent Rule 

The agent rule relates actions to beliefs held by the user. The basic premise of the agent rule is 
that an agent who performs an action knows the action, and the facts relating to the action. The 
fact that the user is an active agent is crucial to this rule. Knowing that the user knows of an 
action is not sufficient to conclude that he actually knows each step of the action, or the concepts 
related to the action. However, if the user actually performs the action, this is evidence that the 
user performed the steps of the action, and hence must know all about the action. The statement 
of the agent rule is: 
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Rule 14 If the user is the agent of an action, then the user modelling module can attribute to the 
user knowledge about the action, the substeps of the action and the factual information related to 
the action. 

A situation in which the agent rule can be used is illustrated in the following statement: 

(1) C. I just rolled over two CD's. 

This statement will cause the user model to include the fact that the user believes she has performed 
the "roll over" action. Since the agent of this action is the user, the agent rule will cause the user 
model to include beliefs that the user knows about things related to rolling over a CD. T.hese 
include: knowing that CD's come due, that money invested in one CD can be reinvested in another 
CD, that CD's are obtained from banks, and so on. Thus knowing the user was involved in an 
action can provide a lot of information about the user's beliefs. 

5.5.2 Direct Meta-Statement Rule 

Sometimes people will make direct statements about what they do or do not know. This is especially 
the case in the type of conversations studied in the transcripts, in which the advice-seeker and expert 
have never spoken before, and the caller lacks knowledge about the domain. Examples of a caller 
making a direct meta-statement about her knowledge include the following. 

(2) C. I'm not too acquainted with finances, 

(3) and I would like to have your advice. 

Another technique for indicating a lack of knowledge is tb simply ask a question. The following 
conversation includes two questions from the caller that indicate a lack of knowledge that he wants 
the expert to fill. The first question arises as a result of the conversation, while the second is 
initiated solely by the caller. 

(4) E. OK. First five thousand should go into a money market fund, 

( 5 )  put a thousand in passbook . . . 
(6) C. OK. Can you tell me what the money market is? 

(7) How does . . . 
(8) E. A money market fund is a group of people getting together- 

(9) put their money together in a pool and it is invested by professional 
investors 

(10) C. Can you explain to me what the certificate is? 

(11) E. A certificate? 

(12) C. Yes. 

(13) E. I haven't said anything about a certificate. 

(14) C. I know, I just . . . 
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(15) E. All right. A certificate in a bank is evidence 

(16) that you have from the bank that your money is on deposit for a 
specified period 

The most appropriate way to handle direct statements by users about their own knowledge is 
to take them at their word. Although this may seem obvious, the problem is more difficult than a 
first glance might indicate. Users who claim a lack of knowledge about a subject frequently do have 
some knowledge about it. Often the statement about their lack of knowledge is a means of ensuring 
that the expert will not assume they know more than they do. Thus in subsequent interaction the 
expert may tell the user about things the user already knew. A user model that assumes the user 
does not know what he claims not to know will thus tend to be incorrect in parts. Some of these 
errors may be corrected by information about the user from other sources, but other information 
may still remain incorrect. However, since the user wants the system to believe he or she lacks 
knowledge about the subject, assuming that lack of knowledge in the user model should support 
acceptable interaction by the system. 

The examples and discussion so far have ignored direct statements by the user about knowledge 
the user does have. While this should not be ruled out, such statements tend to be interpreted as 
a boast, and hence are rare in normal conversation. 

With these preliminaries, the direct meta-statement rule can be stated as follows: 

Rule 15 If the user makes a direct statement about his or her own knowledge, the user modelling 
module should update the user model to refIect this statement. 

In terms of the concept taxonomy of knowledge in the user model, a statement such as "I don't 
know anything about C" should cause the direct meta-statement rule to indicate that the user does 
not know about C, the roles of C, any concepts subsumed by C, or elements of the rule dependency 
graph that are associated to C or the concepts it subsumes. 

5.5.3 Evaluation Rule 

The evaluation rule is concerned with reasoning the user has performed. Sometimes a user will 
make statements that indicate ignorance of the reasoning in the domain model. The system, in 
evaluating the information provided by the user, recognizes that actions taken by the user are 
incorrect. These incorrect actions indicate that the user did not know about certain rules in the 
domain knowledge base, for otherwise the user would not have made the incorrect actions. The 
formal rule is as follows: 

Rule 16 If the system is able to evaluate actions taken by the user given a certain situation, and 
those actions do not conform to the actions the system would have taken, then the user modelling 
module can identify portions of the reasoning done by the system that the user does not know about.7 

An example of how the evaluation rule is used can be seen in the following conversation. 

(17) C. I have $10,000 in stocks and $10,000 in a savings fund. 

(18) E. Why so much in a savings account? 

 his rule assumes the system's knowledge is always correct and complete. Thus the user will never possess valid 
knowledge about the domain that the system does not know. In the context of advisory systems this assumption is 
reasonable, since it is expected that the expert is much more knowledgeable than the advice-seeker. 
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(19) C. Well, because I'm of uncertain health and I'm afraid I might be ill and 
need it. 

