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A Vision-Based Learning Method for Pushing Manipulation

Abstract

We describe an unsupervised on-line method for learning of manipulative actions that allows a robot to push
an object connected to it with a rotational point contact to a desired point in image-space. By observing the
results of its actions on the object's orientation in image-space, the system forms a predictive forward
empirical model. This acquired model is used on-line for manipulation planning and control as it improves.
Rather than explicitly inverting the forward model to achieve trajectory control, a stochastic action selection
technique [Moore, 1990] is used to select the most informative and promising actions, thereby integrating
active perception and learning by combining on-line improvement, task-directed exploration, and model
exploitation. Simulation and experimental results of the approach are presented.
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Abstract—We describe an unsupervised on-line method
for learning of manipulative actions that allows a robot to
push an object connected to it with a rotational point con-
tact to a desired point in image-space. By observing the
results of its actions on the object’s orientation in image-
space, the system forms a predictive forward empirical
model. This acquired model is used on-line for manipula-
tion planning and control as it improves. Rather than ex-
plicitly inverting the forward model to achieve trajectory
control, a stochastic action selection technique [Moore,

1990] is used to select the most informative and promising
actions, thereby integrating active perception and learn-
ing by combining on-line improvement, task-directed ex-
ploration, and model exploitation. Simulation and exper-
imental results of the approach are presented.

I[. INTRODUCTION

Active perception can broadly be defined as the process
of information gathering, organization and interpretation
by the active and purposive control of sensors, effectors
and computational resources in order to carry out a task
or set of tasks. Closely related to the notion of active
perception is the process of learning, since it holds the
promise of being a general purpose method for acquiring
task-specific perceptual and effector control strategies in
an unsupervised way. While in principle, learning and
active perception are well suited for each other, active
perceptual tasks demand several properties from learn-
ing algorithms; in particular, it is desirable that the al-
gorithms meet the following requirements:

1. That they be On-line, meaning that the system im-
prove continually while the task is being attempted,
rather than in a batched fashion which requires a sep-
arate learning and ezecution phase. Traditionally,
many inductive learning have been batch methods,
rather than on-line.

2. Closely related to the on-line requirement is the con-
tinually adaptive requirement, meaning that the sys-
tem should adapt to changing task dynamics. Many
inductive learning techniques are one-pass adaptive,
meaning that they are allowed to adapt during the
explicit learning phase described in item 1 above,
but once the learning phase is over, they do not
adapt to any subsequent changes in the task.

3. They should converge rapidly. Since an agent or or-
ganism has a finite lifetime, and each experimental
interaction has cost in terms of time, energy and
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material, learning techniques should converge to a
good sensing and action control policy rapidly in or-
der to make the learning a viable alternative to hand
coding of control policies.

4. They should provide an efficient exploration strategy
which balances the need to explore and character-
1ze task properties versus the need to achieve com-
petence as rapidly as possible. Active perception
systems are particularly well suited to benefit from
intelligent exploration strategies since they can, by
definition, determine which exemplars they create.

In this work we describe the use of a memory-based in-
ductive learning technique which addresses these criteria
and learns to perform the visuomotor task of pushing an
unknown object with a single rotational point contact to
an arbitrary goal point in the visual space.

II. PUSHING MANIPULATION

In many situations it is desirable to move an object
from one location to another, but the object may be too
large to be lifted by a single agent. Two possible solu-
tions exist, either many agents may cooperate in lifting
and moving the object [Bajesy et al., 1991], or it may be
possible for a single agent to push the object instead of
lifting it. We explore the pushing case where the contact
between robot and the object is single point (see Figure
1.) and the pusher remains within the friction cone of
the contact (i.e. only a rotational degree of freedom ex-
ists at the pusher/object contact point; this is enforced
by notching the object at the contact point in the exper-
iments).

Stable pushing and steering of an object to desired po-
sition in the workspace when there 1s only a point contact
between the pusher and the object is a difficult visuomo-
tor control problem since the relationship between the
pusher and the object is unstable. Because of this, the
object tends to rotate past the pusher if no corrective
actions are taken. At the same time, a desired push-
ing direction must be achieved in order to arrive at the
desired point in the robot workspace.

An additional complication is that the object motion
resulting from pushing actions is a function of the fric-
tional distribution of the object [Mason et al., 1989] on
its surface of support and the mass distribution of the
object, which are difficult to measure using only passive
visual perception. These quantities can, in general, only
be measured with active perceptual procedures [Campos
and Bajesy, 1990; Lynch, 1993]. However, even if these
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Fig. 1: The pushing task. The pusher and object are
connected only with a point contact so that the object
can rotate relative to the pusher. The objective is to
push the object to the desired point in the image space.

quantities can be estimated, friction is difficult to model
analytically in general because of its non-linear behavior.

