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Deformable Models with Parameter Functions: Application to Heart Wall
Modeling

Abstract
This paper develops a new class of physics-based deformable models which can deform both globally and
locally. Their global parameters are functions allowing the definition of new parameterized primitives and
parameterized global deformations. These new global parameter functions improve the accuracy of shape
description through the use of a few intuitive parameters such as functional bending and twisting. Using a
physics-based approach we convert these geometric models into deformable models that deform due to forces
exerted from the datapoints so as to conform to the given dataset. We present an experiment involving the
extraction of shape and motion of the Left Ventricle (LV) of a heart from MRI-SPAMM data based on a few
global parameter functions.
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Deformable Models with Parameter Functions: 
Application to Heart-Wall Modeling 

Jinah Park’ Diniitri Metaxas’ and Alistair Young2 

‘Department of Computer & Information Science *Department of Radiology 
University of Pennsylvania 

Philadelphia PA 19 104-6389 

Abstract 

This paper develops a new class of physics-based de- 
formable models which can deform both globally and lo- 
cally. Their global parameters are functions allowing the 
definition of new parameterized primitives and parume- 
terized global deformutions. These new global paranie- 
ter functions improve the accuracy of shape description 
through the use of a few intuitive parameters such as func- 
tional bending and twisting. Using a physics-based up- 
proach we convert these geometric models into deformable 
models that deform due to forces exerted from the data- 
points so as to conform to the given dataset. We present an 
experiment involving the extraction of shape and motion of 
the Left Ventricle (LV) of a heart from MRI-SPAMM dutu 
based on u few global parameter functions. 

1 Introduction 

Heart disease, a major cause of mortality in the West- 
ern World, generally leads to abnormalities of heart wall 
motion. ’fie major difficulties in assessing heart wall dis- 
ease among physicians have included 1) the use oFimaging 
techniques (e.g., CT, MRI) where no explicit data corre- 
spondence between frames can be provided, 2) the lack of 
sufficient resolution in  the extracted data, and 3) the ab- 
sence of computational techniques for automatic extraction 
of the three dimensional heart wall motion parameters in a 
way that is “useful” to physicians. Recently, a new mag- 
netic resonance imaging (MRI) technique based on mag- 
netic tagging (“SPAMM”) was developed at the LJniversity 
of Pennsylvania for imaging of regional heart wall mo- 
tion [2]. This technique promises to be very useful in the 
analysis of heart wall motion because it provides temporal 
correspondence of material points. This correspondence in  
conjunctnon with the use of the three dimensional location 
of each SPAMM tag can subsequently be used as input to a 
motion analysis technique to extract the three dimensional 
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motion parameters. 
Recently, computer vision techniques for reconstructing 

the 3D shape and motion of the heart’s left ventricle (LV) 
have been developed. Using time varying CT or MRI data, 
McInerney and Terzopoulos [8] developed a 3D finite el- 
ement surface model, Huang and Goldgof [5] developed 
a spring-mass, adaptive-size mesh model, Cohen and Co- 
hen [4] developed a technique to track the 2D slices of the 
heart’s left ventricle using deformable balloons and subse- 
quently reconstruct the ventricle’s 3D shape, Pentland and 
Horowitz [ 121 developed a technique for approximating 
the left ventricle’s shape using a few modes (linearized, 
rotation, stretch and bending), and Amini and Duncan [ 11 
developed a technique for motion tracking of the left ven- 
tricle wall using bending and stretching thin-plate models. 
One problem with the above techniques is that they do not 
capture the twisting motion of the heart, known to occur 
during systole. Also, they are formulated in terms ofeither 
many local parameters that require non-trivial processing 
to be useful to a physician, or very few parameters that 
can offer only a gross approximation of the heart’s motion. 
The best technique so far for accurately capturing the shape 
and motion of a heart’s left ventricle is that of Young et al. 
[ 151 and Moore et al. [ 1 I] which use 3D finite elements 
and SPAMM data. Their main limitation is that there is 
an enormous amount of information on motion and defor- 
mation captured. The three-dimensional strain tensor, for 
example, has three “normal components” and three shear 
components, each of which may vary with position in the 
wall. In order to understand the complex relationship be- 
tween these components and other motion parameters, it 
is desirable to characterize the motion in terms of a few 
physical parameters that offer sufficient accuracy. 

