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Individual QoS versus aggregate QoS: A loss performance study

Abstract
This paper explores the differences that can exist between individual and aggregate loss guarantees in an
environment where guarantees are only provided at an aggregate level. The focus is on understanding which
traffic parameters are responsible for inducing possible deviations and to what extent. In addition, we seek to
evaluate the level of additional resources, e.g., bandwidth or buffer, required to ensure that all individual loss
measures remain below their desired target. This paper's contributions are in developing analytical models
that enable the evaluation of individual loss probabilities in settings where only aggregate losses are controlled,
and in identifying traffic parameters that have a major influence on the differences between individual and
aggregate losses. The latter allows us to further construct tools and guidelines that are able to determine what
kind of traffic can be safely multiplexed in practice into a common service class.
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Individual QoS Versus Aggregate QoS:
A Loss Performance Study

Ying Xu, Student Member, IEEE, and Roch Guérin, Fellow, IEEE

Abstract—This paper explores the differences that can exist be-
tween individual and aggregate loss guarantees in an environment
where guarantees are only provided at the aggregate level. The
focus is on understanding which traffic parameters are responsible
for inducing possible deviations and to what extent. In addition, we
seek to evaluate the level of additional resources, e.g., bandwidth or
buffer, required to ensure that all individual loss measures remain
below their desired target. This paper’s contributions are in de-
veloping analytical models that enable the evaluation of individual
loss probabilities in settings where only aggregate losses are con-
trolled, and in identifying traffic parameters that have a major in-
fluence on the differences between individual and aggregate losses.
The latter allows us to further construct practical tools and guide-
lines for rapidly assessing if specific traffic sources can be safely
multiplexed into a common service class.

Index Terms—Aggregation, loss, quality of service.

I. INTRODUCTION

THE provision of Quality of Service (QoS) guarantees is by
now an extensively investigated and reasonably well un-

derstood topic. The literature abounds with algorithms for en-
forcing different levels of services and results evaluating their
respective performance, see, e.g., [10] for a recent survey. Sim-
ilarly, technology is now available that implements sophisti-
cated QoS capabilities, see, e.g., [15]. However, despite all this
progress, the deployment of QoS capabilities in operational net-
works has been by most accounts slow. Many factors have con-
spired toward this, but one particular factor has been a recurring
theme in discussions aimed at understanding the reasons behind
this slow pace. Specifically, the complexity of managing a broad
range of fine grain (individual) QoS requirements across a net-
work of the scale of the Internet is a daunting task. As a result,
there has been a renewed interest in designing scalable QoS so-
lutions.

There have been two main directions aimed at developing
scalable QoS solutions. The first, embodied in works such as
[23], [24], [28], targets the emulation of fine-grain QoS solu-
tions without requiring per flow information. The second, rep-
resented by proposals such as Diff-Serv [4], relies on coarsening
the different levels of QoS that the network offers into a small
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number of service classes. Our focus is on this latter class of so-
lutions.

Limiting the number of service classes that the network of-
fers clearly improves scalability. However, this comes at a cost,
namely the lack of awareness of the exact level of performance
that an individual user experiences. In other words, implicit in
the use of service classes is the assumption that the users aggre-
gated into a given service class all experience the same level of
service, or at least a level of service better than the desired target
for the service class. Unfortunately, this assumption may not al-
ways be true in an environment where provisioning and class
level monitoring are the primary tools used to enforce network
performance, and make decisions on whether additional traffic
can be accommodated.

By its nature and in order to ensure its scalability, provi-
sioning is typically done at the aggregate level, e.g., based on
the monitored performance of a service class. In that context,
our objective in this paper is to gain a better understanding of
how such aggregate measures map into individual performance,
and in particular determine if guidelines and procedures could
be developed to avoid situations where the two differ signifi-
cantly. In contrast to environments where call admission pro-
cedures, e.g, [7]–[9], [13], are used to dynamically make deci-
sions on accepting new traffic, we focus on settings where these
guidelines and procedures are applied for making off-line deci-
sions about whether to multiplex different types of traffic into a
common service class.

In our study, we focus on a specific performance measure,
namely, the packet loss probability. To gain a comprehensive
understanding of how individual loss probabilities differ from
overall loss probability, we first develop a number of new
models or extensions to existing models, which allow us to
analytically evaluate the loss probability experienced by an
individual flow when only the overall loss probability of the
service class to which this flow belongs is observable. With
a broad enough coverage of the entire parameter space, these
models and extensions enable us to investigate the influence
different traffic parameters, e.g., peak rate, average rate, burst
duration, etc., have on introducing deviations between a flow’s
own loss probability and the overall loss probability. In that
context, the identification of parameters and situations that can
lead to significant deviations is of special interest. In addition,
we also evaluate the sensitivity of performance deviations to
the amount of additional resources, i.e., bandwidth or buffer,
required to ensure that even the worst performer in a service
class experiences a level of performance equal to or better
than the desired target for the service class. The result of these

1063-6692/$20.00 © 2005 IEEE
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investigations is a set of guidelines and recommendations that
identify if and when aggregation can be safely performed.

Moreover, we investigate the extent to which these guide-
lines and recommendations apply to real-life scenarios. For
that purpose, we incorporate those guidelines and recommen-
dations into a simple methodology capable of predicting the
presence and magnitude of deviations when multiplexing actual
traffic flows. The methodology is still rooted in the analytical
models that were developed, but involves several simplifying
assumptions for accommodating realistic traffic sources. The
performance of this methodology is tested via simulations
using a number of real-time traffic sources, i.e., voice and/or
video traffic sources. The results show that the methodology is
reasonably robust and reliable in identifying situations where
significant loss performance deviations can arise. Thus, it can
serve as a simple tool for rapidly characterizing traffic profiles
that should not be aggregated into a common service class.

The rest of this paper is structured as follows. Section II mo-
tivates and introduces the different models and systems assump-
tions. Analytical expressions of individual loss probabilities are
provided for those models in Section III, with most of the deriva-
tions relegated to an extended technical report [26]. Sections IV
and V report results obtained from the models of Section III,
while a number of additional intermediate configurations are in-
vestigated in Section VI. In Section VII, the methodology of as-
sessing loss deviations in practical settings is presented and its
performance is also explored. Finally, Section VIII summarizes
the main findings of the paper and their implications for aggre-
gate QoS solutions.

II. MODEL AND METHODOLOGY

In this section, we describe the model and methodology we
rely on to investigate the behavior of individual loss probabili-
ties in an environment based on aggregate service classes. This
includes the source traffic model, the different service configura-
tions we analyze, and how we measure differences between indi-
vidual and aggregate loss probabilities. Specifically, the system
we consider is a single server, finite buffer, FIFO queue where
traffic generated by users of a common service class is aggre-
gated.

A. Input Traffic Model

In this subsection, we present the traffic models we use as
traffic sources. They include both analytical models and traffic
traces generated by real applications.

