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An Analog Neural Computer with Modular Architecture for Real-Time
Dynamic Computations

Abstract
The paper describes a multichip analog parallel neural network whose architecture, neuron characteristics,
synaptic connections, and time constants are modifiable. The system has several important features, such as
time constants for time-domain computations, interchangeable chips allowing a modifiable gross architecture,
and expandability to any arbitrary size. Such an approach allows the exploration of different network
architectures for a wide range of applications, in particular dynamic real-world computations. Four different
modules (neuron, synapse, time constant, and switch units) have been designed and fabricated in a 2µm
CMOS technology. About 100 of these modules have been assembled in a fully functional prototype neural
computer. An integrated software package for setting the network configuration and characteristics, and
monitoring the neuron outputs has been developed as well. The performance of the individual modules as
well as the overall system response for several applications have been tested successfully. Results of a network
for real-time decomposition of acoustical patterns will be discussed.
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An Analog Neural Computer with Modular 
Architecture for Real-Time Dynamic 

computations 
Jan Van der Spiegel, Senior Member, IEEE, Paul Mueller, David Blackman, Member, IEEE, Peter Chance, 
Christopher Donham, Member, IEEE, Ralph Etienne-Cummings, and Peter Kinget, Student Member, IEEE 

Abstract-The paper describes a multichip analog parallel 
neural network whose architecture, neuron characteristics, 
synaptic connections, and time constants are modifiable. The 
system has several important features, such as time constants 
for time-domain computations, interchangeable chips allowing 
a modifiable gross architecture, and expandability to any ar- 
bitrary size. Such an approach allows the exploration of dif- 
ferent network architectures for a wide range of applications, 
in particular dynamic real-world computations. Four different 
modules (neuron, synapse, time constant, and switch units) 
have been designed and fabricated in a 2-pm CMOS technol- 
ogy. About 100 of these modules have been assembled in a fully 
functional prototype neural computer. An integrated software 
package for setting the network configuration and character- 
istics, and monitoring the neuron outputs has been developed 
as well. The performance of the individual modules as well as 
the overall system response for several applications have been 
tested successfully. Results of a network for real-time decom- 
position of acoustical patterns will be discussed. 

I. INTRODUCTION 

R ECENT years have seen a renewed interest in neural 
networks for several reasons: a better understanding 

of the functions of the brain [I], improved mathematical 
models [2], development of new algorithms and net to- 
pologies, and the understanding of emergent collective 
properties of neural networks [3]-[5]. While much of the 
work has been theoretical, technological advances are be- 
ginning to make hardware implementations of such sys- 
tems possible with the goal to build machines capable of 
solving real-world problems. These tasks require com- 
putational power that is beyond the capabilities of current 
von Neumann-based digital computers. Biological sys- 
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tems solve these problems through parallel computations 
in a highly interconnected structure consisting of many 
nonlinear processing elements. 

Several approaches have been taken to the implemen- 
tation of neural networks. Such efforts date back to the 
early 1960's when electrical models of simple neurons and 
also more complex neural systems were first built [6], [7]. 
Only recently have more powerful and compact systems 
evolved. Technologies that are being used today include 
digital systems [8]-[lo], either in serial or parallel form. 
analog electronic networks [Ill-[2 11, and optical systems 
[22]-[23]. Digital approaches range anywhere from sim- 
ulation on von Neumann machines to special-purpose dig- 
ital neural networks. The advantages of digital ap- 
proaches are programming flexibility, computational 
accuracy, noise immunity, as well as the fact that digital 
technology is well established. However, digital methods 
have some distinct drawbacks which are inherent in the 
essentially sequential nature of the computations, and 
which remain even in a highly parallel architecture. For 
example, though high-speed parallel computers can cal- 
culate the state of each neuron in parallel, neurons still 
evolve sequentially from state to state. The digital com- 
puter calculations must converge for each time slice. Since 
the neural network elements are nonlinear elements of in- 
put and time, convergence can be a problem for networks 
configured with feedback and lateral inhibition. Another 
serious bottleneck in the performance of digital computer 
networks is the bandwidth between processors and mem- 
ory. In order to calculate the input for a given neuron, a 
processor must have access to all other neuron outputs. 
Hence, each processor must be able to access a large 
shared memory where the previous neuron states are 
stored. An extremely large bandwidth is required so that 
the memory can communicate with the processors. 

