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Efficient Parsing for CCGs with Generalized Type-Raised Categories

Abstract
A type of ‘non-traditional constituents’ motivates an extended class of Combinatory Categorial Grammars,
CCGs with Generalized Type-Raised Categories (CCG-GTRC) involving variables. Although the class of
standard CCGs is known to be polynomially parsable, use of variables suggests more complexity for
processing GTRCs. This paper argues that polynomial parsing is still possible for CCG-GTRC from practical
and theoretical points of view. First, we show that an experimental parser runs polynomially in practice on a
realistic fragment of Japanese by eliminating spurious ambiguity and excluding genuine ambiguities. Then, we
present a worst-case polynomial recognition algorithm for CCG-GTRC by extending the polynomial
algorithm for the standard CCGs.
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Abstract

A type of ‘non-traditional constituents’ motivates an extended class of Combinatory Categorial Grammars, CCGs
with Generalized Type-Raised Categories (CCG-GTRC) involving variables. Although the class of standard CCGs
is known to be polynomially parsable, use of variables suggests more complexity for processing GTRCs. This paper
argues that polynomial parsing is still possible for CCG-GTRC from practical and theoretical points of view. First,
we show that an experimental parser runs polynomially in practice on a realistic fragment of Japanese by eliminat-
ing spurious ambiguity and excluding genuine ambiguities. Then, we present a worst-case polynomial recognition
algorithm for CCG-GTRC by extending the polynomial algorithm for the standard CCGs.

1 Introduction

In Japanese, as in other SOV languages, a sequence of NPs can form a conjunct as exemplified below.

(1) John-ga Mary-o , Ken-ga Naomi-o tazuneta.
f John-NOM May-ACC g CONJ f Ken-NOM Naomi-ACC g visited
“John visited Mary and Ken [visited] Naomi.”

This type of ‘non-traditional constituents’ poses a problem to many grammar formalisms and parsers, including those
specifically designed for Japanese, e.g., JPSG [Gunji, 1987] and JLE (based on finite-state syntax) [Kameyama, 1995].
Although these systems could be extended to cover the presented case, such extensions would not generalize to the
wide range of non-traditional constituency.

Combinatory Categorial Grammar (CCG) has been proposed to account for non-traditional constituency in various
areas of syntax [Ades and Steedman, 1982, Dowty, 1988, Steedman, 1985, Steedman, 1996] and also in the related
areas of prosody, information structure, and quantifier scope [Steedman, 1991a, Prevost and Steedman, 1993, Prevost,
1995, Hoffman, 1995, Park, 1995, Park, 1996]. The mechanisms independently motivated to cover the wide range of
non-traditional constituency can also provide an analysis for the NP-NP sequences in (1) as follows:

�I am grateful to Mark Steedman for his numerous suggestions and comments. I would also like to thank Jason Eisner, Anoop Sarkar, K.
Vijay-Shanker, Matthew Stone, B. Srinivas, David Weir, and reviewers of IWPT97 for their comments. The research was supported in part by NSF
Grant Nos. IRI95-04372, STC-SBR-8920230, ARPA Grant No. N66001-94-C6043, and ARO Grant No. DAAH04-94-G0426. This technical
report (IRCS-97-16) is a long version of [Komagata, 1997a] presented at IWPT97.
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(2) John-ga Mary-o
NP NP
� � type raising

S��SnNP� �SnNP����SnNP�nNP�
functional composition (underlined portions are cancelled)

S���SnNP�nNP�

Informally, the NPs are assigned higher-order function categories associated with the basic category NP, and these
functions can compose to derive another function category representing the NP-NP sequence.1 The two instances of
such a category can then be coordinated and take the transitive verb category, �SnNP�nNP, as the argument to derive
the category S.

A similar type of constituents can also be formed of NPs extracted from different levels of embedding as in the
following example:

(3) Japanese: Rinyouzai-wa natoriumu-ni, β syadanzai-wa koukan sinkei kei-ni,
kankei-no aru kouketuatu-no hito-ni kikimasu.

Gloss: fDiuretic-TOP sodium-DATg& fβ blocker-TOP sympathetic nervous system-DATg
relevance-GEN exist hypertension-GEN person-DAT effective.

Translation: “Diuretic is effective for the person with hypertension related to sodium, and β blocker
[is for the person with hypertension related] to sympathetic nervous system.”

This is a simplified version of the sentence taken from the text actually parsed in the experiment discussed below.
The original sentence includes three conjuncts, a few adverbs, and another level of embedding. The underlined part is
another instance of non-traditional constituent, which includes an extraction from the relative clause. Its structure is
schematically shown as follows:

(4) [t1 hypertension2-GEN person-DAT effective.]
[t2 t3 relevance-GEN exist]

Due to functional composition, the category �SnNP�nNP, identical to the transitive verb category, can be derived for
the above phrase with two extraction sites t1 and t3.2 As in the first example, the NP-NP sequences at the sentence-
initial position receive the category S���SnNP�nNP� and then the sentence category is derived after the combination
with the category �SnNP�nNP.

Assuming that the competence grammar does not place a bound on the levels of embedding [Miller and Chomsky,
1963], we may have unboundedly-many extractions [Becker et al., 1991, Rambow and Joshi, 1994, Rambow, 1994].
Since no systematic constraint has been identified for the bound on the composition of such extracted constituents,
we also assume that these constituents can compose without a limit, potentially resulting in an unboundedly-long NP
sequence.3 As in the case of embedding, the degraded acceptability of long sequences can be attributed to performance
issues. These assumptions calls for an infinite set of type-raised categories such as �SnXn���nX1����SnXn���nX1�nNP�
associated with NP. We capture this polymorphic situation by using variables as in T��TnNP�.4 Although CCGs have
also been motivated by psychological aspects, we will be concerned only with syntactic aspects in this paper.

Formal properties of the standard CCGs (CCG-Std) not involving variables are relatively well-studied. CCG-Std
is proved weakly-equivalent to Head Grammars (HG), Linear Index Grammars (LIG), and Tree Adjoining Grammars
(TAG), known as “mildly context-sensitive grammars” [Vijay-Shanker and Weir, 1994]. CCG-Std is also shown to

1The category S��SnNP� is associated with a higher-order semantics λP�Pa where a is the semantics of NP. Composition of λP�Pa and λQ�Qb
(left to right) is λQ�Qba. In a sense, this semantics anticipates that of a two-argument predicate (simple or complex), Q.

2The use of trace t is for illustration purposes only. The current approach does not assume the notion of gap or movement as the theories which
employ trace.

3These assumptions need to be examined more carefully and is left for future research [cf. Joshi et al., 1994]. Since this paper assumes that
the scope of coordination and adverb modificatioin is bounded, the unbounded composition of type-raised category actually calls for a motivation
involving information structure. For example, consider the following pseudo-Japanese:

(5) Q: A-TOP B-NOM C-DAT D-NOM E-FROM who-NOM who-ACC visited-COMP heard-COMP told-COMP thought-Q?

A: A-TOP B-NOM C-DAT D-NOM E-FROM
theme

fF-NOM G-ACCg & fH-NOM I-ACCg
rheme

visited-COMP heard-COMP told-COMP thought.

The ‘theme’ part can grow very long as can be seen. The information-structural status of the verb complex is not clear but should not affect the
major division between the theme and rheme across where all the categories must be combined prior to the combination of the theme and the rheme.

4It is also possible to dynamically type-raise categories as needed. We take lexical approach to avoid the procedural aspects associated with
dynamic type raising. Polymorphic forms also have advantage of underspecification which avoids unnecessary proliferation of categories.
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be polynomially parsable [Vijay-Shanker and Weir, 1990, Vijay-Shanker and Weir, 1991, Vijay-Shanker and Weir,
1993].5 A few extension of CCGs, Multiset-CCGs, are also shown to be polynomially parsable [Hoffman, 1995].6

But, use of variables can change the situation. For example, Hoffman [1993] showed that a grammar involving
categories of the form �Tnx���Tny� can generate a language anbncndnen, which is no longer equivalent to LIGs. The
use of variables in the coordination schema “x� conj x � x” is also believed to generate a language �wc�n beyond
LIG’s power [Weir, 1988]. These suggest that the use of variable introduces more processing for parsing as well. At
the same time, the practical side of categorial grammar parsing is not well explored. Since Wittenburg [1986], few
practical parsers for categorial grammar have been reported. This paper is concerned with polynomial parsability of
the CCGs with a generalized class of type-raised categories (CCG-GTRC) involving variables, from both practical and
theoretical points of view. Related questions about the generative power of CCG-GTRC are addressed in [Komagata,
1997b, Komagata, 1997c].

For the practical side, we demonstrate that our CKY-style parser for Japanese appears to run in polynomial time
once spurious ambiguities (multiple derivations for the equivalent semantics) are eliminated by equivalence check
and genuine ambiguities (e.g., attachment ambiguity) are excluded. For the theoretical side, we present a worst-case
polynomial recognition algorithm, by extending the polynomial algorithm introduced for CCG-Std by Vijay-Shanker
and Weir [1990] with one additional condition.