(20) E. Well how about if you move it to a money market fund? 

(21) E. There's no reason for leaving that much in a savings account. 

(22) They must roll out the red carpet and kiss you on both cheeks every 
time you walk in there. 

(23) Leave a maximum of $1000 in there and put $9000 into a money market 
fund. 

In this conversation the caller makes a statement that leads the expert to an immediate evaluation: 
she has too much money in her savings account.' Thus in modelling the caller the expert can 
conclude that she does not recognize the reasoning that implies a lot of money in a savings account 
is not a good idea. 

The evaluation rule only makes conclusions about what the user does not know. Thus, in the 
example, the rule would assert that the user does not know the rules in the domain model pertaining 
to investing in savings accounts. To find out what reasoning the user did use requires additional 
information. In the example, the expert pursues this reasoning by asking the caller to justify her 
action. 

This rule does not work in situations where the user's action coincides with the expert's eval- 
uation. In such situations it might seem that the user must know the reasoning rules the expert 
has, but this is not necessarily the case. The fact that the user's action coincides with the expert's 
evaluation could be accidental. Even if the user did perform reasoning in deciding on the action 
taken, that reasoning may not coincide with the expert's. Thus this situation does not warrant a 
judgment about the reasoning knowledge of the user. 

5.5.4 Shared Reasoning Rule 

The shared reasoning rule is similar to the evaluation rule. In this case though, the user explicitly 
states that he believes the expert and user share common reasoning. The following are a couple of 
examples of statements by an advice-seeker that assume some shared reasoning on the part of the 
advice-seeker and the expert. 

(24) C. . . . and here's where you're going to holler, 

(25) I've got $5,000 in checking and $10,000 in savings. 

The caller recognizes that the expert believes $5,000 in checking and $10,000 in savings is too much 
(probably from listening to the radio program earlier), and makes a statement that indicates he 
knows those amounts are too large. 

In the second example, the caller simply says: 

(26) C. I've got 350 shares of GM stock, need I say more? 

*These conversations were transcribed in February 1982, when inflation was near its peak. At that time the 
interest rate on a savings account was considerably less than what could be earned in a money market fund, so 
having a lot of money in a savings account was always a bad idea. 
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At the time of the radio program the price for GM stock had fallen drastically. The caller is 
indicating that he believes this was a poor investment, and that the expert shares this belief. 

How much reasoning can the user modelling module assume is shared? In the example above, 
it is not likely that the caller shares all of the complex reasoning rules the expert has for evaluating 
stocks. Rather, the caller knows some basic rules and the overall evaluation. This is incorporated 
into the shared-reasoning rule as follows: 

Rule 17 If the user makes a statement that assumes the user and system share reasoning about a 
subject, then the user modelling module can assert that the user believes that the system holds this 
reasoning, and that the overall reasoning of the user about this subject is the same as the overall 
domain reasoning rules. 

"Overall reasoning" should be interpreted to mean that the user model will not assume the 
user knows all of the intermediate decision properties and dependencies in the domain knowledge 
base. Rather, the properties believed by the user model to be known by the user are connected 
by positive or negative support links to the common conclusion. Thus the shared-reasoning rule 
allows the user model to have knowledge not only of the dependencies in the rule graph, but also 
of whether these links provide positive or negative support. 

5.5.5 Misconception Rule 

The misconception rule is unique. It is triggered by identifying that the user has a misconception 
about some information that the system knows. What distinguishes this rule is the fact that 
recognizing a misconception does not enable the user modelling module to draw new conclusions 
about the user. Thus, strictly speaking, the misconception rule is not an acquisition rule. It 
is included here because it enables certain activities that can result in the acquisition of further 
information for the user model. 

Misconceptions play an important role in advisory interactions. If the expert recognizes a 
misconception on the part of the advice-seeker, the expert will usually seek to correct this mis- 
conception immediately, before continuing with the conversation. Thus a user modelling module 
capable of recognizing such misconceptions is an important component of a cooperative advisory 
system. 

In addition to aiding the advisor, misconception recognition can eventually lead to additional 
information for the user model. Because the advisory application will try to correct a misconception 
held by the user, notifying the application of a user misconception can lead to a clarification dialogue 
that will resolve the misconception in the user model. Thus the misconception rule is part of a 
two stage process. The rule will detect the misconception and notify the application. From this 
point the responsibility lies with the application to resolve the misconception. The application may 
be able to do this directly, using its own knowledge and reasoning ability. In this case the user 
modelling module should provide facilities to allow the application to update the user model (or 
at least present the corrective information). If the application cannot resolve the misconception on 
its own, it may then initiate a dialogue with the user that will allow the user model to be updated 
via the normal acquisition rules. 

An example of a dialogue in which the advice-seeker holds a misconception that the expert 
seeks to correct is the following: 

(27) C. How about if I bought it from a major bank? 

(28) Can I give the name of the bank I'm using (on the radio) or not? 
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(29) E. Yes, go ahead. 

(30) C. I'm using Bache and Company. 

