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Stretching and mixing of non-Newtonian fluids in time-periodic flows

Abstract
The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer solutions in
nearly two-dimensional magnetically driven flows, in order to distinguish between the effects of viscoelasticity
and shear thinning. Viscoelasticity alone is found to suppress stretching and mixing mildly, in agreement with
some previous experiments on time-periodic flows. On the other hand, the presence of shear thinning
viscosity (especially when coupled with elasticity) produces a dramatic enhancement in stretching and mixing
compared to a Newtonian solution at the same Reynolds number. In order to understand this observation, we
study the velocity field separately in the sheared and elongational regions of the flow for various polymer
solutions. We demonstrate that the enhancement is accompanied by a breaking of time-reversal symmetry of
the particle trajectories, on the average. Finally, we discuss possible causes for the time lags leading to this
temporal symmetry breaking, and the resulting enhanced mixing.
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The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer
solutions in nearly two-dimensional magnetically driven flows, in order to distinguish between the
effects of viscoelasticity and shear thinning. Viscoelasticity alone is found to suppress stretching and
mixing mildly, in agreement with some previous experiments on time-periodic flows. On the other
hand, the presence of shear thinning viscositysespecially when coupled with elasticityd produces a
dramatic enhancement in stretching and mixing compared to a Newtonian solution at the same
Reynolds number. In order to understand this observation, we study the velocity field separately in
the sheared and elongational regions of the flow for various polymer solutions. We demonstrate that
the enhancement is accompanied by a breaking of time-reversal symmetry of the particle
trajectories, on the average. Finally, we discuss possible causes for the time lags leading to this
temporal symmetry breaking, and the resulting enhanced mixing. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1909184g

I. INTRODUCTION

Twenty years ago, Aref1 demonstrated that simple, time-
periodic flows in two dimensions can produce mixing and
complex distribution of materials by chaotic advection. The
majority of previous research on mixing in time-periodic
flows, with exceptions to be discussed below, has been re-
stricted to Newtonian fluids.2–7 Most practical viscous fluids,
in contrast, contain polymers or particlesse.g., polymer
melts, pastes, and colloidsd and are not Newtonian. Examples
occur in cell fermentation, polymer processing, volcanic
flows, and synovial fluid flow in joints. An important feature
of many non-Newtonian fluids is that they often exhibit both
viscoelasticity and shear-thinning viscosity, particularly solu-
tions containing flexible polymers.

Flow instabilities, irregular flow patterns, and nonlinear
dynamics have long been observed in purely elastic fluids8–13

and in fluids possessing both elasticity and shear-thinning
viscosity.14–16 Most of the nonlinear flow behavior observed
in these studies arises from the extra elastic stresses due to
the presence of polymer molecules. Mechanical stresses in
these fluids are history dependent and depend on a charac-
teristic timel that in dilute solutions is proportional to the
relaxation time of a single polymer molecule. In semidilute
solutions,l depends also on molecular interactions. These
stresses grow nonlinearly with strain rate and can dramati-
cally change the flow behavior. A common example is the
rod-climbing or Weissenberg effect in curvilinear flows,
where a viscoelastic fluid creeps up a rod being rotated in the
medium. The fact that viscoelastic fluids can lead to flow
bifurcations is of interest in fluid mixing. Despite advances
in understanding fluid mixing and recognition of the impor-

tance of non-Newtonian fluids, few studies have focused on
the mixing of such fluids.

The majority of the non-Newtonian mixing studies have
focused either solely on viscoelasticity17–21 or on shear-
thinning viscosity,22 but few have focused on the interaction
between these two phenomena. Viscoelasticity is most often
investigated using constant-viscosity, elastic fluids,23 which
minimizes shear-thinning effects. In previous experiments on
time-periodic flows of such fluids, mixing has been found to
be retarded in some cases,17 and enhanced in others.18 A
dramatic example of mixing enhancement has been seen for
experiments in small curved channels.24 On the other hand,
shear-thinning viscosity has been shown computationally to
have a potentially large impact on fluid mixing by decreasing
the degree of Lagrangian chaos in time-periodic flows.22

Nevertheless, non-Newtonian fluids often exhibit both shear-
thinning and viscoelastic behavior and it is difficult to know
a priori the effects of their interaction on mixing by studying
them separately. There are a few early mixing investigations
dealing with shear-thinning-viscoelastic fluids, but they fo-
cus mainly on macroscopic measures such as torque require-
ment and power consumption.25,26 More recently, an experi-
mental study in a torsionally driven cavity27 found certain
differences in flow behavior between Boger and slightly
shear-thinning fluids, but no general conclusions on the ef-
fect of shear thinning on mixing are drawn.

