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Motion Planning in Humans and Robots

Abstract

We present a general framework for generating trajectories and actuator forces that will take a robot system
from an initial configuration to a goal configuration in the presence of obstacles observed with noisy sensors.
The central idea is to find the motion plan that optimizes a performance criterion dictated by specific task
requirements. The approach is motivated by studies of human voluntary manipulation tasks that suggest that
human motions can be described as solutions of certain optimization problems.
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Abstract

We present a general framework for generat-
ing trajectories and actuator forces that will take
a robot system from an initial configuration to
a goal configuration in the presence of obstacles
observed with noisy sensors. The central idea is
to find the motion plan that optimizes a perfor-
mance criterion dictated by specific task require-
ments. The approach is motivated by studies of
human voluntary manipulation tasks that suggest
that human motions can be described as solutions
of certain optimization problems.

1 Introduction

In recent years, we have developed a compu-
tational framework for generating open-loop mo-
tion plans for manipulation tasks in a determinis-
tic environment (Zefran and Kumar 1997; Zefran
et al. 1996). The emphasis in these tasks is on
the kinematic and dynamic interactions between
the robot(s) and the environment. This paper
summarizes the approach and an extension to un-
certain environments.

Our approach is grounded in the framework
of continuous mathematics. We argue that in
robotic systems, this framework allows modeling
and synthesis of behavioral patterns that are es-
sentially discrete in nature. At a different level of
representation, it may be productive to represent
such systems using a discrete-event framework.
However, since our intention is to generate refer-
ence trajectories for closed loop control, we will
pursue the continuous approach.

The motivation for the proposed planning
paradigm comes from our studies of human ma-
nipulation. Human motions appear to minimize a
certain integral cost functional (Desai et al. 1997;
Flash and Hogan 1985; Kawato 1990; Garvin
et al. 1997). We use this idea to compute mo-
tion plans for robot systems governed by (non-
linear) dynamics, and moving amidst obstacles.
Depending on the level at which the system is

modeled, we can obtain optimal kinematic trajec-
tories or optimal actuator forces. We show that
such motion plans can also encode discrete be-
haviors. In the last part of the paper, we discuss
how this framework can be extended to handle
uncertainty in the environment. In particular, we
show that as more information about the world
becomes available at finer levels of granularity,
the motion plans can be efficiently refined.

2 Trajectory planning

When studying motion planning for artificial
systems it is beneficial to study the formation of
motion in humans. We can model the human
body as an articulated linkage of rigid bodies,
similar to how we model robots. In humans, there
are many instances of redundancies that make
the mappings between the task, joint, and actua-
tor spaces non-invertible, suggesting that humans
possess mechanisms for resolving these redundan-
cies. The principles that govern human motion
planning can therefore provide insight into mo-
tion planning for robots.

The hypothesis that voluntary, planar, reach-
ing tasks (in R?) performed under relaxed con-
ditions may be described by optimality criteria
has been explored by Flash and Hogan (1985),
Kawato (1990) and others. Two natural questions
that arise are (a) do such optimality criteria ex-
tend naturally to higher dimensions; and (b) can
they explain tasks that involve constraints. In
our studies of human manipulation, we have fo-
cused on tasks in SE(2), the set of translations
and rotations in a plane, and in which the left
and right arm cooperatively grasp the object. In
this case, the task space is no longer Euclidean.
Further, the grasp introduces constraints due to
the closed kinematic chain and the requirement
of force closure. Our observations (Garvin et al.
1997) show that the kinematic properties of the
measured trajectories exhibit a high degree of re-
peatability (within a subject and across subjects).
The trajectories are approximately straight lines
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Figure 1: Measured velocity profiles for a planar two-handed manipulation
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by humans (solid) and

those predicted by the minimum-jerk hypothesis (dotted) in the frontal plane (a), sagittal plane (b)

and for rotation (c).

and have a smooth velocity profile. These trajec-
tories depend only on the relative position and
orientation of the initial and goal configurations
and not on the global position and orientation.
In other words, the trajectories are left invariant,
or independent of the inertial reference frame.

