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Stretching and mixing of non-Newtonian fluids in time-periodic flows

Abstract

The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer solutions in
nearly two-dimensional magnetically driven flows, in order to distinguish between the effects of viscoelasticity
and shear thinning. Viscoelasticity alone is found to suppress stretching and mixing mildly, in agreement with
some previous experiments on time-periodic flows. On the other hand, the presence of shear thinning
viscosity (especially when coupled with elasticity) produces a dramatic enhancement in stretching and mixing
compared to a Newtonian solution at the same Reynolds number. In order to understand this observation, we
study the velocity field separately in the sheared and elongational regions of the flow for various polymer
solutions. We demonstrate that the enhancement is accompanied by a breaking of time-reversal symmetry of
the particle trajectories, on the average. Finally, we discuss possible causes for the time lags leading to this
temporal symmetry breaking, and the resulting enhanced mixing.
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Stretching and mixing of non-Newtonian fluids in time-periodic flows
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The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer
solutions in nearly two-dimensional magnetically driven flows, in order to distinguish between the
effects of viscoelasticity and shear thinning. Viscoelasticity alone is found to suppress stretching and
mixing mildly, in agreement with some previous experiments on time-periodic flows. On the other
hand, the presence of shear thinning visco&gpecially when coupled with elasticitgroduces a
dramatic enhancement in stretching and mixing compared to a Newtonian solution at the same
Reynolds number. In order to understand this observation, we study the velocity field separately in
the sheared and elongational regions of the flow for various polymer solutions. We demonstrate that
the enhancement is accompanied by a breaking of time-reversal symmetry of the particle
trajectories, on the average. Finally, we discuss possible causes for the time lags leading to this
temporal symmetry breaking, and the resulting enhanced mixing0@ American Institute of
Physics [DOI: 10.1063/1.1909184

I. INTRODUCTION tance of non-Newtonian fluids, few studies have focused on
the mixing of such fluids.
Twenty years ago, Aréfdemonstrated that simple, time- The majority of the non-Newtonian mixing studies have

periodic flows in two dimensions can produce mixing andfocused either solely on viscoelasticify”* or on shear-
complex distribution of materials by chaotic advection. Thethinning viscosity’? but few have focused on the interaction
majority Of previous research on mixing in time-periodic petween these two phenomena. Viscoelasticity is most often
flows, with exceptions to be discussed below, has been renyestigated using constant-viscosity, elastic fiditishich
stricted to Newtonian fluidS:" Most practical viscous fluids,  minimizes shear-thinning effects. In previous experiments on
in contrast, contain polymers or particlés.g., polymer e heriodic flows of such fluids, mixing has been found to
melts, pastes, and colloidand are not Newtonian. Examples be retarded in some casEsand enhanced in othetd A
occur in cell fermentation, polymer processing, VOICaniCdramatic example of mixing enhancement has been seen for
flows, and synovial fluid flow in joints. An important feature experiments in small curved chann&lon the other hand
O.f many n_or_l-Newtonlan f|UI_dS_IS th_at the_y often_exhlblt both shear-thinning viscosity has been shown computationally to
viscoelasticity and shear-thinning viscosity, particularly solu-have a potentially large impact on fluid mixing by decreasing
tions containing flexible polymers. the degree of Lagrangian chaos in time-periodic flétvs

Flow instabilities, irregular flow patterns, and nonlinearNevertkglleless non?NeV\?tonian fluids often efhibit both sheér-
dynamics have long been observed in purely elastic fiitds -~ . ; _ 211 AT

Hnnnmg and viscoelastic behavior and it is difficult to know

and in fluids possessing both elasticity and shear-thinnin o o ) > _
viscosity.“_le Most of the nonlinear flow behavior observed & Priori the effects of their interaction on mixing by studying

in these studies arises from the extra elastic stresses due f§#M separately. There are a few early mixing investigations
the presence of polymer molecules. Mechanical stresses fifaling with shear-thinning-viscoelastic fluids, but they fo-
these fluids are history dependent and depend on a charagdS mainly on macroscopic measures such as torque require-
teristic time\ that in dilute solutions is proportional to the Ment and power consumptiéh® More recently, an experi-
relaxation time of a single polymer molecule. In semidilutemental study in a torsionally driven cavifyfound certain
solutions,\ depends also on molecular interactions. Thesdlifferences in flow behavior between Boger and slightly
stresses grow nonlinearly with strain rate and can dramatishear-thinning fluids, but no general conclusions on the ef-
cally change the flow behavior. A common example is thefect of shear thinning on mixing are drawn.

rod-climbing or Weissenberg effect in curvilinear flows, In this paper, we investigate the effects of both vis-
where a viscoelastic fluid creeps up a rod being rotated in theoelasticity and shear-thinning viscosity individually and to-
medium. The fact that viscoelastic fluids can lead to flowgether on fluid mixing. We study the velocity fields quanti-
bifurcations is of interest in fluid mixing. Despite advancestatively using particle tracking with unusually high precision
in understanding fluid mixing and recognition of the impor- and resolution. By doing so, we can also study the stretching