1) Analytical Traffic Sources: We consider two different an-
alytical models for characterizing the traffic of an individual
source feeding the FIFO queue. The first is a standard ON-OFF

Markov source [2], with exponentially distributed ON and OFF

periods and a fixed transmission rate when ON (active). Such a
source can be described using a 3-tuple , where is
the transmission (peak) rate when the source is active, is the
average duration of an active or ON period, and represents the

fraction of time the source is active, or its utilization. The ra-
tionale for such a source model is both that it lends itself to the
development of tractable analytical models from which intuition
and insight can be derived, and that its simple three-parameters
description can be easily mapped onto popular traffic control
devices such as leaky buckets, e.g., see [12] for a discussion on
this issue. As a result, it captures the behavior of configurations
where performance is mainly determined by “burst-level” con-
gestion. This will be the case when provisioning used for the
service class allows for periods of time during which the in-
coming traffic rate exceeds the allocated capacity.

The second model considered is the queue [19],
[20], [25]. In this model, each source has a constant bit rate and
periodically (every units of time) generates a single, unit
size1 packet. Sources can differ in terms of both their periods and
phases, i.e., the positions at which they generate their packets in
a period. The choice of the phase of a source is assumed to be
independent of that of other sources, and to be drawn from a
uniform distribution over the interval . In contrast to the
first model, this second model captures an environment in which
congestion primarily occurs at the packet level. This is the case
when provisioning is done based on the “worst-case” assump-
tions regarding the traffic that a user can generate. For example,
this could apply to provisioning rules used to support a constant
rate, low delay service class based on the Diff-Serv Expedited
Forwarding Per Hop Behavior (PHB) [5], or representative of a
network that relies on conservative (peak rate) provisioning.

2) Real-World Traffic Sources: In addition to the analytical
traffic models, we also use real world traffic sources for our
study. We mainly focus on real-time traffic sources such as voice
and/or video sources, as they correspond to applications with a
need for service guarantees, and therefore, most likely to ben-
efit from QoS solutions. From that perspective, we believe that
evaluating performance deviations in environments where voice
and video sources are aggregated can also help us to gain a better
understanding of if and when an aggregate service model is suit-
able for supporting real-time applications.

The video traces we use for our study are obtained from an
online video trace library [1]. We choose this public library
because of the diversity of the traces it provides. The library
contains traces of 26 different hour-long video sequences, each
encoded using two different standards (the MPEG4 and the
H.263 standard), and under three different quality indexes (low,
medium, and high). Moreover, for each recorded trace, statistics
reflecting its characteristics are also available. We refer to [6]
for a detailed description of the trace collection procedure.

We mainly focus on two different sequences encoded using
the MPEG4 encoding technique with a frame rate of 25
frames/s. They include both the high and low quality sequences
of the movie Jurassic Park I. The high quality trace of Jurassic
Park I (Jurassic high) represents a video source that requires a
high transmission rate due to its quality requirement. The low
quality trace of Jurassic Park I (Jurassic low) represents a lower
rate sequence encoded from the same movie scenes. Several
important statistics of these two traces are given in Table I.

1Its transmission takes one unit of time.



372 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

TABLE I
VIDEO TRACE STATISTICS

TABLE II
VOICE TRACE STATISTICS

We also use voice traces published in [14] for our study.
In particular, the voice source2 we chose corresponds to [14,
Fig. 4b] and is generated by the NeVoT Silence Detector (SD)
[21]. We refer to [14] for a complete description of the codec
configuration and the trace collection procedure. Statistics for
several important parameters of the voice source are given in
Table II.

B. System Parameters and Performance Measures

In developing models to explore possible deviations between
individual and aggregate loss probabilities, we vary several
system parameters to sample a comprehensive range of possible
environments.

The first parameter we vary is the number of users aggregated
in the same service class, i.e., the number of individual traffic
sources multiplexed in the FIFO queue. In particular, we focus
on two cases: a two-source configuration and a “many-source”
one. We select these two configurations not only because they
are amenable to analysis, but also because they correspond to
different boundary conditions, i.e., an environment where a few
large bandwidth connections share resources, and one where
many small (compared to the link capacity) flows are multi-
plexed into the same queue. We expect these two environments
to exhibit different sensitivity to the traffic parameters of indi-
vidual sources, and to possibly yield deviations of different mag-
nitude.

Another system parameter we consider is the size of the
FIFO queue into which flows are multiplexed. In particular,
we consider both bufferless (buffer size of zero) and buffered
systems. In many instances, bufferless systems lend themselves
to a more tractable analysis, while qualitatively capturing
performance trends. In cases where models are limited to
bufferless systems, we also rely on simulations to extend the
investigation to buffered systems. In all cases, the simulation

2We use only one voice trace since in our study, voice sources are mainly used
to evaluate the presence of deviations when mixed with video sources. Because
of their statistical similarities, different voice sources experience similar losses
when aggregated.

results confirmed the trends observed from the bufferless ana-
lytical results.

Our focus is to derive explicit expressions, functions of source
and system parameters, for both individual and aggregate loss
probabilities for the different system configurations we con-
sider. The loss probability is computed as the ratio of the total
number of bits lost to the total number of bits sent, for either an
individual user or all users. We denote the overall loss prob-
ability as , and the loss probability of user as . Note
that traditional models, e.g., [2], [22], have focused on deriving
expressions for the (overall) overflow probability rather than
the loss probability, where the overflow probability denoted the
fraction of time that the system was losing data. The latter, how-
ever, is in our minds a more realistic measure of the performance
that individual users experience. As outlined in Section III, de-
riving expressions for the loss rather than the overflow proba-
bility calls for some slight modifications to the models devel-
oped in [2] and [22].

The availability of expressions for individual and aggregate
loss probabilities allows us to investigate if and when they differ.
We carry out these investigations by first selecting a target loss
probability for the service class, and then computing the
(minimum) amount of bandwidth needed to ensure an overall
loss probability . For each individual user, its loss
probability ratio is defined as the ratio between its own
loss probability and the overall loss probability. We then com-
pute the maximum loss probability ratio across all users, ,
and select it as the basic performance measure for evaluating
the level of deviations in a given configuration. In a system with

users, the user having the maximum loss probability ratio is,
without loss of generality, usually assumed to be user , i.e.,

. In addition, we also evaluate the amount of ad-
ditional bandwidth needed, percentage wise, to ensure that even
the worst performer in the service class meets the desired loss
target. In other words, if denotes the minimum amount of
bandwidth needed so that , we evaluate the quantity

. Note that the (maximum) loss probability ratio
reflects the magnitude of the loss performance deviations and
is a useful metric for determining whether traffic aggregation
should be carried out. Conversely, the additional bandwidth is a
useful metric for evaluating the amount of additional resources
needed to compensate for any deviation, a penalty that an ag-
gregate service model incurs.

We believe that the combined use of analytical models and
actual traffic sources together with the investigation of a broad
range of system configurations, allows for a reasonably compre-
hensive exploration of the problem space.

III. ANALYTICAL MODELS

This section is devoted to the presentation of the analytical
models that allow us to compute and compare both individual
and aggregate loss probabilities. Due to space constraints,
proofs and additional details are relegated to a technical report
[26]. A total of four distinct models are described in this
section. The first two correspond to two-source cases assuming
first ON-OFF and then periodic sources; the last two correspond



XU AND GUÉRIN: INDIVIDUAL QoS VERSUS AGGREGATE QoS: A LOSS PERFORMANCE STUDY 373

to the “many-source” scenario, again for ON-OFF and periodic
sources.

