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Abstract
In this paper, the locality features of infinitedimensional quadratic programming (QP) optimization problems
are studied. Our approach is based on tools from operator theory and ideas from Multi Parametric Quadratic
Programming (MPQP). The key idea is to use the spatially decaying operators (SD), which has been recently
developed to study spatially distributed systems in [1], to capture couplings between optimization variables in
the quadratic cost functional and linear constraints. As an application, it is shown that the problem of receding
horizon control of spatially distributed systems with heterogeneous subsystems, input and state constraints,
and arbitrary interconnection topologies can be modeled as an infinitedimensional QP problem.
Furthermore, we prove that for a convex infinite-dimensional QP in which the couplings are through SD
operators, optimal solution is piece-wise affine– represented as convolution sums. More importantly, we prove
that the kernel of each convolution sum decays in the spatial domain at a rate proportional to the inverse of
the corresponding coupling function of the optimization problem, thereby providing evidence that even
centralized solutions to the infinite-dimensional QP has inherent spatial locality.
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Distributed Quadratic Programming over Arbitrary Graphs
Nader Motee and Ali Jadbabaie

Abstract— In this paper, the locality features of infinite-
dimensional quadratic programming (QP) optimization problems
are studied. Our approach is based on tools from operator
theory and ideas from Multi Parametric Quadratic Program-
ming (MPQP). The key idea is to use the spatially decaying
operators (SD), which has been recently developed to study
spatially distributed systems in [1], to capture couplings between
optimization variables in the quadratic cost functional and linear
constraints. As an application, it is shown that the problem of
receding horizon control of spatially distributed systems with
heterogeneous subsystems, input and state constraints, and arbi-
trary interconnection topologies can be modeled as an infinite-
dimensional QP problem. Furthermore, we prove that for a con-
vex infinite-dimensional QP in which the couplings are through
SD operators, optimal solution is piece-wise affine– represented
as convolution sums. More importantly, we prove that the kernel
of each convolution sum decays in the spatial domain at a rate
proportional to the inverse of the corresponding coupling function
of the optimization problem, thereby providing evidence that even
centralized solutions to the infinite-dimensional QP has inherent
spatial locality.

I. INTRODUCTION

The problem of performing distributed computations over a
network to implicitly solve a global optimization problem has
been an active area of research over the past few years. There
are many important problems that have been cast in the form
of a large-scale finite-dimensional or an infinite-dimensional
constraint optimization problem. Substantial progress has been
made to understand the fundamental issues regarding this class
of problems, for example see [2], [3] and references therein.
One of the fundamental problems in this area is to study the
locality features of spatially distributed optimization problems
which can be advantageous in the development of fast and
well-conditioned distributed algorithms.

On the other hand, there has been a rapidly growing interest
in systems and control community in the study of coordina-
tion and control algorithms for networked dynamic systems.
From consensus and agreement problems to formation control,
sensing, and coverage, researchers have been interested in
algorithms that are spatially distributed and would achieve a
global objective using local interactions [4]–[12]. The subject
of this paper is mainly motivated by the problem of receding
horizon control of spatially distributed systems over infinite
graphs. Spatially distributed systems consist of a large, possi-
bly infinite, number of subsystems coupled either through their
dynamics or through a single cost function, which represents
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some common goal or objective. It is shown that this problem
can be cast as an infinite-dimensional quadratic programming
problem [13], [14]. There have been a considerable progress
in the study of receding horizon control of distributed systems
which consist of finitely many subsystems. Previous works
include [15]–[20].

With advances in real-time optimization-based control, there
have been several attempts to develop distributed control
algorithms that can handle constraints and can be implemented
in real-time. Receding horizon control is a form of control
in which the control action is obtained by solving online a
finite horizon open-loop optimal control problem. Applications
of receding horizon control range from formation control
[16], [21], [22] to applications in manufacturing and process
industry where multiple units cooperatively produce a product
[23], [24], and large scale power systems [17], [20], [25]–[28].

In [15], the authors proposed a distributed receding horizon
control algorithm for systems which consist of subsystems
whose dynamics and constraints are uncoupled, and cou-
plings are imposed through a single performance cost func-
tion. Stability analysis is based on the fact that the optimal
state trajectory of each subsystem satisfies a compatibility
constraints condition, and that the receding horizon updates
happen sufficiently fast. In [16], a decentralized receding
horizon control scheme for systems whose coupling is through
cost function and constraints, is proposed. Each subsystems
uses only local information of itself and every neighbor to
compute the optimal trajectory. Stability and feasibility issues
regarding this distributed algorithm is also discussed and
compared to those of others being proposed earlier in the
literature. Another related work on this subject was reported
in [18] where the authors solve a min-max problem for each
subsystem. In this work, coupling comes from dynamics and
the stability of the proposed algorithm is ensured by imposing
a contractive constraint, called stability constraint. In [17],
[19], [20], unconstraint coupled subsystems are addressed with
a separable quadratic cost function. The primary objective of
these papers is to develop decomposition algorithms, with
stability and feasibility guarantees, to solve the centralized
receding horizon control problem in a distributed fashion.

In this paper, our objective is to study the spatial locality
properties of infinite-dimensional linear programming (LP)
and quadratic programming (QP) problems. We address this
problem by employing the operator theoretic tools developed
in [1] to study spatially distributed systems. A new class of
linear operators called spatially decaying (SD) is introduced in
[1] where it is shown that such operators exhibit a localized
behavior in spatial domain, i.e., the norm of blocks in the
matrix representation of the operator decay as a function of
an appropriate measure of distance between subsystems. It
is shown that the space of SD operators is a normed vector
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space with respect to a specific operator-norm which is not
induced and is denoted by ‖ , ‖?