This paper is organized as follows: Section 2 introduces Generalized Type-Raised Categories and defines CCG-
GTRC. Section 3 analyzes the performance of the practical parser through an experiment after a discussion about
spurious ambiguity elimination. Section 4 presents the theoretical worst-case polynomial recognition algorithm for
CCG-GTRC. Appendix A includes the details of the experiment. Appendix B includes an example of the central part
of the worst-case polynomial algorithm for CCG-GTRC. A short version of this paper is presented as [Komagata,
1997a].

2 CCGs with Generalized Type-Raised Categories

CCG-GTRC involves the class of constant categories (Const) and the class of Generalized Type-Raised Categories
(GTRC).

A constant (derivable) category c can always be represented as F jan���ja1 where F is an atomic target category
and ai’s with their directionality are arguments.7 We will use “A� ����Z” for atomic, constant categories, “a� ����z” for
possibly complex, constant categories, and ‘j’ as a meta-variable for directional slashes f��ng. Categories are in the
“result-leftmost” representation and associate left. Thus we usually write F jan���ja1 for �����F jan� ���ja1�. We will call

“jai���ja j” a sequence (of arguments). The length of a sequence is defined as
���jai���ja1

��� � i while the nil sequence is

defined to have the length 0. Thus an atomic constant category is considered as a category with the target category with
the nil sequence. We may also use the term ‘sequence’ to represent an ordered set of categories such as “c1� ����c2” but
these two uses can be distinguished by the context. The standard CCGs (CCG-Std) solely utilize the class of Const.

GTRC is a generalization of Lexical Type-Raised Category (LTRC) which has the form
T
T

�
n

�
T
n
�
a
�
jbi���jb1 as-

sociated with a lexical category ajbi���jb1 where
T
T is a variable over categories with the atomic target category T [cf.

Dowty, 1988, Steedman, 1996]. The target indication may be dropped when it is not crucial or all the atomic categories
are allowed for the target. We assume the order-preserving form of LTRC using the following notation. ‘ �

n
’ and ‘ n

�
’

indicate that either set of slashes in the upper or the lower tier can be chosen but a mixture such as ‘�’ and ‘�’ is prohib-
ited.8 GTRC is defined as having the form of T �

n
�T jam���ja2

n
�
a1

inner sequence

� jbn���jb1
outer sequence

resulting from compositions of LTRCs

5This situation can be contrasted with Lambek calculus. For example, Hepple [1990] presented normal form parsing but did not analyze its
computational complexity. König [1994] showed an exponential parsing algorithm for the calculus, which can be improved to a polynomial one by
setting a bound on the number of extractions.

6In particular, Pure and Prioritized Multiset-CCGs are shown to be polynomially parsable and Curried Multiset-CCGs are conjectured to be so
as well.

7Note that the representation F jan���ja1 involves meta-variables for object-level constant categories but we will remain ambiguous about this
object-meta distinction in this paper.

8For a related discussion, see [Steedman, 1991b].

3



where m� 1, n� 0, and the directional constraint is carried over from the involved LTRCs.9 When the directionality is
not critical, we may simply write a GTRC as Tj�Tjam���ja2ja1�jbn���jb1. For gtrc � Tj�Tjam���ja1� jbn���jb1, we define
jgtrcj� n�1, ignoring the underspecified valency of the variable. Note that the introduction of LTRCs in the lexicon
is non-recursive and thus does not suffer from the problem of the overgeneration discussed in [Carpenter, 1991].

These categories can be combined by combinatory rule schemata. Rules of (forward) “generalized functional
composition” have the following form:10

(6) x�y Ik yjzk���jz1 �� xjzk���jz1

functor category input category result category

The integer ‘k’ in this schema is bounded by kmax, specific to the grammar, as in CCG-Std.11 Rules of functional
application, “x�y I0 y � x”, can be considered as a special case of (6) where the sequence zi’s is nil.12 The index k
may be dropped when no confusion occurs. We say “ ‘x�yI yjzk���jz1’ derives xjzk���jz1”, and “xjzk���jz1 generates the
string of nonterminals ‘x�y�yjzk���jz1’ or the string of terminals ‘ab’ ” where the terminals a and b are associated with
x�y and yjzk���jz1, respectively. The case with backward rules involving ‘J’ is analogous.

The use of variable for polymorphic type drew attention of researchers working on Lambek calculus [Moortgat,
1988, Emms, 1993]. In particular, Emms showed decidability for an extension called Polymorphic Lambek Calcu-
lus. The use of variables in the current formulation is limited to type raising. This reflects the intuition about the
choice of rules based on ‘combinators’ [Steedman, 1988]. But otherwise, we do not assume that categories are wildly
polymorphic.13

One way to represent this situation is to use two distinct subclasses of the type ‘category’ constructed as follows:

(7) Type construction Example
a� const �Target, Arguments� Fnan���na1 �� const �F�nan���na1�

b� gtrc�Target, IDir, ISeq, OSeq�
T
T ��Tnam���na1�nbn���nb1 �� gtrc�T���nam���na1�nbn���nb1�

Such type construction can be defined in ML style as follows:14

(8) datatype target A � B � C ��� �� atomic categories ��

datatype dir left � right

datatype complex�cat � Complex of target � arg

and arg � Arg of dir � complex�cat �� mutually recursive ��

datatype seq � Seq of arg list

datatype cat � Const of target � seq

� GTRC of target � dir � seq � seq

Then we can define the combinatory rules on instantiated categories. Theoretically, no unification of variable is
required although our implementation based on the proposed formalism uses variable unification for convenience.
Although dealing with more number of cases is tedious, the technique is straightforward. This leads to a favorable
result that CCG-GTRC is not only decidable but also polynomially recognizable.

Inclusion of GTRCs calls for thorough examination of each combinatory case depending on the involved category
classes. All the possible combination of category classes are described below. Some cases are subdivided furthermore.
Although the traditional categorial representation is used below, the complete description for the constructor format
can be defined. A summary of the cases is given in Table 1.

(9) ConstIConst: a�bIk cjdk���jd1 �� ajdk���jd1

(10) GTRCIConst

9In a sense, GTRCs have two stacks. But these two sequences are not completely independent and does not behave like two stacks for a PDA,
which is Turing-Machine equivalent.

10Vijay-Shanker and Weir [1994] call the functor and input categories as primary and secondary components, respectively.
11Weir [1988] comments that the categorial grammars defined by Friedman and Venkatesan [1986] is more powerful than CCGs due to no bound

on k.
12Forward functional composition and application are labeled as ‘�Bk���’ and ‘�’, respectively, in [Steedman, 1996].
13Recall that we assume conjunctives (if treated categorially) and adverbs are mapped to finite sets of categories.
14Note that there is no constant constructor for atomic categories.
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a. Functor GTRC has an outer sequence:
Tj�Tjam���ja1� jbn���jb2�b1 Ik cjdk���jd1 �� Tj�Tjam���ja1� jbn���jb2jdk���jd1

Example: Tn�T�PP��NPI NP � Tn�T�PP�

b. Functor GTRC has no outer sequence:
T��Tjam���ja2na1�Ik c

q

c0jcm���jc1

jdk���jd1 �� c0jdk���jd1

Example: T��TnNPnNP�I SnNPnNP� S

(11) ConstIGTRC

a. k � jinputj:
a�bIk Tj�Tjcm���jc1�jdn���jdk�1jdk���jd1 �� ajdk���jd1

Example: �S��SnNPnNP��n�S��SnNPnNP����S��SnNPnNP��I T��TnNPnNP�

� �S��SnNPnNP��n�S��SnNPnNP��

b. k � jinputj (and k � 1):
a�bIk Tj�Tjcm���jc1�jdk�1���jd1 �� aj�b jcm���jc1

�����
unbounded

�jdk�1���jd1

Example: S�SI T��TnNPnNP�� S��SnNPnNP�

c. k � jinputj (and k � 2):
a�bIk T0jT1j�T0jT1jcm���jc1�jdk�2���jd1 �� a jT1

�

j�b

residual

jT1 jcm���jc1
�����
unbounded

�jdk�2���jd1
15

(12) GTRCIGTRC

a. Functor GTRC has an outer sequence and jinputj� k:
Tj�Tjam���ja1� jbn���jb2�b1 Ik Uj�Ujcp���jc1�jdn���jdk�1jdk���jd1

�� Tj�Tjam���ja1� jbn���jb2jdk���jd1

b. Functor GTRC has an outer sequence and jinputj� k (and k � 1):
Tj�Tjam���ja1� jbn���jb2�b1 Ik Uj�Ujcp���jc1�jdk�1���jd1

�� Tj�Tjam���ja1� jbn���jb2j�b1 jcp���jc1
�����
unbounded

�jdk�1���jd1

c. Functor GTRC has an outer sequence and jinputj� k (and k � 2):
Tj�Tjam���ja1� jbn���jb2�b1 Ik U0jU1j�U0jU1jcp���jc1�jdk�2���jd1

�� Tj�Tjam���ja1� jbn���jb2 jU1
�

j�b1

residual

jU1 jcp���jc1
�����
unbounded

�jdk�2���jd1

d. The functor GTRC has no outer sequence and jinputj� k:

(i) T spans greater than U (T� Uj�Ujcp���jc1�jdn���jdk�m�1):16

T��Tjam���ja2na1�Ik Uj�Ujcp���jc1�jdn���jdk�m�1� �z �
T

jdk�m���jdk�1� �z �
jam���na1

jdk���jd1

��Uj�Ujcp���jc1�
��������

inner seq of GTRC

jdn���jdk�m�1jdk���jd1

Example: T��TnNP�I U��UnPP�nNP� U��UnPP�

15
T could also be decomposed into T0jTk ���jT1 for a larger k but all of them share the same characteristics with the above scheme.