A. Two ON-OFF Sources Case

Since there is conceptually little difference in the deriva-
tion of expressions for a two-source system and an -source
system, we proceed to derive general expressions for an

-source system, which is then specialized to a two-source
system by letting . The analysis of systems that involve
Markov modulated traffic sources is by now a mature area, e.g.,
[2], [17], [22], and we rely on this existing body of work to
develop our model. The main differences between those works
and ours are that we focus on the loss probability as opposed to
the overflow probability and, most important, we evaluate both
individual and aggregate performance.

Our initial model consists of independent ON-OFF fluid
sources that feed an infinite buffer, single server queue. Source

is characterized by a 3-tuple as described in Sec-
tion II-A1. The aggregate input process to the buffer can then be
described through a state vector: , where

is 0 when source is OFF and 1 when it is ON. For any state,
the input rate to the system is given by , where

is the peak rate vector of the sources.
Let denote the stationary probability that the input is in state

, under the standard assumption that the system is ergodic, the
stationary loss probability experienced by source in a finite
buffer system of size can be approximated by

(1)

where and correspond to the long term loss rate3 and
sending rate (mean rate) of source . The quantity is the
stationary probability that the queue length is smaller than and
the system is in state , which can be readily obtained from re-
sults of either [17] or [22].

Similarly, the overall loss probability can be expressed as

(2)

where and correspond to the overall long term loss rate
and sending rate, respectively.

Expressions for individual and aggregate loss probabilities
can be readily obtained from (1) and (2) for the two-source case
simply by letting . For example, in the case where

, , and , i.e., losses occur only when
both sources are active, we have

(3)

3We use the notion of “loss rate” to distinguish the amount of data lost per
unit of time from the fraction of data lost. The latter is termed loss probability
in this paper.

where is the stationary probability that both sources are
active. As we shall discuss further in Section IV, the simple form
of (3) helps explicitly identify the impact of different parame-
ters. In particular, we see that for this special case, the ratio of
individual loss probabilities is equal to the inverse ratio of the
utilizations of the respective sources. In other words, the source
with the lower utilization will see a proportionally higher loss
probability. This simple but nevertheless interesting observation
is one that will be subsequently confirmed in other and more
general configurations.

B. Two Periodic Sources Case

In this section, we consider one special case of the
queue in which there are only two sources in

the system, with periods and , respectively, i.e., the
queue. For this model, we assume a bufferless

system, since having a buffer of size larger than or equal to
even one packet will eliminate all losses. In spite of its extreme
simplicity, this system is again useful because of the insight it
provides. For this simple system, the following proposition can
be shown to hold.

Proposition 1: For a bufferless queue,
where , are integers and , the loss
probability ratios and satisfy

(4)

Moreover, if is divisible by , then

(5)

Proof: The proof is given in [26].
The above proposition, though simple, states an important

fact that the source with a larger period sees greater losses in
proportion to the ratio of its period over that of the other source.
This is an observation similar to the one made based on (3) for
two ON-OFF sources, and it will again occur in several other con-
figurations, as we shall see later.

C. Many ON-OFF Sources Case

Equations (1) and (2) were derived for the general case of
sources, but as grows large, the required computations

quickly become prohibitive because of the well-known “state
explosion” phenomenon, and this makes numerical evaluation
difficult if not impossible. As a result, we rely on simulations
for evaluating buffered systems, and shift the focus of our anal-
ysis to a bufferless system for which numerical evaluation re-
mains feasible. A bufferless model is a reasonable approxima-
tion when a large number of sources are multiplexed. In this
case, the input traffic can be well approximated using the tech-
nique of rate envelope multiplexing [19, sec. 4.1.1]. The rate
envelop of a traffic aggregate is simply the instantaneous rate
of the total multiplexed traffic. With this notion, data loss can
be characterized by relying on the fact that it only occurs when
the input rate (envelope) exceeds the available service rate and
a small loss probability can always be achieved by ensuring that
this event occurs with a sufficiently low probability. Under these
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assumptions, models already exist [18] that give explicit expres-
sions for the quantities of interest in the context of this paper,
i.e., individual and aggregate loss probabilities. For complete-
ness, we briefly restate the relevant results and assumptions of
[18]. Note that [18] is one of the first works to explicitly target
understanding when and why differences in performance can
arise when aggregating many different types of sources. Many
of its results are consistent with those we derive in this paper,
and the main differences are both in terms of the broader in-
vestigation we undertake, and more important, of our focus on
explicitly identifying the impact of individual traffic parameters
on performance deviations.

In the bufferless system we consider, the total input traffic
is divided into two parts: the background traffic and the traffic
associated with a specific source. This source (without loss of
generality, we assume it is source ) is the one we focus on, and
whose traffic parameters we vary. We denote by , , and
as random variables associated with the instantaneous rate (en-
velop) of the total traffic, the background traffic, and the traffic
generated by source at time , respectively. Similarly, the vari-
ables , , and identify the corresponding mean rates.
The overall loss probability and the loss probability of
source can then be obtained through a minor generalization
of the results of [18], by assuming a link capacity of instead
of a unit link capacity

(6)

and

(7)

The expectations in both (6) and (7) can be evaluated numeri-
cally if is explicitly specified. In most of our tests, the back-
ground traffic consists of homogeneous sources with identical
peak rate , as we focus on the impact of varying the traffic
parameters of source . In such cases, is simply a bino-
mial distribution.

D. Many Periodic Sources Case

The overflow probability of the queue has been
investigated in [19], [20], and [25]. Its derivation is based on the
Beneš approach that is extensively documented in [19]. In this
paper, we build on and extend the methods of [20] and [25] to
obtain upper and lower bounds for individual loss probabilities.
We briefly outline the model assumptions and state the final re-
sults, while details and proofs can be found in [26].

The model we consider consists of different types
of sources. There are independent sources of type ,

, each with a period of . The individual
source we focus on is source with period . In order to

ensure that the system is stationary and ergodic, we further
impose the condition that the total load is less than 1, i.e.,

. The queue length, or the
backlog, in the system at time is denoted as , and we use
the expression

One arrival from source at

to approximate the loss probability of source in a finite buffer
system of size . In [26], the following lower and upper bounds
are established:

(8)

(9)

where ,
, and

. The value of can vary between 0 and
and is the probability density function of a bi-

nomial distribution with parameter . See again
[26] for more complete definitions.

Upper and lower bounds for the overall loss probability
can also be obtained from (9) and (8) by bringing them into the
following expression:

(10)

The above upper and lower bounds have been numerically
evaluated for many different configurations, and found to be
consistently very close to each other (see [26] for a couple of
illustrative examples). In this paper, we use the upper bound (9)
to approximate the individual loss probability of source .

In the next sections, we rely on the various expressions de-
rived in this section to investigate when and why individual and
aggregate loss probabilities differ. In all our investigations, we
assume a fixed target loss probability equal to .