In contrast, analog systems can sum and scale arbitrary 
numbers of inputs truly simultaneously. The limited ac- 
curacy of analog components is not a serious problem be- 
cause neural networks are forgiving to component errors 
for the following reasons: 1) the output of the network is 
the aggregate response of many neurons acting collec- 
tively, and thus the result is less dependent on minor com- 
ponent variations; and 2) learning can be used to tune the 
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network response in spite of specific component error. 
Another advantage of analog systems is that time can be 
easily represented as a continuous variable through a time 
to potential or current transformation, thereby avoiding 
the clocks and counters required in digital systems to keep 
track of time. As a result, analog neural networks can pro- 
vide not only a mechanism for summation and scaling of 
incoming signals, but for temporal integration as well, in 
a fashion similar to biological networks. Biology has re- 
alized the advantages of analog methods and has achieved 
the impressive computational rates that approach the 
equivalent of 1 0 ' ~ - 1 0 ~ ~  floating-point operations per 
second' in spite of its slow hardware. 

This paper describes a large-scale neural network that 
is loosely modeled after the biological system. It is fully 
parallel and operates in analog mode. The architecture, 
the neuron characteristics, synapses, and synaptic time 
constants are modifiable. The system has several impor- 
tant attributes: 1)  in addition to synaptic weights that are 
adjustable over a large dynamic range, the system con- 
tains modifiable synaptic time constants which are re- 
quired for time-domain computations; as a result the net- 
work does spurio-temporal processing, which is a 
considerably more complex task than parallel processing 
done at discrete time steps; 2) the system is constructed 
from interchangeable nlodules with two-dimensional 
symmetrical pinout allowing a modifiable gross architec- 
ture in which the numerical ratios and arrangement of 
neurons, synapse, and connection modules can be easily 
selected; 3) except for global control lines, the modules 
have only connections to their nearest neighbors, result- 
ing in a simplified packaging and board design; and 4) the 
network is expandable to arbitrary size and can therefore 
be adapted to the complexity of the task. 

The network can be used in both learning and compu- 
tation mode. However, learning algorithms are imple- 
mented through a host computer by sampling the network 
state (as described in Section IV), and reprogramming the 
network as required. Thus, the full potential of the ma- 
chine is obtained, after learning, in situations involving 
neural computation of dynamic systems, such as acoustic 
pattern recognition, sonar signal classification, motion 
detection, etc. A prototype system consisting of 99 cus- 
tom chips has been designed, assembled, and tested. The 
overall system is fully operational and has been success- 
fully used for several dynamic computations. In addition, 
supporting software for programming the network and 
monitoring the state of the net has been developed. Re- 

Il'licrc are about 10" neurons in the hurnan brain which are richly in- 
tcrconncctcd with fcedback and lateral inhibitions. Each neuron has on the 
average 1000 synapses resulting in a total of l o J 4  connections. Each con- 
ncction has a tinic constant of approximately I Ins which corresponds to 
thc summing of charge on the postsynaptic membrane capacitance. To sim- 
ul;~te this set of .simultaneous nonlinear differential equations describing 
such a system, a time step as small as 0.1 ms would have to be used. Thus, 
10IH postsynaptic potentials would be updated per second. If each potential 
update took 1 to 100 floating-point operations, the etfective processing rate 
would be I O ~ ~ - I O ~ "  FLOPS, assuming all neurons are active. 

Fig. 1. Block diagram of the modular gross architecture of the neural net- 
work. The system consists of programmable neuron modules (N), synapse 
modules (S), time constants (T), and analog crosspoint arrays (blank 
boxes). The modules are directly interconnected through parallel analog 
lines. The state of each neuron is sampled and multiplexed on a single line 
(OM) that is connected to a digital host. 

sults and performance of the individual modules and the 
overall system are given below. 

As shown in Fig. 1, the machine architecture is a mul- 
tichip system containing neurons, synapses, modifiable 
time constants, and analog crosspoint switches. The ap- 
proach is to a certain extent inspired by biological sys- 
tems, in particular the cerebral cortex, in which there are 
separate neurons, axons, and synapses with a limited 
number of inputs for each neuron. In contrast to the bio- 
logical system, the system described here is fully modi- 
fiable including the neuron, synapse, and synaptic time 
constants, as well as the network topology. Such a design 
will allow the exploration of different network architec- 
tures for a wide range of applications, in particular dy- 
namic real-world problems. 

The modules of the neuron arrays are placed on a reg- 
ular grid and connected directly to neighboring synaptic 
and analog switch arrays. During operation the analog 
signal flow is as follows: the output signals exit from the 
north and south of the neuron chip; then the signals are 
routed via the analog switches until they are steered north 
or south into synapse modules, through a time constant 
module if required; the synapses provide the input to the 
neighboring neurons along the east or west direction. The 
switch modules allow the neuron outputs to be routed to 
any other neuron. Hence, fully interconnected multilay- 
ered networks can be easily implemented. However, the 
number of neurons that can be fully interconnected be- 
tween layers is limited to the number of synaptic inputs 
per neuron. Also, a wide range of sparsely interconnected 
networks can be mapped into the system. However, in 
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general, the machine architecture presents more oppor- 
tunities for short-range connections. Thus, the architec- 
ture favors local computations and a hierarchical organi- 
zation of data flow, which also seems to be true for the 
biological system. 