In this paper we present a new technique that describes 
the time-varying shape, deformation and shape of the LV 
in terms of a few “global” parumeter functions, such as 
twist, whose value is allowed to vary locally. In this way 
the complex motion of the heart is described by the same 
small number of parameters, which vary from region to re- 
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gion. Furthermore, these parameters are intuitive and can 
be used by a physician without further complex processing. 
Our approach is based on the development of a new family 
of parameterized deformable primitives suitable for this ap- 
plication. These deformable primitives are parameterized 
using global parameter functions whose value varies across 
the primitive’s shape as opposed to being constant [ 10, 131. 
Through the use of appropriate parameterization the axes 
of our new deformable primitives can be curved. This is a 
major generalization compared to parameterized primitives 
such as superquadrics, cylinders and cubes, commonly used 
in the vision literature. Furthermore, generalized cylinders 
[3,7], even though they allow shapes with curved axes, do 
not offer shape representation in terms of a few parameters. 
Finally, our new models can represent open’ parameterized 
shapes suitable for modeling the shape and motion of the 
LV. 

By incorporating the geometric definition of our new 
models into our physics-based framework [ 101 we create 
models that deform due to forces exerted from the SPAMM 
data, and conform to the given dataset. The extracted pa- 
rameters can then be directly used for analysis by a physi- 
cian after plotting parameter graphs. We applied our tech- 
nique to various subjects and analyze the results of our 
parameter extraction. Furthermore, we show visualization 
results from the model fitting to the various SPAMM data 
over time and we measure the model’s goodness of fit to 
the data. 

2 Geometry of Deformable Models with Pa- 
rameter Functions 

In this section we will introduce a new class of de- 
formable models which allows the use of parameters 
(global) that can characterize an object’s shape in terms 
of a few parameter functions. Furthermore, even though 
we will not use them in this paper due to the nature of 
our experiments, our models can have local deformation 
parameters [IO] to represent shape detail. This functional 
variation of the global parameters allows the characteri- 
zation of complex shape with a small number of intuitive 
parameters. These varying global parameters are indepen- 
dent of the underlying shape to which they are applied. The 
representation of the underlying shape can be expressed as 
an arbitrary set of datapoints or a parameterized primitive 
(e.g., superquadric). Finally, with these new continuous 
global deformations, we can create models whose 2, y, z 
axes are curved, and can represent open shapes. These new 
models are a generalization of our previously developed 
deformable models [ 10, 131, where the global parameters 
were constant across the object’s shape. 

‘not a closed surface, but more like a cup 

In general, our models are 3D solids whose material 
coordinates U = ( U ,  v, w) are defined in a domain R. The 
positions of points on the model relative to an inertial frame 
of reference 0 in space are given by a vector-valued, time 
varying function x (u , t )  = (z l (u ,  t ) ,  q ( u ,  t ) ,  q ( u ,  t))T, 
where denotes transposition. We set up a non-inertial, 
model-centered reference frame 4 and express the position 
function as 

where c ( t )  is the origin of 4 at the center of the model and 
the rotation matrix R(t) gives the orientation of 4 relative 
to 0. Thus, p ( u , t )  gives the positions of points on the 
model relative to the model frame. We further express 
p = s + d as the sum of a reference shape s(u,  t )  and a 
displacement d (u ,  t ) .  

x = c + Rp, (1) 

2.1 Global Deformations 

We define the reference shape as 

s = T ( e ;  bo(u), b ~ ( u ) ,  . . .), ( 2 )  
where e can represent either a set of 3D points in space2 or 
a geometric primitive 

e(u; ao(u), Ul(U), . . .) (3) 
defined parametrically in U and parameterized by the vari- 
ables a,(u). The shape represented by e is subjected to the 
global deformafion T which depends on the global defor- 
mation parameter functions b,(u). 

Although generally nonlinear, e and T are assumed to be 
differentiable3 so that we may compute the Jacobian of s .  
T may be a composite sequence of primitive deformation 
functions T ( e )  = T I ( T ~ ( .  . . Tn(e ) ) ) .  We concatenate 
the global deformation parameters into the vector 

9 s  = (.O(U),.’(U),. . . , bo(u), b’(U) ,  . . JT. (4) 
Equations ( 2 )  and (3) define global parameters a , ,  b, that 

are functions of U, instead of being constants [lo]. The 
above definition allows us to generalize definitions of prim- 
itives (e.g., superquadrics, cubes) and parameterized defor- 
mations (e.g., twisting, bending) as will be shown in the 
following examples. For the applications in this paper, we 
will assume that a,(u) = Q , ( u )  and b,(u) = b,(u) ,  where 
the material coordinate U corresponds to the longest axis of 
the deformable model. 