1070-6631/2005/17(5)/053102/10/$22.50 17, 053102-1 © 2005 American Institute of Physics
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Electrode Magnet Array Top View denser conductive layer. Note that both fluid layers have the
' Figd same composition, except that the lower layer is made con-
l ductive and denser by the addition of 5% by weight of KCI
Lmzzmmzd salt. The two layers remain distinct for the duration of the
T experiments, even though they are miscible. We use two lay-
() ~ Magnet Array be ers to ensure the two dimensionality of the thin upper layer
FIG. 1. Schematic diagrams dfa) the two-dimensional, magnetically (see below. . .
forced, time-periodic flow, anéb) the random arrangement of forcing mag- For dye experiments, half of the upper layer is initially
nets. Dark and white circles indicate magnet polarity. marked with fluorescein at a concentration (6fx 10°%)M

while the other half remains unmarked by dye. The diffusiv-
ity of fluorescein iD=5x 107° m? s7%, Particle tracking ex-

of fluid elements, a critical determinant of mixing. While periments are performed by seeding the system with fluores-

previous methods allow the stretching of isolated fluid ele-Cent polystyrene spheres 126n in diameter. Tracer

r_nents to be detern_uned, our appro?cz_hilows_thestr_etchmg particles are placed at the interface separating the two fluid
fieldsto be determined. These two-dimensional fields quang

titativelv ch rerize the stretchi ¢ h locati layers. Usually, 600—800 particles are imaged in a single
tatively characterize the stretching process at each localion,, e \we record up to 8000 images using a charge-coupled
both in the future and in the past of a given instant, every

where in a two-dimensional flow. Stretching is intimatel device camera512x 512 at 8 Hz in a typical run, or 80—
. - Stretehing €Y 100 images per period. The centroid of each patrticle is found
related to the rate of divergence of initially nearby points,

S : . T with a precision of 48um. Particles found in sequential im-
which in chaotic flows is exponential in time on the average, . :
. . . ages are then labeled and combined into tracks. The bound-
and can be used as a measure of mixing efficiériay time

- L ary conditions are the same for the dye and the particle track-
penqdlc flowsz stretchmg fields label the stable and unstablleng experiments: there is a free surface for both types of
manifolds of fixed points of flow maps, and can be used toetxperiments

characterize the mixing dynamics or in some cases to predic : I . .
= 9 " ; Because the flow is periodic, we can combine particle
mixing rates?® Hence, the statistical and geometric proper-

ties of the experimentally calculated stretching fields aré:) OS't.'onS obtained atagn_/en pha(_selauve .tc.) the forcingto
. T . obtain up to 80 000 precise particle positions at each phase
powerful tools for characterizing mixing in fluids.

This paper is organized as follow. We describe in Sec. ”and thereby obtain very high spatial resoluti@n004 of the

the experimental setup and rheology of the fluids investi-fleld of view), excellent time resolutiof0.01 of a flow pe-

ated here. The role of elasticity on fluid mixing is investi- riod), and velocities accurate to a few percent,
9 . ' ' Y nixing The velocity fields are accurately two dimensional in the
gated in Sec. Ill by first comparing the mixing of a Boger

fluid to a viscosity-matched Newtonian fluid and then byupper layer, because the period of the flow variation is quite

: o - ) . . long compared to the vertical momentum transport time
investigating the effects of shear-thinning viscosity using qu-across the upper layétypically 10 s vs 0.2 s for the viscous
ids with different levels of elasticity. A novel type of flow Pb yelypicatly )

_ . solutions used hejeTherefore, vertical gradients of the hori-
analysis is also presented in Sec. lll, where we study the flow ) . L )
. ) . . zontal velocity are negligible. This issue has been discussed
profiles separately in sheared and elongational regions of the : : . :
. . In previous work on Newtonian fluids in the same

flow. Our summary and conclusions follow in Sec. IV. We

) - . : eometr)?,g'30 but the two-dimensional approximation is
find that the presence of shear-thinning viscosity SUbStangven better here because of the high viscosity. We also find

tially modifies the velocity fields and produces a large en-,

. - : .Ihat the horizontal divergencgi/dx+dv/dy of the velocity
hancement of stretching and mixing. The effect is largest 'ﬁ'eld, on average, differs from zero by less than 0.05% of the

viscoelasticity is also present. On the other hand, a sma[ ical horizontal mean shear raefined in the “Fluid rhe-
level of elasticity alone(without shear thinning reduces P