The ratio between the number of neurons, routing chan- 
nels, and synapses on each module is chosen to optimize 
the usage of available components for typical applica- 
tions. Earlier experience with a discrete system based on 
a similar architecture for the neural computation of 
acoustical patterns [24] has served as a guide in the choice 
of these module sizes. However, the modules are de- 
signed so that they can be repeated where required (e.g., 
placing two synapse modules on each side of the neurons 
to double the fan-in, or using additional rows of switch 
modules to increase the routing capabilities). 

The system operates fully analog and in parallel. How- 
ever, the switch positions, neuron characteristics, synap- 
tic weights, and time constants are set by a digital host 
and are stored in a local memory on the individual mod- 
ules. In addition, all or a selected number of neuron out- 
puts can be sampled continuously or during a specified 
time segment and multiplexed on a single line (called the 
output monitor line or OM) which is connected to an 
AID converter and read into the digital host (Fig. 1). This 
operation, which is independent of the analog neural com- 
putations, allows the host computer to display the outputs 
as a function of time, or to use them for implementing 
learning algorithms. The interaction between the neural 
network and the host computer is described in Section IV. 

111. DESCRIPTION AND PERFORMANCE OF THE MODULES 

Four different modules have been designed and fabri- 
cated in a 2-pm n-well CMOS technology through the 
MOSIS servicee2 The function, major design issues, and 
results of each chip will be described. These chips are 
used in a prototype system of 72 neurons whose overall 
performance is discussed in Section IV. For this proto- 
type, synapse arrays of 16 x 8 synapses, switch arrays of 
16 x 16 switches, and neuron chips of eight neurons were 
fabricated. The number of synapses and switches is cho- 
sen so that the overall size of each die is not excessive, 
yet the chips are complex enough to allow evaluation of 
the performance of the whole system. The choice of eight 
neurons per module gives an optimum ratio between neu- 
rons and routing channels, as mentioned in Section 11. By 
using larger dies and more advanced packaging methods, 
the number of components per module can be scaled up. 

Clock 

Reset 

OR1 

In1 

In2 

In3 

In4 

Fig. 2. Block diagram of a neuron module. Each unit consists of modifi- 
able neurons, an analog multiplexer, and control logic for addressing the 
chip. 

tem we choose eight neurons per module. Fig. 2 shows a 
schematic block diagram of the neuron chip. 

The neuron is implemented as a piecewise-linear device 
having a transfer function with a variable magnitude of 
the step at threshold, and variable threshold current. The 
input signal is a current and the output is a voltage. This 
representation is chosen because currents can be easily 
summed and scaled while voltage outputs have a large 
fan-out. Hence, the input op amp is used in a trans- 
impedance configuration, with a rectifier, and the output 
op amp is a unity-gain inverting amplifier, as shown in 
Fig. 3 .  The transimpedance gain has to be matched to the 
synapse characteristic that provides the input current. The 
gain is 0.1 V/pA using nominal resistance values of 100 
kQ. The diodes are implemented as diode-connected MOS 
transistors. The comparator, which triggers the step when 
the input current exceeds the threshold value, is a PMOS- 
input differential pair. The step is provided by a current 
mirror, which is biased off chip by the synapse module. 

The network is designed for real-world applications 
where the input signals have frequency components lim- 
ited to tens of kilohertz. This is taken into account in the 
design of the neurons by intentionally slowing them down. 
This has the additional advantage that crosstalk will be 
minimized in neighboring lines of the network, particu- 
larly in the switch chip. Special attention is paid to main- 
taining the stability of the op amps under all conditions. 
The stability is influenced by the input and output capac- 

A. Neuron Module itances, which can be as large as 40 and 200 pF, respec- 
This module consists of individual neurons, an analog tively, the output impedance of the synapses, which is 

multiplexer, and digital control logic for addressing the highly dependent on the selected weight, and the diode 
chip and driving the multiplexer. For the prototype sys- resistance in the feedback loop, which is also current de- 

pendent. Furthermore, the neuron must be able to provide 
an output voltage between 0 and 4 V. Miller op amps are 

2 ~ 0 ~ ~ ~  Service is a fast prototyping service offering fast turnaround 
standard cell and full-custom VLSI circuits at low cost. MOSISW is a reg- and are designed to have a minimum gain and 
istered trademark of the University of Southern California. gain bandwidth of 25K and 150 kHz, respectively. The 
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(pard)  

Vout (1 Vldiv.) 

0 
lin (12 fldiv.) 