(31) E. They're not a bank-they're a broker. 

In this dialogue the caller has a rather clear misconception, which the expert immediately corrects. 
The misconception rule says: 

R u l e  18 If the user model indicates the user believes some piece of information P is  true, while 
the domain model knows P is false, or vice versa, then the user modelling module can notify the 
application that the user holds a misconception about P.  

Note that a misconception is detected only when the user model indicates the user has a definite 
belief about P. Lack of knowledge by the user is not sufficient to indicate a misconception. 

For the type of knowledge being considered in this work, four kinds of misconceptions can 
occur. Two, misclassification and misattribution, are object-related misconceptions. The other 
two, spurious dependencies and incorrect support, are related to reasoning rules. 

Object-Related Misconceptions Object-related misconceptions are misconceptions about the 
knowledge in the domain concept hierarchy.g A misclassification occurs when the user model 
indicates that a subsumption relationship exists between two concepts, but that relation does not 
occur in the domain model. In a typical example, the user might believe that a whale was a kind 
of fish. A misattribution occurs when the user model ascribes a role to a concept that the domain 
model indicates the concept does not have. Thus if the user believes that a whale has gills, the 
property of having gills is incorrectly attributed to the concept of whale. 

Reasoning-Related Misconceptions The misconceptions related to reasoning rules concern 
the dependency links between properties in the rule graph. A spurious dependency occurs when 
the user believes that a decision property A influences another decision property B,  and the do- 
main model knows that B does not depend on A, or vice versa. Such misconceptions can usually 
be detected when the user's evaluation of a situation differs from that of the expert. The incorrect 
support misconception occurs when the user model and domain model both agree about a depen- 
dency link between two concepts, but conflict about whether the link provides a positive or negative 
support. 

5.6 Statements Made by the System 

The user model acquisition rules in the preceeding sections have used the user's statements and 
the existing user and domain models to  draw further conclusions about the user. In this section, 
information that can be obtained for the user model from the statements made by the system is 
focused on. For the most part, the contributions of the system do not add much to  the user model. 
Consequently new rules will not be introduced. Instead, some of the acquisition rules already 
presented will be modified to apply to system statements as well as user statements. 

Two assumptions are appropriate in considering how system statements should influence the 
user model. The first assumption is that the user is paying attention to the statements made by 
the system, since the user came to the system for advice. The second assumption is that the user 

'The notion of object-related misconceptions was introduced by McCoy. The descriptions given here for misclas- 
sification and misattribution are taken from [McCoy 851. 
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believes what the system says. This is reasonable for two reasons. First, the system itself should 
be generating statements that the user can be expected to  understand and believe. Secondly, since 
the user is seeking advice of an expert, the user is likely to believe what the expert says. Even 
when this assumption fails, the user is likely to challenge statements he does not believe, perhaps 
by asking follow-up questions. In this case, the user model can be corrected. 

The inferences that can be drawn from statements made by the system are positive inferences: 
the user model will receive new information about what the user does believe, but not information 
concerning lack of knowledge on the part of the user. These positive inferences are triggered by 
information in the system statement, just as the communication rules described earlier are triggered. 
In fact, several of the communication rules can be altered slightly to recognize that the source of 
information can be either a user or a system statement. 

5.6.1 Revised Direct Inference Rules 

Each of the direct inference rules can be applied to  system statements as well as user statements. 
Recall that the direct statement and presupposition rules rely only on the statement itself, and 
do not depend upon the user or domain models. The direct statement rule says the user believes 
a statement. If the user makes the statement this is definitely reasonable. If the system makes 
a statement, the rule is also reasonable, assuming the user believes what the system says. The 
presupposition rule states that the user believes the presuppositions of a statement. For the user to 
understand and believe a statement made by the system, he must also believe the presuppositions 
of that statement. Thus the direct inference rules can be modified to apply to statements made by 
the system as well. The revised rules are: 

Rule 1' The user modelling module can assume that a statement made by either the user or the 
system is believed by the user. 

Rule 2' The user modelling module can assume that presuppositions of statements made by either 
the user or the system are believed by the user. 

5.6.2 Revised Implicature Rule 

Only one of the implicature rules can be applied to statements made by the system. This is the 
relevancy rule. The relevance rule states that the user believes all of the information provided in a 
statement is relevant. If the user believes the system is an expert, this rule should apply not only 
to statements made by the user, but to also the system's statements. Thus the relevancy rule can 
be restated as follows: 

Rule 3' If a statement includes the clause P, the user modelling module can assume that the user 
believes that P ,  in  its entirety, is used in reasoning about the current goal or goals of the interaction. 

The remaining communication rules cannot be applied to system statements because they do 
not make positive inferences about the user's beliefs. The model-based and human behavior rules 
are based on sources of knowledge other than the communication between system and user, so they 
cannot be extended to apply to statements made by the system either. Thus knowledge for the 
user model obtainable from system statements can be handled by simply extending some of the 
communication rules previously presented. 
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5.6.3 Embedding Acquisition Rules in the User Model 

The rules that have been presented in this chapter have focused on acquiring what might be 
call primary knowledge for the user model: the user's own beliefs about the domain. Another 
important area of user model acquisition is acquiring knowledge about what the user believes 
about the knowledge of other agents, in particular the system. Although acquiring this knowledge 
will require some specialized techniques, user's beliefs about other agents can, in part, be acquired 
by a re-application of the rules discussed in this chapter. 