IV. LOSS DEVIATIONS IN THE TWO-SOURCE CASE

This section is devoted to exploring configurations that in-
volve only two sources.

A. Two ON-OFF Sources

In this section, we assume that only two ON-OFF sources are
multiplexed into a common queue served by a constant rate
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Fig. 1. Performance deviations for two ON-OFF sources. (a) Varying R .
(b) Varying � .

server with a speed of bits/s, where the value of has been
selected to ensure an overall loss probability . The
traffic parameters of source 1 are kept fixed at bits/s,

s, and . In all scenarios described in this
section, the buffer size of the queue is set equal to the total av-
erage burst size of the two sources. Additional experiments were
conducted with different buffer sizes, and did not yield drasti-
cally different behaviors. The parameters of source 2 are varied
one or more at a time, with its other parameters kept constant
and identical to those of source 1. We rely on (1) and (2) to
evaluate the deviations between and . We omit results re-
lated to varying the burst duration as this parameter was found
to have no or only minor impact. This does not mean that the
burst duration has no impact. It certainly does. As it increases,
the total allocated bandwidth increases to accommodate the
burstier arrival process of source 2. However, contrary to what
happens with the peak rate and the utilization, varying the burst
duration while maintaining the aggregate loss probability below
the desired target of , does not introduce significant
difference between the loss probabilities of two sources.

The first set of conclusions one can draw from this simple
configuration, is that individual traffic parameters can indeed
induce loss probability differences across sources. This is illus-
trated in Fig. 1. In particular, we see that either increasing the
peak rate of source 2 or decreasing its utilization translates into
source 2 experiencing a higher loss probability. However, as il-
lustrated in Fig. 1(a) and (b), the amount by which the loss prob-
ability of source 2 exceeds the overall loss probability is quite
different in these two cases.

The fact that both peak rate and utilization can affect the
performance of an individual source is reasonably intuitive. A
higher peak rate source dumps data faster into the buffer, which
increases its likelihood of losing data. This increased burstiness
notwithstanding, the difference between and remains
small, as seen in Fig. 1(a). This is primarily because of how
we vary individual traffic parameters, and the resulting weight
of each source in terms of its traffic contribution. Specifically,
when we vary (increase) the peak rate of source 2, because the
utilization of the two sources remains the same, source 2 ends up
being the dominant contributor of traffic to the system. Hence,
although it does experience higher losses, because of its higher
weight in computing the overall loss probability , the allo-
cated bandwidth that is chosen to ensure that ,
also ensures that remains close to this target value.

The relationship between the fraction of the traffic con-
tributed by an individual user and the maximum ratio between
its own loss probability and the overall loss probability can be
characterized by a simple upper bound given below. Assuming
an environment where there are a total of users, and fol-
lowing the same set of notations used in Section III-A, the loss
probability ratio of user should satisfy

(11)

where the equality holds if and only if source is the only source
losing data. The above equation clearly states that the loss prob-
ability ratio experienced by a user can never exceed a value that
is inversely proportional to the fraction of traffic it contributes to
the total input traffic. For the case of varying the peak rate, the
above upper bound indicates that source 2 can never have a loss
probability ratio larger than 2, since it always contributes more
than half of the total input traffic. Furthermore, as the peak rate
of source 2 increases, so will the fraction of traffic it contributes.
Hence, the maximum possible value of its loss probability ratio
decreases according to (11). For example, when ,
from (11) we have . In short, (11) implies that
major traffic contributors can at worst only see minor perfor-
mance degradations, a theme that we will encounter repeatedly
throughout this paper.

In contrast, as is seen in Fig. 1(b), when we only vary the uti-
lization of source 2, the difference between the individual and
aggregate loss probabilities can be much larger. This is because
when the utilization of source 2 is varied (decreased) while its
peak rate remains identical to that of source 1, it is source 1 that
becomes the dominant traffic contributor. Hence, the allocated
bandwidth is determined primarily based on the performance
of source 1, which allows the loss curve of source 2 to degrade
almost arbitrarily [ could be as large as 201 in the worst
case according to (11)]. The reason for this degradation is that
the lower utilization of source 2 limits its ability to access the
link. This provides source 1 with additional transmission oppor-
tunities, which help lower its individual loss probability. This is
best illustrated through the scenario mentioned in Section III-A,
where losses occur only when both sources are active.

In this special case, the individual loss probabilities are given
in (3), which clearly identifies the impact of the smaller uti-
lization of source 2. Specifically, we have ,
which increases in a way that is inversely proportional to .
This is because losses occur only when both sources are ac-
tive and are, therefore, distributed in proportion to their peak
rates, i.e., . Meanwhile, the transmission rate of an
individual source, which reflects its tranmission opportunities,
is proportional to both the peak rate and the utilization .
Thus, the effect of the peak rates cancels out, and
can be easily found to be inversely proportional to . A
similar trend was also observed in cases where the peak rate of
each source exceeds the link capacity. However, there are two
competing effects in those cases, namely, how the peak rate of
a source influences how much it loses when it is the only one
active, and how its utilization affects its ability to gain access to
transmission opportunities. From our observations, utilization
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Fig. 2. Additional bandwidth for two ON-OFF sources. (a) Varying R .
(b) Varying � .

remains the dominant factor, primarily because the allocated ca-
pacity is typically chosen so as to keep losses at a sufficiently
low level when only one source is active.

The next aspect we investigate is the amount of additional re-
sources required to ensure that both sources experience a loss
probability that is below the desired target of . The re-
sults of this investigation are shown in Fig. 2 in the form of
the percentage of additional bandwidth required. In particular,
Fig. 2(b) confirms the potentially severe penalty imposed by
mixing sources with very different utilizations, as the amount
of additional bandwidth needed can reach about 45%.

In [26], we carried out additional experiments, where we si-
multaneously varied two instead of only one traffic parameters
of source 2. In particular, we considered scenarios that involved
varying and , and , and and . The results of
changing & and changing & were quantitatively very
similar to the cases of changing and , respectively. This
again confirms that the burst size can only have minor impact on
inducing loss deviations. When both and were varied, dif-
ferences between the two sources were also minor, and a small
amount of additional bandwidth was sufficient to guarantee both
their performance. Due to space constraints, we refer the reader
to [26] for details on these additional scenarios.

B. Two Periodic Sources

From Proposition 1, we know that as for ON-OFF sources,
the source with the longer period (smaller rate) experiences
higher losses in proportion to the ratio of its period to that of
the shorter period (higher rate) source. The reasons are again
similar to those articulated for ON-OFF sources. Specifically,
a periodic source with a longer period, like an ON-OFF source
with a smaller utilization, has fewer opportunities to access the
link and transmit a packet, and therefore experiences a higher
loss probability.

Moreover, we know from (5) that when , and their ratio
are all integers, the additional bandwidth required

to ensure a target loss probability of , when expressed in
terms of the corresponding increase of the sources’ period, is
equal to . Note that this value
is independent of and can be made arbitrarily large by
increasing .