. - ._ology” subsection, below
stretching and mixing somewhat compared to the Newtonian The process of extracting stretching fields begins by us-

case under the same conditiofgeometry and Reynolds ing polynomial fitting to determine particle velocities, which

numbey. are then interpolated onto a grid. Flow maps are constructed
by integrating hypothetical particle trajectories numerically
using the velocity grids. These maps determine the final des-
We investigate mixing in an electromagnetically driven tinations(after an intervalAt=0.125 g of particles as a func-
thin fluid layer as shown in Fig. 1. A time-periodic current tion of their initial positions. Finally, the stretching fields are
travels horizontally through a fluid layer that is placed abovedetermined from gradients of the flow maps. One can most
an array of permanent magnets. We use 92 madiie?scm  easily comprehend these fields by regarding them as measur-
in diametey with a 2 cmmean spacing. The resulting Lorenz ing the deformation of an initial small circl@t a given spa-
forces drive a time-periodic vortex array flow in the fluid. tial location into an ellipse; the ratio of the major diameter
The magnets are placed and oriented randomly as shown to the initial diameter is the stretching, but it is actually com-
Fig. 1. The area of fluid flow is 18 15 cn?, and all figures puted as the largest eigenvalue of the right Cauchy—Green
in this paper show a central K111 cn? region. The typical  strain tensor at the point in questi%fh.
forcing frequency is 100 mHz and typical velocities are  Two different quantities are computed at each point,
0.07-1.2 cm/s. For all experiments, the fluid of interest is avhich we call future and past stretching. Future stretching is
1 mm thick nonconductive layer that floats on tdpa@B mm  the stretching experienced by a fluid element in the rext

II. EXPERIMENTS
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FIG. 2. (a) Viscosity curves andb) first normal stress coefficient for the shear-thinning fluids used in this work. Lines connecting data points are added to
guide the eye.

Past stretching is the stretching that a fluid element experiticity coupled with shear-thinning viscosity are investigated
enced in the previous\t. The starting phase for future using high polymer concentratiofPAA and XG aqueous
stretching measurements and the ending phase for pasbtlutions at moderate strain rates. Newtonian fluid mixing is
stretching measurements, corresponds to an instant at whighvestigated using a glycerol/water solution that matches the
the rms velocity is nearly constant, about 0.26 periods afteyiscosity of the Boger fluid.
the current is reversed. However, similar results are obtained e use a stress-controlled cone-plate rheometer to char-
at other phases. We estimate that the uncertainty in the meafterize the fluidgFig. 2). A well-known characteristic of
stretching is about 4%. This uncertainty was estimated byjiscoelastic fluids is that they exhibit normal stress differ-
adding random noise to the velocimetry data and computingnces when sheared. The largest of the two normal stress
stretching from the “noisy” velocimetry data. Further detail gifferences isN,, which in a cone-and-plate geometry causes
on the velocimetry measurements and stretching calculationge cone and the plate to be pushed apart, thus allowing the
may be found elsewhefé. instrument to measure it directly. At sufficiently low shear
rates,N, is nearly proportional to the mean square shear rate
¥? and thus the first normal stress coefficient, givendby
The polymers used are high-molecular-weigMW) =N,/ 2, approaches a constant vahlfg o at low shear rates
polyacrylamide(PAA, 18x 10 MW, Polysciencesand xan-  [Fig. 2(b)]. For the Boger fluid, a constant Maxwell relax-
than gum(XG, 2.7x 10° MW, Sigma-Aldrich. The former  ation time can be defined as= ¥, o/27,*" where is shear-
has a flexible backbone while the latter is a stiff “rodlike” viscosity. In the case of viscoelastic, shear-thinning fluids,
polymer, with flow behavior that mimics suspensions of fi-the relaxation time is a function of shear rate, and is defined
bers in Newtonian media. The overlap concentratiohgsre  as\=N,/[27()¥*].
300 ppm and 170 ppm for the PAA and XG solutions, re-  The shear-rate dependent viscosity deay. 2(a)] are
spectively. Despite its lower molecular weight, the xantharfitted to the Carreau viscosity equatiops 7g[ 1 +(x%)%] ™2,
gum solution has a lower Overlap concentration than PAAwhere N is the zero-shear-rate ViSCOSitij the power law
since it is a rigid polymer, having a higher effective volumeindex andx is a time constant. The composition and rheo-
fraction. These overlap concentrations correspond to molecypgical parameters of the various solutions used in the ex-
lar - concentrations npas=1.01x 10 molecules/cm and  periments are presented in Table .
Nxg=3.79x 10" mollecules./cr?l _ There are four independent dimensionless parameters for
Both polymers in solution show elastic effects and shearyyis fiow, The Reynolds number ReEL/ 7 is based on the
rate dependent viscosity in the semidilute regif@e>C"), mean magnet spacirg=2 cm, rms velocity, fluid density
although in general,. PAA solutions possess larger elastic e1;3, and fluid viscosityz. For shear-thinning fluids, we usg
fects than XG solutions due to the flexible backbone of the . . .
former. Hence, by adjusting the solvent viscosity, polymerm.easur'ed at the gstlmated horizontal mean strainydté.
type, concentration, and imposed strain rate, we are able {59 2 in computl_ng the R_e. We could a!ternatgly use the
investigate the effects of viscoelasticity on mixing with and2€r0-Shear-rate viscosity, instead, but this choice would
without the effects of shear-thinning viscosity. Purely vis- largely underestimate Re. Since the non-Newtonian fluid vis-
coelastic effects are investigated by dissolving smalicosity is rate dependent, the use pfo estimaten seems
amounts of PAA in a viscous solvent to create a constantappropriate. Note that we use the horizontal mean strain rate
viscosity elastic fluid, usually called a Boger flticand by  because the vertical strain rates are negligible in the upper
studying PAA solutions in water below the critical strain rate layer.
required to induce shear thinning. The effects of viscoelas- The path lengthp=U/Lf, wheref is the driving fre-

Fluid rheology
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TABLE |. Composition and properties of the solutions used in the experimgilisolutions also contain 5%

KCI by weight) The measured zero-shear-rate viscosjgyis used to calculate the zero-shear-rate relaxation
time \ for the shear-thinning fluids. The uncertainties are about 11% for the relaxation times, and about 2% for
the exponenh and for «.