Fig. 3 .  Schematic of a neuron employed in the network. Each neuron has (a)  
minimum output voltage at threshold, set by I,,,,. Vout (1VIdiv.) 

comparator, on the other hand, requires a gain of 500 and 
unity-gain bandwidth of 750 kHz. 

The analog multiplexer is designed with support cir- 
cuitry to enable random sampling of a chip, and to gen- 
erate protocol signals to indicate the completion of a sam- 
pling sequence. The multiplexer consists of an 8-b shift 
register, which activates transmission gates and reads the 
neuron outputs. These outputs are then presented to a 
buffer, to be read off chip via the OM line. The shift reg- 
ister is externally reset before every sampling sequence. 
The OR1 line signals the start of a sample sequence while 
the O R 0  signals its completion. During standby, the 
buffer is disconnected from the multiplexer by a read-en- 
able switch. The buffer is also designed as a Miller op 
amp, and is required to be stable for a large capacitive 
load and to be fast. However, a compromise was reached 
between these two requirements, and the simulated buffer 
is found to be slew-rate limited, having a slew rate of 0.5 
V/ps.  This is sufficiently fast for the applications of this 
network. 

The measured neuron characteristics are found to be 
within the specifications. Each neuron has an area of 228 
x 566 pm2 and consumes 12.2 mW when operating be- 
tween a -5- and +5-V power supply. The value of the 
resistors is 30% larger than the nominal design value. 
However, the standard variation of the resistors over a 
module and over different chips is 2 % .  The larger trans- 
impedance gain can be easily compensated for by the syn- 
apses and does not pose a problem. The measured transfer 
characteristics of the neurons is shown in Fig. 4. Fig. 4(a) 
gives the output voltage versus input current from -60 to 
f 6 0  pA for different minimum output voltages at thresh- 
old, ranging from 0 to about 5 V. Fig. 4(b) gives the neu- 
ron outputs for threshold currents (I,,,,) of -30 pA, 0,  
and +30 pA and a minimum output at threshold of about 
1.7 V. 

B. Synapse Module 

The synapse module is made up of a variety of com- 
ponents (see Fig. 5): voltage-to-current converters, cur- 
rent splitters, current recombination units, shift registers, 
digital control logic, analog control logic, and offset con- 
trol. The voltage-to-current (V-to-I) converter receives an 

0 

0 
lin (12 fldiv.) 

(b) 

Fig. 4. Measured neuron output voltage versus input current. (a) Transfer 
characteristics for different minimum outputs at threshold ranging from 0 
to 5 V.  (b) Characteristics for three different threshold currents (-30, 0 ,  
and +30  PA) wlth a 1.7-V step. Vertical: 1 V/d iv . ,  horizontal: 12 pA/div. 

input voltage from a neuron and produces an output of 10 
pA/V. The current splitter multiplies the output of the 
V-to-I converter by several gain factors to produce the 
range of available output currents. The current recombi- 
nation unit adds together an arbitrary combination of the 
splitter outputs, and produces the final output current that 
goes to the neuron. The shift register controls the current 
splitter based on a user programmed weight. The digital 
control logic is used in loading the shift register. Finally, 
analog control logic is needed to autobias both the V-to-I 
converter and the offset control. 

The number of units required in each synapse chip is a 
large factor in determining how to implement the circuits 
outlined above. With neural networks expected to have 
32 inputs and 16 outputs per module, the circuit for each 
synapse has to be designed to be relatively small. Another 
important factor is the signal swing. The neural network 
operates with signal voltages between 0 and 4 V, hence 
all transistors have to remain correctly biased for large 
input swings. Also, a large dynamic range of four orders 
of magnitude is required for the synaptic weights, which 
are distributed equally on a logarithmic scale. Lastly, as 
shown in Fig. 5 ,  the V-to-I converter and current splitter 
are common to all synapses connected to the same input 
line. As a result, wherever possible, circuitry has been 
moved from the current recombination unit into the V-to- 
I converter and current splitter in order to minimize the 
area. 
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Vinl 

I 

Voltage to 

I 1 Current splitter 1 
lout1 

'r 'i' 

Current Current - 
Recomb. - 

Recomb. 
- 

I 1  I I 

Shift Shift - 
Register Register 

Voltage to 

Recomb. 

I' u 
'i' 'r 

II 

Current Current Current 
Recomb. Recomb. Recomb. 

I I  I I I I  

Shift Shift Shift 
Register Register Register 

Autobias 

m 

1 I 1 -1 Current Converter 

Generator 

T 'r 

Current Offset 
Recomb. Control 

1 I 1 I 

Shift Shift - 
Register Register 

Shift Shift 

1 Current Splitter I 

Voltage to 
Current Converter , 

Fig. 5.  Block diagram of the synapse module; the inputs arc common to all synapses in the same column and the output line5 
sum the currents of all synapses in the same row. 