V. LOSS DEVIATIONS IN THE MANY-SOURCE CASE

This section targets what one can consider a more realistic set
of scenarios, namely, service classes that carry a large number of

Fig. 3. Loss probability deviations for many ON-OFF sources. (a) Varying R .
(b) Varying � . (c) Varying R � .

flows. Such configurations will clearly be more appropriate for
high speed links, where one can expect to see just a few service
classes, e.g., built on top of a small numbers of Diff-Serv PHBs,
each carrying a large number of flows. In such an environment,
our intuitive expectation is that the presence of a large number
of flows is likely to “soften” possible deviations in performance.
As we will see, this intuition will indeed be confirmed.

A. Many ON-OFF Sources

In this subsection, we assume that the input traffic consists of
many ON-OFF sources. For simplicity, we limit ourselves to only
two types of sources. This facilitates the identification of which
user (type) experiences the higher losses. The type 1 sources
form the “background” traffic, and we assume a total of 1000
such sources, each with a peak rate bits/s, a burst du-
ration s, and a utilization . As previously
mentioned in Section III-C, when the background traffic is ho-
mogeneous, the number of active background sources follows
a binomial distribution. Using this fact together with (6) and
(7), we can evaluate the loss probability experienced by both
the type 1 sources and a single type 2 source whose traffic pa-
rameters we vary. Since the burst duration has no impact in a
bufferless model, we first vary and one at a time, and
then vary both of them while keeping their product constant,
i.e., . Again, when any parameters of the type 2
source are varied, its other parameters are set to the same values
as those of the type 1 sources.

The results are shown in Fig. 3. The figure illustrates that
variations in either peak rate or utilization alone do yield some
differences between the two types of sources. However, those
differences are most significant when the type 2 source has
both a much higher peak rate and a much lower utilization than
the type 1 sources. In particular, Fig. 3(c) shows that when

, the loss probability ratio is about
280. Such a result is reasonably intuitive. First, when the peak
rate of the type 2 source increases, so does its impact, making
it more likely to create congestion when active. The extent to
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which this also triggers the allocation of additional bandwidth
to compensate for this potential increase in losses depends on
the impact of the type 2 source on the overall loss. In particular,
if its utilization is very low, such impact will be minor and
will not trigger the allocation of any substantial additional
bandwidth. Hence, bandwidth allocation is primarily driven by
the performance of the type 1 sources, and the higher losses of
the type 2 source will remain mostly undetected. This explains
why the type 2 source can experience losses much higher than
the aggregate loss when both its peak rate and utilization are
varied while its overall data rate is kept constant.

In contrast, when only the peak rate of the type 2 source is
varied (increased), so will its overall data rate, which means that
the weight of its losses in the overall loss computation will also
increase. This will typically ensure that those losses are properly
accounted for in the bandwidth allocation procedure, so that the
bandwidth allocated to keep the aggregate loss probability con-
stant is sufficient to also keep the losses of source 2 close to
the desired target. This can be observed in Fig. 3(a), where the
loss probability of the type 2 source is only slightly larger than
the overall loss probability. The figure also shows that the rel-
ative performance of the type 2 source initially degrades as its
peak rate increases, and then gradually improves. The presence
of such a “cross-over” point is merely a reflection of the fact
that there is a lag between the negative impact of a higher peak
rate on the performance of the type 2 source and the eventual
detection of such impact by the bandwidth allocation procedure
as it increases.

Fig. 3(b) illustrates that when only the utilization of the type 2
source is varied, the differences between the loss performance
of the two types of sources are marginal. This is because al-
though decreasing the utilization of source 2 also decreases its
traffic contribution, and thus its impact on the bandwidth alloca-
tion procedure, source 2 only has a minor impact on the overall
congestion of the system when it becomes active. Hence, it sees
a system nearly identical to what the type 1 sources see, and will
therefore experience a similar loss probability.

As for the two-source case, we also investigated the amount
of additional bandwidth needed to ensure that the type 2 source
experiences the desired target loss. The results are reported in
Fig. 4. The figure shows that across all the scenarios of Fig. 3,
the maximum amount of additional bandwidth needed is only
8%, as compared to levels in excess of 40% for some of the
two-source scenarios. This further confirms our earlier intuition
regarding the benefits of larger scale systems toward guaran-
teeing consistent performance across users. However, note that
in terms of absolute value, the additional bandwidth required
to adequately accommodate a low utilization, high peak rate
source remains high.

Because the above results were obtained using a bufferless
model, we performed a similar set of simulations for a buffered
system with a buffer size equal to 0.5 Mb, i.e., the total average
burst generated by all background sources when they are ac-
tive. The observed behavior is reported in Table III,4 in which

, , and both and are increased from

4Note that the 95% confidence intervals for some simulation runs are still
relatively large (in the order of 40%), which explains some of the “irregularities”
seen in the table.

Fig. 4. Additional bandwidth for amny ON-OFF sources. (a) Varying R . (b)
Varying � . (c) Varying R � .

TABLE III
MANY ON-OFF SCENARIOS: 0.5-Mb BUFFER

20 to 200. From Table III, it can be seen that the deviation be-
havior in a buffered system is qualitatively similar to that in a
bufferless system. In particular, significant differences in either
peak rates or utilizations again only induce minor performance
deviation; while deviation caused by a combination of substan-
tially different peak rates and utilizations is still large, in spite
of a 0.5-Mb buffer. This indicates that when aggregating ON-OFF

sources, merely increasing the buffer size helps improve overall
performance, but does not necessarily eliminate performance
differences across users.

B. Many Periodic Sources

In this subsection, we investigate the potential performance
deviations when aggregating many periodic sources. Intuitively,
we expect that the “smoother” nature of periodic sources to-
gether with the large number of sources, will result in relatively
small performance deviations for those cases.

The configuration used in this section consists of 1000 type 1
sources with period and a single type 2 source with period

. The ratio is then varied from 40 to 200. The link
load is first fixed at 0.7 and the buffer size is set to ensure an
overall loss probability of .

The results of those experiments are reported in Table IV.
They confirm our expectation that multiplexing a large number
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of relatively smooth periodic sources results in only minor per-
formance deviations. The differences in loss probability are of
the order of 2% and the amount of additional bandwidth re-
quired to bring the loss probability of the type 2 source on par
with its target is at most 0.1%. Intuitively, this is because when
the number of sources is large, packet arrival epochs are more
likely to be randomly distributed, which minimizes the potential
variations of the queue length. This makes the loss probability
of the type 2 source mostly insensitive to the frequency with
which it samples the queue. More formally, this can be deduced
from the well-known PASTA result, as the increasing number
of sources result in an overall arrival process that approaches
Poisson. In such cases, the queue statistics seen by both types
of sources should be close to the exact overall system statistics.

The main significance of this finding is that it lends some va-
lidity to the use of aggregate QoS solutions for supporting con-
stant bit rate services. Clearly, there are aspects that the periodic
model does not capture, e.g., how interactions between flows af-
fect the periodic nature of the traffic as it traverses the network
(see [3], [11], and [16] for relevant investigations of this issue).
However, it helps confirm that multiplexing CBR sources, even
when they have different rates, is reasonably safe in that all
sources should approximately see the same performance, at least
when many such sources are multiplexed. Note that as is shown
in Section IV-B, this does not necessarily hold when only two
sources are multiplexed, as a lower rate (longer period) source
will often see much higher losses. Understanding how the de-
viation behaviors evolve as the number of multiplexed sources
increases is the topic of the next section.