The user's model of other agents can be built by recursively applying the model acquisition 
rules. For example, consider building the model the user has of the system. If the user uses the 
acquisition techniques presented in this chapter, these rules can be applied to  statements made 
by the system in order to  construct the user's model of the system. In fact, this process can be 
continued to arbitrarily deep levels of modelling. 

A more robust modelling system would allow for the acquisition rules used by these embedded 
models to differ from the system acquisition rules. This is particularly important if domain specific 
model acquisition rules are included. In this case it is quite likely that the acquisition rules of 
various agents would differ, requiring the rules to be contained in the user model itself. 



Chapter 6 

Proposal for Research 

The preceeding chapters have made a case for a user modelling module with some features sig- 
nificantly different from those in existing user modelling systems. I have argued that general user 
modelling systems are needed, and have focused on achieving domain generality in a user modelling 
module. The effectiveness of a general user modelling module depends on its ability to  do implicit 
user model acquisition. Domain generality requires that a user modelling module have the ability 
to acquire its own information. This allows the module to easily transfer between systems that have 
different underlying domains. Implicit user model acquisition also reduces (or even eliminates) the 
effort required to  explicitly encode information about users for the user model ahead of time. In 
the previous chapter I proposed a set of rules that should enable implicit user model acquisition, 
yet are domain independent. 

This chapter describes my future research plans. This work will be undertaken with two goals 
in mind. The first (and by far the more important) goal is to test the effectiveness of the implicit 
user model acquisition rules. The second goal is to implement a general user modelling module for 
cooperative advisory systems. I hope to  present a framework for the general user modelling module, 
but will not be able to implement all the pieces. These goals will be discussed in the remainder 
of this chapter, in reverse order. The next section includes the framework for the general user 
modelling module, my current ideas for its implementation, and a discussion of which portions 
will actually be implemented. The following section will discuss implementing and testing the user 
model acquisition rules. The final section reviews the contributions this work will make to the field 
of user modelling. 

6.1 General User Modelling Module Architecture 

A general user modelling module is part of a system that has at least three components: 

1. An application. This is that portion of the system that accomplishes the task for which the 
system was built. In the systems we have been considering this is the expert system advisor. 

2. A user interface. The user interface manages the communication between application and 
user. Presumably the user interface will perform translations so that the user's statements 
are understandable by the application, and vice versa. 

I 

3. The user modelling module. This builds the model of the user by eavesdropping on the 
interaction between the user interface and the application, and by using the domain knowledge 
of the application. 
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The user modelling module itself has three components, which can be describe as the represen- 
tation facilities, acquisition facilities, and interface support facilities. Each of these will be discussed 
in the following sections, followed by a discussion of how explicit and implicit knowledge acquisition 
techniques could be coordinated in a general user modelling module. 

6.1.1 Representation Facilities 

The user modelling module must be able to represent the information believed t o  be held by the 
user. The representation requires some form of knowledge representation system or language. In 
addition, as discussed in section 2.3.4, the representation for a general user modelling module must 
be able to  handle recursive belief structures (to represent the beliefs a user might hold about other 
agents, including the system) and must be able to deal with the inherent non-monotonicity of the 
information in the user model. 

As a basis for representing the user's knowledge of factual information, I plan to  use NIKL 
(New Implementation of KL-ONE) [Moser 831. NIKL uses a semantic network representation with 
a restricted set of link types. I will be primarily interested in representing concepts and their roles, 
along with the subsumption links between concepts. The classifier will not be used. 

One problem with building a user modelling module that must maintain models for a large 
number of individual users is the large amount of storage space required. Furthermore, much of 
the information in each of the user models is effectively the same. Kobsa [Kobsa 851 has presented 
a representation technique that solves this problem, and at the same time effectively deals with the 
problem of representing recursive belief structures as well. 

Kobsa represents the information for all users in one knowledge base. This information is 
partitioned to indicate the beliefs of individual users through the use of contexts. A context is a 
set of acceptance attitudes. An acceptance attitude indicates the state of belief an individual user 
model holds for an element of the knowledge base. In Kobsa's VIEDPM system the acceptance 
attitude can have three values: 

'+' The user believes (accepts) the item. 

'-' The user believes the item is not true. 

'0' The user has no belief about the item. 

The elements of the knowledge base to which the acceptance attitudes refer consist of each of 
the isolated components in the knowledge representation structure. Thus there will be acceptance 
attitudes for each concept, each role, each role filler, each of the subsumption links in the hierarchy, 
and so on. Every context holds one acceptance attitude for each of the elements in the central 
knowledge base. A context thus represents a user's attitudes towards all of the elements in the 
central knowledge base. 