Concentration  Glycerol Water Viscosity ~ Relaxation
Fluids (ppm) (%w/w)  (Y%w/w) (cP) time (\) n K« (9)
Newtonian e 80 20 90
Boger 100 70 30 90 0.57 s
Xanthan gum 1000 99.9 736 0.31s 0.69 453
PAA | 1500 99.85 919 14s 0.72 5.69
PAA I 2500 99.75 1268 21s 0.70 7.03

quency of the flow, describes the path length traveled by and a viscosity-matched Newtonian fluid. We begin our
fluid element in one forcing periol/f) normalized byL.  analysis by comparing the resulting velocity fields, obtained
The relative importance of elasticity and viscosity is quanti-from particle tracking data, for both casésig. 3) at Re

fied by the Weissenberg number, Wiy, where\ is the =~1.2 andp=2.1. Particles typically move distances compa-
fluid relaxation time, which in the case of shear-thinningrable to the magnet spacing during half a period, though their
fluids is a function of shear rate. Note that trestical veloc-  total displacement in a full period is generally much less. For
ity gradientnear the bottom of the cell substantially exceedsthe geometry and range of Wi considered in this investiga-
the horizontal gradienin the upper layer by approximately a tion, the velocity field patterns of Newtonian and Boger
factor of 10, so that one might consider defining Wi based or¢ases are very similar. This similarity indicates that elasticity
this larger gradient. We do not make this choice because whas little effect on the flow field, other than slightly reducing
are studying only the stretching and mixing properties of thehe velocity magnitude. More quantitative measures of the
thin upper layer, where the vertical velocity gradient hassimilarities among the measured velocity fields are given in
been shown to be small. While for some of our fluids sheaSec. Il B.
thinning will occur near the lower cell boundary, it does not ~ We calculate stretching field&ig. 4) for the Boger and
appear to affect the behavior of the upper layer significantlyNewtonian solutions from their corresponding velocity
Shear-thinning effects in the upper layer are characterfields. The stretching fields are generally large on the stable

ized by a dimensionless strain rakey, where «, defined and unstable manifolds of fixed points, and can be used to
previously, is the characteristic time associated with shearPredict mixing rates; higher stretching values generally trans-
thinning effects. An additional dimensionless parameter, théate into faster mixing rate%. We find that the addition of

elasticity numberEl=Wi/Re=\7/pL?), is sometimes used small amounts of elasticity does not modify the structure of

to characterize the ratio of elasticity to inertial forces. the stretching field patterns, i.e., the locations of large
stretching. This may be viewed as a consequence of the fact
IIl. RESULTS that the velocity patterns are similar. However, the lines of

future and past stretching are less intense in the Boger case
[Fig. 4(a)]; this fact indicates an overall inhibition of stretch-

The effects of viscoelasticitfwithout shear-thinning vis- ing (and consequently mixing even though Wi is rather
cosity) on fluid mixing are investigated using a Boger fluid small (0.025.

A. Purely elastic fluids

FIG. 3. (Color online. Velocity fields
color coded by the magnitude of the
velocity (print version: higher veloci-
ties correspond to larger arrowfor
(a) Newtonian(Re=1.24 and(b) Bo-
ger (Re=1.17, Wi=0.02B fluids.
Small levels of viscoelasticity do not
affect the structure of the velocity field
patterns.

0 mm/s 7.9 mm/s 0 mm/s 7.6 mm/s
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FIG. 4. (Color onling. Stretching fields for@) the Newtonian fluid(Re E
=1.24 and (b) the Boger solutionNRe=1.17, Wi=0.028 The maximum

stretching over three periods is shown in color, with future stretching in red,
and past stretching in blugrint version: dark lines correspond to regions of

high stretchingg The mean stretching is larger in the Newtonian case. The
starting phase for future stretching, and the ending phase for past stretching,
correspond to an instant at which the rms velocity is nearly constant.