The voltage-to-current converter is designed based on 
a six-transistor analog, four-quadrant multiplier devel- 
oped by Bult and Wallinga [25]. This circuit provides a 
differential current that is dependent on the bias and the 
input voltages. The original design has been augmented 
to provide a single-ended output, to increase the output 
impedance and the current mirroring accuracy, resulting 
in a final design of 162 pm X 239 pm. 

Two major methods are considered for implementing 
the current splitter and current recombination unit. In the 
first method, currents are divided into logarithmic units 
(i.e., 10, 1, 0.1, 0.01), and are passed to the current re- 
combination circuit for further scaling (i .e . ,  1, 1 /2, 1 /4) 
to create the final range of synapse outputs. Such a design 
results in a minimal number of analog bus lines common 
to each synaptic input. The second method concentrates 
as much circuitry as possible in the current splitter, in lieu 
of circuitry in the current recombination circuit. All in- 
dividual synaptic weights are generated in the current 
splitter (i.e., 10, 5 ,2 .5 ,  1, 1 /2, 114, 1 / 10, 1 /20, 1 /40, 
1 /loo, 1/200, and 1 /400). Twelve analog bus lines are 
required for each synapse input. The second method is 
found to be significantly more compact for two reasons. 
First, as mentioned previously, since there are many more 
recombination units than splitters, a reduction in the size 
of the recombination unit at the sacrifice of space in the 

splitter is desirable. Second, the bus lines are routed over 
other circuitry in the synapse such that the additional bus 
lines do not require additional space in the recombination 
unit. There is another reason for using the second method: 
since scaling for a series of synapses is done in a single 
circuit, variation from synapse to synapse is significantly 
reduced, transistors can be sized more appropriately for 
the currents being scaled, and more accurate gain ratios 
can be made. 

As shown in Fig. 6(a), the splitter is made of a series 
of ratioed current mirrors which results in effective cur- 
rent gains of 10, 5, 2.5, l ,  l /2, l /4, l / 10, l /20, l /40, 
1 / 100, 1 /200, and 1 1400. Each scaled current is con- 
nected to a diode-connected transistor. thus allowing a 
voltage to be passed to the recombination unit. Full-scale 
currents in these transistors range from 500 pA for a gain 
of 10 to 125 nA for a gain of 1/400. Size constraints 
limited the dimensions of some of the diode-connected 
transistors. For the weights 10, 5, 2.5, 1, 1 /2. 114, 
1 / 10, and 1 /20, transistors with large widths and lengths 
could be used to improve matching between the splitter 
and the current recombination unit. However, transistors 
used for the smaller weights (1 140, 1 / 100, 11200, and 
1/400) could not be sized appropriately, hence these 
transistors will operate in weak inversion for small current 
flows. Therefore, the smaller weights are more suscepti- 
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ybrb /Current Converter jQf2C! 

vdd 
T 

1 I l l  lout' 

Shift Register (6 bits) 

(b) 

Fig 6 S~mpl~fied clrcu~t schemat~c of the synapse (a) The top represents 
the V-to-I converter and the current spl~tter (b) The bottom part 1s the 
recomblnat~on unlt and s h ~ f t  register Only the bottom part needs to be 
repeated for each synapse 

ble to noise and exhibit larger gain errors. The final size 
of a single layout containing both a V-to-I and a current 
splitter is 332 pm x 408 pm. 

The current recombination unit is a relatively simple 
circuit as can be seen in Fig. 6(b). The voltage produced 
in the splitter on each line of the analog bus is converted 
back into a current via a PMOS transistor in saturation. 
NMOS transistors in linear mode are used to switch cur- 
rents on or off to select the required weight. 

A standard dynamic shift register is used to store the 
digital data associated with each synapse. Each bit has 
been modified slightly so that if the on-chip clock is locked 
in a certain phase, and an auxiliary control line is enabled, 
the shift cells become static. The shift register is designed 
to operate at 2.5 MHz. A maximum of 1 ms is allowed 
between operation in dynamic mode and static mode. 

Each of the units described above has been fabricated 
and tested individually. Outlined below are some of the 
test results for the synapse module. Fig. 7 shows the out- 
put of a synapse with weights of 2.5, 1 ,  0.5, and 0.25 

Vln (V) 

Fig. 7. Output current versus Input voltage of a synapse. measured over 
four chips of the same run for weights of 2.5,  I .  0.5. and 0.25. 

measured on four different chips. The V-to-I output ranges 
from approximately 1 nA for 0-V input to 45 pA for 4.0-V 
input. The curved shape at the lower limit of the charac- 
teristic and slight bowing in the center are caused by the 
V-to-I converter, as was verified in a test synapse where 
the output of the V-to-I converter was measured directly. 
Currently, a slightly curved synaptic response is consid- 
ered beneficial for back-propagation learning algorithms, 
though future system testing will indicate whether the 
nonlinearity in the transfer characteristic will have to be 
modified. 