The context technique allows not only the individual user models to share information, but the 
domain model as well. The representation of the domain information is simply another context, 
like all the rest. Thus the context technique provides a convenient mechanism for representing 
perturbation user models. The underlying collection of knowledge in the knowledge base may be 
somewhat jumbled and even contradictory, but that does not matter. The "correct* knowledge 
(from'the application's point of view) is obtained through the domain model context. Other 
contexts are free to be as similar to or different from the domain model as they like. 

Kobsa also uses the acceptance attitude mechanism to handle beliefs the user may have about 
other individual's beliefs. This is accomplished by including in the context acceptance attitudes 
that refer t o  the acceptance attitudes of other contexts. Thus if A believes that whales are fish, 
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A's context will include an acceptance attitude with a '+' indication, referring to the subsumption 
link between fish and whales. If B does not believe that A believes whales are fish, B will have an 
acceptance attitude with a '-' link referring to  the above mentioned acceptance attitude of A. 

In implementing the general user modelling module I hope to  adopt a technique similar to  
Kobsa's. My implementation will differ from Kobsa's in two ways. First, it must be extended to 
handle the representation of rule-based knowledge. Fortunately this is a simple extension. Secondly, 
my implementation will take a different approach to  handling the acceptance attitudes. 

Rule-Base Knowledge 

The rule-base I envision for the domain model will be a simple one. Rules will be limited to a single 
antecedent and consequent per rule. This limitation is necessary for the user modelling module to 
be able to  identify the elementary beliefs of the user. More complex rules can lead to  confusion: 
the user may not believe the rule, but may believe significant portions of it, or vice versa. Although 
this limitation is strict, it is in keeping with other observations that have been made about rule- 
based systems. A common criticism of conventional rule-based systems is that they mix domain 
and control knowledge in a single rule. This mixing severely limits the ability of the system to 
adequately explain its reasoning, or to be used in teaching [Clancey 83,Brown 80,Swartout 831. 

Given the limitation to simple rules, extending acceptance attitudes to the rule base is a simple 
matter. The rule base can be organized into a dependency graph with properties as the nodes 
and rules forming the links. The links will be marked to  indicate the form of the dependency. 
For the sake of user modelling, a simple indication of positive or negative support seems sufficient. 
However, the support indicator range could be greater, such as evidence weights. A context will 
include acceptance attitudes for each node, each rule link and for the support indicator on each 
link. 

Acceptance Att i tudes  

Kobsa limits acceptance attitudes to a three-valued logic. Rather than simply indicate belief or 
disbelief in an item, I plan to keep a record of the justifications for holding a belief as well. This 
extension of the acceptance attitudes addresses the last issue in representing user models, the issue 
of non-monotonicity in the model. 

Keeping justifications for the beliefs held in a user model allows those beliefs to be altered if 
necessary. Such modifications are generally handled by a truth maintenance system [Doyle 791. A 
truth maintenance system seeks to maintain consistent sets of beliefs, and at the same time cache 
inferences that are performed to reduce computation. The justifications for belief in an item, p, 
will consist of the acquisition rules that affect the user model's acceptance of the fact. This can 
include justifications both for and against the user's belief in p. 

6.1.2 Acquisition Facilities 

The acquisition facility consists of the user model acquisition rules, and the machinery necessary 
to  support them in the user modelling module. Three features of the acquisition facilities are 
significant: the independence of the acquisition rules, the need for rule arbitration, and the location 
of the rules in the user modelling module. 
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Rule Independence 

Although the execution of some rules may enable other rules to fire, the rules as described in the 
previous chapter are strictly independent of each other. This independence means that the rules 
may be run in any order, or even in parallel. Each rule only runs when it recognizes a configuration 
of knowledge in its knowledge sources (the user's statement, the system's statement, the existing 
user model and the domain model) that it is capable of handling. 

In practice the acquisition will be driven by the arrival of new information from the system-user 
interaction. A new statement, either from the user or the system will tend to  activate communica- 
tion rules first. Once some of these have fired, changing the user model, the model-based rules and 
human behavior rules are more likely to fire. This process will continue until no further rules can 
fire. 

Ideally, the control of acquisition rules should be both data and demand driven. Because a user 
modelling module may need to volunteer information to the application, some model acquisition 
must occur as new data arrives. On the other hand, this may result in a large amount of wasted 
computation, particularly when the user modelling module draws inferences that are subsequently 
reversed when as information arrives. However, since this system is primarily concerned with testing 
the effectiveness of the acquisition rules, I plan to  adopt the simpler, data-driven technique. 

Rule Arbitration 

Despite the independence of the rules, there must be some technique for reasoning about the 
precedence order of the rules. This arbitration is necessary when trying to determine acceptance 
attitudes in individual user models. It  is quite possible that different acquisition rules may conflict 
about whether the user believes a particular item or not. For example, the evaluation rule may 
support the opinion that the user does not know a decision property p, while the consequential 
generalization rule might suggest that the user believes p. If it is necessary to know whether the 
user believes p, some means of reasoning about the acquisition rules is necessary. 