In order to formalize planning of smooth mo-
tions that involve translations as well as rota-
tions, and to study the invariance properties of
different motion planning schemes, it is conve-
nient to formulate kinematic motion planning in
the framework of differential geometry and Lie
groups. Using purely geometric ideas also makes
the planning method independent of the descrip-
tion (parameterization) of the space!. Geometric
analysis reveals that it is necessary to define the
concept of distance (a Riemannian metric) and
a method of differentiation (an affine connection)
in space before the notion of smoothness can be
defined (Zefran and Kumar 1997). Since a Rie-
mannian metric naturally leads to an affine con-
nection, once a metric is chosen, trajectories with
different smoothness properties can be generated.
Further, by properly choosing a metric, we can
obtain trajectories with desired invariance prop-
erties. A metric that is particularly interesting
for motion planning and produces left-invariant
trajectories is the kinetic energy metric. It em-
bodies the inertial properties of a rigid body for
which we wish to plan the trajectories.

Given a Riemannian metric < .,. >, the prob-
lem of finding a smooth kinematic trajectory (&)
can be formulated as:

dy dy

b
win [ < 16, G160, 5D > e (1)

where L is a vector valued function that is a local
measure of smoothness of the trajectory and usu-
ally depends on the affine connection correspond-

IThis is particularly important in the context of rota-
tions in three dimensions.

ing to the chosen metric. For example, the gen-
eral expression for the minimum-jerk cost func-
tional is:

b
Jjerk = / < VyVyV,VyVyV > dt. (2)

In the equation, V = % is the velocity vector field
and V is the affine connection obtained from the
chosen Riemannian metric. The resulting trajec-
tories are given by the Euler-Lagrange equation:

VYV + R(V,V3, V)V — R(VyV, V3 V)V =0,

where R denotes the metric-dependent tensor de-
scribing the curvature properties of the space.

The measured trajectories and those minimiz-
ing the jerk cost functional (obtained by solving
(1-2)) are shown in Figure 1 for a typical motion.
This suggests that the observed motions are well
predicted by the minimum-jerk hypothesis origi-
nally proposed by Flash and Hogan (1985).

The cost functional of the form (1) is not com-
pletely general, but it allows us to obtain gener-
alized spline motions. For example, a maximally
smooth trajectory that is C* continuous (i.e., it
can satisfy arbitrary boundary conditions on the
velocities) is a generalization of a cubic spline and
can be obtained by minimizing the integral of the
acceleration along the trajectory:

b
Jace = / <VyV,VyV > dt.
a

Figure 2 shows generalized cubic splines that sat-
isfy boundary conditions on positions and veloc-
ities and pass through a given intermediate con-
figuration for two different choices of the metric
for the space?.

While kinematic motion plans may not be ad-
equate for some applications, they have the ad-
vantage that they can be easily computed. Some

2More complicated, three-dimensional examples are
presented in (Zefran and Kumar 1997).
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Figure 2: Examples of trajectories between specified configurations: (a) Piece-wise smooth geodesics;
(b) Maximally smooth interpolant computed from a positive definite left-invariant metric; (c) Maxi-
mally smooth interpolant computed from an indefinite bi-invariant metric.

important problems have explicit, closed-form so-
lutions (Zefran and Kumar 1997). If a detailed
dynamic model of a mobile robot system is not
available, it may be desirable to simply deter-
mine the smoothest trajectory that satisfies the
required boundary conditions. In such a situa-
tion, left-invariance (invariance with respect to
the choice of the inertial frame) is desirable. Fur-
ther, if there is a 1-1 map between trajectories in
the task space and the actuator forces that gen-
erate them, the kinematic motion plan uniquely
determines the motion.

3 Dynamic constraints

Walking, grasping, and cooperative manipula-
tion are tasks in which multiple articulated link-
ages are strongly dynamically coupled and the co-
ordination of these interactions becomes critical
for motion planning. A further characteristic of
these tasks is that the dynamic equations may
change as the system moves. For example, in a
grasping task, the dynamic equations will change
if a contact between a finger and the object is
broken or if a new contact is established.