τ . Furthermore, such operators
equipped with the norm form a Banach algebra. Using this
result, we prove certain closure properties of this space with
respect to inversion. This will then enable us to study the
solution of linear operator equations. Using duality theory and
complimentary slackness, it is shown that the optimal solution
of infinite-dimensional LP or QP is a piece-wise affine map
of parameters, and can be represented as convolution sums ,
similar to the finite dimensional case [29]. Most importantly,
we prove that the kernel of each convolution sum decays, e.g.
exponentially or polynomially, in the spatial domain. In other
words, change of parameters in one node mainly affects the
optimal solution of those nodes which are located in the imme-
diate vicinity of that node. It is important to stress that such
spatial locality in the solution of multi-parametric quadratic
programs provides a justification for spatial truncation and
removing the influence of farther-away subsystems, suggesting
the possibility of distributed solutions whose cost is “close” to
the centralized one. This issue is highlighted further when we
consider multi-parametric quadratic programs in the context
of Model Predictive Control (MPC) problems. The structural
locality of the optimal state feedback solutions suggest the
potential for ignoring the influence of farther away nodes
without sacrificing too much performance. Of course, as it
becomes clear later on in the paper, the rate of decay is
intimately related to how tightly coupled the dynamics and
the cost functions of individual subsystems are.

This paper is organized as follows. We introduce the no-
tation and the basic concepts used throughout the paper in
Section II. The infinite-dimensional quadratic programming
problem is presented in Section III. The concept of spatially
decaying operators is introduced in Section IV. The receding
horizon control problem for spatially distributed systems is
discussed in Section V. Results of Section IV are utilized in
Section VI to show that the kernel of each convolution sum
inherits spatial locality.

II. PRELIMINARIES

The notation used in this paper is fairly standard. R denotes
the set of real numbers, R+ the set of nonnegative real
numbers, Z the set of integer numbers, C the set of complex
numbers, and S1 the unit circle in C. Let 〈 , 〉E and | . |
denote the inner product and Euclidean 2-norm on Rni for
i ∈ G where G is an index set. We refer to G as the spatial
domain. Examples of typical spatial domains include Zn and
Rn. Whenever it is clear from the context, all induced norms of
linear maps between two Euclidean spaces are simply denoted
by ‖ .‖. The Banach space `p(G) for 1 ≤ p < ∞ is defined
to be the set of all sequences x = (xi)i∈G in which xi ∈ Rni

satisfying X
i∈G

|xi|p < ∞

endowed with the norm

‖x‖p :=

 X
i∈G

|xi|p
! 1

p

.

The Banach space `∞(G) denotes the set of all bounded
sequences endowed with the norm

‖x‖∞ := sup
i∈G

|xi|.

Throughout the paper, we will use the shorthand notation `p

for `p(G). A linear functional F on the space `p is a linear
mapping from `p to R. We will use the notation 〈x, F 〉 to
denote F (x). An operator Q : `p → `q for 1 ≤ p, q ≤ ∞
is bounded if it has a finite induced norm, i.e., the following
quantity

‖Q‖p/q := sup
‖x‖p=1

‖Qx‖q (1)

is bounded. The identity operator is denoted by I. The set of
all bounded linear operators of `p into `p for some 1 ≤ p ≤ ∞
is denoted by L(`p). The space L(`p) equipped with norm (1)
is a Banach space (cf. [30]). The dual space of a Banach
space X , denoted by X∗, is the space of all bounded linear
functionals on X . Since we are interested in Banach space `p

in this paper, we have (`p)∗ = `q where 1
p + 1

q = 1.
An operator Q ∈ L(`p) has an algebraic inverse [30] if it

has an inverse Q−1 in L(`p) :

QQ−1 = Q−1Q = I.

Definition 1: Let Q : `p → `q be a bounded linear operator.
The adjoint operator Q∗ : (`q)∗ → (`p)∗ is defined by the
following equation

〈x,Q∗y∗〉 = 〈Qx, y∗〉
for all x ∈ `p and y∗ ∈ (`q)∗.

The space `2 is a Hilbert space with inner product

〈x, y〉 =
X
i∈G

〈xi, yi〉E

for all x, y ∈ `2. An operator Q ∈ L(`2) is self-adjoint if
Q = Q∗.

Definition 2: An operator Q ∈ L(`2) is positive defi-
nite, shown as Q Â 0 , if there exists a number α > 0
such that

〈x,Qx〉 > α ‖x‖22
for all nonzero x ∈ `2.

Definition 3: A subset P of a linear vector space is called
a cone if for every x ∈ P and θ ∈ R+ it satisfies θx ∈ P .
A subset P of a real vector space is a convex cone if it is
convex and a cone, which means that for any x1, x2 ∈ P and
θ1, θ2 ∈ R+, it satisfies

θ1x1 + θ2x2 ∈ P.

Definition 4: Let P be a convex cone in a vector space V .
For x, y ∈ V , we write x º y (with respect to P ) if x−y ∈ P .
The cone P defining this relation is called the positive cone
in V .

In most situations, the choice of P will arise naturally. For
example, the set of all continuous functions from D ⊆ R into
R is a vector space F over R. The positive cone in F is the
set of all continuous functions in the space that are nonnegative
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everywhere on D. Therefore, for f, g ∈ F , the notation f ¹ g
means the pointwise inequality f(t) ≤ g(t) for all t ∈ D.

For a positive cone P in Banach space X , the corresponding
positive convex cone P⊕ in the dual space X∗ is defined by

P⊕ = {x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0 for all x ∈ P}
A family of seminorms on F is defined as {‖ .‖T | T ∈

R+} in which
‖f‖T := sup

s≤T
|f(s)|

for all f ∈ F . The topology generated by all open ‖ .‖T -balls
is called the topology generated by the family of seminorms
and is denoted by ‖ .‖T -topology. Continuity of a function in
this topology is equivalent to continuity in every seminorm in
the family (cf. [31]).

In this paper we are interested in linear operators Q : `p →
`p which have matrix representations

Q 7−→

2664 . . .

[Q]ki

. . .

3775
where the block element [Q]ki is a matrix in Rnk×ni .

Given linear operators A,B, C,D : `p → `p, whenever
dimensions are compatible, the row and column block com-
position of these operators are defined as follows� A
B
�

ki

=
�

[A]ki

[B]ki

�
,
�
C D

�
ki

=
�

[C]ki [D]ki

�
The other complex block compositions can be defined in terms
of these elementary operations. Similarly, we can define the
row and column block compositions of elements in `p.