In order to study the weight variations between syn- 
apses within a chip and between different chips, a total of 
about 1400 synapses were tested. A computer was used 
to scan for all weights for each synapse. The synaptic 
weights were determined by measuring the current output 
for two input voltages, and calculating the slope of the 
transfer characteristic. The results of these measurements 
for 128 synapses on a single chip, as well as the results 
of 1400 synapses over 11 chips of the same run are tab- 
ulated in Table I. As expected the error in matching is 
smallest for the range between 0.01 and 1 for which rel- 
atively large transistors could be used. The standard de- 
viation for the inhibitory weights are somewhat larger than 
for the excitatory ones, which is due to the sign inversion 
mirror used to create the inhibitory weights. By compar- 
ing the results within one chip to those between chips one 
can conclude that the chip-to-chip variations are consid- 
erably larger, as expected. 

The measured weights as a function of the synaptic code 
are shown in Fig. 8. These weights are normalized by the 
measured weight for a theoretical gain of 1. As can be 
seen, the normalized gains are very close to the theoreti- 
cal ones. As mentioned previously, the neural network is 
sensitive to the ratio of the weights, not the absolute value. 
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TABLE I 
MEAN VALUE A N D  STANDARD DEVIATION OF MEASURED SYNAPTIC WEIGHT 
VALUES OVER ONE CHIP (128 SYNAPSES) AND OVER A GROUP OF 1 CHIPS 

BELONGING TO THE SAME RUN 

Per Chip Group of Chips 

Nominal Weight Mean St. Dev. Mean St. Dev. 

0 10 20 30 
Code 

Fig. 8. Measured and theoretical weight factors of the synapse versus the 
digital code programmed in the synapse memory. The measured values are 
normalized by the measured weight value for a gain of 1 .  

Since the weight ratios are very close to the expected 
value, the synapse performance is more than adequate for 
proper operation of a neural network. 

C. Time Constants 

Modifiable time constants ranging between 5 and 1000 
ms are required for time-domain computations. These time 

constants are implemented fully monolithically on a rel- 
atively small area. The values are set by a 4-b word, stored 
in a local memory. The time-constant value varies loga- 
rithmically with the digital code. 

There are different ways to obtain these large time con- 
stants: a passive resistance and capacitor, a transconduc- 
tance amplifier used as an active resistance, and switched- 
capacitor circuits. The first method would result in exces- 
sive chip area. The potential problems with the other 
methods are the large offsets and noise problems. The ap- 
proach used here follows the second method and is based 
on a time-constant multiplication technique, by using a 
load-compensated operational transconductance amplifier 
(OTA) as the resistance. In the design of the circuit a very 
small current ratio between the input stage and output 
branch of the OTA is chosen [26]. This accomplishes two 
goals: first, it provides a large transconductance reduc- 
tion; and second, it limits the small current to the output 
stage only and thus reduces the leakage current and the 
offset voltage. In addition, the input stage is designed to 
handle signals up to 4 V. Hence, the overall area of the 
amplifier and capacitance is minimized. The area of a 
1000-ms time constant, including switching for selecting 
different time constants, memory for storing the digital 
code, the bias circuit, and an output buffer, is 1075 pm 
x 540 pm. Offset voltages in the range of 5 to 20 mV 
were obtained for time-constant values up to 60 ms and 
increased to about 200 mV for the larger time constants. 
Fig. 9 shows typical values of the measured time con- 
stants as a function of the digital code. The standard de- 
viation of the time constants measured on 16 circuits over 
four chips lies between 2.5 and 7.5% depending on the 
time-constant value. 

D. Crosspoint Switch Chip 

The function of the switch chip is to route the analog 
signals between neuron, synapse, and time-constant mod- 
ules. Each switch is set by 1 b, stored locally. When a 
switch is activated it connects a horizontal line to a ver- 
tical line. The interconnection architecture is thus set by 
the switch positions. A module consists of an array of 
such crosspoint switches. In addition, there are switches 
at the end of the horizontal and vertical lines. These 
switches interrupt the connection to the next switch, al- 
lowing the interconnection buses to be partitioned in sev- 
eral sections to optimize the available routing space. 
These switches can also ground unused lines in order to 
prevent floating lines. A 2-b memory is used to set each 
of these last switches. 