Periods

FIG. 6. Fractional area coverage as a function of mixing t{periods for
a polymer solution(without shear thinningand a viscosity matched New-
tonian fluid. The solid line shows an exponential fit. Mixing is somewhat

In order to quantify the difference in stretching values SI°"e" for the Boger case.

between the Newtonian and Boger cases, we calculate the
mean stretchingsum of all values in the field of view di-
vided by the number of data pointand plot it as a function artifact related to the fact that we do not image the entire
of Re (Fig. 5. We observe that for the range of Wi studied cell. The lower value oK for the Boger case indicates that
here, mean stretching is inhibited by elasticity when com-+ransport and mixing are suppressed by the addition of poly-
pared to the viscosity-matched Newtonian case at the sammer, a result that is consistent with the measured reduction in
Re (later in this paper we show that the addition of shearotal stretching.
thinning changes this picture In summary, our results on the Boger fluid indicate that
We characterize mixing efficiency by analyzing imagesthe addition of small amounts of elasticity to a viscous fluid
containing dye taken once per period. We compute the fracdoes not modify the general pattern or form of the velocity
tional area covered by the dye on the initially empty half ofand stretching fields, but it inhibits transport, and reduces the
the cell (5.5x 11 cn¥) as a function of time in periods. An mean stretching. In making this comparison, we keep the rms
example of such plot is given in Fig. 6 for Newtonian and velocity nearly constant It is interesting to compare these
Boger fluids at Re=1.24 and Re=1.17, respectively. The fluxobservations to a previous study of chaotic mixing in elastic
of dye into the empty region can be represented by generiftuids using a cavity flow” These authors found a lower
curves of the typeA=A,,(1-e™N), where A is the area degree of Lagrangian chadise., larger regular regiopsind
coverageAn, is the maximum achievable area coverage, slower mixing when compared to a Newtonian fluid. Our
is a dimensionless transport reger period, andN is the  observations are consistent with theirs, though the flow is
number of periods. The best fitting transport rates arejuite different, and the stretching fields were not measured in
0.000 62 for the Newtonian fluid and 0.000 38 for the Bogerthe earlier work.
fluid. The exponential fit for the Boger fluid is shown in Fig.
6, but it is not far from linear over the time interval that we B. Shear-thinning fluids

could study. We interpret the slight upward curvature as an Quite different results are obtained when shear-thinning

effects become important. Unlike the constant-viscosity elas-
tic case, the velocity field patterns of shear-thinning fluids

1.E+08 S o .
o Newtonim o are significantly modified when compared to Newtonain flu-
e = Boger ids at similar Re. The effect of shear-thinning viscosity on
= 1.E+05 the structure of a particular velocity fielgay V,) can be
< visualized by plotting the magnitude of the velocity field
“ 1 E+00 normalized by the rms velocitiaveraged over spage
- a
= e O' . ) ~1 = ——Vl . (1)
1.E-01 T T T T V’((le)z + (Vly)2>

0 05 1 15 2 25 ) o o
Re The normalized velocity fields are presented in Fig. 7 for

o . . . d ) Newtonian, Boger, and a shear-thinning, weakly viscoelastic
FIG. 5. Mean stretching over the image as a function of Reynolds numbe ; .

for a polymer solution without shear thinnirt@.01< Wi <0.036, EI=0.02 &ase(xamhan gum_solutld_mt similar Re. Example_s are also
and a viscosity-matched Newtonian fluid. The mean stretching is reduce@re€sented online in movie format so that the time depen-

for the Boger fluid by elastic stressésee text dence can be seéhlt is apparent that the normalized veloc-
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TABLE Il. Values of the rms difference in velocitV, (relative to the
Newtonian case and averaged over the field of yjdar fluids whose vis-
cosities are either constafthe Boger caseor dependent on strain rate. For
the Boger fluid, the low elasticity level does not modify the velocity field
significantly. Weak shearing of the strongly viscoelastic PAA Il solution
(below the onset of shear thinnindoes affect the velocity field, but the
effect is much larger at higher shear rate, where large shear thinning is also
present, while Re remains low.

Fluid Re El Ky AV,s
Boger 1.47 0.02 NA 0.057
FIG. 7. (Color onling. Maps of velocity field magnitudes, normalized by PAA II 0.19 9.55 0.54 0.17
the rms velocity, at different levels of shear thinning when viscoelasticity is  paa || 0.4 8.4 3.2 0.61
small. (@) Newtonian fluid (Re=1.24; (b) Boger fluid (Rezlil?, Wi
=0.029; and(c) XG shear-thinning solutiofRe=1.1, Wi=0.039«y=4.9).
Note that the Boger and Newtonian solutions have quite similar velocity
fields, while the shear-thinning case is quite different, even at comparable . . . . .
Re and small Wi. velocity field, but the effect is much larger at higher strain
rate, where shear thinning is also present, while Re
remains low.