The concatenation of a sequence of vectors xi ∈ Rni is
defined as cat

i∈G
xi. For a given sequence of matrices Ai ∈

Rni×ni with i ∈ G, the diagonal operator diag
i∈G

Ai is defined

to be an operator that maps x = cat
i∈G

xi to y = cat
i∈G

yi such
that yi = Aixi for all i ∈ G.

III. PROBLEM SETUP

In this paper, we consider the infinite-dimensional quadratic
programming problem:

inf
x∈`2

1
2
〈x,Px〉+ 〈c, x〉 (2)

subject to: Gx ¹ b

where P,G ∈ L(`2), P is positive definite, and c, b ∈ `2.
We can associate an undirected weighted graph to problem
(2) (see Fig. 1) to represent coupling in the cost functions of
subsystems. Let denote G as the set of nodes of the graph. For
each x = (xk)k∈G in `2, element xk represents the vector of
variables corresponding to node k. For a given pair of nodes
(k, i), the block elements [P]ki and [G]ki can be thought of
as coupling weights on the edge connecting these two nodes.
In distributed control applications, very often the underlying
system is spatially distributed over an arbitrary graph. Each
node corresponds to an individual dynamical subsystem which

k

i

Fig. 1. Topology of the system on an arbitrary connected graph. Coupling
between two agents is shown by an undirected edge between them.

is coupled to the other subsystems in the network through
their dynamics and collective performance objective function.
There are numerous problems concerning this class of systems
that can be posed as problem (2). For example, the problem
of receding horizon control (or model predictive control) of
spatially distributed systems with discrete-time linear models
(see Section V for details) and least square optimization
problems with linear constraints arisen in different applications
in sensor networks can be formulated in the form (2).

Problem (2) is an infinite-dimensional convex optimization
problem. In general, it is a tedious task to find numerical
solutions for this class of problems except for the special cases
where operators P and G have some kind of spatial symmetries
such as the case where they are Toeplitz operators. Therefore,
we focus our study on the structural properties of problems of
the form (2). Specifically, we show that the optimal solution
of (2) has, to some extend, localized features.

One of the fundamental tools in deriving methods to
compute exact or approximate solutions to the infinite-
dimensional problems is duality theory [2]. Contrary to the
finite-dimensional case, the relationship between primal and
dual problems in the infinite-dimensional problems may not be
so simple. Problem (2) is a convex optimization problem and,
therefore, under suitable constraint qualification conditions
strong duality holds. The strong duality (no duality gap)
involves cases where the optimal solutions of both primal and
dual problems exist and both have the same optimal cost. The
strong duality relationship in the primal-dual pair provides a
clear insight into the structure of the problem and its optimal
solution.

It is worth mentioning that for the case where P ≡ 0, prob-
lem (2) reduces to an infinite-dimensional linear programming
problem. One example of such problems is receding horizon
control of spatially distributed systems with discrete-time
linear models and mixed 1/∞-norm performance functions
(cf. [32] for finite-dimensional single system case). In what
follows, only the infinite-dimensional QP is discussed. A
similar analysis is applicable for the infinite-dimensional LP
case.

In the following section, we review some of the definitions
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and properties of spatially decaying operators [1]. Later in
section VI, we will apply results of section IV to problem
(2) and prove that the kernel of the optimal solution decays
in space, and as a result the infinite-dimensional optimization
problem (2) has localized features around each node.

IV. SPATIALLY DECAYING OPERATORS

Spatially decaying (SD) operators have been recently de-
veloped to study the structural properties of infinite-horizon
optimal control of spatially distributed systems [1]. In the
following, first we review briefly the necessary concepts and
definitions which will be useful throughout the paper, next,
we will show that the set of such operators is closed under
inversion (when the inverses exist). Specifically, it is shown
that similar to translation invariant operators, if an SD operator
in L(`2) has an algebraic inverse, then the inverse operator is
SD as well.

A. Definitions

In the sequel, by a distance function on G we mean a single-
valued function dis : G× G→ R+ which has the following
properties [33]:

1) dis(k, i) = 0 iff k = i .
2) dis(k, i) = dis(i, k).
3) dis(k, i) ≤ dis(k, j) + dis(j, i).

for all k, i, j ∈ G.

Definition 5: A nondecreasing continuous function χ :
R+ → [1,∞) is called a coupling characteristic function if
χ(0) = 1 and χ(s + t) ≤ χ(s) χ(t) for all s, t ∈ R+.

The constant coupling characteristic function with unit value
everywhere is denoted by 1.

Definition 6: A one-parameter family of coupling charac-
teristic functions C is defined to be the set of all characteristic
functions χα for α ∈ R+ such that

(i) χ0 = 1.
(ii) For all χα, χβ ∈ C with α < β, relation χα ≺ χβ

holds (with respect to cone of positive functions).
(iii) χα is a continuous function of α in ‖ .‖T -topology.

The definition of a family of coupling characteristic functions
enables us to measure the decay rate of the coupling strength
between nodes in a coupled network of subsystems as distance
increases.

Assumption 1: We assume that for a given family of cou-
pling characteristic functions the following condition satisfies

sup
k∈G

X
i∈G

χα(dis(k, i))−1 < ∞

for all 0 ≤ α < τ and some τ > 0.

The following definition characterizes the class of spatially
decaying linear operators on Banach space `p.

Definition 7: Suppose that a distance function dis(., .) and a
one-parameter family of parameterized coupling characteristic
functions C are given. A linear operator Q ∈ L(`p) is SD

with respect to C if there exists a number τ > 0 such that the
auxiliary operator Q̃(α), defined block-wise as

[Q̃(α)]ki = [Q]ki χα(dis(k, i))

is bounded on `p for all 0 ≤ α < τ . The number τ is referred
to as the decay margin.
A simple sufficient condition for an operator to be SD on all
`p spaces is given by

sup
k∈G

X
i∈G

‖[Q]ki‖ χα(dis(k, i)) < ∞ (3)

for all 0 ≤ α < τ (cf. Lemma 1 in [1]).
The interesting result is that the set of all SD operators

with decay margin at least τ > 0 forms a Banach Algebra
with respect to the following operator norm

‖Q‖?
τ = sup

α∈[0,τ)

sup
k∈G

X
i∈G

‖[Q]ki‖ χα(dis(k, i)).