2.1.1 Primitives with Parameter Functions 

Our technique for creating primitives with parameter func- 
tions can be applied to any parametric primitive (e.g., su- 
perquadric, cube), by replacing its constant parameters with 

space in which the 3D points are expressed. 
*In that case the material coordinates U coincide with the Cartesian 

31n case where e is a set of points, the above assumption does not 
apply. 
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Figure 1: (a) Superquadric ellipsoid (b) Primitive with 
parameter functions. 

differentiable parameter functions. For our applications, 
we demonstrate our approach by transforming a superel lip- 
soid primitive to a primitive with parameter functions. 

The definition of such a generalized primitive e = 
(e l  ~ e2,  e 3 ) T  is given by the following equations 

3 ( 5 )  ) ( ' 
a ]  ( U ) c t " I ( U ) C : o ' 2 ( U )  

C? = ag(u) a2( U ) c t " I ( % t > ' 2 ( ~ ~  

a 3 ( ' U  ) S, € 1  

where - n / 2  5 U 5 ir/2, -ir 5 v < ir, 0 5 U :  5 I ,  
so' = sgn(sin8))sinBI' and CO' = sgn(cosO)IcosO/'. 
Here, ao( U )  2 0 is a sctale parameter function, 0 5 
a l ( u ) ,  a2(u), u ~ ( u )  5 I ,  are aspect ratio parameter func- 
tions, and 6 I ( U ) ,  6 2 (  U )  2 0 are "squareness" parameter 
functions. We can also define a open parameterized primi- 
tive given by the above definition by restricting the ranges 
ofthe U and U parameters to ;I subset of the above definition. 

We can generalize the above equation (5) to define a 
primitive sy with curved axis in  any directions 2, y, and 2 

by the folllowing equatison 

where e 1 ( U ) ,  e?, ( U )  and r I D  ( U )  are axis-offset parameter 
functions. 

Fig. ( 1  )(a) shows a superquadric ellipsoid, while 
Fig. ( l ) (b)  shows a generalized primitive sg, where its 
shape has been obtained by varying the piecewise linear 
parameter functions a3( U )  and e l O ( u ) ,  and the domain of II 

is a subsel of the domain of 11 (i.e., -ir/2 5 U 5 ~ / 4 )  for 
a superellipsoid. 

2.1.2 Rirameterized Global Deformations with Pa- 
rameter Functions 

Our formulation of global deformations with continuous 
parameter functions is general and can be applied to any 
underlying shape e. For ouir applications in this paper we 
will define the model which includes bending, twisting and 
axis oflset deformations. 

Given a primitive e, he first define the bending of 

axis 1 along principal axes 2 and 34 as a parameter- 
ized deformation T b ,  which results in the global shape 
s b  = (SI 7 s2, s3)T: 

s b  = Tb(e; b0(u)1 b l ( U ) ,  b 2 ( U ) ,  h ( U ) )  

\ 

where bo@),  b2( U) define the magnitudes of the bending 
andcan bepositiveornegative,and -1 5 b n ( u ) ,  b3 (u )  5 1 
define the locations on axis 1 where the maximum bending 
occurs. Then we define twisting along principal axis 3, 
which results in the global shape S t b :  

S t b  = T t t ~ z s t ( T b ( e ;  h ( U ) ,  bl(u),  b 2 ( U ) ,  h ( U )  .(U))) 

= T t w z s t ( S b ;  .(U)) 

S I  s in( r (u) )  + S~COS(T(U) )  , 
S I  COS(T(U)) - s 2  sin(r(u)) 

(8) 
) = is? 

where . ( U )  is the twisting parameter function along axis 
3. Finally we apply an offset deformation delined in 
Equation (6) to arrive at the global reference shape s = 

Note that the choice of the parameter functions depends 
on the application. For the applications in this paper we 
assume that those parameter functions are piecewise lin- 
ear along U, so we do not impose any shape continuity 
constraints on the LV shape. 

T o ( S t b ; e I , ( U ) ,  e 2 , ( U ) ,  e3 , (u) ) .  