The substantial changes in the velocity field patterns for
ity fields for the Newtonian and Boger fluids presented inthe shear-thinning fluidecompared to the Newtonian or Bo-
Figs. 1a) and 1b) are nearly identical. Both of these veloc- ger casgresult in modified stretching field patterns as well,
ity fields differ substantially from the shear-thinning, vis- as shown in Fig. 9. We begin by considering the stretching
coelastic cas¢Fig. 7(c)], where shear-thinning effects are field of a fluid (PAA 1I) that is elastic(Wi=1.86), but is
significant. This difference in the velocity field can be largely s oorad below the onset of shear-thinning effebtsf_
atribL_Jtted to shear-thinnin_g rather than elast_ic effe_cts, sincg0_54)_ In this case, viscoelasticity modifies both the veloc-
elastic forces are weali=0.034 and the dimensionless i fie|q and the stretching field structufBig. A(b)]. This is
strain ratexy=2.82 is larger than required to produce shearexpected, since at Wi 1, stretched polymer molecules can
thinning. act back on the flow. However, we do not observe regions of

We assess the effects of viscoelasticity and shear thingery large future or past stretching. We consider next the
ning on the velocity fields by comparing the normalized ve-opposite case, for which viscoelastic effects are sl
locity fields of both Boger and shear-thinning cases to the
Newtonian casdV,) by means of difference field§AV|
=|V;-V,|) at matching Re(Fig. 8). We also quantify the @ TNy 97 o n
dijferences by calculating the root-mean-square values ~F 7 ' '

AV, Which are shown in Table Il. These rms differences ol ‘/‘ X
show that for the Boger fluid, the velocity field is not af- ,
fected significantly by the low level of viscoelasticity. On the MRS P J
other hand, weak shearing of the strongly viscoelastic PAA I L K
solution (below the onset of shear thinningoes affect the Vet {

\)

FIG. 8. (Color onling. Magnitudes of the velocity field differencéslative ~ FIG. 9. (Color onling. Stretching fields after three periodsrint version:

to the Newtonian case at the same)R@) Boger viscoelastic solution dark lines correspond to regions of high stretchin@ Newtonian fluid
(Re=1.47, Wi=0.029 (b) PAA Il solution (Re=0.19, Wi=1.81:<;=0.54); (Re=1.24; (b) strongly viscoelastic fluid, PAA I[Re=0.19, Wi=1.86xy

(c) same solution a¢b) but at higher strain rate where shear thinning is =0-54; (c) shear-thinning nonviscoelastic fluid, X(Re=1.68, Wi=0.05,
important (Re=0.4, Wi=3.36,xy=3.2). The velocity fields are modified «¥=4.8); and (d) both viscoelastic and shear-thinning solution, PAA Il
substantially when both shear-thinning and significant viscoelasticity ar§Re=0.385, Wi=2.56,xy=2.9). Both viscoelasticity and shear thinning
present as irfc), but much less by viscoelasticity alone as(m. See also  maodify the stretching field structure, but regions of very large stretching are
Table 1. only present when shear-thinning effects are present.
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=0.05, comparable to the Boger flyjdbut the fluid is 1E+14 =

sheared above the onset of shear thinnirg=4.8). This giii ?

case is exemplified by the xanthan gum solution shown inmmE+11 o KPAA 1(p)

Fig. 9c). We observe that the stretching field pattern is sig- .5 © 8 XG

nificantly modified from the Newtonian case, showing a E 1E+08 o © ) W Boger

higher concentration of sharp lines of stretchifiggure and & o X

pas}. Since the Reynolds numbers are close for the Newton-§ TE+05 & X

ian and xanthan gum fluidg-ig. 9a), Re=1.24; and Fig. = .

9(c), Re=1.68 and viscoelasticity is small, we attribute the 18402 O

changes in the stretching field almost entirely to shear- a = = = "

thinning effects. 1EOT 0 05 J 15 2 s
Finally, we provide an example of a flu{@AA 1) that is @) ' Re '

both viscoelastictWi:Z.EﬁS and is sheared above the onset of 1B

shear thinning effect$xy=2.9), as shown in Fig. @). In ' TVeT

this case, the stretching field structure is strongly modified -, ;5 @ PAAT T

and we observe the presence of large folds indicating a sub «s 256 J

stantial enhancement of the mean stretching. In general, botlg 1 E+09

viscoelasticity and shear-thinning modify the stretching field
structure, but regions_ of very large stretching are only @ g, qq
present when shear-thinning effects are present. These con § /,:(K
parisons are made at the same Re. = 1 E+02

We observe a substantial enhancement of mean stretct W
ing for all of the shear-thinning fluids studied here. The mean 4 g.qg :
stretching values for shear-thinning fluids are shown as a 0.1 1 10
function of Re in Fig. 10a), where Re is calculated using the (b) Dimensionless strain-rate
viscosity at the aCtua_I rms shear rate. Shga_r—thlnnlng ﬂu'(_jEIG. 10. (a) Comparison of mean stretchirigveraged over the imapéor
enhance total stretching even at low elasticity levels, as iRhear-thinning fluids with the Boger case. The shear thinning c3&8s
the rigid xanthan polymer cas@.015<Wi<0.06). More  PAA |, and PAA Il) show substantial enhancement in stretching. The en-
dramatic enhancement in Stretching is observed for Visbancement remains even when the path lepgthmatched to the Newton-