In this paper, we investigate the effects of both vis-
coelasticity and shear-thinning viscosity individually and to-
gether on fluid mixing. We study the velocity fields quanti-
tatively using particle tracking with unusually high precision
and resolution. By doing so, we can also study the stretching
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of fluid elements, a critical determinant of mixing. While
previous methods allow the stretching of isolated fluid ele-
ments to be determined, our approach28 allows thestretching
fields to be determined. These two-dimensional fields quan-
titatively characterize the stretching process at each location,
both in the future and in the past of a given instant, every-
where in a two-dimensional flow. Stretching is intimately
related to the rate of divergence of initially nearby points,
which in chaotic flows is exponential in time on the average,
and can be used as a measure of mixing efficiency.2 For time
periodic flows, stretching fields label the stable and unstable
manifolds of fixed points of flow maps, and can be used to
characterize the mixing dynamics or in some cases to predict
mixing rates.29 Hence, the statistical and geometric proper-
ties of the experimentally calculated stretching fields are
powerful tools for characterizing mixing in fluids.

This paper is organized as follow. We describe in Sec. II
the experimental setup and rheology of the fluids investi-
gated here. The role of elasticity on fluid mixing is investi-
gated in Sec. III by first comparing the mixing of a Boger
fluid to a viscosity-matched Newtonian fluid and then by
investigating the effects of shear-thinning viscosity using flu-
ids with different levels of elasticity. A novel type of flow
analysis is also presented in Sec. III, where we study the flow
profiles separately in sheared and elongational regions of the
flow. Our summary and conclusions follow in Sec. IV. We
find that the presence of shear-thinning viscosity substan-
tially modifies the velocity fields and produces a large en-
hancement of stretching and mixing. The effect is largest if
viscoelasticity is also present. On the other hand, a small
level of elasticity aloneswithout shear thinningd reduces
stretching and mixing somewhat compared to the Newtonian
case under the same conditionssgeometry and Reynolds
numberd.

II. EXPERIMENTS

We investigate mixing in an electromagnetically driven
thin fluid layer as shown in Fig. 1. A time-periodic current
travels horizontally through a fluid layer that is placed above
an array of permanent magnets. We use 92 magnetss1.2 cm
in diameterd with a 2 cmmean spacing. The resulting Lorenz
forces drive a time-periodic vortex array flow in the fluid.
The magnets are placed and oriented randomly as shown in
Fig. 1. The area of fluid flow is 15315 cm2, and all figures
in this paper show a central 11311 cm2 region. The typical
forcing frequency is 100 mHz and typical velocities are
0.07–1.2 cm/s. For all experiments, the fluid of interest is a
1 mm thick nonconductive layer that floats on top of a 3 mm

denser conductive layer. Note that both fluid layers have the
same composition, except that the lower layer is made con-
ductive and denser by the addition of 5% by weight of KCl
salt. The two layers remain distinct for the duration of the
experiments, even though they are miscible. We use two lay-
ers to ensure the two dimensionality of the thin upper layer
ssee belowd.

For dye experiments, half of the upper layer is initially
marked with fluorescein at a concentration ofs6310−5dM
while the other half remains unmarked by dye. The diffusiv-
ity of fluorescein isD=5310−10 m2 s−1. Particle tracking ex-
periments are performed by seeding the system with fluores-
cent polystyrene spheres 120mm in diameter. Tracer
particles are placed at the interface separating the two fluid
layers. Usually, 600–800 particles are imaged in a single
frame. We record up to 8000 images using a charge-coupled
device cameras5123512d at 8 Hz in a typical run, or 80–
100 images per period. The centroid of each particle is found
with a precision of 48mm. Particles found in sequential im-
ages are then labeled and combined into tracks. The bound-
ary conditions are the same for the dye and the particle track-
ing experiments; there is a free surface for both types of
experiments.

Because the flow is periodic, we can combine particle
positions obtained at a given phasesrelative to the forcingd to
obtain up to 80 000 precise particle positions at each phase
and thereby obtain very high spatial resolutions0.004 of the
field of viewd, excellent time resolutions0.01 of a flow pe-
riodd, and velocities accurate to a few percent.

The velocity fields are accurately two dimensional in the
upper layer, because the period of the flow variation is quite
long compared to the vertical momentum transport time
across the upper layerstypically 10 s vs 0.2 s for the viscous
solutions used hered. Therefore, vertical gradients of the hori-
zontal velocity are negligible. This issue has been discussed
in previous work on Newtonian fluids in the same
geometry,29,30 but the two-dimensional approximation is
even better here because of the high viscosity. We also find
that the horizontal divergence]u/]x+]v /]y of the velocity
field, on average, differs from zero by less than 0.05% of the
typical horizontal mean shear ratesdefined in the “Fluid rhe-
ology” subsection, belowd.

The process of extracting stretching fields begins by us-
ing polynomial fitting to determine particle velocities, which
are then interpolated onto a grid. Flow maps are constructed
by integrating hypothetical particle trajectories numerically
using the velocity grids. These maps determine the final des-
tinationssafter an intervalDt=0.125 sd of particles as a func-
tion of their initial positions. Finally, the stretching fields are
determined from gradients of the flow maps. One can most
easily comprehend these fields by regarding them as measur-
ing the deformation of an initial small circlesat a given spa-
tial locationd into an ellipse; the ratio of the major diameter
to the initial diameter is the stretching, but it is actually com-
puted as the largest eigenvalue of the right Cauchy–Green
strain tensor at the point in question.28

Two different quantities are computed at each point,
which we call future and past stretching. Future stretching is
the stretching experienced by a fluid element in the nextDt.