VI. INTERMEDIATE CONFIGURATIONS

Because of the differences that were observed between the
two-source and the many-source configurations, it is of interest
to investigate the transition from one set of behaviors to the
other. Note that those differences were anticipated, as the
two-source and many-source cases were chosen because we
expected them to provide results that would be applicable to
“small” and “large” systems, respectively, and thus to possibly
exhibit different deviation behaviors. What we wish to under-
take in this section, is to gain a better understanding of when
the results for “small” and “large” systems are applicable.

The approach we take is to test a number of “intermediate”
scenarios. The first such scenario involves ON-OFF sources and
is tested through simulations. In particular, the number of back-
ground (type 1) sources in the system is increased from 1 to
100, while still keeping a single type 2 source.5 When there is
only one type 1 source, its parameters are: bits/s,

s, and . When the number of type 1 sources
increases, and remain fixed but is decreased so that
the total mean rate of the background traffic is kept constant.
For the sake of brevity, we only focus on scenarios where the
behaviors of the two-source and many-source scenarios differ
substantially, i.e., cases that involve differences in and in both

and , and select a large ratio of 200 between the parame-
ters of the two types of sources. Simulations were conducted for

5See [26] for another set of intermediate configurations where both the
number of type 1 and type 2 sources are varied, while the total number of
sources is fixed.

TABLE IV
IMPACT OF SOURCE PERIOD: THE MANY SOURCE CASE

TABLE V
INTERMEDIATE ON-OFF SCENARIOS

both bufferless and buffered systems (the buffer size was again
0.5 Mb). Since results were essentially similar, we only report
those of the buffered system simulation.

The results are reported in Table V from which we can draw
a number of conclusions. First, when the two types of sources
differ only in their utilizations, the convergence to the many-
source results is rather rapid. For example, a number of only 50
background sources is sufficient for relying on the many source
results. The deviation in loss probability is only 10% and al-
locating an additional 0.1% of bandwidth eliminates it. This
means that when sources differ only in their mean rates and not
in their peak rates, e.g., because users are connected to the net-
work through the same kind of access links, aggregating even a
relatively small number of (ON-OFF) sources ensures reasonably
homogeneous performance.

The situation is somewhat different when dealing with
sources that differ in both their utilizations and peak rates.
In such a case, the transition from the two-source to the
many-source case is much more progressive. Nevertheless,
even if it takes a large number of sources before observing the
very large performance deviations of the many-source regime
in Section V-A, significant differences in performance can
already be seen with a relatively small number of sources.
Specifically, with only 10 (type 1) sources the loss probability
ratio is already greater than 10. This implies that aggregating
even a small number of sources that differ in both their peak
rates and utilizations can result in substantial deviations.

The second intermediate configuration tested corresponds to
the queue of Section V-B. For this
experiment, we still rely on (8) and (9) of Section III-D. We
vary the number of type 1 sources from 1 to 100, while fixing the
ratio at 200. The loss probability ratio and the additional
bandwidth needed to satisfy the performance requirements of
the type 2 source are given in Fig. 5(a) and (b), respectively.

As can be seen from the figure, the behavior of the
many-source scenario is reached rather rapidly, and a back-
ground traffic of 100 sources is more than sufficient for that
purpose.

VII. APPLICATIONS TO REAL TRAFFIC SOURCES

A. Traffic Aggregation Guideline

What we have observed so far demonstrates that the behavior
of loss deviation is primarily affected by the number of sources
aggregated. In particular, in the many-source case, the main
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Fig. 5. Intermediate scenarios for periodic sources.

factor responsible for causing significant deviation in perfor-
mance is a combination of high peak rate and low utilization.
In contrast, in the two-source case, utilization alone can induce
significant deviations. What these two cases have in common is
that for an individual source to experience much higher losses
than the overall loss target, it needs to not only contribute signif-
icantly to the onset of congestion when active, but also to do it in
a way that does not trigger the allocation of sufficient additional
resources. In the case of two (or a few) sources with similar
peak rates, each source has a significant influence on conges-
tion whenever it is active. Therefore, decreasing the utilization
(lowering its mean rate) of even a single (tagged) source, trans-
lates into fewer congestion periods and, better overall perfor-
mance. This then triggers a decrease in the amount of resources
allocated to meet the desired (aggregate) loss probability target.
However, this decrease in allocated resources means that the
tagged source, whenever it is active, now sees higher levels of
congestion and higher losses. Hence, the performance of the
tagged source keeps on worsening as its utilization gets smaller.
In contrast, when there are many sources with similar peak rates,
each source has only a minor effect on congestion when ac-
tive. In this case, decreasing the utilization of just one tagged
source is not sufficient to affect the overall performance, and
therefore change the allocated resources. As a result, the perfor-
mance of the tagged source remains essentially similar to that of
the other sources. In order for performance deviations to occur
and remain undetected by the system, both the peak rate and
the utilization of the tagged source need to be changed. A high
peak rate means that the tagged source will typically experience
significant congestion when active, while a low utilization indi-
cates that the impact of such congestion on the overall perfor-
mance is small enough not to trigger the allocation of additional
resources. It is this combination of higher peak rate and lower
utilization that together results in significant differences in loss
probabilities.

We summarize in the following statement:

An individual user will experience a significantly larger
loss probability than the overall loss probability of its ser-
vice class, and thus should not be included in this service
class, if and only if it satisfies both of the following condi-
tions:

1) The traffic contribution of the user, when active, should
be capable of inducing substantial congestion.

2) The absolute losses contributed by this user should be
small compared to the total traffic, so as not to affect
the overall loss probability in a significant way. In other

words, the traffic contribution of the user should be
small.

The above statement can be easily cast in the form of a general
guideline to determine which sources should and should not be
multiplexed. In the next section, based on this guideline, we de-
velop a simple methodology for quantitatively identifying when
sources can be multiplexed.

B. Methodology for Identifying Dangerous Traffic Mixes

Despite its simplicity and generality, the above traffic aggre-
gation guideline is qualitative in nature and, therefore, difficult
to apply directly in practice. This is compounded by the fact
that it relies on several assumptions, e.g., Markovian or peri-
odic sources, which often do not hold in practice. In this sub-
section, we develop a simple methodology that incorporates the
above guideline and is able to predict the magnitude of perfor-
mance deviations for real traffic sources. Based on the predic-
tions of this methodology, decisions can be made on whether or
not to multiplex traffic sources. We establish the efficiency of the
proposed methodology by testing it for different configurations
using the voice and video sources described in Section II-A2.