2.2 Local Deformations 

Local, finite element basis functions are the natural 
choice for representing the local deformations [ 13,9]. The 
elements have a node at each of their corners. The general- 
ized coordinates of the finite element basis functions are the 
nodal variables-a vector qd, associated with each node i 
of the model. If we collect the generalized coordinates into 
a vector of degrees of freedom q d  = (. . . , q:, , . . .)T, we 
can write d = s q d ,  where S is the shape matrix whose 
entries are the finite element basis functions. 

2.3 Kinematics and Dynamics 

The velocity of points on the model is given by 

X = i:+ Rp+ Rp = C +Be  + RS $- RSqd, (9) 
where 0 = (. . . , 8, I . . .)T is the rotational coordinates of 
the model and B = [. . .a(Rp)/aO,. . .]. Furthermore, 
S = [as/aq,]q, = Jqs,  where J is the Jacobian of the 

4The principal axes I ,  2 and 3 correspond to the s, y and z axes of the 

SFor the applications in this paper, a o ( u )  = a(),  € 1  ( U )  = C Z ( U )  = 1 
model frame 9. 

and ( U )  = 0. 
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generalized primitive with global parameter functions. We 
can therefore write 

X = [I B RJ RS]q = Lq, (10) 
where q = (qT, 98, q:, q;)', with qe = c and q e  = B 

We can make our model dynamic in q by introducing 
mass, damping, and a deformation strain energy. The re- 

expressed as a quaternion [9]. (a) (b) (c) 

Figure 2: Fitting a model to a normal heart (LV mid-wall). 
sulting Lagrange equations of motion simplified, for a vi- 
sion application, by setting the mass density to zero are 

where D and K are the damping and stiffness matrices 
respectively, and where fq ( u, t )  are the generalized external 
forces associated with the degrees of freedom of the model. 
The above equation yields a model that has no inertia and 
comes to rest as soon as all the applied forces equilibrate 
or vanish [ 101. 

The generalized forces fq are computed using the for- 
mula fq = s LTf du. These forces are associated with the 
components of q, where f (u ,  t )  is the 3D force distribution 
applied to the model [ 101. 

Since the SPAMM data provides the correspondence 
over time of individual data points, we apply the force 
distribution algorithm only once for the initial frame. In 
subsequent frames the corresponding points will exert a 
force to the same point on the model as computed in the 
first frame. In this way we can recover the LV twisting 
motion. 

3 Experiments 

Our experiments run at real or interactive time speeds on 
a Silicon Graphics R4000 Crimson workstation including 
the real time graphics. Furthermore, through appropriate 
careful design, large portions of our code have been par- 
allelized making it even faster when multiple processors 
are available (e.g., on our Silicon Graphics 4DI340VGX 
shared memory multiprocessor). 

We apply our technique to SPAMM data from the LV 
obtained from the Department of Radiology, University of 
Pennsylvania (courtesy of Dr. Leon Axel) collected during 
LV systole over 5 intervals. The SPAMM technique pro- 
vides data throughout the heart wall. Since our modeling 
technique is surface based we chose to fit the LV mid-wall 
motion as this is most accurately defined by the SPAMM 
imaging technique. In Young er al. [ 141 a technique based 
on snakes [6] was developed to extract 3D coordinates of 
SPAMM data from the LV mid-wall. 

In this experiment we demonstrate our model fitting tech- 
nique to time-varying SPAMM data from a normal heart, 
specifically from the LV mid-wall. Fig. 2(a) shows the 
model initialized to data from the first frame (end-diastole). 

Fig. 2(b) shows, for demonstration purposes only, a model 
with constant parameters (a superellipsoid) fitted to the 
data. The inadequacy of such a model to obtain an accu- 
rate fit is obvious. The average distance error of fitting is 
1.3 mm and the RMS error is 0.83 mm (7.5 %), while the 
length of the LV is approximately 1 10 mm. Fig. 2(c) shows 
our deformable model with parameter functions fitted to the 
data. The improvement is obvious and the average distance 
error is 0.86 mm and the RMS error is 0.48 mm (4.4 %). 

Fig. 3(a) shows the model shown in Fig. 2(c) from a 
different view point, and Figs. 3(b-e) show the model fitted 
to subsequent time frames during systole. Figs. 3(f-j) are 
the surface shaded images of Fig. 3(a-e). We can easily ob- 
serve the contracting motion as well as the twisting motion 
of the model. The twisting motion can be observed better 
in the Figs. 3(a-e), where the veritcal lines of the mesh of 
the front and the back cross each other progressively due to 
its twisting motion. The orientation of a model is depicted 
in Fig. 4. 