FIG. 1. Schematic diagrams ofsad the two-dimensional, magnetically
forced, time-periodic flow, andsbd the random arrangement of forcing mag-
nets. Dark and white circles indicate magnet polarity.
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Past stretching is the stretching that a fluid element experi-
enced in the previousDt. The starting phase for future
stretching measurements and the ending phase for past
stretching measurements, corresponds to an instant at which
the rms velocity is nearly constant, about 0.26 periods after
the current is reversed. However, similar results are obtained
at other phases. We estimate that the uncertainty in the mean
stretching is about 4%. This uncertainty was estimated by
adding random noise to the velocimetry data and computing
stretching from the “noisy” velocimetry data. Further detail
on the velocimetry measurements and stretching calculations
may be found elsewhere.28

Fluid rheology

The polymers used are high-molecular-weightsMWd
polyacrylamidesPAA, 183106 MW, Polysciencesd and xan-
than gumsXG, 2.73106 MW, Sigma-Aldrichd. The former
has a flexible backbone while the latter is a stiff “rodlike”
polymer, with flow behavior that mimics suspensions of fi-
bers in Newtonian media. The overlap concentrationsC* are
300 ppm and 170 ppm for the PAA and XG solutions, re-
spectively. Despite its lower molecular weight, the xanthan
gum solution has a lower overlap concentration than PAA,
since it is a rigid polymer, having a higher effective volume
fraction. These overlap concentrations correspond to molecu-
lar concentrations nPAA=1.0131013 molecules/cm3 and
nXG=3.7931013 molecules/cm3.

Both polymers in solution show elastic effects and shear-
rate dependent viscosity in the semidilute regimesC.C*d,
although in general, PAA solutions possess larger elastic ef-
fects than XG solutions due to the flexible backbone of the
former. Hence, by adjusting the solvent viscosity, polymer
type, concentration, and imposed strain rate, we are able to
investigate the effects of viscoelasticity on mixing with and
without the effects of shear-thinning viscosity. Purely vis-
coelastic effects are investigated by dissolving small
amounts of PAA in a viscous solvent to create a constant-
viscosity elastic fluid, usually called a Boger fluid23 and by
studying PAA solutions in water below the critical strain rate
required to induce shear thinning. The effects of viscoelas-

ticity coupled with shear-thinning viscosity are investigated
using high polymer concentrationsPAA and XGd aqueous
solutions at moderate strain rates. Newtonian fluid mixing is
investigated using a glycerol/water solution that matches the
viscosity of the Boger fluid.

We use a stress-controlled cone-plate rheometer to char-
acterize the fluidssFig. 2d. A well-known characteristic of
viscoelastic fluids is that they exhibit normal stress differ-
ences when sheared. The largest of the two normal stress
differences isN1, which in a cone-and-plate geometry causes
the cone and the plate to be pushed apart, thus allowing the
instrument to measure it directly. At sufficiently low shear
rates,N1 is nearly proportional to the mean square shear rate
ġ2 and thus the first normal stress coefficient, given byC1

=N1/ ġ2, approaches a constant valueC1,0 at low shear rates
fFig. 2sbdg. For the Boger fluid, a constant Maxwell relax-
ation time can be defined asl=C1,0/2h,31 whereh is shear-
viscosity. In the case of viscoelastic, shear-thinning fluids,
the relaxation time is a function of shear rate, and is defined
asl=N1/ f2hsġdġ2g.

The shear-rate dependent viscosity datafFig. 2sadg are
fitted to the Carreau viscosity equation,h=h0f1+skġd2g−n/2,
whereh0 is the zero-shear-rate viscosity,n is the power law
index andk is a time constant. The composition and rheo-
logical parameters of the various solutions used in the ex-
periments are presented in Table I.

There are four independent dimensionless parameters for
this flow. The Reynolds number Re=rUL /h is based on the
mean magnet spacingL=2 cm, rms velocityU, fluid density
r, and fluid viscosityh. For shear-thinning fluids, we useh

measured at the estimated horizontal mean strain rateḡ̇ scf.
Fig. 2d in computing the Re. We could alternately use the
zero-shear-rate viscosityh0 instead, but this choice would
largely underestimate Re. Since the non-Newtonian fluid vis-

cosity is rate dependent, the use ofḡ̇ to estimateh seems
appropriate. Note that we use the horizontal mean strain rate
because the vertical strain rates are negligible in the upper
layer.

The path lengthp=U /Lf, where f is the driving fre-

FIG. 2. sad Viscosity curves andsbd first normal stress coefficient for the shear-thinning fluids used in this work. Lines connecting data points are added to
guide the eye.
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quency of the flow, describes the path length traveled by a
fluid element in one forcing periods1/ fd normalized byL.
The relative importance of elasticity and viscosity is quanti-

fied by the Weissenberg number, Wi=lḡ̇, where l is the
fluid relaxation time, which in the case of shear-thinning
fluids is a function of shear rate. Note that thevertical veloc-
ity gradientnear the bottom of the cell substantially exceeds
thehorizontal gradientin the upper layer by approximately a
factor of 10, so that one might consider defining Wi based on
this larger gradient. We do not make this choice because we
are studying only the stretching and mixing properties of the
thin upper layer, where the vertical velocity gradient has
been shown to be small. While for some of our fluids shear
thinning will occur near the lower cell boundary, it does not
appear to affect the behavior of the upper layer significantly.