16We only consider the most general unifier.
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Case Functor cat Input cat Result cat
Class Outer Class jinputjS k Class Residual Unbounded

seq variable const argument
9 Const - Const � Const no no
10a GTRC yes Const � GTRC no no
10b GTRC no Const � Const no no
11a Const - GTRC � Const no no
11b Const - GTRC � Const no possible

� 11c Const - GTRC � neither yes possible
12a GTRC yes GTRC � GTRC no no
12b GTRC yes GTRC � GTRC no possible

� 12c GTRC yes GTRC � neither yes possible
12di GTRC no GTRC � GTRC no no
12dii GTRC no GTRC � Const no no
12e GTRC no GTRC � GTRC no no

� 12 f GTRC no GTRC � neither yes possible

Table 1: Combinatory Cases for CCG-GTRC

(ii) T spans no greater than U (Tjam���jam� j�1 � U):
T��Tjam���j am� j

q

���ja2na1

am� j�0jam� j�p���jam� j�1

�Ik U0��z�
T

jU j���jU1� �z �
jam���

j�U0jU j���jU1jcp���jc1�� �z � j
am� j�Fja�m� j�q����ja�m� j�1�

dn���jdk�1� �z �
���na1

jdk���jd1

�� F ja�m� j�q����ja�m� j�q� j�p�jdk���jd1 where q� j� p

Example: T��Tn�S�NP��I Un�U�NP�� S

e. The functor GTRC has no outer sequence and jinputj� k (and k � 1):

T��Tjam���ja2na1�Ik
Uj�Ujcp���jc1�jdk�1���jd1 �� Tj�T jam���ja2na1jcp���jc1

�������������
inner seq of GTRC

�jdk�1���jd1

Example: T��TnNP�I U��UnNP�� T��TnNPnNP�

f. The functor GTRC has no outer sequence and jinputj� k (and k � 2):
T��Tjam���ja2na1�Ik U0jU1j�U0jU1jcp���jc1�jdk�2���jd1

�� T jU1
�

j�T

residual

jam���ja2na1jU1 jcp���jc1
�����
unbounded

�jdk�2���jd1

The three cases indicated by ‘�’ in Table 1 introduce categories which are neither Const nor GTRC due to the
residual variables. This is an unintended, accidental use of functional composition. The closure of the system must be
maintained by excluding these cases by the following condition:

(13) Closure Condition: The rule “xIk y” must satisfy jyj � k.

Note that the distinction between constant categories and GTRCs must be made. This condition is particularly impor-
tant for implementation since the residual variables can behave beyond our imagination and the parser must be able to
compute the length of a category distinctively for constant categories and GTRCs.

We are now in the position to define the class of CCG-GTRC:17

Definition 1 A CCG-GTRC is a six tuple �VN�VT �S�T � f �R� where

� VN is a finite set of nonterminals (atomic categories)

17We may use the term ‘CCG-GTRC’ ambiguously between for the class of grammars and for a grammar instance.
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� VT is a finite set of terminals (lexical items, written as a� ����z)

� S is a distinguished member of VN

� T is a countable set of variables18

� f is a function that maps elements of VT to finite subsets of “Const � LTRC”19

� R is a finite set of rule instances of Generalized Functional Composition observing Closure Condition (i.e., those
summarized in Table 1 except for those with ‘�’).20

3 Progress Towards a Practical Parser for CCG-GTRC

This section investigates the performance of the experimental parser and demonstrates that it runs polynomially in
practice. For both the practical parser and the theoretical algorithm, we use CKY-style parsing scheme [Aho and
Ullman, 1972]. In addition to the use of CKY-table for recognition of the start category, we associate semantic
representation for each category and derive the semantics in a single pass. We will focus on ‘category-only’ case for
purely syntactic analyses but it should be noted that the parser can derive semantics and is not just a recognizer. We
start with a discussion about spurious ambiguity elimination techniques.

3.1 Spurious Ambiguity Elimination

We first define the types of ambiguities referred to in this paper:

(14) a. Categorial ambiguity: Availability of multiple categories (lexical/derivational), e.g., fS�NPg.

b. Spurious ambiguity: Multiple derivations of the same category which are semantically equivalent [Witten-
burg, 1986], e.g., “John visited Bill.” has two derivations of S (left and right branching) in CCG with the
identical semantics ‘�visited bill john�’.

c. Genuine ambiguity:
(i) Lexico-semantic ambiguity: Multiple semantic assignments to a single lexical category:

(ii) Attachment ambiguity: Multiple derivations of the same category with distinct semantics. E.g., PP
attachment.

Since spurious ambiguity is often accused of as the source of inefficient parsing, CCG parsers must implement
some means of spurious ambiguity elimination. We review three classes of approaches: (i) syntactic, (ii) semantic,
and (iii) those which do not belong to the previous two.

The syntactic approaches eliminate ‘spurious derivations’ which are not ‘the normal form’. This approach blends
naturally with Poly-Std. Vijay-Shanker and Weir [1990] includes a mechanism of spurious ambiguity check during a
stage after recognition. Hendriks [1993] and König [1994] worked on Lambek calculus which does not have functional
composition as a primitive rule. Hepple and Morrill [1989] cover a subset of the current formalism but do not have
the mixed instances of function composition nor type raising. Eisner [1996] covers a wider range of CCGs but the
case including type raising remains to be shown correct. Labeled deduction [Morrill, 1994] has a means to interpret
semantics syntactically but normal form deduction must be adjusted.

Karttunen [1986] proposed the following semantic method. For each new derivation, discard it if its semantics
is equivalent to (or mutually subsumes) that of some entry with the same category already in the cell.21 This directly
enforces the definition of spurious ambiguity and does not depend on the syntax. Note that ‘equivalence’ depends on

18Each instance of GTRC must be assigned a new variable when the GTRC is instantiated at a particular string position in order to avoid
unintended variable binding.

19Our definition does not include the empty string in the domain of f as in [Vijay-Shanker and Weir, 1993] but unlike [Vijay-Shanker and Weir,
1994].

20Due to the introduction of GTRC, the rule instances may involve variables even at the first argument of the functor category and at the input
category.

21Shieber [1986] contains a detailed discussion of subsumption.
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the semantic representation [Thompson, 1991]. For the case where the semantics is represented in λ-calculus, equiva-
lence is not computable [Paulson, 1991]. For the case of feature structure, equivalence is defined as alphabetic variants
and characterized by the isomorphism between the structures [Carpenter, 1992]. Our case corresponds to the latter
although the equivalence check on predicate-argument structures are term unification rather than graph unification for
the feature structure.

Among the third type, Pareschi and Steedman [1987] is a hybrid but the published algorithm has been shown to
be incomplete [Hepple, 1987]. Wittenburg and Wall [1991] use a compilation scheme but the crucial notion of flexible
constituency is compromised.

To be precise, the definition of spurious ambiguity for syntactic methods is not the same as our definition given
above. Since syntactic methods are insensitive to semantics, they cannot distinguish genuine (attachment) and spurious
ambiguities and eliminate both of these. With semantic equivalence check, we can adjust the way the genuine ambi-
guity is handled. While equivalence check in its original form is sensitive to genuine ambiguity, equivalence check
applied only to category (ignoring semantics) is insensitive to genuine ambiguity much like syntactic methods. We
refer to these two cases as (i) category+semantics and (ii) category-only. Both cases are explored in the experiment in
the following subsection.

Among the presented methods, the only proposal immediately compatible with the present formalism is Kart-
tunen’s semantic equivalence check. Let us review some arguments against this approach. Eisner [1996] argued that
a sequence of categories exemplified by “X�X ... X ... XnX” can slow down the parser exponentially. Note that we
assume that X�X and XnX are ‘modifiers’ of X with distinct semantics. But this is an instance of genuine ambiguity, a
problem to any parser. Note that for syntactic methods, this appears as spurious ambiguity and the semantic process-
ing is simply left for a later stage. Wittenburg [1987] objected to the cost of equivalence check. But an equivalence
check (for our semantics) is inherently easier than the general case of subsumption check, the latter requiring the
occurs check for soundness [Pereira and Shieber, 1987]. Hepple and Morrill [1989] have raised another objection.
While syntactic methods detect spurious ambiguities before deriving a result, equivalence checking needs to compare
the derived result with every entry in the current table cell. However, the cost associated with the semantic method
depends on how many genuinely ambiguous entries are in the cell but not on the number of spuriously-ambiguous
entries (they are eliminated as soon as they are derived and do not accumulate). This does not introduce additional
complexity specific to spurious ambiguity check. Further, once semantics is involved, it is not possible to distinguish
between spurious and genuine ambiguities unless we actually check the involved semantics.