The user modelling module may need to determine the acceptance attitude towards a particular 
item for two reasons. An obvious situation is when the application (or some other module outside 
the user modelling module) asks to know whether the user believes some item p. In this case the 
user modelling module must make a determination about the user's belief of p in order to meet 
the request.' The model acquisition process itself may also need to know acceptance attitudes. 
Many of the model acquisition rules, particularly the model-based rules, are triggered by certain 
collections of beliefs in the user model. For these rules to fire, assumptions must be made about 
the belief status of items in the user model. 

At present I have given little thought to the actual arbitration techniques that will be used. 
It seems that a certain precedence among the rules exist. For example, conclusions based on the 
communication rules seem more likely to be correct because they are based on objective evidence 
of the user's beliefs-the user's behavior. On the other hand, in some situations the arbitration 
may be dependent on particular circumstances that require further reasoning. To accommodate 
this possibility I anticipate that a set of arbitration rules will also be included in the user modelling 
module. These rules can easily handle simple precedence relations among the acquisition rules, 
while enabling more complex arbitration reasoning if necessary. 

- - - - - - - - - - -- 

'This is not totally correct. The user modelling module might simply sidestep the issue by responding to the 
request by providing a list of the justifications concerning the user's belief in p. 
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System Model 

Figure 6.1: The location of knowledge sources in system and user models 

Ru le  Location 

The location of the acquisition (and arbitration) rules in the overall system is also an important 
issue. The knowledge a user uses to reason about what he knows is an important component of a 
user model, as pointed out in chapter 2. This meta-knowledge may vary among users, thus each 
user model may have unique acquisition and arbitration rules. The presence of meta-knowledge 
in the user model suggests a parallel between the structure of the user and system models. The 
system's knowledge consists of knowledge about its users, the domain, and meta-knowledge for 
reasoning about both. Likewise a user model contains the user's knowledge about the domain, 
other agents (including the system), and meta-knowledge. This relationship is illustrated in fig- 
ure 6.1. The parallel between user and system models can be exploited, so that both share the 
same representation and reasoning facilities. 

The user's meta-knowledge will not be emphasized here. Acquiring knowledge about the user's 
meta-knowledge is very difficult, since direct evidence is usually not available. In this work, I will 
assume that the user's meta-knowledge about acquiring models of other agents is the same as the 
system's. 

6.1.3 Interface Support Facilities 

The third component of a general user modelling module is the interface support facilities. These 
facilities control the interaction between the user modelling module and other modules of the sys- 
tem. If the user modelling module is to be truly general, it must also be truly modular. This means 
that a well-defined interface must exist for communication between the user modelling module and 
other modules of the system, and that all modules are limited to using this interface. 

The user modelling module interface must support a variety of types of communication. The 
user modelling component must be able to access the communications between the system and the 
user, as well as the domain knowledge of the system. On the other hand, modules in the system 
may need to request information from the user model, or directly assert information about the user 
to the knowledge base. Furthermore, the user modelling module may need to volunteer information 
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to make provisions in the general user modelling module for a stereotype hierarchy. 

6.2 Testing the Acquisition Rules 

The primary goal of my future research is to test the effectiveness of the implicit user model 
acquisition approach, and of the acquisition rules outlined in this paper. This testing will involve 
the implementation of the acquisition portion of a general user model, the building of a sample 
domain model to use as a basis for the testing, and the examination of the user model during and 
after the processing of simulated conversations between the system and user. In this section I shall 
describe these three stages. 

6.2.1 Implementing the Acquisition Rules 

The acquisition rules as presented in the preceeding chapter are still in a rough form. A significant 
portion of the work ahead will be devoted to refining these acquisition rules to  the point where 
they can be implemented in a software system. In this process the formulation and organization 
of the rules may change. In particular, it is likely that many of the rules presented here will be 
implemented as a group of rules in the actual system. Likewise, it is possible that some rules may 
be combined or eliminated during the implementation process. 

Once the acquisition rules have been refined; the arbitration rules must be implemented as well. 
This process may require more experimentation, since the interaction of various rules can become 
quite complex and difficult to predict. At this point it will also be possible to see whether any 
broad classifications for the arbitration rules can be discovered, classifications that would be useful 
in defining new arbitration rules when new acquisition rules are added. 

In the previous section the architecture and control structure for the acquisition rules were 
described. This control structure, together with the refined acquisition and arbitration rules will 
be sufficient to implement the model acquisition portion of a general user model. 

6.2.2 The Domain 

An underlying application domain will need to be built to support the testing of the acquisition 
rules. The domain planned is that of personal investments. This domain is attractive for several 
reasons. First, personal investing was the domain of discussion in the radio program transcripts 
studied in developing the acquisition rules, facilitating the creation of sample conversations that can 
be used to test the performance of the acquisition rules. This domain will also enable a comparison 
of the modelling capabilities of the system with those of the human expert in the transcripts. 

Second, people vary greatly in their knowledge about investments. Thus modelling the range 
of possible users of an investment advisory system will be a good test of the capabilities of the user 
modelling module. 