Shear-thinning effects in the upper layer are character-

ized by a dimensionless strain ratekḡ̇, where k, defined
previously, is the characteristic time associated with shear-
thinning effects. An additional dimensionless parameter, the
elasticity numbersEl=Wi/Re=lh /rL2d, is sometimes used
to characterize the ratio of elasticity to inertial forces.

III. RESULTS

A. Purely elastic fluids

The effects of viscoelasticityswithout shear-thinning vis-
cosityd on fluid mixing are investigated using a Boger fluid

and a viscosity-matched Newtonian fluid. We begin our
analysis by comparing the resulting velocity fields, obtained
from particle tracking data, for both casessFig. 3d at Re
<1.2 andp=2.1. Particles typically move distances compa-
rable to the magnet spacing during half a period, though their
total displacement in a full period is generally much less. For
the geometry and range of Wi considered in this investiga-
tion, the velocity field patterns of Newtonian and Boger
cases are very similar. This similarity indicates that elasticity
has little effect on the flow field, other than slightly reducing
the velocity magnitude. More quantitative measures of the
similarities among the measured velocity fields are given in
Sec. III B.

We calculate stretching fieldssFig. 4d for the Boger and
Newtonian solutions from their corresponding velocity
fields. The stretching fields are generally large on the stable
and unstable manifolds of fixed points, and can be used to
predict mixing rates; higher stretching values generally trans-
late into faster mixing rates.29 We find that the addition of
small amounts of elasticity does not modify the structure of
the stretching field patterns, i.e., the locations of large
stretching. This may be viewed as a consequence of the fact
that the velocity patterns are similar. However, the lines of
future and past stretching are less intense in the Boger case
fFig. 4sadg; this fact indicates an overall inhibition of stretch-
ing sand consequently mixingd, even though Wi is rather
small s0.025d.

TABLE I. Composition and properties of the solutions used in the experiments.sAll solutions also contain 5%
KCl by weight.d The measured zero-shear-rate viscosityh0 is used to calculate the zero-shear-rate relaxation
time l for the shear-thinning fluids. The uncertainties are about 11% for the relaxation times, and about 2% for
the exponentn and fork.

Fluids
Concentration

sppmd
Glycerol
s% w/wd

Water
s% w/wd

Viscosity
scPd

Relaxation
time sld n k ssd

Newtonian ¯ 80 20 90 ¯ ¯ ¯

Boger 100 70 30 90 0.57 s ¯ ¯

Xanthan gum 1000 ¯ 99.9 736 0.31 s 0.69 4.53

PAA I 1500 ¯ 99.85 919 1.4 s 0.72 5.69

PAA II 2500 ¯ 99.75 1268 2.1 s 0.70 7.03

FIG. 3. sColor onlined. Velocity fields
color coded by the magnitude of the
velocity sprint version: higher veloci-
ties correspond to larger arrowsd for
sad NewtoniansRe=1.24d and sbd Bo-
ger sRe=1.17, Wi=0.023d fluids.
Small levels of viscoelasticity do not
affect the structure of the velocity field
patterns.
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In order to quantify the difference in stretching values
between the Newtonian and Boger cases, we calculate the
mean stretchingssum of all values in the field of view di-
vided by the number of data pointsd and plot it as a function
of Re sFig. 5d. We observe that for the range of Wi studied
here, mean stretching is inhibited by elasticity when com-
pared to the viscosity-matched Newtonian case at the same
Re slater in this paper we show that the addition of shear
thinning changes this pictured.

We characterize mixing efficiency by analyzing images
containing dye taken once per period. We compute the frac-
tional area covered by the dye on the initially empty half of
the cell s5.5311 cm2d as a function of time in periods. An
example of such plot is given in Fig. 6 for Newtonian and
Boger fluids at Re=1.24 and Re=1.17, respectively. The flux
of dye into the empty region can be represented by generic
curves of the typeA=Amaxs1−e−KNd, where A is the area
coverage,Amax is the maximum achievable area coverage,K
is a dimensionless transport ratesper periodd, and N is the
number of periods. The best fitting transport rates are
0.000 62 for the Newtonian fluid and 0.000 38 for the Boger
fluid. The exponential fit for the Boger fluid is shown in Fig.
6, but it is not far from linear over the time interval that we
could study. We interpret the slight upward curvature as an

artifact related to the fact that we do not image the entire
cell. The lower value ofK for the Boger case indicates that
transport and mixing are suppressed by the addition of poly-
mer, a result that is consistent with the measured reduction in
total stretching.