3.2 Experiment

We now look at the results of a pilot experiment done on Sun Ultra E4000 2x167MHz Ultraspacs with 320MB memory
running SunOS 5.5.1. The program (100KB approx., about a half is the grammar) was written in Sicstus Prolog Ver. 3
and CPU time was measured by Sicstus’ built-in predicate statistics. The details of the experiment are included
as Appendix A. We parsed 22 contiguous sentences (6 paragraphs) in Japanese in a section arbitrarily chosen from
“Anata-no Byouin-no Kusuri (Your Hospital Drugs) 1996” by Tadami Kumazawa and Ko-ichi Ushiro. The romanized
sentences are partially-segmented to the word level but the verb inflection and suffixes are considered as a part of the
word. The average number of words in a sentence is 20 and the longest sentence contains 41 words. The sentences
are realistically difficult, and include complex clauses (relative and complement), coordination (up to 4 conjuncts),
nominal/verbal modifications (adjectives/adverbs), scrambling, and verb argument dropping.

The parser is based on a CKY algorithm equipped with Karttunen’s equivalence check for spurious ambiguity
elimination but without the worst-case polynomial algorithm introduced in the next section.22 LTRCs are assigned to
words by lexical rules and GTRCs are restricted to unidirectional forms. Coordination is handled by special trinomial
rules [Steedman, 1996] with a few categorial features added to limit the coordination involving multiple constituents
only to the left-branching structure. Verb argument dropping is handled by lexical rules which change the verb valency.
Morphological analysis is a complete substring match and the results are dynamically ‘asserted’ among the code.
About 200 lexical entries are asserted after parsing the 22 sentences. Currently, morphological analysis takes about
0.2 seconds per word on average and needs improvement.23 The output of a parse is an enumeration of the final result

22Earlier applications of a CKY-style algorithm to CCG parsing include [Pareschi and Steedman, 1987].
23Whitelock [1988] has worked on morpho-syntax of Japanese in categorial framework. Some recent work on morphology includes [Hisamitsu

and Nitta, 1994], [Tanaka et al., 1993].
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categories associated with the features and the semantics as seen below (Sentence 7).

(15) itumo ��mmHg o koeru baai�wa tiryou ga hituyoudesu�

always num���mmHg� �ACC exceed in�case treatment ��NOM��CONJv	 necessary

Cat


SS
 s

Fs
 �	

PA
 �in�case always��exceed num���mmHg� ���� �necessary treatment��

Cat


SS
 s

Fs
 �	

PA
 always��in�case �exceed num���mmHg� �
� �necessary treatment���

CPU time
 
�� ms Elapsed
 �
� ms Words
 � Solutions
 


The unresolved pronoun is shown as ‘$n’ where n 	 N. The ambiguity regarding adverbial modification is left unre-
solved. The implementation has a simplified treatment of quantifiers and scope ambiguity too is left unresolved.

We consider the following two cases: (i) category-only and (ii) category+semantics. As we have discussed in
the previous subsection, the application of equivalence check to the category-only case not only eliminates spurious
ambiguities but also provide a result without genuine ambiguities.

Let us start with the analysis of the category-only case.24 This case corresponds to the situation involving syntactic
methods and also the polynomial algorithms introduced in the next section. The results are shown in Figure 1 (linear
scale) and 2 (log scale). Both exponential (y � 0�1963
 1�14n) and polynomial (y � 0�002
 n2�496) regression lines
calculated by Microsoft Excel are provided. Although it is often easier to fit either an exponential or a polynomial
curve on a log-scale graph, the data do not seem to be enough for such a conclusion. To see how the experiment
might extend to the case with words longer than 45 words, we parsed pseudo-long sentences. That is, some of the test
sentences are conjoined to form long sentences. Although these are semi-fabricated data, most long sentences are in
fact the results of coordination. Thus natural data are expected to behave similarly rather than differently from our
pseudo-long sentences. The results are shown in Figures 3 and 4. The polynomial curves (y � 0�0017
n2�5616) seem
to represent the data better than the exponential curve (y � 0�4375
1�09n), especially on the log-scale graph. Since
the data is sparse, we do not attempt to obtain a significant statistic analysis for these and simply eye-fit the data. With
these qualifications, we conclude that the performance appears no worse than n3. The result also shows that categorial
ambiguities still present in the parses are in practice within this bound.

A few remarks are in order. We compared our results with the following experiment to see how the figures

24Category-only is the case also corresponding to the spurious ambiguity check of syntactic methods.
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stand. Tanaka and Ueki [1995] report that the LR-based syntactic analysis of a 19-word sentence in Japanese took
3.240sec.25 The range of CPU times for our sentences with 19-23 words is between 3 to 8sec (category-only case).
The performance of our parser seems to be within a comparable range.

Another point is that the effect of spurious ambiguity check is immediate. Without the check, only the sentences
with 10 or fewer words were parsed. Under this condition, the maximum number of cell entries easily exceeds 300
for longer sentences, which resulted in out-of-space errors. We thus confirmed that the exponential effect of spurious
ambiguity is well controlled by semantic equivalence check.

The above conclusion naturally remains qualified by the small scale of the experiment reported here. But, the test
sentences are reasonably representative and relatively challenging. They vary in sentence length and complexity and
span the space we may typically encounter. With additional data, it is reasonable to expect that the missing points will
be filled and statistic significance will be obtained. It is also reasonable to believe that the experiment with pseudo-long
sentences characterizes the kind of complexity that will be found in natural data.

Since one of the advantages of CCG parsers is the ability to derive semantics along with syntactic structure, the
results of the category+semantics case is of special interest.26 The situation naturally looks quite different. The ex-
ponential regression line t � 0�0638
 1�24n (Figures 1 and 2) seems to fit the data closely. In fact, the two longest
sentences with 40 and 41 words results in out-of-space errors. Since spurious ambiguities are eliminated by equiva-
lence check and categorial ambiguity is only polynomial as shown in the category-only experiment, the exponential
slow down is due exclusively to genuine ambiguity. Genuine ambiguity is a major problem for our parser as it is for
any parser. We noticed that the longest two sentences become parsable if modifications across the top-level coordina-
tion are prohibited by assigning a special category to the sentential conjunctive. This kind of technique improves the
performance, usually without affecting the completeness. But of course, we need a more principled idea of how to
deal with such a case. The following example (adopted from Sentence 8) shows how easily genuine ambiguities can
grow:

(16) a. Modification ambiguities:
n-TOP adj

�
n1-GEN n2

2-way ambiguous

-NOM v-coord, adv1
�

adv2
�

v1-COMP-TOO v2

3-way ambiguous

b. Coordination ambiguities:
n-TOP adj n-GEN n-NOM v-coord, adv adv v-COMP-TOO v

Each case involves adjective modification ambiguity (2 cases each).

25The word count is based on our criteria. Other details are ignored for now.
26The current implementation enumerates the derivations.
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n-TOP adj n-GEN n-NOM v-coord, adv adv v-COMP-TOO v

Each case involves both adjective and adverb modification ambiguities (2
3 cases each).

c. Total ambiguities: 2
2��2
3�
2 � 16

The worst case (Sentence 4) resulted in 96 parses. Since semantics is not considered by Poly-GTRC, Poly-GTRC does
not affect the above situation.

4 Worst-Case Polynomial Recognition Algorithm

Although the implemented parser runs efficiently (the category-only case), its worst-case performance is still exponen-
tial due to categorial ambiguity. This section presents a worst-case polynomial recognition algorithm for a subclass
of CCG-GTRC (Poly-GTRC) by extending the polynomial algorithm of Vijay-Shanker and Weir [1990] for CCG-Std
(Poly-Std). We will observe below that the crucial property of CCG-Std employed by Poly-Std can be extended to the
subclass of CCG-GTRC with an additional condition. Let us start with a brief review of the intuition behind Poly-Std
and then move on to Poly-GTRC. Note that Poly-Std has the second stage of structure building but we concentrate on
the more critical part of recognition.

4.1 Polynomial Algorithm for CCG-Std

First, observe the following properties of CCG categories:

(17) a. The length of a category in a cell can grow proportionally to the input size.

b. The number of categories in a cell may grow exponentially to the input size.

For example, consider a lexicon f � f�a�S�NP�S�� �a�S�PP�S�g. Then, for the input “a����a
���

n

”, the top CKY-cell

includes 2n combinations of categories like S
n

�NP
�PP

o
���
n

�NP
�PP

o
������������

n

�S derived by functional composition. Thus, we have

exponential worst-case performance with respect to the input size.