Finally, personal investing is also a reasonable domain for a cooperative advisory system. Several 
software systems, including expert systems, exist that are designed to aid investors in choosing 
securities to invest in. Interfaces capable of dealing with a variety of individuals with different 
levels of knowledge about the domain will be needed in such a system, and so will user modelling 
capabilities. 

6.2.3 Simulating Conversations 

The actual effectiveness of the user model acquisition rules will be tested by letting the user mod- 
elling module process several simulated conversations. These conversations will be created by 
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to other modules in the system, or to notify other modules when information changes. 
I will focus little attention on the interface support issues. Although important, many of the 

interface support issues are far removed from the problems of user model acquisition. Thus even 
simple capabilities, like support for external query of the user model, will not receive the attention 
they deserve. 

In one respect my implementation will depart from being a truly modular system component. 
The advantages of sharing the knowledge representation for both the domain and user models is 
too great to ignore. Thus domain and user models will not be strictly separate entities. Instead, 
the domain model is constrained to use the same knowledge representation language and utilities 
that the user modelling module does. This departure from strict modularity seems acceptable in 
light of the advantages obtained in sharing the knowledge base. 

6.1.4 Explicit and Implicit Acquisition 

The emphasis of my research is on implicit user model acquisition. A practical user modelling sys- 
tem, however, will probably need to use both explicit and implicit techniques to  acquire knowledge 
about the user. This section will briefly discuss how these two activities could be coordinated to 
achieve more powerful user modelling capabilities. 

As mentioned in section 3.1.2, the use of stereotype modelling in a user modelling system can 
be very effective in identifying a large set of beliefs about the user quickly. Stereotypes represent 
the compiled knowledge that comes from experience. If this knowledge can be integrated with the 
implicit acquisition techniques, without introducing the need for pre-encoding large amounts of 
knowledge in the user model, the performance of the user modelling module will be improved. 

I propose is to use stereotypes as a supplement to the implicit model acquisition techniques. 
Stereotypes will be treated as a "last resort'' when attempting to determine beliefs of the user. 
This approach is justifiable for the following reason. Most of the implicit acquisition rules are 
conservative. They are more likely to miss beliefs held by the user than to attribute beliefs to the 
user falsely. Also, several of the rules (such as the consequence rule) conclude that the user believes 
one or more of a small set of items, without making further claims about which particular item or 
items the user believes. Thus in many cases the implicit model acquisition rules may get close to 
answering a request for information, but not be able to make a find determination from among a 
set of possibilities. At this point the compiled knowledge of a stereotype can be helpful, indicating 
which of the possibilities is most likely to be true for this individual. Reasoning about user beliefs 
is thus a two-stage process. In the first stage the implicit acquisition rules are used in an attempt 
to find a solution. If this fails, stereotypes can be used to pick up where the implicit rules left off. 

Implicit user model acquisition and the use of stereotypes can be integrated in another way as 
well. Stereotypes do not necessarily have to be acquired explicitly. The powerful implicit acquisition 
rules can be used to help build stereotype models specific to the system as it is used. If the system 
has a large body of individual user models, these can be abstracted to create general stereotypes 
for classes of users. Such a technique would not only improve performance, but increase storage 
efficiency as well. A hierarchy of stereotypes as discussed in [Finin 861 could be used to organize 
both the individual and stereotype user models. The user model acquisition process would then 
consist of two steps: applying the implicit acquisition rules, followed by possible classification (or 
re-classification) to identify the most appropriate stereotype for the user. In fact, these steps might 
be iterated, since selecting a new stereotype might initiate additional domain-based rules, as well 
as acquisition rules specific to that stereotype. 

The coordination of the implicit acquisition rules is an interesting and potentially fruitful area. 
Unfortunately this work will not have a chance to address the issue. The most that can be done is 
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hand-coding the MRL representations of statements by the advice-seeker and expert. Since the 
planned domain is that of personal investments, these conversations will be based on the transcripts 
of the Harry Gross radio program. 

The effectiveness of the acquisition rules will be judged in two ways. The first method is to 
study the user model created by the system as the result of processing a conversation. Since the 
transcripts provide a large number of examples of expert responses to  advice-seekers' statements, 
the model that a human expert develops of the advice-seeker can be inferred in some detail. Fur- 
thermore, humans who read the conversations to be processed by the user modelling module will 
have definite expectations for the information the expert should believe about the advice-seeker. 
These expectations can be compared to the actual results obtained by the user modelling module. 
The performance of the user model acquisition rules can thus be measured by comparing the model 
obtained by applying these rules to the model humans would expect an expert to  develop. 

The second method for judging the effectiveness of the acquisition rules is to study the impact 
of the user model they generate on the behavior of the overall system. If the rules are effective, the 
system behavior produced by using the user model should be better than the behavior when a user 
model is not used. The determination of what constitutes better behavior is largely subjective, 
but in many situations generally acceptable criteria can be identified. For example, rather than 
generate explanations of its reasoning solely from the domain knowledge base (as conventional 
expert systems do), the user model might enable the system to generate explanations in terms of 
concepts the user model indicates the user understands. Likewise, the system might use knowledge 
from the user model in deciding what questions to ask the user: if the user model indicates the 
user does not know about certain properties, the system might omit asking questions about them. 
Thus if the user model acquisition rules acquire information about the user that enables the overall 
system to improve its interaction with the user, this will be evidence that the acquisition rules are 
useful in an interactive system. 