In summary, our results on the Boger fluid indicate that
the addition of small amounts of elasticity to a viscous fluid
does not modify the general pattern or form of the velocity
and stretching fields, but it inhibits transport, and reduces the
mean stretching. In making this comparison, we keep the rms
velocity nearly constant.32 It is interesting to compare these
observations to a previous study of chaotic mixing in elastic
fluids using a cavity flow.17 These authors found a lower
degree of Lagrangian chaossi.e., larger regular regionsd and
slower mixing when compared to a Newtonian fluid. Our
observations are consistent with theirs, though the flow is
quite different, and the stretching fields were not measured in
the earlier work.

B. Shear-thinning fluids

Quite different results are obtained when shear-thinning
effects become important. Unlike the constant-viscosity elas-
tic case, the velocity field patterns of shear-thinning fluids
are significantly modified when compared to Newtonain flu-
ids at similar Re. The effect of shear-thinning viscosity on

the structure of a particular velocity fieldssay VW 1d can be
visualized by plotting the magnitude of the velocity field
normalized by the rms velocitysaveraged over spaced,

Ṽ1 = U VW 1

ÎksV1xd2 + sV1yd2l
U . s1d

The normalized velocity fields are presented in Fig. 7 for
Newtonian, Boger, and a shear-thinning, weakly viscoelastic
casesxanthan gum solutiond at similar Re. Examples are also
presented online in movie format so that the time depen-
dence can be seen.33 It is apparent that the normalized veloc-

FIG. 4. sColor onlined. Stretching fields forsad the Newtonian fluidsRe
=1.24d and sbd the Boger solutionsRe=1.17, Wi=0.023d. The maximum
stretching over three periods is shown in color, with future stretching in red,
and past stretching in bluesprint version: dark lines correspond to regions of
high stretchingd. The mean stretching is larger in the Newtonian case. The
starting phase for future stretching, and the ending phase for past stretching,
correspond to an instant at which the rms velocity is nearly constant.

FIG. 5. Mean stretching over the image as a function of Reynolds number
for a polymer solution without shear thinnings0.01,Wi ,0.036, El=0.02d
and a viscosity-matched Newtonian fluid. The mean stretching is reduced
for the Boger fluid by elastic stressesssee textd.

FIG. 6. Fractional area coverage as a function of mixing timesperiodsd for
a polymer solutionswithout shear thinningd and a viscosity matched New-
tonian fluid. The solid line shows an exponential fit. Mixing is somewhat
slower for the Boger case.

053102-5 Stretching and mixing of non-Newtonian fluids Phys. Fluids 17, 053102 ~2005!

Downloaded 12 Aug 2010 to 158.130.78.178. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



ity fields for the Newtonian and Boger fluids presented in
Figs. 7sad and 7sbd are nearly identical. Both of these veloc-
ity fields differ substantially from the shear-thinning, vis-
coelastic casefFig. 7scdg, where shear-thinning effects are
significant. This difference in the velocity field can be largely
atributted to shear-thinning rather than elastic effects, since
elastic forces are weaksWi=0.034d and the dimensionless

strain ratekḡ̇=2.82 is larger than required to produce shear
thinning.

We assess the effects of viscoelasticity and shear thin-
ning on the velocity fields by comparing the normalized ve-
locity fields of both Boger and shear-thinning cases to the

Newtonian casesṼ2d by means of difference fieldssuDṼu
= uṼ1−Ṽ2ud at matching ResFig. 8d. We also quantify the
differences by calculating the root-mean-square values

DṼrms, which are shown in Table II. These rms differences
show that for the Boger fluid, the velocity field is not af-
fected significantly by the low level of viscoelasticity. On the
other hand, weak shearing of the strongly viscoelastic PAA II
solution sbelow the onset of shear thinningd does affect the

velocity field, but the effect is much larger at higher strain
rate, where shear thinning is also present, while Re
remains low.

The substantial changes in the velocity field patterns for
the shear-thinning fluidsscompared to the Newtonian or Bo-
ger cased result in modified stretching field patterns as well,
as shown in Fig. 9. We begin by considering the stretching
field of a fluid sPAA II d that is elasticsWi=1.86d, but is

sheared below the onset of shear-thinning effectsskḡ̇
=0.54d. In this case, viscoelasticity modifies both the veloc-
ity field and the stretching field structurefFig. 9sbdg. This is
expected, since at Wi.1, stretched polymer molecules can
act back on the flow. However, we do not observe regions of
very large future or past stretching. We consider next the
opposite case, for which viscoelastic effects are smallsWi

FIG. 7. sColor onlined. Maps of velocity field magnitudes, normalized by
the rms velocity, at different levels of shear thinning when viscoelasticity is
small. sad Newtonian fluid sRe=1.24d; sbd Boger fluid sRe=1.47, Wi

=0.029d; andscd XG shear-thinning solutionsRe=1.1, Wi=0.039,kḡ̇=4.9d.
Note that the Boger and Newtonian solutions have quite similar velocity
fields, while the shear-thinning case is quite different, even at comparable
Re and small Wi.