Rather than estimate parameters and utilize an ana-
lytic model of friction, we develop a simple and direct
solution by measuring the effects of pushing actions on
the image-space orientation of the object relative to the
pusher, and then use a learned forward model to select
actions.

The pushing and sliding manipulation problem has
been studied extensively by Mason [Mason, 1986] from
an analytical viewpoint, as well as from a learning per-
spective [Mason et al., 1989]. Lynch [Lynch, 1993] has
explored using visual measurements of object reaction to
pushing actions in order to explicitly estimate the center
of friction of the object. Zrimec [Zrimec, 1990] imple-
mented a system which generated qualitative models of
the effects of pushing actions through experience which
were then used for planning.

A. Steering by Controlled Instability

Since point-contact pushing is an intrinsically unstable
process, one immediate objective might be to null the
rotation of the object in order to stabilize it relative to
the pusher. However, if the only objective is to zero the
object’s rotation, then control of steering is impossible,
since when this condition is achieved no directional cor-
rection is possible and pusher trajectory is fixed. When
pushing an object, we desire to null its rotation only when
1t is aligned with the idealized linear trajectory which
takes it to the goal point in image-space. When the ob-
ject is misaligned, the objective is the controlled rotation
of the object relative to the pusher in order to bring it
in line with the ideal trajectory. This rotation i1s a con-
trolled instability, since object rotation is a manifestation
of the instability of the task.

The above notions can be captured by devising the
following trajectory generation procedure. In the image

space, let RT be the vector between the current center of
mass of the locations of flow vectors associated with the
robot end-effector and the desired target location in the

image space, and RO be the vector between the robot
and the center of mass of the locations of flow vectors
assigned to the object (see Figure 1; segmentation of
pusher and robot is discussed in the section describing
the experimental implementation.) For trajectory gener-
ation, the direction and magnitude of desired rotational

velocity wg = AEO of the object is a function of the an-

gle @ro T between the ideal pushing trajectory RT and
the current estimate of orientation of the object direction

RO multiplied by a turn rate gain coefficient k;:

wq = ksOro,RT (1)

Since it is difficult to control large rotation rates in prac-
tice, the magnitude of w is bounded by putting it through
a saturation function:

; Wmag 1f Wd > Wmagr
wg=19 Wmin If wg < Wnin (2)
wq otherwise

This desired rotational rate w;l then provides a reference

rotation rate which must be achieved by selecting an ap-
propriate robot action v, in the robot frame using the

learned forward state-transition model f. The z velocity
of the robot is constant in the robot-space, thus ensur-
ing that the robot always moves forward and that the
pushing trial terminates. The combination of (vg,vy)
determines the effective pushing direction of the robot,

—

P.

B. Learning the Forward Model
The learning process consists of approximating the for-

ward function f from a set of observed input/output
pairs. The input consists of pairs fro and v,, where

fro 1s the angle of RO relative the the z-axis of the
image space, and v, is the y velocity of the robot ac-
tion in the robot space, both sampled at time ¢t. The
resulting output consists of the observed change in ori-
entation Afgo observed at time ¢t 4+ 1. At sample time
t, the learning set consists of a set of tuples of the form
(((Pro,vy)o, (ABRO)1), .., (0RO, vy )i—1,(AORO)1)).
The state-transition function to be learned is

Abro = f(0ro,vy) (3)

We use a simple one nearest-neighbor (1-NN) technique
[Duda and Hart, 1973] to approximate the function, in

which the output of f is taken to be the value of the
exemplar which is nearest to the query point in the input
space using a standard Euclidean distance metric. The
data is indexed in an k-D tree [Friedman et al., 1977] in
order to make queries more efficient (O(log(N)), where
N is the number of exemplars in the database). The
insertions are handled by inserting new exemplars into
the leaves that they index to, according to the current
tree. The data can be copied and a new tree built while
the old tree continues to be used. In practice, the tree
rebuilding time is small in comparison to the real-time
necessary to gather data, and does not present a problem.