I have also claimed that these user model acquisition rules are domain independent. If time 
permits I would like to test this hypothesis as well, by changing the underlying domain and letting 
the user modelling module process a conversation that is concerned with a different domain. I have 
no particular domain in mind for this second test, but expect that it would be a much simpler or 
less complete domain than that implemented for personal investments. 

6.3 Contributions 

In summary, the work presented here will make three contributions to research in user modelling. 
The first contribution is the demonstration that powerful implicit user model acquisition techniques 
are possible. This means that a user model may be implemented more easily in many systems, 
because the amount of hand-coded user model information can be reduced. 

The second contribution of this research is that implicit user model acquisition can be performed 
in a domain independent manner. Thus implicit user modelling techniques not only reduce the 
amount of explicit knowledge about users that must be encoded, they can be readily transferred to 
similar systems that operate in a different domain. This means that a general user modelling module 
is feasible. Such a module can be included in an overall system with a minimum of disruption to 
enhance the interaction capabilities of the system. 

The final contribution of this research is the presentation of an architecture for a general user 
modelling module. Although it will not be possible to implement all portions of this module, 
implementation that does occur will be done in the context of this architecture. Thus the general 
user modelling module may be expanded with time to encompass its complete capabilities. 



Appendix A 

Summary of Implicit Acquisition 
Rules 

Direct Statement Rule The user modelling module can assume that a statement made by either 
the user or the system is believed by the user.' 

Presupposition Rule The user modelling module can assume that presuppositions of statements 
made by either the user or the system are believed by the user. 

Relevancy Rule If a statement includes the clause P, the user modelling module can assume that 
the user believes that P, in its entirety, is used in reasoning about the current goal or goals 
of the interaction. 

Sufficiency Rule If the user omits a relevant piece of information from a statement, then either 
the user does not know of that piece of information, does not know whether that information 
is relevant to  his current goal or goals, or does not know the value for the piece of information. 

Ambiguity Rule If the user makes a statement that the system finds ambiguous in the current 
context, then the user lacks knowledge of one or more of the alternative meanings for his 
statement. 

Action Rule If the user model includes the belief that a user knows an action, then the the user 
modelling module can attribute to the user knowledge of the preconditions and postconditions 
of that action. 

Consequence Rule 

i If the user believes a fact that can only result from one of a small set of actions, then 
the user believes that one or more of those actions has occurred. 

ii If the system knows a fact that can only result from one of a small set of actions, then 
the system believes that one or more of those actions has occurred. 

Concept Generalization Rule If the user model indicates that the user knows several concepts 
that are specializations of a common, more general concept in the domain model, the user 
modelling module may conclude that the user knows the more general concept, and the 

'The direct statement, presupposition, and relevancy rules stated here reflect the modifications added to handle 
statements made by either the user or the system. 
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subsumption relationship between the more general concept and the more specialized concepts 
as well. 

Consequential Generalization Rule If the user model indicates that the user believes that 
several properties that have a common consequence are relevant, then the user modelling 
module may assert that the user knows of the common consequent, believes that it is relevant 
and knows of the links between the set of properties and the common consequent. 

Distribution Rule Given a situation in which the user is to provide a list of items from a class 
for a response, if the user's response consists only of a particular subset of those items, then 
the user modelling module can assert that the user lacks knowledge of the other items in the 
class. 

Transitive Subsumption Rule If the user believes A subsumes B, and that B subsumes C, then 
the user believes that A subsumes C. 

Inheritance Rule If the user believes a concept A has property P, and further believes that A 
subsumes concept B, then the user believes B has property P. 

Transitive Reasoning Rule If the user believes PI depends on P2, and that P2 depends on P3, 
then the user believes that PI depends on P3. 

Agent Rule If the user is the agent of an action, then the user modelling module can attribute to 
the user knowledge about the action, the substeps of the action and the factual information 
related t o  the action. 

Direct Meta-Statement Rule If the user makes a direct statement about his or her own knowl- 
edge, the user modelling module should update the user model to reflect this statement. 

Evaluation Rule If the system is able to  evaluate actions taken by the user given a certain 
situation, and those actions do not conform to the actions the system would have taken, then 
the user modelling module can identify portions of the reasoning done by the system that the 
user does not know about. 

Shared-Reasoning Rule If the user makes a statement that assumes that the user and system 
share reasoning about a subject, then the user modelling module can assert that the user 
believes that the system holds this reasoning, and that the overall reasoning of the user about 
this subject is the same as the overall domain reasoning rules. 

Misconception Rule If the user model indicates the user believes some piece of information P is 
true, while the domain model knows P is false, or vice versa, then the user modelling module 
can notify the application that the user holds a misconception about P. 
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