This Banach algebra is denoted by

Sτ (C ) = {Q : ‖Q‖?
τ < ∞}

The operator norm satisfies the usual conditions, i.e., for all
Q,P ∈ Sτ (C ) and c ∈ C,

1) ‖Q‖?
τ ≥ 0 and ‖Q‖?

τ = 0 iff Q ≡ 0 ,

2) ‖c Q‖?
τ = |c| ‖Q‖?

τ ,

3) ‖Q+ P‖?
τ ≤ ‖Q‖?

τ + ‖P‖?
τ .

Furthermore, it is submultiplicative,

4) ‖QP‖?
τ ≤ ‖Q‖?

τ ‖P‖?
τ .

In [1], some of the closure properties of Banach algebra Sτ (C )
are shown such as closure under addition, multiplication,
and limit. These properties utilized to show the structural
properties of optimal control of spatially distributed systems.
In the sequel, it is shown that under a reasonable assumption,
namely invertibility on `2, Banach algebra Sτ (C ) is closed
under inversion as well. As we will see in Section VI, the
closure under inversion property plays a central role in proving
the spatial locality features of the optimal solution of problem
(2).

B. Closure under Inversion

The studying of optimal solutions of problem (2) involves
solving linear equations of the following form

Qx = y (4)

where Q is an invertible SD operator, x ∈ `2 is the unknown
variable, and y ∈ `2 is given.

In the following, it is shown that if Q−1 ∈ L(`2), then
Q−1 ∈ Sτ (C ). Before stating the main results of this sec-
tion, we recall a motivating result about translation invariant
operators [34]. As shown in [1], every translation invariant
operator on `2(Z), which its Fourier transform is analytic
within an annulus of radius τ > 0 around the unit circle,
belongs to Sτ (C ). Note that C is the one-parameter family of
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parameterized exponential functions χα(s) = eαs. We begin
by introducing the unit translation operator to the right with
respect to the group operation ’+’ as follows

Tu = T( . . . , |ui, ui+1, . . . ) = ( . . . , |ui−1, ui, . . . ).

For a translation invariant operator Q ∈ L(`2(Z)) which is
defined as

Q(T) =
X
k∈Z

QkTk

the discrete Fourier transform is defined by

Q̂(z) =
X
k∈Z

Qkz−k

Theorem 1: Suppose that condition det(Q̂(z)) 6= 0 holds
for all z ∈ S1. Then Q is invertible and the inverse operator
can be represented as

Q−1(T) =
X
k∈Z

[Q−1]kTk. (5)

Furthermore,

lim
|k|→∞

‖[Q−1]k‖ em|k| = 0. (6)

for 0 < m < ln(1 + ρ) where

ρ = sup{r : det(Q̂(z)) 6= 0 for all 1− r < |z| < 1 + r}.

Proof: This is an immediate application of Theorem 3
in [1].

The following lemma extends the above result to SD operators
and gives a similar decay result for the inverse operator.

Lemma 1: Suppose that Q ∈ Sτ (C ) for some τ > 0 has
an algebraic inverse on L(`2). Then Q−1 ∈ Sτ̂ (C ) for some
0 < τ̂ < τ .

Proof: It suffices to prove the lemma for positive definite
operators. The reason is that for an invertible operator the
following relation holds

Q−1 = Q∗ (QQ∗)−1

Without loss of generality, we may assume that operator Q is
self-adjoint and positive definite. We define a new operator as
follows

P = I − 1
‖Q‖2/2

Q (7)

Let denote the spectrum of operator P by σ(P). Using the
positive definiteness of operator Q, one can conclude that
σ(P) ⊂ [0, 1). Thus, the spectral radius of P satisfies

r(P) := sup{ |λ| : λ ∈ σ(P)} < 1

Using the fact that L(`2) is a C∗-algebra [30], where P∗
denotes the adjoint operator of P , and the spectral radius
formula, it follows that

r(P) = lim
n→∞

‖Pn‖
1
n

2/2 = ‖P‖2/2

Therefore, ‖P‖2/2 < 1. Since Q ∈ Sτ (C ), we have that P ∈

Sτ (C ). According to (7), we have

Q−1 = ‖Q‖−1
2/2 (I − P)−1 (8)

By writing the Neumann series for the quantity in the right of
(8), it follows that

Q−1 = ‖Q‖−1
2/2

∞X
k=0

Pk (9)

Now, we consider the convergent Cauchy sequence Wn →
W as n →∞ by defining

Wn =
nX

k=0

Pk and W = (I − P)−1.

The Banach algebra Sτ (C ) is closed under addition and
multiplication operations, therefore, it follows that Wn ∈
Sτ (C ). As a result, according to theorem 5 of [1], we have
that W ∈ Sτ̂ (C ) where 0 < τ̂ < τ . Thus, from (9) it can be
concluded that Q−1 ∈ Sτ̂ (C ).
An immediate consequence of lemma 1 is that if Q ∈ Sτ (C )
and Q−1 ∈ L(`2), we have Q−1 ∈ L(`p) for all 1 ≤ p ≤ ∞
(cf. lemma 1 in [1]). The result of lemma 1 shows that the
decay margin of the inverse operator is a number τ̂ > 0 where
τ̂ < τ . The next theorem explicitly quantifies the decay rate τ̂ .
This result can also be thought of as the extension of results
of theorem 1 to SD operators.

Theorem 2: Suppose that Q ∈ Sτ (C ) has an algebraic
inverse on L(`2). Then each nonzero block element of the
inverse operator satisfies

‖[Q−1]ki‖ ≤ c

χα(dis(k, i))
(10)

for all α ∈ [0, τ̂) in which 0 < τ̂ < τ and some c > 0, where

τ̂ = sup
¦
α : Φ(χα) < ‖Q−1‖−1

∞/∞
©

(11)

and

Φ(χα) = sup
k∈G

X
i∈G

‖[Q]ki‖ (χα(dis(k, i))− 1) .