The idea behind Poly-Std is to store categories as if they were some kind of linked list. Informally, a long category

F jan���ja2ja1 is stored as ‘F this portion is linked in a cell �p�q� with index ja2 ja1’. A crucial point here is that the
instances of target category F and arguments a2 and a1 are bounded. We will come back to this point in the next
subsection. The pair �p�q� can be represented as a n2 matrix. Thus by setting up n2 subcells in each CKY-table cell,
we can represent a category in a finite manner.

The effectiveness of such a representation comes from the fact that CCG rule application does not depend on the
entire category. Namely, in order to verify “F jan���ja2� �z �

F

ja1 Ik b0jbk���jb1 � F jan���ja2� �z �
F

jbk���jb1”, the sequence marked

by ‘F’ does not need to be examined. Thus, for the functor category, we only need to check F and a 1 available in the
current cell. In addition, since b0 must be unified with a bounded a1, and k is also bounded by kmax, the entire input
category is bounded and thus can be stored in the current cell. Therefore, the proposed representation does not slow
down this type of process. When the result category exceeds a certain limit, we leave the excessive portion right in the
original cell and set up a link to it.

One complication is that when an argument (e.g., a1 in the above example) is canceled, we may have to restore a
portion of the category from the linked cell (as the ‘index’ for the cell is required). We need to scan the linked cells and
find the categories with the same index from n2 subcells. Even though there may be multiple such categories, all of
them can be restored in one of n2 subcells associated with the result category. This case dominates the computational
complexity but can be done in O

�
n4
�
. Since this is inside i� j�k of CKY-style loop, the overall complexity is O

�
n7
�
,

which can be improved to O
�
n6
�

by rearranging the loops. The following is an informal description of the algorithm:

(18) Poly-Std algorithm:

a. Initialize: set up lexical categories
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b. Main loop: for 1� i � j � n,
for i � k � j, apply rule schemata as follows:

Conditions Case Intuition
jresultj Link info

� limit none No link Fjan���ja1

� limit available Pass link info F jai���ja1 � F jai���ja1

� limit either Set up a new link F jan���jai�1

�

jai���ja1

� 0 available Restore the linked info jai���ja1

F
�

4.2 Polynomial Algorithm for CCG-GTRC

We first note that there are cases where a crucial property of CCG-Std cannot be maintained in CCG-GTRC. The
property is that arguments of derived categories are bounded. Although there might be a polynomial algorithm for
CCG-GTRC which does not depend on this property, we pursue a straightforward extension of Poly-Std with an
additional condition on the rules.27

The problematic cases are (11b) and (12b) in Table 1. As we have motivated in Introduction, the inner sequence
of GTRC must be allowed to grow unboundedly long (otherwise, the resulting grammar becomes equivalent to CCG-
Std). Then an argument can grow unboundedly long. But we do not want to exclude Cases (11b) and (12b) entirely
since a case involving a sentential adverb may be possible as follows: “S�SI Tj�TjAjB�”. The present approach is to
place the following condition on the rule application:

(19) Bounded Argument Condition: For the rule “xIk y” where (i) x is not a GTRC with jxj� 1 and (ii) jyj� k, y
must be instantiated.

This includes the cases (11b) and (12b). By this condition, we have the following property:

(20) The set of arguments of constant categories and the set of arguments of the inner and outer sequences of GTRC
are all finite.

That is, by considering the inner sequence at the same level as the outer sequence of a GTRC or the arguments of a
constant category, we can maintain the property analogous to the one found for CCG-Std.28

Now, consider the subclass of CCG-GTRC constrained by the Bounded Argument Condition. In the rest of this
section, we will concentrate on this subclass.

Poly-GTRC is an extension to Poly-Std. The basic organization of the algorithm is analogous to Poly-Std. We
use the same n2
 n2 CKY-style table and a similar representation for constant categories. But we need to deal with
GTRCs in polynomial time as well. First, let us examine two representative cases of rule applications since this reveals
the necessary conditions for polynomial parsing.

The inner sequence of GTRC can grow as a result of Case (12e) , “GTRCIGTRC”, repeated below:

(21) T �
�

�Tjam���ja2na1�Ik
Uj�Ujcp���jc1�jdk�1���jd1 �� Tj�Tjam���ja1jcp���jc1�jdk�1���jd1 (k � 1)

The only information needed to determine if the rule is applicable is the directionality of the slash indicated by ‘�’.
Thus we do not actually need to know the inner sequence of the functor or input categories. The inner sequence of the
result GTRC can thus be represented as two links to the functor and input categories. This link information virtually

27The length of the argument is still bounded by O�n� in CCG-GTRC since the only source of unboundedness is GTRC inner sequences. If every
argument can be represented in some finite manner with link information similar to the one used for the Poly-Std, polynomial recognition might be
possible.

28Note that the Bounded Argument Condition is not implemented in our parser. The inner sequence of GTRC does not grow unboundedly in
practice and thus the arguments of categories do not grow unboundedly either.
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encodes a kind of grammar for deriving the inner sequence and is thus considered as an application of structure sharing
[Billot and Lang, 1989, Dymetman, 1997]. The outer sequence can be represented in a way similar to the argument
of constant category. Although there may be exponentially-many GTRCs associated with each CKY cell, the number
of cell entries is bounded by the link destinations of the inner sequence and the finite representation for the outer
sequence.

Next, consider Case (10b), “GTRCIConst”. We need to show that the unification process of the underlined
portions can be done in polynomial time. As the first approximation, consider this process as an iteration of (backward)
functional application of the form “ai J c0jcm���jci” for i � 1 to m where ai and ci are canceled. But recall that in
general, we only store a finite portion of both the functor and the input categories in the current cell and the remaining
information must be restored through the links. The restoration of the information could cost exponential time since
there may be multiple links to lower locations at any point. Therefore it is crucial that we proceed from i � 1 to m so
that no enumeration of all the instances of ci� ����c1 and ai� ����a1 in (10) is actually generated. The traversal of the link
from c1 and a1 may introduce sets of categories Ci and Ai for each position of i � 2, as schematically shown below.

(22) Cm 
 
 
 C2 fc1g
l l �� l

Am 
 
 
 A2 fa1g

Note that each set Ci and Ai are bounded. This is the crucial point we needed the Bounded Argument Condition.
Now, suppose that an element in Ci is canceled with some elements in Ai. We can proceed to the next set Ci�1 where
the elements in Ci�1 are obtained by traversing the links from the canceled elements in Ci. Notice that the recovery
process may encounter GTRCs as a part of derivation. There are three such cases: (i) (10b): GTRCs can be ignored
since they do not affect the recovery process, (ii) (11a), (12a): GTRCs are bounded, and (iii) (12dii): process shifts to
GTRC recovery shown below.

Once we move from Ci to Ci�1, the history of cancellation can be forgotten, as in the case of iterative functional
application in Poly-Std. Thus even though we have potentially exponential instances of ci� ����c1, the traversal of this
side can be done step-by-step without suffering the exponential effect.

The traversal of Ai’s is more challenging. The availability of ai for cancellation with some ci depends on the
history of the cancellation of ai�1� ����a1. Actually, it depends on the tree structure exactly encoded by the structure
sharing technique. The ‘GTRC recovery algorithm’ will be introduced below to handle this situation in polynomial
time.

The other cases are variation of the previous one. The “ConstIConst” case can be processed as in Poly-Std. Next,
consider the “GTRCIConst” case.

(23) Tj�Tjam���ja1� jbn���jb2�b1 I cjdk���jd1 �� Tj�Tjam���ja1� jbn���jb2jdk���jd1

This case can actually be handled in a way similar to the “ConstIConst” case. The only point is that the represen-
tation of GTRC must be bounded to avoid exponential combination of ai’s. We will come back to the representation
of GTRC below.

The “ConstIGTRC” cases are simpler.

(24) a. a�bI Tj�Tjcm���jc1�jdn���jdk�1jdk���jd1 �� ajdk���jd1

b. a�bI Tj�Tjcm���jc1�jdk�1���jd1 �� aj�bjcm���jc1�jdk�1���jd1 (k � 1)

We need to recover the contents of the GTRC in both cases. The GTRC in (24a) is bounded since category b in
the functor category is bounded. The one in (24b) is bounded by kmax (for jdk�1���jd1) and the Bounded Argument
Condition (for bjcm���jc1). Thus the recovery process for both cases are bounded.