1) Mapping Real Sources Onto ON-OFF Sources: A first key
step of our methodology is to determine how to map real traffic
sources onto the analytical source models developed in Sec-
tion III. Specifically, voice and video sources usually create
ON-OFF traffic patterns, which makes a Markov ON-OFF source a
natural choice for representing them. There are many possible
options for mapping a voice or video source onto an “equiva-
lent” Markovian source, especially if one wants to account for
its higher order statistics. Our initial approach, however, is lim-
ited to accounting for only first order statistics. Our rationale
is that based on the experience derived from the many scenarios
we explored using analytical models, we expect first order statis-
tics to play a dominant role in inducing significant performance
deviations. This is not to say that higher order statistics have no
impact, but only that we expect first order statistics to capture
many if not most of the traffic characteristics that can introduce
significant performance deviations. As will be shown in the rest
of this section, this initial assumption was mostly confirmed by
the various experiments performed.

The first traffic source we attempt to map to an ON-OFF source
is a raw video source that generates variable size frames at reg-
ular time intervals (40 ms for the trace we use). In our study, we
assume that a whole frame arrives instantaneously, so that the ac-
cess link serves as a shaper, bounding the maximum rate of the
output traffic by its own transmission rate.6 The shaped traffic
emanating from the access link can then be modeled using an
equivalent ON-OFF source, with

(12)

where is the access link speed and is the average
frame size of the video trace.

6We deliberately set access link speed larger than the maximum frame-level
bit rate to avoid the situations in which the link cannot transmit one frame in
40 ms and allow consecutive frames to form an extended burst. We found that
if this happens, several extremely long bursts may occur and the delay at the
access link could be very large.
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As with video sources, the traffic of voice sources can be di-
vided into “ON” and “OFF” periods, corresponding to the talk
spurt and silence period in human speech. The mapping of voice
sources onto ON-OFF sources can be carried out directly using the
numbers shown in Table II, i.e., Kb, ms, and

. Since voice traffic is reasonably smooth, i.e., during
a burst period the voice source generates multiple packets of
80 bytes with an equal spacing of 10 ms, the peak rate of the
equivalent ON-OFF voice source is fixed at 64 kb/s instead of
equal to the access link speed.7 As we shall see later, this rel-
ative smoothness prevents the voice source from experiencing
major performance degradations despite its relatively low rate,
even when aggregated with video sources.

2) Decision Methodology: Once video and voice sources
have been mapped onto Markov ON-OFF sources, we can apply
either (1) and (2) (in the two-source case) or (6) and (7) (in
the many-source case) to evaluate the maximum loss proba-
bility ratio across all users. The value of the maximum
loss probability ratio is then used as a basic measure for de-
ciding whether the corresponding mix of sources is safe or
not. Associated with such a decision is a “threshold” region

, which is used to separate risky traffic
mixes, i.e., mixes that give rise to large deviations, from safe
ones. Specifically, if the loss probability ratio is less than

, the traffic mix is considered “definitely safe”; if it
is greater than , the traffic mix is deemed “definitely
dangerous”; if it falls in-between those two values, i.e., inside
the threshold region, the traffic mix is flagged as “potentially
risky” and requiring additional investigations. We believe that
introducing such a “grey” region provides greater flexibility,
and can help minimize the impact of inaccuracies inherent in
our evaluation methodology.8 Our hope is that a reasonably
narrow threshold region is sufficient to filter out the various
traffic mixes for which the model might provide inaccurate
answers.

In order to evaluate the efficacy of our methodology in iden-
tifying dangerous traffic mixes, we introduce a “consistency
test” in which the decision regarding whether or not to aggre-
gate based on the model prediction is compared with the corre-
sponding decision according to simulation. We have conducted
extensive consistency tests for many different configurations.
Due to space constraints, we only report the most important
cases, while complete results can be found in [27]. In all sim-
ulations, the packet size of the voice traffic is fixed at 80 bytes
and the packet size of the video traffic is fixed at 100 bytes, so
that a video frame with a larger size is fragmented into multiple
packets. Moreover, the buffer size is fixed at 5000 bytes and the
threshold region is always set as [3,5], a reasonably narrow in-
terval. Similar to our previous investigations to the analytical
models, we again focus on one of the two types of sources, and
vary its parameters so that it experiences a larger loss proba-
bility.

7The peak rate will be equal to the access link speed only when it is less than
64 kb/s, which is lower than the values assumed in this paper.

8Ideally, the threshold region should be as narrow as possible, but depending
on the accuracy of the model, too narrow a region may either yield a large
number of false alarms or fail to properly identify harmful configurations. A
wider threshold region reduces those problems at the cost of some imprecision
in terms of classifying certain scenarios.

Fig. 6. Loss probability ratio when aggregating two video sources.

C. Testing Our Methodology Using Voice and Video

In this subsection, we test the performance of our method-
ology using a number of case studies. We again start with the
two boundary configurations, i.e, the two-source case and the
many-source case.

1) Aggregating Two Sources: The first case we consider in
the two-source scenario involves multiplexing a Jurassic low
source and a Jurassic high source, which corresponds to two
video streams with very different qualities and, therefore, bit
rates. We select the lower bit rate source, i.e., the Jurassic low
source, as our candidate for experiencing a larger loss proba-
bility by varying (increasing) its access link speed, so that its
peak rate also increases correspondingly.

The loss probability ratio is shown in Fig. 6. From Fig. 6,
we can see that as the access link speed increases, performance
deviation can arise with a loss probability ratio that can ulti-
mately reach a value of about 6. More important for us, the
figure shows that our methodology accurately tracks both the
trend and the magnitude of this deviation. In particular, when-
ever that actual loss probability ratio is outside the threshold re-
gion , so is our estimate. Hence, we are able
to correctly identify configurations that are either “definitely
safe” or “definitely dangerous”. Despite the large difference be-
tween the utilizations of the two sources, the range of possible
loss probability ratios is rather limited (it never exceeds 6). This
is because the lower bit rate source, i.e., the Jurassic low source,
still contributes a nonnegligible amount of traffic to the overall
traffic, which limits the extent to which its performance can de-
viate from the overall performance. From Table I, a Jurassic low
sequence has a mean rate equal to 153.7 Kb, which is about
16.7% of the total input traffic, resulting in a loss probability
ratio satisfying according to (11).

A second two-source scenario we consider involves one voice
source and one video source, either Jurassic low or Jurassic high.
From Table I and Table II, we can see that the voice source has a
very low transmission rate compared to either the Jurassic low or
the Jurassic high source. This means, according to (11), a rela-
tively large upper bound for , which could indicate a poten-
tially dangerous traffic mix. However, the actual loss probability
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Fig. 7. Loss probability ratio when aggregating one video source and one voice
source. (a) Aggregating voice source and Jurrasic low. (b) Aggregating voice
source and Jurrasic high.

ratio is found to be quite small. This is because of the reason-
ably smooth nature of the voice source, which makes it mostly
immune to performance degradations when multiplexed with ei-
ther of the two video sources. This is consistent with our earlier
guideline, since although the voice source satisfies its second
condition, i.e., it is a minor traffic contributor, it does not sat-
isfy the first. Hence, it is now the video source that experiences
somewhat poorer performance. The magnitude of this perfor-
mance degradation is, however, very limited because the video
source is the major contributor to the overall transmission rate
(11) gives an upper bound of 1.04 and 1.18 for the loss proba-
bility ratio of Jurassic low and Jurassic high, respectively). As a
result, our main concern in these scenarios is whether the model
will generate a false alarm, i.e., falsely predict that mixing a
voice and a video source is potentially dangerous.