There are several properties that a dynamic
motion planning method should posses: (a) the
method must account for the dynamics of the
system and provide the task space trajectory, the
joint space trajectory, and the actuator forces; (b)
it is desirable that trajectory generation and res-
olution of kinematic and actuator redundancies
are performed within the same framework; (c)
the method must be capable of dealing with addi-
tional equality and inequality constraints, such as
kinematic closure equations, nonholonomic con-
straints, joint or actuator limits, and constraints
due to obstacles; (d) since there are usually one
or more natural measures of performance for the
task, it is desirable to find a motion with the best
performance; (e) one would like to develop plans
that are robust with respect to modeling errors;
and (f) explicitly incorporate the robot’s ability

to use sensory information for error correction.

These requirements can be satisfied by formu-
lating motion planning as a variational problem.
In other words, given a performance criterion in
the form of an integral cost functional:

J:\I!(a:(tl),tl)+/ L), u(t),0) dt,  (3)

to
and given the dynamic equations of the system:

z = f(x,u,t) (4)
the problem becomes that of finding a trajec-
tory in the time interval [¢o, t1], that satisfies the
dynamic equations (4), minimizes the cost func-
tional (3) and satisfies possible additional equal-
ity and inequality constraints.

We have developed an efficient numerical tech-
nique for solving such problems based on finite-
element techniques and finite-dimensional opti-
mization. In addition, we have devised a simple
scheme to solve problems in which the dynamic
equations change as the system moves. This
framework has been applied to several practical
examples such as two-arm coordinated manipu-
lation with frictional constraints, multi-fingered
grasping and coordination of multiple mobile ma-
nipulators (Zefran et al. 1996). The approach al-
lows us to solve in reasonable time complex mo-
tion planning problems that have not been at-
tempted before®.

Figure 3 shows an example* of the motion plan
for two mobile manipulators negotiating the free
space between two obstacles. In human, planar
grasping and manipulation tasks with two arms,
the observed trajectories and the distribution of

3The typical time for a system with a 20-dimensional
state space on a 200 MHz SGI (for example, the system
shown in Figure 3) is two minutes.

4In more complicated examples, we assume that an ini-
tial path that satisfies the geometric constraints is avail-
able. There is extensive literature that addresses the gen-
eration of such a path (Latombe 1991). Our method is not
specifically designed to solve such problems as the piano-
movers problem.
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Figure 3: A motion plan for two mobile manipu-
lators negotiating a narrow corridor.

forces suggest a maximally smooth variation of
the joint torques (Desai et al. 1997). Letting the
integrand in Equation (3) be the norm of the vec-
tor of the rate of change of torques, and imposing
constraints due to the dynamics, the obstacles,
and the nonholonomic nature of the mobile plat-
forms, gives us the trajectory shown in Figure 3.b.
It is interesting to note that the system shows
some apparently discrete behaviors — the two
mobile manipulators reconfigure from a “march-
abreast” formation to a “follow-the-leader” for-
mation, then follow a straight-line to the clos-
est obstacle, pursue a trajectory that hugs that
obstacle until they are beyond the constriction,
before reconfiguring back to the “march-abreast”
formation and taking the unconstrained straight-
line path to the goal. These behaviors can be rep-
resented in a discrete-event framework, but they
are naturally generated with a continuous method
by requiring smoothness of motion.

The next example reinforces the basic idea
of being able to generate discrete behaviors in
a continuous framework. Consider two fingers
with joint limits rotating a circular object pivoted
about a fixed axis in a horizontal plane (Figure
4.a). The workspaces of the fingers are cones of
angles 2 a centered along the x axis and vertices
at the origin, located diametrically across each
other (—a <0 <a,m—a <6l <7+a). The
task is to rotate the object through an angle Ay,
but during any finite time interval only one finger
is allowed to be on the object. If there are limits
on finger movement (2a < Ay), it is necessary
to regrasp to complete the task. To guarantee
the continuity of the positions and velocities, the
cost functional is chosen to be the L? norm of the
actuator torques.