C. Planning, Fzploration and Fzrploitation

Given the current estimate of the forward pushing

function f and the current observed input state, a de-
cision must be made as to the next control action to be



issued. During learning with active perception, actions
may need to accomplish dual purposes. The first pur-
pose may be performatory, or to directly accomplish the
change in orientation needed to achieve the current de-
sired trajectory. The second purpose may be informative,
or to execute actions which yield information about the
task. In particular we would like to have a strategy which
exploits the model in regions where it is known (well ap-
proximated) and it can achieve the desired performatory
goals, while exploring actions whose outcomes are not
completely characterized and have a some better possi-
bility of achieving the desired next state when no known
good actions can be found using the current model. A
strategy with these desirable properties is the intelligent
experimentation scheme of Moore [Moore, 1990]. This
strategy selects actions according to the following heuris-
tic. Let

0(0ro,vy) = Cd((Oro,vy){1}, (0RO, Vy)) (4)

where C is an exploratory constant, (6ro, vy) is the com-
bination of the current observed object orientation and
the current randomly selected action under evaluation,
(0RO, vy){1y is the first nearest-neighbor to the evaluation
point, and d is the Euclidean Norm. Moore’s heuristic
1s based on the assumption that the distribution of pre-

dicted outcomes of f is Gaussian with mean of f(fro, vy)
and that the further the nearest-neighbor from the query
point, the wider the variance of its prediction. In other
words, if the nearest-neighbor used in the prediction by

f 1s very close to the query point, then the prediction
should be fairly good, and the spread of outcomes of
the prediction should be narrowly distributed around the
output value predicted by the nearest-neighbor. How-
ever, if we are basing our prediction on a very distant
nearest-neighbor, the variance should be quite wide, since
the nearest-neighbor is far, and should not be relied upon
for a tight prediction. Given that the o(6ro,vy) is se-
lected using equation 4, and a desired goal interval for
the next output state is Afro + 6, the probability of the
output of a candidate action v, landing in the interval is

Abro — f(0ro,vy) + 6

po= GETO SIS - ()
AHRO — f(HRO, Uy) — (S
G( ro, o)) ) (6)

where G(z) is the integral under the Gaussian A(0, 1)
from (—oo,z]. Therefore, some number of random ac-
tions are generated during each control cycle given the
desilgd Afgo, and the action with the highest p i1s exe-
cuted.

III. Results

A.  Simulation Results

In order to verify the feasibility of the approach a
simple simulation was implemented. In the simulation
ks=.5, C=1.0, vy=5.0cm, vy are uniformly distributed
over +10em/sec, 100 random actions are evaluated per
control cycle, and é = .05 radians. The unknown un-
derlying forward function is a linear function of dro p,

where P is the resultant pushing direction of the arm.
Figure 2 shows the performance of the learner’s control
during the first 9 attempts. Beginning with no a-prior:

o e Je)
§ , i
o) e) -0
e 0 .0
4 7 /

Fig. 2: Simulated Trials. Learning to push to the circle
at (50,50) in the work space, beginning with no a-prior:
knowledge about the object dynamics.

knowledge of the pushing dynamics of the object, the
system learns to push effectively after the first two tri-
als, and has converged to very good performance after
nine trials. In figure 3 inter-task transfer can be seen, as
the first attempt to push to (=50, 150) succeeds by using
the forward function estimate generated from learning to
push to the previous location in Figure 2. Since mem-
ory based learning stores all exemplars, even experiences
with actions which failed for the first location may subse-
quently be useful for other locations [Aboaf et al., 1989].

B.  Ezperimental System

The experimental setup consisted of a manipulatory
and a perceptual component. The manipulatory compo-
nent consists of a Unimation Puma260 Robot, Unimation
Controller, a SparcStation IPC running RCCL [Lloyd,
1986] Sbus/VME Mapper and software which allows for
high-speed communication between the Sparc IPC and
the Unimation Controller. The perceptual component
consists of a VDS EidoBrain 7001 Image Acquisition and
Processing system and CCD Camera. Communication is
accomplished using TCP /TP sockets, which are adequate
for the .8 second update intervals. A manipulation server
process exists on the Sparc which servos the most recent
rate commands from the VDS at 28 msec intervals and
takes care of communication protocols.

The object was notched at the pusher contact point in
order to allow only rotational motion between the pusher
and the object. The experiment was monitored by an ob-
server and when a trial failed completely and the object
rotated past the pusher, it was terminated. Additionally,
if the object reached either extreme or the bottom of the
image, the trial was halted.

The figure ground segmentation was accomplished by
computing the optical flow [Horn and Schunk, 1981] with



| !

Fig. 3: Simulated Trials. Pushing to point (-50,150) in
the work space after completing the first 9 trials in Figure
2 Knowledge from those trials is exploited for pushing to
the new location to enable success 1n the first attempt.

recursive temporal filtering over the incoming image se-
quence and thresholding the flow vectors based on mag-
nitude. Locations with above threshold optical flow are
labelled as foreground and others as background.