The corresponding results are shown in Fig. 7. From the
graphs, we can see that for both Jurassic low and Jurassic high,
the model tracks the actual loss probability ratio reasonably
accurately. More important, it will not generate any false alarm
and will consistently identify the traffic mixes as safe.

2) Aggregating Many Sources: In this section, we explore
the case where many voice sources and one video source are
aggregated. From the guideline of Section VII-A, we know that
for one or more sources to experience substantially worse losses
than other sources, its overall traffic contribution should be
small while still being able to induce congestion when active.
In order to construct such a situation, we choose 500 voice
sources as the background traffic and one video source, Jurassic
low, as the source of special interest.9 The loss probability
ratio for this configuration is shown in Fig. 8, where we again
vary the access link speed of the Jurassic low source so that it
experiences a larger loss probability.

As is seen in Fig. 8, the video source’s loss probability ratio
grows with its access link speed. This evolution is accurately
captured by the model even if it slightly overestimates the actual
value of the loss probability ratio. Such overestimation, how-
ever, does not affect the model’s ability to succeed in the con-
sistency test. The figure also shows that in comparison with the
two-source scenarios, the range of possible deviations is sub-
stantially larger. This is not unexpected, as the traffic contributed
by the minor traffic contributor, i.e., the Jurassic low source, to

9The choice of Jurassic low is primarily motivated by its lower rate that makes
it easier to ensure that its contribution to the overall traffic is relatively small.
A similar situation could have been created for the Jurassic high source by in-
creasing the number of background voice sources.

Fig. 8. Loss probability ratio when aggregating 500 voice sources and one
video sources (Jurassic low).

Fig. 9. Aggregating video sources and Jurassic (low): increasing number of
voice sources.

the total traffic volume is much smaller (only 1.12%) than that
in the two-source scenarios. This very small contribution to the
overall traffic translates into an upper bound of 89.5 for the loss
probability ratio, and we can see from the graph that this value
is almost achieved when the access link speed is high.

3) Intermediate Configurations: After exploring the behav-
iors of loss deviations in the two boundary configurations, we
again proceed to investigate how one transitions from one set
of behaviors to the other as the number of traffic sources varies.
Specifically, the scenario we study consists of a variable number
(from 1 to 500) of voice sources with one video source (Jurassic
low). This allows us to explore the evolution from a safe, two-
source traffic mix to an unsafe, many-source mix. The corre-
sponding loss probability ratio is plotted in Fig. 9.

As can be seen from the figure, the model is quite accurate
in predicting the loss probability ratio across all scenarios. In
addition, the figure shows that the transition from safe to un-
safe regions is progressive, roughly following a linear func-
tion, but with a relatively steep slope. In particular, mixing the
video source with just 50 voice sources already yields a loss
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probability ratio close to 10. This is consistent with what we
observed in the intermediate configurations involving Markov
ON-OFF sources in Section VI, where we had already seen the
relatively fast transition from the two-source case to the many-
source case. This highlights the fact that it is better to err on
the side of caution when considering mixing traffic sources with
rather disparate peak and mean rates.

D. Discussions

The data reported in this section only covers a small portion
of all the tests that were conducted. More extensive results can
be found in [27]. In [27], we observed that in a few cases, es-
pecially cases involving aggregating a small number of sources
with very different mean rates, our prediction of the loss prob-
ability ratio could be off by a nonnegligible amount. However,
even in those cases our methodology was typically still able to
qualitatively capture the trend in performance deviations and
more important, accurately identify dangerous traffic mixes. In
other words, while we were off in predicting the absolute value
of the loss probability ratio, we were still in the correct safe
or dangerous “region.” Moreover, the reliability and robustness
of the proposed methodology was further established in a more
quantitative manner through a worst case analysis. It was shown
particularly that the worst case error in predicting the loss prob-
ability ratio was small across a broad range of source charac-
teristics, independent of the errors introduced when mapping a
real traffic source onto an equivalent Markov ON-OFF source. We
refer again to [27] for a full presentation of this worst case anal-
ysis.

VIII. CONCLUSION

This paper is concerned with an environment where QoS is
provided through coarse mechanisms such as service classes,
and where guarantees are provided at the class level and en-
forced through provisioning. Our goals were to determine if and
when aggregate performance, in particular loss probabilities, is
a good predictor of individual performance, and to identify sce-
narios where this may not hold. In that context, this paper’s con-
tributions are threefold.

First, we derived a number of analytical models that allow the
evaluation of individual loss probabilities in environments that
only provide aggregate guarantees. These models cover both
Markov ON-OFF and periodical sources and are developed for
two different boundary configurations, i.e., the two-source sce-
nario and the many-source scenario, so that they are expected to
help characterize the possible range of the deviation behavior.
Though built on previous works, these models do represent new
contributions. In particular, the results of Sections III-A and
III-B provide some simple yet useful insights into the impact
of individual traffic parameters in the two-source case. Sec-
tion III-D also provides new results.

Second, we identified a number of configurations that can
introduce significant deviations across individual and aggregate
loss probabilities, and use these results to derive recommenda-
tions and guidelines for avoiding such situations. In particular,
we showed that when service classes are used to aggregate
only a small number of users, the rate of individual sources

is a key factor and one should avoid multiplexing users with
significantly different rates. This holds for both the ON-OFF and
the periodic models, although this effect rapidly decreases as
more users are being multiplexed. For example, we found that
even a difference in rate of 200 results in no more than a factor
of 2 in difference in loss probabilities, when 20 CBR sources
are multiplexed. When the number of sources being aggregated
is large, one should avoid multiplexing flows that differ greatly
in both their peak and mean rates, at least in environments
where provisioning has some built-in assumptions regarding
multiplexing efficiency, i.e., environments where the ON-OFF

model is relevant. If a more conservative, e.g., peak rate based,
provisioning strategy is used, then multiplexing flows with
different traffic characteristics (periods) is reasonably safe, as
long as the number of flows aggregated in the service class
is sufficiently large. Furthermore, the differences identified
between the provisioning environments corresponding to the
ON-OFF and periodic models, also carry over to how fast the
many-source model becomes applicable. In particular, in the
periodic model the impact of rate differences disappears rapidly
as the number of sources increases. However, the same does not
hold for cases where ON-OFF sources have rather different peak
and mean rates. In those cases, a significantly larger number of
sources is needed before the characteristics of the many-source
model become prominent.

Finally, we developed a simple methodology based on our
analytical results, for determining whether aggregation is safe
or not when dealing with real-world traffic sources. We demon-
strated the efficacy and robustness of the proposed methodology
through a series of case studies involving the aggregation of a
number of voice and video sources.

In summary, we believe that the results reported in this paper
make a valuable contribution to our understanding of the capa-
bilities and limitations of aggregate QoS solutions. In particular,
the theoretical framework we have developed can help gain a
better insight into why and when performance deviations arise.
In addition, the methodology we developed is simple yet accu-
rate enough to provide a practical tool for identifying potentially
dangerous traffic mixes.
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