Recall the following cases for “GTRCIGTRC”:

(25) a. Tj�Tjam���ja1� jbn���jb2�b1 I Uj�Ujcp���jc1�jdn���jdk�1jdk���jd1

�� Tj�Tjam���ja1� jbn���jb2jdk���jd1

b. Tj�Tjam���ja1� jbn���jb2�b1 I Uj�Ujcp���jc1�jdk�1���jd1

�� Tj�Tjam���ja1� jbn���jb2j�b1jcp���jc1�jdk�1���jd1 (k � 1)
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Initialization:
� Create an n2 GTRC recovery table, R

Table setup (Stage 1):
� For each cell (top-down) O

�
n2
�

� For each entry (depending on the midpoint) O�n�
� Restore the derivation info from CKY table

and store the children in the appropriate cells O
�
n2
�

Recovery (Stage 2):
� For each cell in the bottom row (right-to-left) O�n�

� For each entry O�n�
� If there is a matching category in the target category set

� Mark the current entry as ‘success’
Otherwise
� Mark the current entry as ‘fail’

� Do status percolation
Status percolation (subprocedure):
� For each cell (bottom-up) O

�
n2
�

� For each entry O�n�
� For each parent O

�
n2
�

� If the parent is marked as ‘fail’
� Mark the current entry as ‘fail’
Otherwise
� If the current entry is the right branch and marked as ‘fail’

and all the right branch siblings are marked as ‘fail,
� Mark the parent as ‘fail’

� If the current entry is the left branch and marked as ‘success’
� Mark the parent as ‘success’

Figure 5: GTRC Recovery Algorithm

di. T��Tjam���ja2na1�I Uj�Ujcp���jc1�jdn���jdk�m�1� �z �
T

jdk�m���jdk�1� �z �
jam���na1

jdk���jd1

�� Uj�Ujcp���jc1�jdn���jdk�m�1jdk���jd1

dii. T��Tjam���j am� j
q

���ja2na1

am� j�0jam� j�p���jam� j�1

�I U0��z�
T

jU j���jU1� �z �
jam���

j�U0jU j���jU1jcp���jc1�� �z � j
am� j�Fja�m� j�q����ja�m� j�1�

dn���jdk�1� �z �
���na1

jdk���jd1

�� F ja�m� j�q����ja�m� j�q� j�p�jdk���jd1 where q� j� p

The cases �a� and �b� are analogous to (24a) and (24b). For the case �di�, we start comparing the outer sequence
of the input category and the inner sequence of the functor category. The outer sequence of the input category can be
treated as if it were the arguments of a constant category. SinceT spans greater thanU, the entire inner sequence of the
functor category must be exhausted by comparing with the outer sequence of the input category. The result category
can be obtained from the remaining part of the inner sequence of the input category with the remaining sequence
“jdk���jd1”.

The case �dii� is slightly different from the previous one in that the inner sequence of the functor category is
excessive. We need a process of comparing the inner sequences of the functor and the input categories. Two GTRC
recovery processes must be run in parallel.

Through the examination, we conclude that the polynomial parsability of CCG-GTRC depends on recovery of
GTRCs. We present the polynomial GTRC recovery algorithm in Figure 5. An example of GTRC recovery is given
in Appendix B.
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The GTRC recovery algorithm takes advantage of the encoded shared structure, and utilizes an additional n2

GTRC recovery table to restore possibly ambiguous GTRC derivations in polynomial time. The first stage (table
setup) is to represent the derivational structure available in the CKY table in a slightly different way. Suppose the
following partial CKY table starting from a GTRC in question:

(26) Partial CKY table:

5 T��T���nA���nB��1�2�I�3�5�
4
3 T��T�C���nB��3�3�J�4�5�
2 T��TnA��1�1�I�2�2� Tn�T�C��4�4�J�5�5�
1 T��TnA��D D T��TnB� E Tn�T�C�nE

1 2 3 4 5

T��T���nA���nB��1�2�I�3�5� represents the derivation “T��TnA��1�1�I�2�2� I T��T�C���nB��3�3�J�4�5� � T��T���nA���nB�”
at the designated string positions. Only the last argument of the link is stored in the current cell to avoid exponential
number of entries. A GTRC recovery table can be used to store the same derivational structure with the bottom row
corresponding to the order of the inner sequence of the GTRC rather than the string position. This is the order to
process the inner sequence for Ci-Ai comparison shown in (22). Since GTRC recovery process only concerns with the
inner sequence of the GTRCs, the recovery table may have a dimension smaller than the corresponding portion of the
CKY table as seen in the following example:

(27) GTRC recovery table:

3 T��TnA���nB��1�1�I�2�3�
2 T��T�CnB��2�2�I�3�3�
1 T��TnA� Tn�T�C� T��TnB�

3 2 1

The categorial ambiguities originally aligned at string positions are now aligned in the order of processing.

In the second stage (recovery stage), the comparison with the target categories is done while the above-mentioned
dependency among LTRCs in the bottom row is checked. The comparison proceeds from right to left in the bottom
row. The decision on the cancellation of the argument under consideration, ai, depends on (i) if it is unifiable with
some target category (in Ci) and (ii) if the corresponding sequence to the right of ai was successfully canceled. This
latter condition can be checked by observing the status of the first right branch from the current position since all
the processes up to that point must have been completed. For the later processing (for the positions to the left), the
success/failure status of the current category must also be percolated to the relevant higher nodes (status percolation).
Note that even though the algorithm needs to check all the right branch siblings, the number of the siblings is bounded
by the number of categories and directionalities. The total complexity turns out to be a rather daunting O

�
n10

�
�

O� n3

i� j�k

 n2

recovery

 n5

percolation
�.

The extremely-high cost of GTRC recovery process seems to be related to the following conjecture: the gener-
ative power of this subclass of CCG-GTRC is greater than CCG-Std. A more restricted version of CCG-GTRC has
been shown to be weakly equivalent to CCG-Std [Komagata, 1997b, Komagata, 1997c]. This subclass restricts the
directionality of GTRC to the unidirectional case and only deals with GTRCs without outer sequence, thus allowing
only the GTRCs of the form T

�
n
�T n

�
am���

n
�
a1�. In this case, the inner sequence and the string positions agree on the

number and the order of the arguments and no GTRC recovery algorithm is needed. Realistically, most languages
seem to restrict the use of GTRCs in some sense. For example, the Japanese grammar used in our experiment restricts
GTRCs to the unidirectional variety but still with outer sequence.

In summary, the practical and the theoretical polynomial results are due to distinct factors. The former comes
from a practical bound on the number of cell entries and spurious ambiguity elimination. The latter (for both Poly-Std
and Poly-GTRC) is achieved by efficiently representing and processing the potentially exponentially-many entries in
a cell. This is possible even with the presence of spurious/genuine ambiguities. But what the polynomial algorithms
do is to eliminate a possibility which in practice rarely occurs. The additional cost for Poly-Std/GTRC of managing
n2 subcells and links to cover all the cases of exponential factors including spurious/genuine ambiguities is thus
considered as overkill for the practical case. Although it may be possible to add spurious ambiguity check to Poly-
Std/GTRC, we are better off with a simple CKY-style parser with equivalence check, without the overhead of the
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Poly-Std/GTRC.

5 Conclusion

We have shown that the extension of CCGs including GTRCs can be parsed polynomially in practice and in theory,
with some qualifications and conditions. These polynomial results support the proposed grammar which can describe
non-traditinoal constituency widely observed across languages, without resorting to a special mechanism for each
case. We expect that the grammar is also useful for practical applications.

For practical applications of the parser, though, we have an agendum for future research. A larger-scale experi-
ment is necessary to obtain statistical significance for varying domains. We may want to consider potentially faster
algorithms. For example, GLR-style algorithm may be extended to the proposed case. The most critical problem
remains to be that of genuine ambiguity. We may explore a more compact representation of the derived semantics, e.g.
polynomial shared structure algorithm of Dörre [1997].29 Alternatively, we may try to disambiguate early during the
recognition stage by a probabilistic method or contextual information (e.g., use of information structure). We expect
that these techniques will be applicable to the presented parser and will improve the performance to a really practical
level.

A Experiment

A.1 List of Parsed Sentences

A few commas ‘,’ are inserted manually as , to maintain grammaticality within the current framework.

1. kouketuatu-wa, kourei-ni naru-to ookuno hito-ni araware, nousottyuu+sinsikkan-nado-no ookina byouki-no
gen’in-ni narimasu.

2. sunawati, kouatu-no saidaino mokuhyou-wa nousottyuu-to kyoketusei sinsikkan-no yobou-desu.

3. genzai, nousottyuu-no yobou kouka-wa mitomeraretekiteˆimasu-ga, kyoketusei sinsikkan-niˆkansiteˆwa mada
huzyuubunna zyoutai-desu.

4. kore-wa kono sinsikkan-o warukusuru youso-tosite, ketuatu-igaini doumyakukouka-no seiin-to naru kousike-
tusyou, toutaisya no izyou, himan, kituen-nado-mo kankeisiteiru-koto-ni mo-yorimasu.

5. ketuatu ni wa sinzou-ga syuusyukusite, ketueki-o okuridasu-toki-no syuusyukuki ketuatu-to sinzou-ga kakuty-
ousi, sinzou nai-ni ketuatu-ga modottekuru-toki-no kakutyouki ketuatu-ga ari, sinzou-ga syuusyukusita-toki ni
ketuatu-wa mottomo takakunari, kakutyousita-toki ni mottomo hikukunarimasu.