FIG. 8. sColor onlined. Magnitudes of the velocity field differencessrelative
to the Newtonian case at the same Red: sad Boger viscoelastic solution

sRe=1.47, Wi=0.029d; sbd PAA II solution sRe=0.19, Wi=1.81,kḡ̇=0.54d;
scd same solution assbd but at higher strain rate where shear thinning is

important sRe=0.4, Wi=3.36,kḡ̇=3.2d. The velocity fields are modified
substantially when both shear-thinning and significant viscoelasticity are
present as inscd, but much less by viscoelasticity alone as insbd. See also
Table II.

TABLE II. Values of the rms difference in velocityDṼrms srelative to the
Newtonian case and averaged over the field of viewd, for fluids whose vis-
cosities are either constantsthe Boger cased or dependent on strain rate. For
the Boger fluid, the low elasticity level does not modify the velocity field
significantly. Weak shearing of the strongly viscoelastic PAA II solution
sbelow the onset of shear thinningd does affect the velocity field, but the
effect is much larger at higher shear rate, where large shear thinning is also
present, while Re remains low.

Fluid Re El kḡ̇ DṼrms

Boger 1.47 0.02 NA 0.057

PAA II 0.19 9.55 0.54 0.17

PAA II 0.4 8.4 3.2 0.61

FIG. 9. sColor onlined. Stretching fields after three periodssprint version:
dark lines correspond to regions of high stretchingd. sad Newtonian fluid

sRe=1.24d; sbd strongly viscoelastic fluid, PAA IIsRe=0.19, Wi=1.86,kḡ̇
=0.54d; scd shear-thinning nonviscoelastic fluid, XGsRe=1.68, Wi=0.05,

kḡ̇=4.8d; and sdd both viscoelastic and shear-thinning solution, PAA II

sRe=0.385, Wi=2.56,kḡ̇=2.9d. Both viscoelasticity and shear thinning
modify the stretching field structure, but regions of very large stretching are
only present when shear-thinning effects are present.
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=0.05, comparable to the Boger fluidd, but the fluid is

sheared above the onset of shear thinningskḡ̇=4.8d. This
case is exemplified by the xanthan gum solution shown in
Fig. 9scd. We observe that the stretching field pattern is sig-
nificantly modified from the Newtonian case, showing a
higher concentration of sharp lines of stretchingsfuture and
pastd. Since the Reynolds numbers are close for the Newton-
ian and xanthan gum fluidsfFig. 9sad, Re=1.24; and Fig.
9scd, Re=1.68g and viscoelasticity is small, we attribute the
changes in the stretching field almost entirely to shear-
thinning effects.

Finally, we provide an example of a fluidsPAA II d that is
both viscoelasticsWi=2.56 and is sheared above the onset of

shear thinning effectsskḡ̇=2.9d, as shown in Fig. 9sdd. In
this case, the stretching field structure is strongly modified
and we observe the presence of large folds indicating a sub-
stantial enhancement of the mean stretching. In general, both
viscoelasticity and shear-thinning modify the stretching field
structure, but regions of very large stretching are only
present when shear-thinning effects are present. These com-
parisons are made at the same Re.

We observe a substantial enhancement of mean stretch-
ing for all of the shear-thinning fluids studied here. The mean
stretching values for shear-thinning fluids are shown as a
function of Re in Fig. 10sad, where Re is calculated using the
viscosity at the actual rms shear rate. Shear-thinning fluids
enhance total stretching even at low elasticity levels, as in
the rigid xanthan polymer cases0.015,Wi ,0.06d. More
dramatic enhancement in stretching is observed for vis-
coelastic, flexible PAA cases with Wi varying from 0.6 to 2.6
as Re is varied.

One limitation of these results is that it was not possible
to match the path lengthp in addition to Re when the much
more viscous shear thinning fluids are used. Thus, it is im-
portant to check to ensure that the increase in mean stretch-
ing of shear-thinning fluids is not due solely to the larger
distances traveled by a fluid element in one forcing period as
the shear rate is increased. This distance is quantified by the
path lengthp. A previous study29 shows that mixing rate
increases with path length at a given Re for a Newtonian
fluid in a time-periodic flow. In order to address this issue,
we perform experiments in which we match both Re andp of
the PAA I fluid to the Boger case by increasing the forcing
frequencysdecreasingpd. We find that shear-thinning effects
enhance the mean stretching when compared to purely vis-
coelastic fluids even whenp is held constant, although to a
somewhat lesser degree, as is shown by the data points la-
beled PAA I spd in Fig. 10sad.

The dependence of the mean stretching on dimensionless
strain rate is shown in Fig. 10sbd for all the fluids studied.

The pronounced rise at the onset of shear thinning,kḡ̇.1 is
evident. At higher levels of elasticitysupper two curvesd, the
enhancement of stretching is more pronounced, so both
shear-thinning viscosity and elasticity contribute.