Once the foreground has been labelled, the segmen-
tation between the pusher and object must be per-
formed. During a brief calibration motion the manipula-
tor is swept through its pushing workspace with no ob-
ject present, holding the y-component of the end-effector
fixed while the z-axis position is moved in the positive
z direction. Simultaneously, the end-effector position is
tracked in the image space. The robot z-axis positions
and their associated image y-axis values are stored and
simple linear fit is done to calculate the relation between
the two. Later, during the execution of the pushing task,
the manipulator position is used to compute the vertical
position of the end effector in the image using the linear
fit parameters. All flow vectors below the horizontal at
this vertical position are associated with the object and
vectors above it with the robot. Assuming the object
can be held £% of the image y-axis (approximately in

front of the pusher) this provides an extremely reliable
and simple segmentation method.

C. Ezperimental Results

Some representative sequences of the system’s perfor-
mance in learning to push an object with unknown mass
and friction to an image location are shown in Figures
4 and 5. In the actual trials, qualitative control was
learned, rather than exact control as in the simulation.
The desired turn rate interval to be achieved was either
(—o0, —.2] or [.2,00) depending on whether the desired
turn direction was negative or positive, respectively. This
was done because the estimates of the angles 0ro r7r in

O O O
N\
=~ Y
A
\ i 7
O O O
7
7
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Fig. 4: Experimental Trials. Pushing to point (44,62) in
the image-space during the first 9 trials.

the visual space were coarse and noisy since the optical
flow was computed on a subsampled version of the image
to speed up computation of flow. Requiring a minimum
Afro = .2 ensured the angular changes were above the
noise floor at the expense of some oscillation in the con-
trol. When failures occurred, it tended to be due to errors
in measurement of angles which lead to an incorrect sign
being specified for the desired turning direction. Because
of the large delay (800ms) in computing the 64 x 64 flow
vectors, and the temporal filtering, the actual trajectory
tended to oscillate about the desired trajectory.

IV. DISCUSSION AND FUTURE WORK

The  utilization  of  optical flow  simplifies
the arm/background segmentation problem significantly,
assuming a static background. Unlike other approaches
for manipulator control in the image space [Mel, 1991]
which require identifying and tracking markers on arm
joints such as LEDS, or grey level thresholding which
1s quite sensitive to ambient illumination, flow measures
are much more flexible since they do not require explicit
tracking, control of illumination or uniform backgrounds.

The segmentation between pusher and object, while
effective, 1s currently done in a rather ad-hoc fashion.
Other more general approaches for this problem should
be developed. In particular, knowledge of the pusher
speed and direction might be utilized as constraints for
separating flow vectors arising from the object from those
of the pusher.

Nearest-neighbor learning approaches tend to have
poor noise immunity and suffer from outliers in the learn-
ing sets. In particular, the use of robust regression tech-
niques [Huber, 1981] would serve to enhance performance
especially when very noisy visual measures such as nor-
mal flow are utilized. Secondly, the number of nearest-
neighbors used in the functional estimate is selected by
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Fig. 5: An image sequence for pushing to a point in the
image space to the left.

the user, but can be automatically determined by a cross-
validation technique [Stone, 1977].

The optical flow computations are currently only be-
ing used for segmentation, but in fact, provide additional
information about the rotational rate of the object rel-
ative to the pusher [Salganicoff et al., 1993] which can
be exploited for control purposes in pushing and inser-
tion. The use of memory-based learning methods for
predicting these direct rotational measures, which have
the advantage of being independent of object contour,
should be explored. The current implementation is only
one-pass adaptive (see section T), which is characteristic
of memory-based learners. However it can be extended
to a continuously adaptive technique by the addition of
explicit time-weighted or locally-weighted forgetting al-
gorithms which delete observations from the exemplar
database selectively [Salganicoff, 1993]. This would per-
mit it to adapt to new objects.

Finally, the variance in equation 4 i1s based on a heuris-

tic. Instead, the variance of the function f around the
mean at a query location could be empirically estimated
and used to generate minimum-risk actions for achieving
the next state in an approach similar to [Christiansen

and Goldberg, 1990].
V. CONCLUSION

We have demonstrated an approach for learning to
push unknown objects to arbitrary locations in an im-
age space by observing the effects of past actions on the
configuration of the object. By looking directly at the
empirically observed effects of actions in the image-space
the approach avoids the difficult problem of estimating
and modelling the mass and frictional properties of the
object being pushed, as well as the camera parameters.
The necessary sample size for task success is decreased by
using a biased random experimentation approach which

enables the agent to avoid repeating failures and instead
focus on actions which are promising.
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