Proof: We refer to the appendix for a proof.
The result of theorem 2 is a direct extension of the result of
theorem 1 to SD operators.

In the venue of the above results, if operator Q in linear
equation (4) satisfies the conditions of lemma 1, it follows
that

x = Q−1y

and for any given k ∈ G, we have

xk =
X
i∈G

[Q−1]ki yi

According to lemma 1 and theorem 2, we get

lim
dis(k,i)→∞

‖[Q−1]ki‖ χα(dis(k, i)) = 0

We will apply this result to analyze the structural properties
of the optimal solution of the infinite-dimensional quadratic
programming (2) in Section VI. In the following, we will show
that receding horizon control problem of spatially distributed
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systems can be formulated in a compact form as (2).

V. FORMULATION OF RECEDING HORIZON CONTROL
PROBLEM

We consider the class of spatially distributed systems which
can be described by a discrete-time linear time-invariant model

ψ(t + 1) = (Aψ)(t) + (Bu)(t) (12)
y(t) = (Cψ)(t) + (Du)(t) (13)

subject to constraints

Gu(t) +Hy(t) + F ¹ 0 (14)

for all t ≥ 0 and with the initial condition ψ(0) = ψ0. All
signals are assumed to be in `2 space: at each time instant
t ∈ Z+, signals ψ(t), u(t), y(t) are assumed to be in `2.
The state-space operators A,B, C,D,G,H ∈ Sτ (C ) for some
τ > 0 are assumed to be time-invariant, F ∈ `2, and the pair
(A,B) stabilizable. Note that the ordering in inequality (14) is
defined with respect to the positive cone in `2. The following
assumption guarantees existence and uniqueness of classical
solutions of the system given by (12)-(13) (cf. Chapter 3 of
[35]).

Assumption 2: The semigroup generated by A is strongly
continuous on `2.
The control objective is to regulate the state of system (12)-
(13) to zero while satisfying constraints (14). In the sequel,
we will explain how to achieve this objective by employing
receding horizon control techniques [36].

An equivalent representation of system (12)-(13) can be
obtained by using block-composition operation as follows�

ψ(t + 1)
y(t)

�
=
� A B
C D

� �
ψ(t)
u(t)

�
(15)

Furthermore, we assume that operator A is the infinitesimal
generator of an exponentially stable C0-semigroup on `2 [35].
Otherwise, a stabilizing state feedback law can be found
using LQR method to stabilize the system. Moreover, if we
assume that the state-space operators in (12)-(13) are SD, the
corresponding LQR state feedback control is guaranteed to be
SD as well [1]. We refer to [29] and references in there for
further discussions on this assumption.

The receding horizon control problem for system (12)-(13)
subject to constraint (14) can be formulated as follows

inf
u

J(ψ0,u) (16)

subject to:
ψ(k + 1) = (Aψ)(k) + (Bu)(k), 0 ≤ k ≤ N

ψ(0) = ψ(t)
Gu(k) +Hy(k) + F ¹ 0, 0 ≤ k ≤ Nc

u(k) = 0, Nu ≤ k ≤ N − 1.

The nonnegative integer number N is the state prediction
horizon, Nu the control prediction horizon, and Nc the con-
straint horizon. Furthermore, we assume that Nu ≤ N−1 and
Nc ≤ N − 1 (cf. [29]). For simplicity, we will assume that

Nu = Nc = N − 1. For Nu < N − 1 and Nc < N − 1,
optimization is performed only over Nu control variables, and
for the rest of the horizon we may use zero control inputs,
which in turn will reduce the complexity of the problem.

The functional J(ψ0,u) can be interpreted as the collective
performance objective of the entire system which may have
one of the following forms:

• 2-norm:

J(ψ0,u) = 〈ψ(N),Pψ(N)〉+ (17)
N−1X
k=0

〈ψ(k),Qψ(k)〉 + 〈u(k),Ru(k)〉 .

• Mixed 1/∞-norm:

J(ψ0,u) = ‖Pψ(N)‖∞ + (18)
N−1X
k=0

‖Qψ(k)‖∞ + ‖Ru(k)‖∞ .

Assume that the linear operators Q º 0 , R Â 0 are self-
adjoint, (Q1/2,A) detectable, and Q,R ∈ Sτ (C ).

In this section, we will only consider problem (16) with a
quadratic cost function (17). Problem (16) with cost function
given by (18) can be formulated as an infinite-dimensional LP
problem (cf. [32]). A similar argument to the one in section
VI can be applied to the LP case to analyze the problem [2].

In the sequel, we show that similar to the finite-dimensional
case [29], the receding horizon control problem (16) with
quadratic cost (17) can be represented in the compact form
of (2). Moreover, the terminal weighting cost P can be
determined by solving the corresponding Lyapunov equation
(cf. [37])

〈Aφ,PAφ〉 − 〈φ,Pφ〉+ 〈φ,Qφ〉 = 0 (19)

for all φ ∈ D(A) (domain of the operator). If we assume that
A,Q ∈ Sτ (C ), then the positive definite solution of (19) is
P ∈ Sτ (C ). The proof is very similar to the one given in [1]
for the continuous-time Lyapunov equation.

The prediction model for system (15) is given by�
Ψ
y

�
=

� Ap Bp

Cp Dp

� �
ψ0

u

�
(20)

where

Ψ =

264 ψ(1)
...

ψ(N)

375 , u =

264 u(0)
...

u(N − 1)

375 , y =

264 y(0)
...

y(N − 1)

375
and linear operators Ap ,Bp , Cp ,Dp are completely de-
termined from A,B, C, and D by using block-composition
operations as follows

Ap =

26664 A
A2

...
AN

37775 , Bp =

26664 B 0 . . .
AB B . . .
...

. . .

ANB . . . AB B

37775
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Cp =

26664 C
CA
...

CAN−1

37775 , Dp =

2666664 D 0 . . .
CB D . . .
CAB CB D . . .

...
. . .