6. kouketuatu-no teido-wa kakutyouki ketuatu-de handansare, 90 105mmHg-narakeido kouketuatu syou, 105 115mmHg-
de tyuutoudo kouketuatu syou, 115mmHg-izyou deˆwa zyuusyou kouketuatu syou-to narimasu.

7. itumo 95mmHg-o koeru-baai wa tiryou-ga hituyoudesu.

8. kouatu-no mokuhyou-tosite wa, seizyou ketuatu-no 140/90mmHg-ga ippantekidesu-ga, zin kinnou-nado-no
zyouken-ni yori takameni kontoroorusareru-koto-mo arimasu.

9. ketuatu-ga takai-toki ni wa, kekkan-no naka-o tooru ketueki ryou-ga oosugiru-baai-to, ketueki ryou-wa seizyoude-
mo kekkan-no kabe-ga semakunatteiru-baai-to ga kangaerare, korera-no zyoutai-o kaizensuru-no-gakouketuatu-
no tiryou-desu.

29Applicability of this technique to our parser needs to be carefully examined because semantic equivalence check will be required to traverse the
shared structures. It is not clear if the traversal can be done in polynomial time. This concern is shared by the situation of applying structure sharing
technique to conceptual dependency [Bröker et al., 1994]. Other reports on shared structure on semantic representation include [Nagao, 1994] and
[Schiehlen, 1996].

16



10. desukara yoku sirareteiru-koto-desu-ga, enbun seigen-ya himan-no kaizen-nado-ga tiryou zyou totemo taise-
tudesu.

11. mata kituen-ya insyu-mo sakenakerebanarimasen.

12. korera-ni tyuuisite-mo ketuatu-no kanri-ga muzukasii-baai ni hazimete kusuri-o tukaimasu.

13. siyousuru kusuri-wa sayou-ga odayakade , tyoukikan hukuyousite-mohukusayou-ga sukunaku, hukuyou kaisuu-
ga sukunakutesumu-mono-ga risou-desu.

14. kouatu syou-no seiin-tosite tugino mittu-no youso-ga kankeisiteimasu.

15. natoriumu sessyu, koukan sinkei kei, renin angiotensin kei-no mittu-desu.

16. rinyouzai-wa natoriumu-ni, beeta arufa syadanzai-wa koukan sinkei kei-ni, sosite ace sogaizai-wa renin angiotensin kei-
ni sorezore kankei no tuyoi taipu-no kouketuatu-no hito-ni yoku kiku-koto-ga kitaisaremasu.

17. mazu saisyo ni motiirareru-no-wa rinyouzai, beeta syadanzai, karusiumu kikkouzai, ace sogaizai-desu.

18. kouatuzai-no naka-ni wa beeta syadanzai-ya rinyouzai-ga sisitu-no taisya-ni warui eikyou-o oyobosu kanousei-
ga aru-to iwareteimasu.

19. mata saikin-de wa sisitu-ya tousitu-o hukumeta mondai-tosite, insurin kanzyusei-ni korera kouatuzai-ga henka-
o oyobosu-koto-ga tyuumokusareteimasu.

20. insurin kanzyusei-o yokusuru kouatuzai-to warukusuru yakuzai-to-ga ari, warukusuru daihyou-gabeeta syadanzai-
to rinyouzai-to iwareteimasu.

21. korera-no ten-mo kangaete , syuzyuno kouatuzai-ga sono hito-goto-ni motiirareteimasu.

22. rinyouzai-to karusiumu kikkouzai-to-wa maeni nobemasita-node, kokode wa, karusiumu kikkouzai-no itibu-to
beeta syadanzai , ace sogaizai-o toriagemasu.

A.2 Features of the Parser

� Environment: Sun Ultra E4000 2x167MHz Ultraspacs with 320MB memory running SunOS 5.5.1

� Program: The program of about 100KB is written in Sicstus Prolog Ver. 3. About a half of the program is the
grammar. CPU time was measured by Sicstus built-in predicate statistics.

� Data: The data set consists of 22 contiguous sentences (6 paragraphs) from p. 31-32 of “Anata-no Byouin-
no Kusuri (Your Hospital Drugs) 1996” by Tadami Kumazawa and Ko-ichi Ushiro. There are simple and
complex clauses (relative and complement), coordination (2-4 conjuncts), nominal/verbal modifications (adjec-
tives/adverbs), scrambling, and verb argument dropping.

� Input format: The input is romanized and partially segmented sentences in Japanese. Verb inflection and suffixes
are considered as a part of the word. As a consequence, certain verbs are fairly long and this contributes the
long average time for morphological analysis.

� Language-specific constraints: GTRCs are restricted to the unidirectional form by restricting the directionality of
rule application Case (12e), “GTRCIGTRC”, to the form “T��Tjam���ja2na1�Ik

U �
�

�Ujcp���nc1�jdk�1���jd1”.

The bound on functional composition kmax is 2.

� Parsing algorithm: CKY-style with semantic spurious ambiguity check (mutual subsumption check) but without
the presented worst-case polynomial recognition algorithm

� Morphological analysis: Every possible complete substring match is sought. Successful results are dynamically
asserted in the lexicon. The complete match is probably the source of slowness in morphological analysis.
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� Coordination: A set of special trinomial rules for specific categories are implemented [Steedman, 1996]. By
implementing coordination as rule has advantage of avoiding compositions such as “S�NPJ S�SnS”. This is
equivalent to restricting composition with conjunctives. Although bounded coordination is covered by CCGs,
this restriction changes the behavior of the formal system. Only the left-branching conjunction is considered
(a kind of normal form condition). The special punctuation in Japanese, ‘+’, is implemented as coordination
only between two uncombined Ns. Some ‘,’ are inserted (this may be done automatically). The semantics of
coordination is preliminary and requires more research [cf. Park, 1992, Bayer and Johnson, 1995].

� Verb-argument dropping: First, we call verb arguments NP after noun-particle combination of “N+NPnN” but
not PP after “NP+PPnNP” [cf. Gunji, 1987]. ‘Dropping’ is implemented as lexical rule changing verb valency
and make the semantic argument a free variable. This treatment supports lexical analysis of binding as follows.
Since reflexive pronouns cannot be dropped, reflexivization must precede dropping. Then it must be lexical.

� Passive: This is treated as lexical rule changing verb subcategorization and semantics. A few additional cases
of pseudo-passive are also implemented.

� Scrambling: Both local and long-distance are currently handled by crossing composition x�y I ynz � xnz.
Currently, derivation such as “fB Ag & fB Ag SnAnB” is not accepted. Since this type of coordination can
appear within an embedded clause where no theme-rheme distinction is presumed to be made, we may need to
allow such a case. The current implementation has capability to handle this by lexical rule to derive SnBnA from
SnAnB. Alternatively, ‘bag’ notation of Hoffman [1995] may be used. For Japanese, the scope of a bag seems
to be limited to local, unlike Turkish.

� Examples of lexical entry/lexical rules:

�ketuatu� 
� �lang�j
�class�n�com����int�blood�pressure�

features��ana
����agr
����N�n��C�		�

�ga� 
� �lang�j
�class�case�nom��int�nom�gloss���NOM��

features��top
���	�is��	�

�mitomeru� 
� �lang�j
�class�v�
�np�acc���int�accept�features��	�

infl���ru�itidan�reg���ta�ta�reg��	�

lex�stages�j
�parsing��init�gloss�

category�

�infl�no��infl�yes�

rare�must��scrambling���dropping��polite��attributive���adverbial�	��

sent�final��type�raising�	��

lex�rule�j
�category��if�class�n�com�����

cat�n�q��

int��Int��q���X�Int�X���

is��	��

lex�rule�j
�category��if�class�case�Case���

cat�np�Case��n����

features��F���comb
����F	�F��

int�I�I	��

lex�rule�j
�category��if�class�v�
�np�dat����

cat�s�np�nom��np�dat��

features��F��F��	��	��

int��Int��A�B��Int�A�B���

is��	��

lex�rule�j
�dropping��if�class�v�
�np������

class�v���v��

ifnot�drop�nom�no��

cat��s�np��C
��np�C����s�np�C����

features��F���F
�F���F��F���

int��A�B��V�A�B���A��V�A�B��	��

lex�rule�j
�type�raising��if�cat�np�C��n�ind���

cat���np�C������n�ind��

int�X��X�P��P	��
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� User programmability: The grammar file is independent of the system program. A linguist may specify lexical
assignment, segmentation setting, rule specification, inflection entry, and various lexical rules. Run-time switch
can also be changed. Thus it is straightforward to create grammars for other languages.

� Output: The output is a (possibly empty) set of logical form in predicate-argument structure (no scope ambiguity,
no pronoun resolution, no lexical/syntactic ambiguity resolution).

� Other: IS capability (e.g., wa/ga distinction) has been experimented but not activated for the current experiment.