Dye mixing experiments confirm that the trends shown
by the stretching measurements actually describe mixing.
Figure 11 shows images of the evolution of dye mixing for a
Newtonian fluid and a shear-thinning, viscoelastic fluid

sPAA I, Wi=1.09, kḡ̇=5.1d at similar Re. The mixing pat-
terns of both fluids are complex and are markedly different
from each other. Careful observation of the images shows
that both flows produce mixing structures that, when re-
corded at periodic intervals, are similar over time, except that
the dye contrast decays.5 There are isolated nonmixing re-
gions in the Newtonian case, but not in the shear-thinning
case. The presence of isolated nonmixing regions is an indi-
cation of inefficient mixing since they act as barriers to ma-
terial transport. The overall dye penetration into the initially
empty region is much greater for the shear-thinning fluid at
comparable times. Curves showing fractional area coverage
as a function of time are given in Fig. 12 for Newtonian and
shear-thinning viscoelastic fluids at the same Re. The trans-
port ratesK for the PAA I solution and Newtonian fluids are
0.043 and 0.000 62, respectively. The transport of dyesper
periodd into the empty region of the mixing cell is dramati-
cally faster for the shear-thinning viscoelastic fluid than for
the Newtonian fluid. This seems reasonable in view of the
measured enhancement of total stretching.

C. Local velocity analysis

In order to understand the increase in stretching and
mixing for the shear-thinning fluids, and their suppression

FIG. 10. sad Comparison of mean stretchingsaveraged over the imaged for
shear-thinning fluids with the Boger case. The shear thinning casessXG,
PAA I, and PAA IId show substantial enhancement in stretching. The en-
hancement remains even when the path lengthp is matched to the Newton-
ian and Boger cases; this case is labeled PAA Ispd. sbd Mean stretching for

shear-thinning fluids as a function of dimensionless strain ratekḡ̇. Stretch-

ing is substantially enhanced by shear thinning whenkḡ̇.1.
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for the Boger fluid, we examine the velocity field with high
resolution in both sheared and elongational regions of the
flow sFig. 13d. We study a sheared path that extends between
two elliptic points, and three elongational paths that pass
through hyperbolic points. We compare and study in detail
the shear and elongational flow fields of the various poly-
meric fluids shown in Table I by measuring the velocity
along the paths shown in Fig. 13 at similar Re.

We report one normalized velocity component along the

selected paths, defined asṼssd=fVssdINg / sVNId. Here,Vssd
is the selected velocity component,VN is the maximum ve-
locity for a Newtonian reference fluid on the selected path,
andI andIN are the imposed electrical currents used to drive
the polymer solution and the Newtonian reference fluid, re-

spectively. The quantityṼssd is the velocity per unit driving
current, compared to a Newtonian reference fluid.

We plot the normalized velocity component as a function
of distance along the selected path in Fig. 14. In the shear
flow region fFig. 14sadg, using the velocity perpendicular to
the selected path, we recover nearly identical parabolic pro-
files, typical for shear flows, for both Newtonian and Boger
fluids at Re<1.2. This indicates that their shear properties

si.e., shear viscosityd are very similar. On the other hand, for
the shear-thinning PAA I solution, the measured normalized
shear velocity profile deviates from the Newtonian profile
and has a somewhat higher magnitude, particularly at the
centerline. The higher magnitude seems to be related to shear
thinning, which decreases the flow resistance at locations of
high strain rate.

On the other hand, in the hyperbolic or elongational re-
gions of the flow, where we plot the velocity component
parallel to the selected path, we find lower normalized ve-
locities for the Boger fluid when compared to the Newtonian
case at Re<1.2 fFig. 14sbdg. This reduced velocity near hy-
perbolic points for Boger fluids may explain their lower
mean stretching and mixing. The implied increase in flow
resistance is most likely due to extra elastic stresses, since Re
is fairly small.

It is known that the addition of small amounts of high-
molecular-weight flexible polymerssPAAd in solution can
increase the resistance to flow in extension, even at small

FIG. 12. Fractional area coverage as a function of mixing timesperiodsd for
a shear-thinning polymer solution and a Newtonian counterpart, at the same
Re. The solid line shows an exponential fit.

FIG. 13. Flow field of a region of interest within the flow showing a sheared
region between two elliptic fixed pointss1d and three elongational regions
s2–4d, passing through hyperbolic fixed points.

FIG. 11. Images of the dye field showing changes in flow patterns and
enhancement of mixing with a shear-thinning fluid. Left column: Newtonian

fluid sRe=1.24d. Right column: PAA IsRe=1.45, Wi=1.09,kḡ̇=5.1d. Each
row shows an image taken ten periods after the one above it.
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strain rates. The material property that quantifies this resis-
tance to flow in extension is the extensional viscosityhe. In
the case of Newtonian fluids, the extensional viscosity is
three times its shear viscosityshe=3hd, while for high-
molecular flexible polymers it can be much larger than three
times its shear viscosityshe.3hd. In this work, although
both fluids have nearly identical shear viscosities, the Boger
fluid seems to have a slightly larger elongational viscosity
than the Newtonian fluid, which is evident in the lower nor-
malized flow velocities near hyperbolic points. By contrast,
the semidilute PAA I solution shows higher values of nor-
malized elongational velocity, i.e., shear-thinning elonga-
tional behavior. This reduced resistance near hyperbolic
points probably contributes to the higher measured stretching
of the PAA I solution compared to the Newtonian and Boger
fluids at the same Re.