The block diagram of a switch module consists of the 
switch fabric and of digital logic circuitry used to control 
loading of the memory. Each switch is realized as a 
CMOS transmission gate, clocked between f 5 V. In 
making the floor plan and corresponding layout, special 
attention was paid to prevent latch-up in this module. De- 
signing the input pads properly is critical in reducing the 
chance for latch-up in the switch chip. 
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Code 

Fig. 9. Average time-constant value measured on 16 circuits. The stand- 
ard deviation lies between 2.5 and 7.5%. 

The switch modules have been found to be very reliable 
and no latch-up was found after taking the precaution, 
mentioned above. The on-resistance varies between 2 and 
3 kQ depending on the level of the input signal, which lies 
between 0 and 5 V. Off-resistance was in the teraohms 
range. 

The neural network is programmed from one of two 
perspectives: the physical view or the logical view (see 
Fig. 10). The physical editor displays a map of all the 
chips in the neural network. The user then selects a chip 
to edit, and makes the desired change to a specific syn- 
apse, switch, or time constant on the indicated chip. When 
changes are complete, the physical editor uses a device 
driver to send the chip settings to the network controller, 
which in turn drives the digital control wires appropriately 
to program the network. 

The logical view displays an abstract representation of 
a neural network in a graph form using symbols for the 
neurons and synapses. The user places neurons, and ar- 
bitrary weighted connections between the neurons, with- 
out particular regard for the organization of the network 
hardware. A router is used to convert the logical view to 
a physical representation that can be examined with the 
physical editor. 

The network compiler converts the user-readable input 
file to an input file for the place-and-route program. Pro- 
gramming the network then proceeds in the same manner 
as with the logical editor. 

Finally, network operation can be observed through the 
network state display. A 12-b AID converter in the net- 
work controller can sample the state of the neurons 
through the OM line, as shown in Fig. 1. The sampling 
process is transparent to the operation of the neurons. The 
network state display supports two output modes. In mode 

1 Network Compiler / I Logical Editor / 

Physical Editor 

Device Driver 

1 Neural Network I 

(analog) 

Fig. 10. Overview of the supporting software system, residing on a digital 
host, used to control the network configuration and to monitor the opera- 
tion. The neural network can be programmed through a logical or physical 
editor or a network compiler. Learning algorithms are implemented on the 
host computer as well. 

I (dlgltal) T Host 

1, a strip chart is shown for each neuron. The magnitude 
of a neuron voltage at successive time slices is graphed in 
each chart. In mode 2, each neuron is represented by pix- 
els whose intensity is proportional to the neuron output 
voltage. 

Currently, all of the above systems are functional, ex- 
cept for the network compiler and the place-and-route 
systems, which are still in development. An 80386-based 
personal computer (PC with ISA bus) is used as the host 
computer. The network controller consists of a buffer 
memory and PAL-based finite state machine. Together, 
the network controller and 80386 PC can serially program 
the network at 2.5 Mb/s. Lastly, the network controller 
has random access read and write capability. Hence, any 
individual chip can be read or written without modifying 
the other chips in the system. 

I I 

V. PERFORMANCE AND RESULTS OF A PROTOTYPE 
NETWORK 

A prototype analog neural system has been completely 
assembled and tested based on the units described above. 
As discussed in Section IV, software has also been written 
to control the configuration and monitor the network op- 
eration from the host computer. The prototype consists of 
72 neurons, 2466 synapses, 21 120 switches, and 36 time 
constants. Each neuron has 32 inputs. The system con- 
tains in total over 100 separate chips connected together 
as shown in Fig. 1. The total memory to digitally set the 
network configuration is about 40 kb, which can be down- 
loaded in 16 ms. The system is realized on three processor 
boards. The current system is a test version of a larger 
one that is currently being developed and that will have 
over 1024 neurons with 64 inputs per neuron. 

As mentioned earlier, the components and the overall 
system have been designed for real-world applications, in 
particular speech. As a result, the time response of the 
neurons has been optimized for such applications where 
response times in the tens of microseconds up to ten of 
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milliseconds range are required in order to be able to han- 
dle and process the incoming signals in real time. Al- 
though the network could run at higher speeds, it was de- 
liberately slowed down. The overall computational power 
of the network comes not so much from the individual 
components but from the highly interconnected and par- 
allel architecture and the spatio-temporal processing of the 
incoming signals. For this reason, it is not so meaningful 
to characterize the performance of the network by the 
speed of the individual components. It is more instructive 
to look at the overall response of the network for partic- 
ular applications. 