A.3 Test Results

Legend:

� Sent: sentence ID

� #words: number of words in a sentence

� 1st: first run after resetting the asserted lexicon

� 2nd: second run of the same sentence (no morphological analysis)

� #parse: number of distinct parses

� #entrymax: maximum number of entries in a cell

(28) Basic Data Set:

Sent #words Category+Semantics Category only
1st [s] 2nd [s] #parse #entrymax 2nd [s] #parse #entrymax

1 23 15.60 12.96 42 69 4.82 2 11
2 14 3.50 1.36 6 9 0.80 1 7
3 16 9.80 1.36 4 5 1.22 2 5
4 30 46.54 40.20 96 144 7.04 3 7
5 41 � � � � 27.08 2 8
6 23 16.01 7.42 24 48 3.31 4 8
7 8 4.86 0.36 2 8 0.36 1 8
8 23 12.11 6.48 16 20 4.05 2 8
9 40 � � � � 32.84 3 29
10 17 7.05 2.76 18 18 2.19 1 8
11 6 1.32 0.17 1 7 0.19 1 7
12 14 4.05 0.97 3 7 1.14 1 7
13 21 10.26 4.68 28 28 3.19 2 8
14 10 2.45 0.42 2 5 0.63 1 5
15 8 1.30 0.34 1 5 0.50 1 9
16 28 35.57 31.77 16 82 7.36 2 10
17 13 7.48 3.20 24 40 1.86 2 11
18 21 9.69 5.63 2 15 4.03 1 8
19 22 9.93 6.22 23 23 4.59 4 8
20 19 15.60 10.20 3 17 7.60 1 7
21 14 7.06 1.67 1 7 1.84 1 7
22 20 11.76 9.00 8 16 5.00 1 7

Total 431 231.90 147.20 320 573 121.64
Avg 19.6 11.60 7.36 16.0 28.7 5.53

In the following, sentences are fabricated by conjoining two sentences from the test data. ‘i
2’ means Sentence
i is repeated twice and ‘i� j’ means Sentence i and Sentence j are conjoined. The conjunction is obtained by the use
of either a conjunctive or the adverbial verb ending (on the first sentence) followed by comma.
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(29) Pseudo-Long Sentences for Extended Data Set:

Sent #words Category only
2nd [s] #parse #entrymax

1�2 47 31.22 2 11
6�2 47 37.16 5 12
8�2 47 29.88 4 14
16�2 57 40.70 1 9
4�2 61 69.47 6 12
9+4 71 122.90 6
5+4 72 111.20 4

� Average lexical lookup: 4.24 sec/sentence, 0.2 sec/word

� Without spurious ambiguity check, only s11, s14, and s15 terminated (s7 seems to have problem with the
numeral). Other sentences ended up with 300-700 maximum entries in a cell after 3 mins.

� Number of asserted lexical entry (forms): 200 approx.

B An Example of Poly-GTRC Process

In this appendix, we explore a process of the GTRC recover algorithm with example. We introduce the following
representation for constant category and GTRC:

(30) a. Const: const�target���flink� indexg � tail�

b. GTRC: gtrc�target��flinkinner1� indexinner1g �flinkinner2� indexinner2g� �flinkouter� indexouterg � tail�

The representation for Const is basically the same as Poly-Std except for the arrangement of the elements. Link refers
to the cell location where further information is stored. Index contains a sequence of arguments (bounded) to identify
the appropriate linked representation which would match the tail of the linked cell. For the case of GTRC, index inner1�2
only contains a single argument and two links are needed since neither of the component GTRCs is in general bounded.
A few examples are shown below.

(31) a. Const: const�S�����nA� � SnA� �S���f�1�3� �nBg �nA� � S ���nB
link to �1�3�

nA

b. GTRC: gtrc�T����f�4�4� �nAg� ����� �
T
T ��TnA� �

gtrc�T��f�5�5� �nBg �f�4�4� ��Ag� �f�6�8� ��Cg ��D� �
T
T n�T nB

�5�5�
�A
�4�4�

� ����C
�6�8�

�D

As noted earlier, the component ordering in this representation does not necessarily correspond to the string
positions. For example, “Tn�T�A� J Tn�T�B� � Tn�T�B�A�” is represented as “�T����f�i� i� ��Ag� ����� J
�T����f�i�1� i�1���Bg� ������� �T��f�i�1� i�1���Bg �f�i� i� ��Ag� �����” with appropriate i. In any case, the
functor always comes to the left of the input.

The much harder part is to restore GTRCs from a representation like �T��f�1�3� �nAg �f�4�5� �nBg� �����. What
are the corresponding set of GTRCs? First, observe the following derivation of GTRCs (in CKY-style table) as
background:
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(32) GTRC derivation example:

3

a� T��TnAnBnC��1�2�I�3�3� or �1�1�I�2�3�

b� Tn�TnAnB�C��1�2�I�3�3� or �1�1�I�2�3�

c� T��T�CnAnB��1�2�J�3�3�

d� T��TnB�CnA��1�1�J�2�3�

e� T��TnA�CnB��1�1�I�2�3�

2 T��TnAnB��1�1�I�2�2�

T��TnBnC��2�2�I�3�3�

Tn�TnB�C��2�2�I�3�3�

T��T�CnB��2�2�J�3�3�

1 T��TnA� T��TnB�
T��TnC�
Tn�T�C�

1 2 3

Suppose we recover the LTRCs to derive the GTRCs in the above example. For simplicity, let us focus on the
entries a, b, and e. We start from the top cell with two entries corresponding to the two distinct derivations. Note that
the entries are copied from the CKY table and that the positional information such as �1�2� represents ‘the position in
the CKY table’.

(33) GTRC Recovery Table (setup stage):

3

�f�1�2� �nBg �f�3�3� �nCg�
�f�1�1� �nAg �f�2�3� �nCg�

...
�f�1�1� �nAg �f�2�3� �nBg�

2 �f�1�1� �nAg �f�2�2� �nBg�
�f�2�2� �nBg �f�3�3� �nCg�
�f�3�3� ��Cg �f�2�2� �nBg�

1 ���f�1�1� �nAg�
���f�2�2� �nBg�
���f�3�3� ��Cg�

���f�3�3� �nCg�
���f�2�2� �nBg�

3 2 1

The setup procedure is as follows: for each cell from top-down, find the child GTRC representations from CKY
table and store them in the appropriate cell. For example, �f�1�1� �nAg �f�2�3� �nCg� has the right child in �2�3� of
CKY table. This is T��TnBnC� and the corresponding representation is stored in the �2�3� cell of the recovery table.
T��T�CnB� is also stored in the same cell since it matches �f�1�1� �nAg �f�2�3� �nBg�. In addition, allocate a small
number of status bits for each entry.

The recovery stage processes the bottom row from right to left by checking the categorial consistency with the
target and maintaining status bits.
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(34) GTRC Recovery Table (recovery stage):

3

status:?�succ5c
�f�1�2� �nBg �f�3�3� �nCg�

status:?�succ5b
�f�1�1� �nAg �f�2�3� �nCg�

...
status:?� f ail2b

�f�1�1� �nAg �f�2�3� �nBg�

2
status:?�succ5a

�f�1�1� �nAg �f�2�2� �nBg�

status:?�succ3a
�f�2�2� �nBg �f�3�3� �nCg�

status:?� f ail2a

�f�3�3� ��Cg �f�2�2� �nBg�

1
status:?�succ5

���f�1�1� �nAg�

status:?�succ3
���f�2�2� �nBg�

status:?� f ail4
���f�3�3� ��Cg�

status:?�succ1
���f�3�3� �nCg�

status:?� f ail2
���f�2�2� �nBg�

3 2 1
l l l

fnAg fnB�nCg fnCg

Note that there is a dependency between the categories in the bottom row positions 1 and 2 of the recovery
table. Although T��TnAnBnC� and T��TnA�CnB� are valid entries in (32), T��TnAnBnB� and T��TnA�CnC� are
not. In general, this dependency can span the order of n. Checking the entire history of the previous positions will
cost exponential time. But we only need the information if the right branch of the current position has failed or not
(depending on tree structure with directionality and success/failure for each leaf). Thus by marking the success status
at the root of each substructure, we can check the status of the right branch in polynomial time.

Let us start from the bottom row position 1. Compare nC with the target set (suppose that the target is SnA

�
nB
nC

	
nC).

Since the categories are compatible, we set the status ‘succ’ as indicated by 1. On the other hand, nB fails, getting
‘ f ail’ indicated by 2. For an entry which is the right branch of a parent, if all the right branch sibling of the current
node failed, we percolate up the failure status to the parent. This will block any sequence involving nB at this position.
The failed parent is labelled with 2a and 2b. Move to the second position. nB succeeds in comparison. For the left
branch, we percolate up the success status to the parents. This is shown by 3a. �C can be failed without comparing
with the target since the parent already indicates the failure. The recovery process succeeds when one of the top entries
gets ‘succ’ as in 5b and 5c.
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