Figure 4.b shows the results for the workspace
a = 15°, Ay = 60°. During the first third of the
maneuver, finger 2 rotates the object through 15°
before it reaches a workspace limit. Meanwhile,
finger 1 positions itself at —15° and subsequently
rotates the object through almost 30° in the sec-
ond stage of the task. While finger 1 is rotating

60 |-Object —
Finger1 -----
Finger2 ——-
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Figure 4: (a) Two fingers rotating a wheel
through Ay = 60°. (b) Angles ¢ (solid), 6;
(dashed) and 0> — 7 (dot-dash) for the workspace
a = 15° (dotted).

the object, finger 2 moves back towards the mid-
dle of its allowable workspace so that it can com-
plete the rotation of the object in the third stage.
During this stage, finger 1 stays at the upper edge
of its workspace. The results are consistent with
our intuition of what the best solution would be -
both fingers move through the minimal distance
necessary, but in a smooth fashion, to complete
the task.

4 Planning with uncertainty

We now address the motion planning problem
when only a nominal, parameteric model of the
environment is available, and the model may be
subject to errors. We still assume a deterministic
model of the robot and exact state information.
However, we assume no prior distribution for the
noise or uncertainty in the environment. Instead,
we assume a sensor system and estimation algo-
rithms that return, along with the measurement
of each parameter in the model, a confidence in-
terval for each parameter in which the true value
lies. Examples of such confidence set-based esti-
mation algorithms are discussed in (Kamberova
et al. 1997).

Game theory provides the natural framework
for solving problems with uncertainty. The mo-
tion planning problem can be formulated as a
two-person zero sum game (Basar and Olsder
1982) in which the robot is a player and the ob-
stacles and the other robots are the adversary.
The goal is to find a control law that yields the
best performance in the face of the worst possible
uncertainty (a saddle-point strategy). The mo-
tion planning problem can be solved with open
loop control laws (as we have done thus far) or
with closed loop control laws (feedback policies).
Rather than develop the notation and the theory
that is required for the framework of game theory,
we present representative examples and discuss



optimal open loop and closed loop control laws.

The approach in the previous sections for gen-
erating open-loop trajectories for deterministic
systems can be extended in an obvious fashion
to problems with uncertainty. The uncertainty
in the environment is incorporated through con-
servative bounds on the feasible regions in the
state space. This effectively amounts to making
the obstacles bigger, reflecting the uncertainty in
the position and the geometry of the obstacles®.
With the additional sensory information that be-
comes available during the execution of the plan,
the bounds on the feasible regions can be made
less conservative and the open-loop plan can be
refined accordingly. This method is attractive be-
cause our numerical method lends itself to effi-
cient remeshing and refining and the computa-
tional cost of refining an open loop plan is an
order of magnitude less than the cost of generat-
ing an initial open loop plan, when the changes in
the model remain small. Thus, open loop plans
may be recursively refined.

An example of this approach is demonstrated
in Figure 5.a where two nonholonomic vehicles,
Robot 1 and Robot 2, are to interchange their
positions while moving through a narrow corri-
dor formed by two obstacles. Each robot replans
(refines) the initial open loop trajectory at the
points shown by the markers. The shading of each
robot in this diagram represents the time elapsed,
moving from an initial dark shading (at ¢ = 0) to
a light shading (at ¢ = 1). Neither robot knows
the other’s task or planned route. Each robot de-
termines its open loop control based only on its
estimate of the current position and orientation
of the other robot and the obstacle. Thus, the
robots change their motion plans only when the
two robots are about to collide. While the refine-
ment of the plans is locally optimal, it is clearly
not globally optimal and the resulting trajectories
are more expensive than needed. In this simula-
tion, Robot 1 is given a priority over Robot 2, and
so follows a path that is closer to being optimal.

While it is possible to incorporate modeling
uncertainties using such approaches, they invari-
ably lead to sub-optimal paths. Further, these
paths are designed to stay away from areas that
have even a very small probability of being oc-
cupied by an obstacle. There is clearly a trade-
off between the conservative strategy of skirting
the uncertain boundaries of the obstacle and the
more aggressive strategy that incorporates bet-

5The resulting motion plan can be shown to be a
saddle-point solution in the set of all open-loop strategies.

ter sensory information about the obstacle as it
gets closer to it. Such an aggressive strategy re-
quires feedback control, suggesting that the mo-
tion planning should be reformulated as a search
for the optimal feedback control law. In this for-
mulation, it is necessary to concurrently consider
the dynamics of the system and the problem of
estimating the geometry of the environment.
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Figure 5: (a) Successive refinement of the plans
for two autonomous robots A and B. (b) A com-
parison of the worst-case path with the optimal
feedback law with that generated by the open
loop control law.