The network has been configured for a number of ap- 
plications, including a "winner take all" net, an associ- 
ative network, a neural integrator, and several circuits for 
the computation of time-domain pattern primitives [27]- 
[29]. The latter ones have been realized by using feedback 
and synaptic time constants, which generate dynamic ac- 
tivity patterns in the absence of external inputs. For the 
"winner take all" net, 16 neurons were fully intercon- 
nected with mutual inhibitory connections. Experiments 
for different inhibitory gains were performed. For inhib- 
itory connections of 0.9 a clear ''winner" emerged, while 
for inhibitory connections of 0.5 contrast enhancement of 
the input patterns was observed. The network settled 
within one time constant of the neurons. Also experiments 
to verify the fan-in and fan-out capabilities were per- 
formed in which the outputs of 32 neurons were routed 
through synapses with gain of 0.03 and summed together 
into one neuron, proving that noise was no problem even 
at these small gains. 

Another application of the network is the real-time 
analysis of acoustical patterns. This network is pro- 
grammed for the primary decomposition of acoustical pat- 
terns into primitives which are functions of energy, space 
(frequency), and time [30], as shown in Fig. 1 1. The an- 
alog input signals to the network come from a bank of 
high-Q bandpass filters (Q,,, = 300 dBloctave), with 
characteristics similar to the ones found in the cochlea. In 
this example eight bandpass filters were used with the fol- 
lowing center frequencies: 400, 600, 750, 900, 1100, 
1700, 2500, and 4000 Hz. The primary neurons (layer 1) 
receive inputs from the bandpass filters. These neurons 
are mutually inhibiting in a center-surround fashion with 
spatially decaying gains. Lateral inhibition is applied to 
enhance the frequency tuning of the primary neurons. The 
next stage involves the ON and OFF neurons, which com- 
pute the temporal positive and negative derivative of the 
amplitudes. The ON units receive undelayed excitatory and 
delayed inhibitory inputs from the neurons in layer 1, 
whereas the OFF units receive delayed excitatory and un- 
delayed inhibitory inputs. ON and OFF neurons are mu- 
tually inhibiting. The units in layer 3 are the complements 
of the ON and OFF units. They are normally ON via a bias 
indicated by the arrow in the figure and are inhibited by 
the activity of the neurons in layer 2. The last stage com- 
putes changes in formant frequency and their direction 
(local rise and fall of frequency, i.e., motion) through a 

i Cochlea i 
Layer 1 

Layer 2 

Layer 3 

Layer 4 

Outputs 

Fig. 1 1 .  Logical view of part of the network used for the primary decom- 
position of acoustical patterns. The neurons receive input from eight (only 
four are shown) bandpass filters. 

combination of outputs of neurons of level 2 and 3, as is 
shown in Fig. 11. 

The resulting outputs of the 56 neurons used in this ex- 
periment are given in Fig. 12 for a time period of 1000 
ms. These waveforms are generated and recorded in real 
time. Fig. 12(a) gives the primary decomposition of an 
"ah" sound and Fig. 12(b) of a "dah" sound. Notice 
the ON and OFF units and their complementary outputs. 
The "dah" sound shows a formant transition at the lower 
frequencies (output of neuron 63) which is absent in the 
"ah" of Fig. 12(a). The network easily keeps up with the 
spoken word and decomposes the sound into its primitives 
in real time. These outputs can be used as input to a pat- 
tern recognition circuit to recognize individual phonemes. 
However, this is beyond the scope of this paper. The cur- 
rent network is too small to be useful for speech recog- 
nition. At least a 1000-neuron net will be required to per- 
form all of the needed functions for speed recognition. 
Even for this simple prototype network (72 neurons) the 
speed advantage over digital simulations is impressive. A 
Sun 411 10 workstation was used to simulate the network, 
modeled as a set of differential equations, using a fourth- 
order Runge-Kutta algorithm [21]. We found that a dig- 
ital computer with a speed of at least 10" FLOPS is re- 
quired to match the real-time performance of this neural 
network. 

The network described here is an attempt to construct 
a fully analog, parallel, and dynamic neural computer in- 
tended for real-world applications. Among its features are 
programmable synaptic time constants and weights over 
a large dynamic range. The performance of a prototype 
neural network, consisting of over 100 programmable 
chips, has been evaluated. The network has been used for 
several applications including real-time acoustical pattern 
analysis. The individual modules consisting of neurons, 
synapses, time constants, and analog switches are found 
to be functioning well within the overall network. The 
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accuracy, noise levels, and stability proved to be entirely 
adequate, illustrating that scaled-up networks are feasi- 
ble. 

The main advantage of analog hardware realizations, 
working in continuous time, is the computational speed. 
Simulations on a digital computer show that a machine 
with a processing power of 10" FLOPS is required in 
order to keep up with the neural computer. The next ver- 
sion, which will have 1024 neurons and 64 synaptic in- 
puts per neuron, will have a performance in the order of 
1012-1013 equivalent FLOPS and is expected to be able to 
perform speech analysis in real time. 
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