. . . . . ian and Boger cases; this case is labeled PAB)! (b) Mean stretching for
coelastic, flexible PAA cases with Wi varying from 0.6 to 2.6 =09 _ . . ‘@ ® | STEChINg
as Re is varied shear-thinning fluids as a function of d|menS|on|ess_stra|n xateStretch-

e . . .., _ing is substantially enhanced by shear thinning wkén>1.
One limitation of these results is that it was not possible g Y Y g whew

to match the path lengtp in addition to Re when the much
more viscous shear thinning fluids are used. Thus, it is im- o
portant to check to ensure that the increase in mean stretcPAA 1, Wi=1.09, ky=5.1) at similar Re. The mixing pat-
ing of shear-thinning fluids is not due solely to the largerterns of both fluids are complex and are markedly different
distances traveled by a fluid element in one forcing period afrom each other. Careful observation of the images shows
the shear rate is increased. This distance is quantified by thbat both flows produce mixing structures that, when re-
path lengthp. A previous studf/9 shows that mixing rate corded at periodic intervals, are similar over time, except that
increases with path length at a given Re for a Newtoniarihe dye contrast decaysThere are isolated nonmixing re-
fluid in a time-periodic flow. In order to address this issue,gions in the Newtonian case, but not in the shear-thinning
we perform experiments in which we match both Re prud ~ case. The presence of isolated nonmixing regions is an indi-
the PAA | fluid to the Boger case by increasing the forcingcation of inefficient mixing since they act as barriers to ma-
frequency(decreasing). We find that shear-thinning effects terial transport. The overall dye penetration into the initially
enhance the mean stretching when compared to purely viempty region is much greater for the shear-thinning fluid at
coelastic fluids even whep is held constant, although to a comparable times. Curves showing fractional area coverage
somewhat lesser degree, as is shown by the data points las a function of time are given in Fig. 12 for Newtonian and
beled PAA I(p) in Fig. 10a). shear-thinning viscoelastic fluids at the same Re. The trans-
The dependence of the mean stretching on dimensionleg®rt ratesK for the PAA | solution and Newtonian fluids are
strain rate is shown in Fig. 10) for all the fluids studied. 0.043 and 0.000 62, respectively. The transport of Gyer

The pronounced rise at the onset of shear thinnings 1 is ~ Period into the empty region of the mixing cell is dramati-
evident. At higher levels of elasticityipper two curves the cally faster for the_ shea.r—thmnlng wscoelastlc.fluu_j than for
enhancement of stretching is more pronounced, so botwe Newtonian fluid. This seems reaso_nable in view of the
shear-thinning viscosity and elasticity contribute. measured enhancement of total stretching.
Dye mixing experiments confirm that the trends shown . .
g . .. C. Local velocity analysis

by the stretching measurements actually describe mixing:
Figure 11 shows images of the evolution of dye mixing fora  In order to understand the increase in stretching and
Newtonian fluid and a shear-thinning, viscoelastic fluidmixing for the shear-thinning fluids, and their suppression

Stret
™
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Shear-Thinning,
Newtonian Yiscoelastic

—
o
1

o
[+ 4]
1

o
()]
1

Time

Fractional Coverage of Dye

Period

FIG. 12. Fractional area coverage as a function of mixing tipeziods for
a shear-thinning polymer solution and a Newtonian counterpart, at the same
Re. The solid line shows an exponential fit.

(i.e., shear viscosiyare very similar. On the other hand, for
the shear-thinning PAA | solution, the measured normalized
shear velocity profile deviates from the Newtonian profile
and has a somewhat higher magnitude, particularly at the
centerline. The higher magnitude seems to be related to shear
thinning, which decreases the flow resistance at locations of
high strain rate.

On the other hand, in the hyperbolic or elongational re-
gions of the flow, where we plot the velocity component
parallel to the selected path, we find lower normalized ve-
locities for the Boger fluid when compared to the Newtonian
case at Re-1.2[Fig. 14(b)]. This reduced velocity near hy-
FIG. 11. Images of the dye field showing changes in flow patterns andperbolic points for Boger fluids may explain their lower
enhancement of mixing with a shear-thinning fluid. Left cogmn: Newtonian mean stretching and mixing. The implied increase in flow
fluid (Re=1.24. Right column: PAA I(Re=1.45, Wi=1.09«y=5.1). Each  agistance is most likely due to extra elastic stresses, since Re
row shows an image taken ten periods after the one above it. . .

is fairly small.
It is known that the addition of small amounts of high-

. . N . .. molecular-weight flexible polymer§PAA) in solution can
for the.Bog.er fluid, we examine the vequty field .W'th high increase the resistance to flow in extension, even at small
resolution in both sheared and elongational regions of the

flow (Fig. 13. We study a sheared path that extends between
two elliptic points, and three elongational paths that pass
through hyperbolic points. We compare and study in detalil
the shear and elongational flow fields of the various poly-
meric fluids shown in Table | by measuring the velocity
along the paths shown in Fig. 13 at similar Re.

We report one normalized velocity component along the
selected patls, defined asv(s)=[V(s)Iy]/(V\l). Here,V(s)
is the selected velocity componeM,, is the maximum ve-
locity for a Newtonian reference fluid on the selected path,
andl andly are the imposed electrical currents used to drive
the polymer solution and the Newtonian reference fluid, re-

spectively. The quantitﬁ(s) is the velocity per unit driving
current, compared to a Newtonian reference fluid.