D. Time reversibility

Previous work29 on Newtonian fluids shows that obtain-
ing large mean stretchingsor mixingd requires breaking time
reversal symmetry. That is, the velocity of a fluid element

must not simply change sign on its return path when the
forcing is reversed, so that it does not return to its starting
position seven though the velocity field is time periodicd.

We measure departures from time reversal symmetry for
polymeric solutions by calculating the sum of the local ve-
locities at equal time intervals before and after the zero
crossing of the rms velocity. This quantity vanishes if time-
reversal symmetry holds. The standard deviation of this
quantity, averaged over space and phase, is plotted in Fig. 15.
We find that in the Boger case, the breaking of time-reversal
symmetry is somewhat reduced. We propose that this reduc-
tion is due to the extra elastic stressessand reduced veloci-
tiesd near the hyperbolic points In other words, even though
the inertial time lags are small at low Re, they are further
reduced in the Boger case by elastic stresses.

By contrast, we see in Fig. 15 that shear-thinning viscos-
ity dramatically increases the breaking of time reversibility
at a given Re, even if the path lengthp is also matched. The
symmetry breaking grows as either Re or the dimensionless
strain-rate increases. Note that the symmetry breaking here is
not accompanied by any reduction in time periodicity.

Why does shear-thinning viscosity tend to break time
reversal symmetry? There are two possible explanations
stemming from two possible sources of time lags. In the
Newtonian flowsat finite Red, small inertial lags cause par-
ticles not to return to their starting locations, and mixing is
observed. For the shear-thinning fluid, even though we make
comparisons at the same Rescomputed from the viscosity at
the mean shear rated the velocities are larger in some regions
of the flow than for the Newtonian fluidsand lower in other
regionsd. Therefore it is possible that the inertial lags are
enhanced, though they should be small at low Re, as in the
Newtonian case. However, another source of time lags may

also be acting at low Re whenkḡ̇.1. As a fluid element
travels between regions with different strain rates, its effec-
tive viscosity evolves on a time scalel for fluids possessing
memory. sIn the limit of vanishing viscoelasticity, the
changes in viscosity associated with shear thinning would be
instantaneous.d Therefore, the effective viscosity of a trans-
ported fluid element may lag behind the value that would

FIG. 14. sad Normalizedperpendicularcomponent of the velocityssee textd
along the sheared lines1d in Fig. 13. The flow profile is nearly parabolic for
both Newtonian and Boger fluids. Small deviations in profile shapes and
higher center-line speeds are observed for a shear-thinning fluidsPAA Id. sbd
Normalizedparallel velocity profile along the elongational lines4d in Fig.
13. The Boger fluid shows a small speed reduction when compared to the
Newtonian fluid; lower speeds in this region may be responsible for a small
reduction in mean stretching and reduced mixing. In contrast, the PAA I
solution shows a higher elongational velocity, which leads to larger stretch-
ing and mixing.

FIG. 15. Measure of the breaking of time reversal symmetry of time-
periodic flows, showing that the shear-thinning fluid breaks this symmetry
dramatically compared to the Boger and Newtonian cases, at a given Re.
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normally be associated with the local strain rate. These lags
could lead to a breaking of time-reversal symmetry, and this
effect could be the larger one at low Re.

IV. SUMMARY AND CONCLUSIONS

In this paper, we present an experimental investigation
of mixing of viscoelastic fluids, with and without shear thin-
ning, in time-periodic flows. Mixing is characterized by
means of stretching fields computed from gradients of veloc-
ity fields, and also by dye mixing experiments. We find that
viscoelasticity alonesthe Boger cased modifies the velocity
fields only slightly, when compared to a Newtonian case with
similar viscosity. Mean stretching and dye transport are
mildly suppressed by elasticitysFig. 5d. We document an
increase in flow resistance near hyperbolic points for Boger
fluids that may account for their lower mean stretching and
mixing sFigs. 13 and 14d.

On the other hand, we show that when shear thinning is
also present, as for the PAA and XG solutions, the flow field
is dramatically changedsas shown in Figs. 7 and 8d, and both
stretchingsFig. 10d and mixing sFigs. 11 and 12d are en-
hanced. We trace the enhancement of stretching for shear-
thinning solutions to a reduced flow resistancesor increased
velocityd near hyperbolic pointssFigs. 13 and 14d at a given
Re. We find that the enhancement of stretching is accompa-
nied by larger breaking of time reversibility even at low Re
sFig. 15d. Finally, we argue that the augmented temporal
symmetry breaking is caused by time lags produced by either
of two mechanismssor bothd: sad the finite elastic relaxation
time of a fluid element in conjunction with its varying effec-
tive viscosity as it is transported orsbd inertial effects.

These experimental results show that enhanced mixing
scompared to the Newtoniand scase at the same Red can occur
for low elasticity, as long as shear-thinning effects are
present, as is the xanthan gum case. This fact is of impor-
tance when dealing with semidilute solutions containing
cells, polymerssflexible or notd, or particles, where strain-
rate dependent viscosity is common. Shear-thinning effects
can also potentially be important when dealing with semidi-
lute non-Newtonian fluids in microdevices, due to the large
shear rates often encountered in these situations.
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