In Fig. 5 we plot the extracted model parameter func- 
tions over the 5 time frames. The graphs in the first column 
of Fig. 5 show plots of the model's parameter functions 
a l ( u ) ,  ~ ( u )  and a3(u), whichare associated withitslength 
in the 2, y and z directions, respectively. For each frame 
we plot the ratio of each parameter function during frame 
t = 2...5, with respect to its value at the initial frame 
(t = 1). The first graph in the second column shows plots 
of the model's twisting parameter function .(U). Finally, 
the remaining two graphs in Fig. 5 show plots of the bend- 
ing parameter functions bo(.) and b2(u)  which denote the 
magnitudes of bending of the 2 axis in the y and .z direc- 
tions. In all graphs, U = 0 corresponds to umin of the 
model (the apex of the LV), and U = 16 corresponds to 
U,,, of the model (the base of the LV). 

From these graphs, we can quantify the motion and shape 
changes of the LV during its systole. For example, by 
studying the graphs of a1 and u2, we can conclude that the 
magnitude of contraction in the radial direction (i.e. along 
2 and y axes) during systole is approximately 20%. But 
it is not uniform towards the base of the LV where the 
contraction along y axis (being approximately 10%) is less 
then one along z axis (being approximately 20%) making 
the base look more elliptical. This result supports clinical 
study findings where more stress is exerted at the apex dur- 
ing the LV motion, and also there is an increased closeness 
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(b) time 2 

(c) time 3 

(e) time 5 

U 

Figure 4: Orientation of the model for Fig.3 

to an ellipse of the LV base shape during systole. Contrac- 
tion along the z axis, known as longitudinal contraction of 
the LV, during systole is also quantified, from the graph of 
(13, to approximately 20%. From the graph of T (labeled 
as twist in Fig. 5 ) ,  we can quantify the twisting motion 
of the LV during systole to approximately 7 degrees. The 
graph shows a small amount of global rotation before the 
twisting occurs. Doctors often find this behavior of the 
I Y .  Bending parameters in this application capture the u- 
variations around each ring. The graphs of bo and 61 show 
the contraction around the apex and at the base of the LV 
is not just radial. 

We have applied our technique to the set of data from 
another normal heart and have found that the results are 
similar to those reported in this paper. To compare our re- 
sults, we have also fitted our model to two sets of data from 
abnormal hearts with hypertrophic cardiomyopathy. While 
the results were similar for these two abnormal hearts, they 
were different from the ones we obtained for the nornial 
hearts. The graphs of parameter functions for the abnormal 
hearts, compare to those obtained for normal hearts, show 
less contraction towards the apex, less bending and more 
twisting in the abnormal hearts. From our experiments, we 
have been able to predict known differences. (Due to space 
limitation, we do not include the graphs and fitted models 
of all other hearts used in  our experiments nn this paper.) 

Note that all fittings of models are within an acceptable 
error bound, since RMS errors arc less than 5 %. Using 
only global parameter functions, our model provides the 
means of capturing and quantifying the LV motion and 
shape changes and quantitatively compare normal and ab- 
normal hearts. 

4 Conclusion 

In this paper we presented a new class ofphysics-based 
deformable models which can deform both locally and 
globally. The characteristic of those models is that their 
global parameters are functions allowing the representation 
of complex shapes with a few intuitive parameters. For the 
applications in this paper we were able to eliminate many 
local parameters that require nontrivial processing to pro- 

Figure 3:  Model fitted to Sp,\MM data from a L v  mid-wall 
during systole. 

vide a compact representation of shape. We demonstrated 
the applicability of our technique to the shape character- 
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twist 
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l lm3  

Figure 5: Extracted model parameters as functions of U. 

ization of the LV for normal and abnormal hearts during 
systole, from MRI-SPAMM data. By plotting the param- 
eter functions over time we were able to verify quantita- 
tively qualitative knowledge about the LV motion common 
to physicians. We plan to apply our technique to multi- 
ple normal and abnormal hearts to be able to quantitatively 
characterize what is normal LV motion and what are the 
effects to the LV motion of the various LV diseases. 
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