CAN−2B . . . CB D

3777775
Therefore, the state prediction model for system (2) is given
by

Ψ = Ap ψ0 + Bp u (21)

Equation (17) can be rewritten in the following form

J(ψ0,u) = 〈Ψ,Qp Ψ〉+ 〈u,Rp u〉 (22)

in which

Qp =

26664 Q
. . .

Q
P

37775 , Rp =

264 R
. . .

R

375
and the off-diagonal blocks are equal to zero. Substituting (21)
into (22) gives us

J(ψ0,u) =
¬
ψ0,
�
Q+A∗pQpAp

�
ψ0

¶
+

2
¬
ψ0,A∗pQpBp u

¶
+
¬
u,
�
R+ B∗pQpBp

�
u
¶

The input and output constraints in (16) can be rewritten as

Gpu +Hp y + Fp ¹ 0 (23)

where

Gp =

264 G . . .

G

375 ,Hp =

264H . . .

H

375 ,Fp =

264 F
...
F

375
and the off-diagonal blocks are equal to zero. From (20), we
have

y = Cp ψ0 + Dp u (24)

Substituting (24) into (23), it follows that

(Gp +HpDp)u ¹ −Hp Cp ψ0 −Fp

Therefore, problem (16) is equivalent to the following infinite-
dimensional QP problem

inf
u

1
2
〈u,L0u〉+ 〈u,L1ψ0〉 (25)

s.t. M u ¹ N + Eψ0

where

L0 := Rp + B∗pQpBp , L1 := B∗pQpAp (26)
M := Gp +HpDp , N := −Fp , E := −Hp Cp (27)

For a given horizon length N , there is a polyhedral set of
initial conditions for which feasible trajectories exists, over
which the receding horizon controller is stabilizing (cf. [29],
[36], [38]–[40] and the references therein). The set of all initial
conditions for which an optimal solution of (16) exist is a
polyhedral set X0 which can be characterized as follows (with

respect to the positive cone in `2)

X0 = {x ∈ `2 : Aint x ¹ bint}.
where Aint ∈ L(`2). Formulation in (25) gives a clear
picture of the relationship between the control input variables
and initial condition ψ0. Problem (25) is a multi-parametric
optimization problem on G (the spatial domain) in which ψ0

is treated as vector of parameters.
Note that Banach algebra Sτ (C ) is closed under block-

composition operation, i.e., if A,B, C,D ∈ Sτ (C ), then� A
B
�
∈ Sτ (C ) and

�
C D

�
∈ Sτ (C )

Using this property and the closure under multipli-
cation property of Sτ (C ), one can conclude that
Ap,Bp, Cp,Dp,Qp,Rp,Gp,Hp ∈ Sτ (C ). Therefore,
it follows that L0,L1,M, E ∈ Sτ (C ). From positive
definiteness of operator R, it also follows that L0 Â 0.
Therefore, problem (25) is a convex infinite-dimensional QP,
and that it can be written in the form of (2).

VI. ANALYSIS OF INFINITE-DIMENSIONAL QUADRATIC
PROGRAMMING PROBLEM

In this section, we study the structural properties of the
optimal solution of the infinite-dimensional QP problem

inf
x∈`2

1
2
〈x,Px〉+ 〈c, x〉 (28)

subject to: Gx ¹ b

As mentioned earlier, problem (28) can be viewed as a multi-
parametric quadratic optimization (MPQP) problem, in which
parameters are the components of b ∈ `2. Assume that
there exists a compact set P ⊂ `2 of parameters for which
for every b ∈ P an optimal solution of (28) exists. When
problem (28) is considered on a finite-dimensional vector
space, it can be shown that P can be partitioned into countably
many partitions (cf. [29] and references in there) over each
of which the optimal solution of (28) is an affine function
of the parameters. In the following, we will show that a
similar explicit representation exists for the optimal solution
when problem (28) is treated in an infinite-dimensional vector
space. In this scenario, however, the affine representation is
in the form of a convolution sum with some matrix gains
appearing as the kernel. We will prove that convolution kernel
corresponding to the optimal solution on each partition, exhibit
decay in the spatial domain at a rate proportional to the inverse
of the corresponding coupling characteristic function of the
system. We recall the following theorem which is Theorem 1
in chapter 8 of [2].

Theorem 3: Let X be a vector space, Z a normed space, Ω
a convex subset of X , and P the positive cone in Z. Assume
that P contains an interior point. Let f be a real-valued convex
functional on Ω and G a convex mapping from Ω into Z.
Assume the existence of a point x1 ∈ Ω for which G(x1) ≺ 0
(i.e., G(x1) is an interior point of N = −P ). Let

µ0 = inf
x∈Ω

f(x) subject to: G(x) ¹ 0 (29)
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and assume µ0 is finite. Then

µ0 = max
z∗º0

inf
x∈Ω

{f(x) + 〈G(x), z∗〉}. (30)

and the maximum is achieved by an element z∗0 º 0 in Z∗,
where the inequality is defined with respect to the positive
cone P⊕. Furthermore, if the infimum is achieved in (29) by
an x0 ∈ Ω, then

〈G(x0), z∗0〉 = 0 (31)

and x0 minimizes f(x) + 〈G(x), z∗0〉 with x ∈ Ω.

The above result provides a precise method to explain primal-
dual relationship, and that formulate the necessary optimal-
ity conditions for a convex infinite-dimensional optimization
problem such as problem (28). The outcome of this theorem
can be thought of as the generalized Karush-Kuhn-Tucker
conditions in infinite-dimensions. In the following, as we
will see the necessary optimality conditions for problem (28)
are very similar to its finite-dimensional counterpart. The
following theorem is the main result of this paper.