We plot the normalized velocity component as a function
of distance along the selected path in Fig. 14. In the shear
flow region[Fig. 14(a)], using the velocity perpendicular to
t.he Sele(.:ted path, we recover nearly Identlca_l parabolic prC'IEIG. 13. Flow field of a region of interest within the flow showing a sheared
files, typical for shear flows, for both Newtonian and Boger egion between two elliptic fixed pointd) and three elongational regions
fluids at Re=1.2. This indicates that their shear properties(2-4, passing through hyperbolic fixed points.
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(a) Distance, mm FIG. 15. Measure of the breaking of time reversal symmetry of time-
1.5 4 periodic flows, showing that the shear-thinning fluid breaks this symmetry
dramatically compared to the Boger and Newtonian cases, at a given Re.
- QO
1.0 oooaac -...I
o _u® A
= 0.5+ o.l.- &Anﬂﬂ@
= i gel. s
E 0.0 _.3:A¢a° must not simply change sign on its return path when the
= ! ) . . . . .
E= Ee“ a PAA forcing is reversed, so that it does not return to its starting
054, :cmw_\‘.‘% - = Newtonian position (even though the velocity field is time perioglic
- .
e _...-" o © Boger We measure departures from time reversal symmetry for
n . . .
1049 " O°°o°° polymeric solutions by calculating the sum of the local ve-
° locities at equal time intervals before and after the zero
-1.5 o a [ S S crossing of the rms velocity. This quantity vanishes if time-
(b) Distance, mm reversal symmetry holds. The standard deviation of this

quantity, averaged over space and phase, is plotted in Fig. 15.
FIG. 14. (a) Normalizedperpendicularcomponent of the velocitisee texk We find that in the Boger case, the breaking of time-reversal
along the sheared lin@) in Fig. 13. The flow profile is nearly parabolic for . .
both Newtonian and Boger fluids. Small deviations in profile shapes an(fymr_netry is somewhat reduc_:ed' We propose that this re_duc'
higher center-line speeds are observed for a shear-thinning Haial 1). (b) tion is due to the extra elastic stressaad reduced veloci-
Normalizedparallel velocity profile along the elongational ling) in Fig. ties) near the hyperbolic points In other words, even though

13. The Boger fluid shows a small speed reduction when compared to thF’ne inertial time lags are small at low Re, they are further
Newtonian fluid; lower speeds in this region may be responsible for a smal

reduction in mean stretching and reduced mixing. In contrast, the PAA |reduced in the Boger Ca_se by elastic Stresses-_ ) )
solution shows a higher elongational velocity, which leads to larger stretch- By contrast, we see in Fig. 15 that shear-thinning viscos-

ing and mixing. ity dramatically increases the breaking of time reversibility
at a given Re, even if the path lengttis also matched. The
symmetry breaking grows as either Re or the dimensionless
strain rates. The material property that quantifies this resisstrain-rate increases. Note that the symmetry breaking here is
tance to flow in extension is the extensional viscosity In not accompanied by any reduction in time periodicity.
the case of Newtonian fluids, the extensional viscosity is Why does shear-thinning viscosity tend to break time
three times its shear viscosityp.=37), while for high-  reversal symmetry? There are two possible explanations
molecular flexible polymers it can be much larger than thregstemming from two possible sources of time lags. In the
times its shear viscosityn,>37). In this work, although Newtonian flow(at finite R, small inertial lags cause par-
both fluids have nearly identical shear viscosities, the Bogeticles not to return to their starting locations, and mixing is
fluid seems to have a slightly larger elongational viscosityobserved. For the shear-thinning fluid, even though we make
than the Newtonian fluid, which is evident in the lower nor- comparisons at the same Rsmputed from the viscosity at
malized flow velocities near hyperbolic points. By contrast,the mean shear ratéhe velocities are larger in some regions
the semidilute PAA | solution shows higher values of nor-of the flow than for the Newtonian fluithnd lower in other
malized elongational velocity, i.e., shear-thinning elongaregions. Therefore it is possible that the inertial lags are
tional behavior. This reduced resistance near hyperbolienhanced, though they should be small at low Re, as in the

points probably contributes to the higher measured stretchinglewtonian case. However, another source of time lags may

of the PAA | solution compared to the Newtonian and Bogeryiso pe acting at low Re when;>1 As a fluid element
fluids at the same Re. :

travels between regions with different strain rates, its effec-
tive viscosity evolves on a time scalefor fluids possessing
memory. (In the limit of vanishing viscoelasticity, the
Previous work® on Newtonian fluids shows that obtain- changes in viscosity associated with shear thinning would be
ing large mean stretchin@r mixing) requires breaking time instantaneous.Therefore, the effective viscosity of a trans-
reversal symmetry. That is, the velocity of a fluid elementported fluid element may lag behind the value that would

D. Time reversibility
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