A simplified but realistic problem that is math-
ematically tractable is discussed below. We as-
sume a single robot and an obstacle (or obstacles)
that can be observed with a sensor. The sensor
estimates the position of the obstacle with some
uncertainty bounds depending on the distance be-
tween the robot and the obstacle. We consider a
simple model for the robot dynamics:

& =u, ()

where the vector x is the position of the robot and
w is the vector of inputs. The obstacles (including
other robots) define a set of points in R? param-
eterized by a vector y € R™. The initial model
of the environment is denoted by yo. d(z,y) is
a distance function whose value is the Euclidean
distance between the nearest pair of points, one
on an obstacle and the other on the robot. We
use § € R™ to denote the estimated obstacle(s).
The basic idea is that § — y as d(z,y) — 0. An
example is provided by a simple sensor model:

Ji=yi+ (Yo, — yi)e Pd@n (6)
where the exponential law is scaled by the param-
eter (3 so that the effect is approximately linear in
an appropriate neighborhood of the obstacle, and
levels off to the initial (worst-case) value further
away.

For this problem, we are interested in obtain-
ing a (static) feedback control law® u* = u(z,y)

6Strictly speaking, the u is a function of = and .



that will minimize the traveled distance as well
as ensure that the robot avoids the obstacle and
reaches the goal. We can allow the robot to
come arbitrarily close to the obstacle, but we
want to prevent collisions. Thus the allowable
feedback policies are restricted to ones for which
d(z(t),y(t)) > 0, through the time interval [0, T].

In general, it is difficult to find even a suffic-
ing feedback strategy u(x,y) for the above prob-
lem (Rimon and Koditschek 1992). One way to
simplify the computation is to parameterize the
control law and find the optimal values for the
parameters. For example, we can try to find the
optimal linear feedback control law:

u(z,y) = A@? —2) + Bl —y).  (7)

The task then becomes to find the optimal val-
ues for the matrices A and B. For even simple
problems it is difficult to find a feasible, linear
feedback law. It is more practical to consider the
set, of all piecewise linear feedback laws. In order
to find the optimal feedback policy, we can divide
the path into discrete intervals in each of which
the feedback parameters A and B are held con-
stant. The task now is to determine the values of
A and B in each time interval.

In Figure 5.b we show the motion plan when
an obstacle is known to belong to a compact sub-
set Y in R™, but the exact location is unknown.
The set Y is shown shaded, the worst obstacle
location y* is shown in black, and the actual ob-
ject location y, € R™ is the hatched circle. The
figure shows three trajectories. The longest path
(shown gray) is the most conservative one that
would have to be taken using a purely open loop
approach. The intermediate path (shown dotted)
is the worst-case path that could possibly arise
with the optimal feedback law. In other words,
this is the path given by u* for the worst-case ob-
ject y*. Finally, the shortest path (shown solid)
is the path followed for the obstacle y,, under the
optimal feedback law, u*.

This approach can be used to solve more com-
plicated min-max (or inf-sup) motion planning
problems. However, while the simplified model
(5-6) may guarantee the existence of a saddle-
point (Basar and Olsder 1982), this is not the case
in more complicated situations. Even if there are
saddle-point solutions, there may be many such
solutions. Finally, the computational cost of gen-
erating a min-max solution is an order of magni-
tude higher than solving the open loop problem
(essentially a single person game).

5 Conclusion

We have summarized our previous and ongoing
work on motion planning”. This work has been
motivated by studies of human manipulation that
suggest existence of a repeatable optimal strategy
for reaching and grasping. We have established
a continuous framework that allows us to apply
a similar strategy to robot motion planning and
discussed how it can be extended to tasks in un-
certain environments.
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