Theorem 4: Assume that P,G ∈ Sτ (C ), P is positive
definite, and b, c ∈ `2 in problem (28). Suppose that some
combination of constraints in (28) are active and the corre-
sponding rows to these active constraints from operator G
form onto operator G̃. Let B ⊆ P be the set of all b ∈ P
so that such combinations are active at the optimal solution.
Then the optimal solution of (28), as well as the corresponding
Lagrange multipliers to index k ∈ G, are

(a) affine maps of b over B, especially

x̄k =
X
i∈G

[K]ki bi +
X
i∈G

[K0]ki ci (32)

for some linear bounded operators K and K0.
(b) spatially distributed, in the sense that the coupling decays

in the spatial domain at a rate proportional to the inverse
of the corresponding coupling characteristic function of
the system, i.e.,

‖[K]ki‖ ≤ κ

χα(dis(k, i))

‖[K0]ki‖ ≤ κ0

χα(dis(k, i))

for some κ, κ0 > 0 and all α ∈ [0, τ2), where 0 < τ2 < τ
and τ2 is determined explicitly in the proof.

Proof: We may assume that P is nonempty. The quadratic
cost functional in (28) is Fréchet differentiable [2]. By apply-
ing Theorem 3 to (28), we have the following conditions

Px̄ + c + G∗λ = 0 (33)

λj
i

 X
k∈G

[G]ikx̄k − bi

!j

= 0 (34)

j = 1, ..., n

λ º 0 (35)
Gx ¹ b (36)

i ∈ G

where x̄ ∈ `2 is the optimal solution, λ = cat
i∈G

λi ∈ `2 the

corresponding Lagrange multipliers, λi ∈ Rn, and λj
i or ( . )j

represents the jth row. Note that the positive cone P in `2 is
defined by

P = {x ∈ `2 : x = cat
i∈G

xi , xi ≥ 0 for all i ∈ G}

and by definition P⊕ = P . Condition (34) is the so called
complementary slackness. It follows from the fact that at
optimum we have

G(x̄) = Gx̄− b ¹ 0 and λ º 0 (37)

and condition (31) can be written as

〈G(x̄), λ〉 =
X
i∈G

nX
j=1

λj
i

 X
k∈G

[G]ikx̄k − bi

!j

= 0 (38)

According to (37), every term inside the summations in (38)
is nonpositive. Therefore, each term has to be zero.

Since P is bounded and positive definite, it has an algebraic
inverse on L(`2). Equation (33) results in

x̄ = −P−1 ( G∗λ + c ) (39)

According to equation (34) and (35), all Lagrange multipliers
λj

i corresponding to inactive constraints are zero, and the La-
grange multipliers corresponding to active constraints, stacked
in column vectors λ̃i (accordingly, vectors b̃i can be formed
using elements of bi), are nonnegative numbers. Therefore,
we can form linear operator G̃ whose block elements [G̃]ik are
obtained by deleting rows corresponding to the inactive con-
straints from block elements [G]ik of G. We may equivalently
represent this operation as follows

G̃ = EG.

where E is a bounded linear operator that is obtained by
deleting rows from I (identity operator) which correspond to
the active constraints. Note that E ∈ Sτ (C ). From (34) and our
assumptions, for every b ∈ B we have the following equation

G̃ x̄− b̃ = 0 (40)

in which b̃ = cat
i∈G

b̃i or, equivalently, b̃ = Eb. This equation

allows us to solve it along with (39) for λ̃ where λ̃ = cat
i∈G

λ̃i

or, equivalently, λ̃ = Eλ. Using (39), it follows that

x̄ = −P−1G̃∗λ̃− P−1c (41)

Substituting (41) into (40), results in

G̃P−1G̃∗ λ̃ = −b̃− G̃P−1c

Operator G̃ is onto and G̃∗ is (1-1). Thus, linear operator
G̃P−1G̃∗ is invertible and positive definite, and that it has an
algebraic inverse on L(`2). Therefore, we have

λ̃ = −
�
G̃P−1G̃∗

�−1
b̃−

�
G̃P−1G̃∗

�−1 G̃P−1c (42)

and

x̄ = K b + K0 c (43)
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where

K := P−1G̃∗
�
G̃P−1G̃∗

�−1 E
K0 := P−1G̃∗

�
G̃P−1G̃∗

�−1 G̃P−1 − P−1

Equation (43) can be written in the form of convolution sums
as follows

x̄k =
X
i∈G

[K]ki bi +
X
i∈G

[K0]ki ci

for all k ∈ G. This proves part (a) of the theorem that the
optimal solution x̄ is an affine function of parameters bi for
all i ∈ G.

Since G, E ∈ Sτ (C ), we have G̃ ∈ Sτ (C ). According to
lemma 1, P−1 ∈ Sτ1(C ) for some 0 < τ1 < τ . It follows
that G̃P−1G̃∗ ∈ Sτ1(C ). Applying lemma 1 one more time, it
results in �

G̃P−1G̃∗
�−1 ∈ Sτ2(C )

for some 0 < τ2 < τ1. Therefore, using the close under multi-
plication property of Banach algebra Sτ2(C ), it concludes that
the gain operator K satisfies

K ∈ Sτ2(C ).

Note that theorem 2 can be used to quantify the value of the
decay margin τ2. Thus, it follows that

‖[K]ki‖ ≤ κ

χα(dis(k, i))

for some κ > 0 and all α ∈ [0, τ2). It is straightforward to
show that a similar result holds for operator K0, i.e.,

‖[K0]ki‖ ≤ κ0

χα(dis(k, i))

for some κ0 > 0 and all α ∈ [0, τ2).

The result of theorem 4 can be used to characterize the
parameter set B. The empty set is a compact set by the fact
that every finite set is compact. Assume that B is nonempty.
The optimal solution has to satisfy constraint (36) and by (35)
the Lagrange multipliers (42) must be nonnegative. Therefore,
the parameter set B can be represented as

B = { b ∈ P : B0 b + d0 ¹ 0 , B1b + d1 ¹ 0}
where

B0 := GK − I , d0 := −GK0c

B1 :=
�
G̃P−1G̃∗

�−1 E , d1 :=
�
G̃P−1G̃∗

�−1 G̃P−1c

The linear operators B0 and B1 are bounded, therefore, it
concludes that the set B is compact.

VII. CONCLUSIONS

In this paper we studied the spatial structure of infinite-
dimensional quadratic programming problems where the cost
functional is defined using a spatially decaying (SD) oper-
ator. By applying duality theory and complementary slack-
ness conditions, we proved that the optimal solution of a
convex infinite-dimensional quadratic programming is piece-
wise affine which can be represented as convolution sums.

Furthermore, it was shown that the Banach algebra of SD
operators is closed under inversion. Also, an explicit formula
was proposed for the decay margin of the inverse operator.
We used this to prove that the kernel of each convolution sum
decays in the spatial domain. These results suggest that in
large-scale multi-parametric quadratic optimization problems,
the optimal centralized solution is an inherently local function
of the parameters, as the influence of farther away nodes
decays in spatial domain. This raises and justifies the possi-
bility of spatial truncation in the optimal solution without loss
of performance.Future research will be focused on designing
robust distributed algorithms based on tools developed in
this paper to solve infinite-dimensional linear and quadratic
programming problems. We suspect that similar results can
be extended to more general class of infinite-dimensional
optimization problems such as those whose cost functional
is defined in terms of a p norm of an SD operator where p is
not necessarily equal to 1, 2 or ∞. Furthermore, we suspect
that similar results might be true in large- scale Semidefinitese
programming problems

VIII. APPENDIX : PROOF OF THEOREM 2

Proof: According to lemma 1, the inverse operator is SD
and that is bounded on `p for all 1 ≤ p ≤ ∞. Consider the
following equation

Q x = y. (44)

Fix k ∈ G, y can be selected as

|yi| ≤ c1
1

γ(dis(i, k))
. (45)

for some coupling characteristic function γ ∈ C and c1 > 0.
It follows that

‖y‖∞ ≤ c1.

Pick a neighborhood of index k with radius R > 0 and define
the auxiliary quantity

ωi = xi χα(min(dis(i, k), R)). (46)

for some 0 ≤ α < b. It is easy to check that

‖ω‖∞ ≤ ‖x‖∞ χα(R).

and that

‖ω‖∞ ≤ a0 c1. (47)

where a0 = χα(R) ‖Q−1‖∞/∞. Also, we have

[Qω]i =
X
j∈G

[Q]ij xj χα(min(dis(j, k), R)). (48)

From (44) we have [Qx]i = yi, subtract this from (48),

[Qω]i = yi χα(min(dis(i, k), R)) +X
j∈G

[Q]ijxj (χα(min(dis(j, k), R))− χα(min(dis(i, k), R)))

= yi χα(min(dis(i, k), R)) +X
j∈G

[Q]ij ωj

�
1− χα(min(dis(i, k), R))

χα(min(dis(j, k), R))

�
.
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it follows that

‖Qω‖∞ ≤ sup
i∈G

|yi χα(min(dis(i, k), R))| (49)

+ sup
i∈G

������Xj∈G[Q]ijωj

�
1− χα(min(dis(i, k), R))

χα(min(dis(j, k), R))

������� .
Since χα is a nondecreasing function, relation
χα(min(dis(i, k), R)) ≤ χα(dis(i, k)) holds, and for all
χα ¹ γ, it follows that

sup
i∈G

|yi| χα(min(dis(i, k), R)) ≤ c1 (50)

One can justify the following inequality

min(dis(i, k), R)−min(dis(j, k), R) ≤ dis(i, j)

and by definition, we have

χα(min(dis(i, k), R))
χα(min(dis(j, k), R))

≤ χα(dis(i, j)) (51)

Apply this to the second term of (49) to get

sup
i∈G

������Xj∈G[Q]ijωj

�
1− χα(min(dis(i, k), R))

χα(min(dis(j, k), R))

�������
≤
�

sup
i∈G

X
j∈G

‖[Q]ij‖ (χα(dis(i, j))− 1)

�
‖ω‖∞ (52)

(50) and (52) gives us

‖Qω‖∞ ≤ Ψ(χα) ‖ω‖∞ + c1 (53)

in which

Ψ(χα) = sup
i∈G

X
j∈G

‖[Q]ij‖ (χα(dis(i, j))− 1) .

Ψ is a bounded continuous function of α on [0, b). Applying
(47) to (53) results in

‖Qω‖∞ ≤ (Ψ(χα) a0 + 1) c1

and that

‖ω‖∞ ≤ a1 c1 (54)

where a1 = ‖Q−1‖∞/∞ (Ψ(χα) a0 + 1). By repeating this
process, we get the following iterative equation

ak+1 = ‖Q−1‖∞/∞ (Ψ(χα) ak + 1) (55)

for k = 0, 1, . . .. Note that different selection for R only
changes the initial condition of (55). Indeed, in the following
we will show that the analysis is independent of choice of R,
and that we can select R large enough to cover a reasonable
part of the graph around the node k (even for finite graphs
the entire graph). In what follows, we will prove that equation
(55) has a unique fixed point. Ψ(χα) is a continuous function
of α and Ψ(χ0) = Ψ(1) = 0. Therefore, there exists b̂ > 0
such that Ψ(χα) < ‖Q−1‖−1

∞/∞ for all 0 ≤ α < b̂. On the

other hand,

∂ak+1

∂ak
= Ψ(χα) ‖Q−1‖∞/∞ < 1

for all 0 ≤ α < b̂. Therefore, (55) has a unique fixed point

a∗(χα) =
1

‖Q−1‖−1
∞/∞ − Ψ(χα)

This leads us to the final inequality that is independent of R

‖ω‖∞ ≤ c1 a∗(χα)

for all {α : χα ¹ γ} T {0 ≤ α < b̂}. For all i ∈ G, we have

|ωi| ≤ c1 a∗(χα)

and substituting (46) results in

|xi| ≤ c1 a∗(χα)
1

χα(dis(i, k))
(56)

for {α : χα ¹ γ} T {0 ≤ α < b̂}. By selecting y as in (45)
to have only one nonzero component in the the kth entry, and
that to be

y∗k = arg sup
yk∈Rn

|[Q−1]ikyk|
|yk|

with χb̂ ≺ γ and c1 = |y∗k|. Thus from (56) we will have

‖[Q−1]ik‖ ≤ a∗(χα)
1

χα(dis(i, k))
.

for all 0 ≤ α < b̂. This completes the proof.
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