
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1990

Type Inference for Records in a Natural Extension of ML Type Inference for Records in a Natural Extension of ML

Didier Rémy

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Didier Rémy, "Type Inference for Records in a Natural Extension of ML", . October 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-73.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/641
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/641
mailto:repository@pobox.upenn.edu

Type Inference for Records in a Natural Extension of ML Type Inference for Records in a Natural Extension of ML

Abstract Abstract
We describe an extension of ML with records where inheritance is given by ML generic polymorphism. All
operations on records introduced by Wand in [Wan87] are supported, in particular the unrestricted
extension of a field, and other operations such as renaming of fields are added. The solution relies on
both an extension of ML, where the language of types is sorted and considered modulo equations
[Rem9Ob], and on a record extension of types [Rem9Oc]. The solution is simple and modular and the type
inference algorithm is efficient in practice.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-73.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/641

https://repository.upenn.edu/cis_reports/641

Type Inference For Records
In A Natural Extension Of ML

MS-CIS-90-73
LOGIC & COMPUTATION 24

Didier R6my

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 1990

Type Inference for Records
in a Natural Extension of ML

Didier Rgmy*
Departement of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Abstract

We describe an extension of ML with records where inheritance is given by ML generic
polymorphism. All operations on records introduced by Wand in [Wan871 are supported,
in particular the unrestricted extension of a field, and other operations such as renaming
of fields are added. The solution relies on both an extension of ML, where the language
of types is sorted and considered modulo equations [RemSOb], and on a record extension
of types [RemSOc]. The solution is simple and modular and the type inference algorithm
is efficient in practice.

Introduction

The aim of typechecking is to guarantee that well-typed programs will not produce runtime errors.
A type error is usually due to a programmer's mistake, and thus typechecking also helps him in
debugging his programs. But programmers do not like writing the types of their programs by
hand. Type inference requires as little type information as the declaration of data structures; then
all types of programs will be automatically computed.

Our goal is to provide type inference for labelled product data structures, commonly called
records, allowing some inheritance between them.

After recalling related work and defining the operations on records, we first review the solution
for a finite (and small) set of labels, which was presented in [Rem89], then extend it to a denum-
berable set of labels. In the last part we discuss the power and weakness of the solution, describe
some variations, and suggest improvements.

Why records?

Before records, data structures were built using product types, as in ML for example.

(" Peter", "John", " Professor", 27, 5467567, 56478356, (" toyota", "old", 8929901))

With records one would write, instead:

{name = "Peter"; lastname = "John"; job = "Professor"; age = 27; id = 5467567;
license = 56478356; vehicle = {name = "toyota"; id = 8929901; age = "old")}

- - - --

*Partly supported by research grant NSF IRI86-10617.

The latter program is definitely more readable than the former. It is more precise, too. Records can
also help send arguments to functions or retrieve their results. More generally, in communication
between processes records permit the naming of the different ports on which processes can exchange
information. One nice example of this can be found in the language LCS [Ber88] which is a
combination of the language ML and the language CCS designed by Robin Milner in 1980 [Mi180].
But certainly records have become more popular since we know that they can help implement
objects with a kind of inheritance [Wan89, CM89].

If both variants and records were added, types of data structures could be completely inferred
without any type declaration, whereas ML requires concrete data type declarations. This is also a
strong motivation for having records.

Related work

Luca Cardelli is the first who claimed that functional languages should have record opera.tions.
Because he did not know how to combine records and polymorphism, he designed Amber in 1986
as a monomorphic language. Later he designed the language FUN where bounded quantification
was introduced. Bounded quantification is an extension of second order quantification when some
type inclusions are allowed. This notion is essential in coding operations on records with inheritance.
In the language QUEST, the successor of FUN [CW85], bounded quantification was extended to
higher order.

A lot of work has been done on the semantics of languages with inclusion, initially without
record operations, which where incorporated later. It is only recently that a semantics of Quest
has been proposed [LC90].

A slight but significant improvement of bounded quantification has been made in [CCH*89] to
better consider recursive objects; a more general but less tractable system was studied by Pave1
Curtis [Cur87]. Today, the interest seems the simplification rather than the enrichment of existing
systems [LC90]. An interesting study whose goal is to remove bounded quantification is [HP90].

Records have also been formulated with explicit labelled conjunctive types in the language
Forsythe [Rey88].

In contrast, records in implicitly typed languages have been less studied and all proposed
extensions of ML are still very restrictive. The language Amber in 1986 did not actually make
records more popular in functional langages, probably because it was not polymorphic. Inheritance
in Amber was obtained by type inclusion [Car84, Car861. Records became very attractive in 1987,
after Mitchell Wand proposed a system in [Wan871 where inheritance was obtained from ML generic
polymorphism. Though type inference was incomplete for this system, it remains a reference, for
it was the first concrete proposal for extending ML with records having inheritance. Next year
complete type inference algorithms were found for a strong restriction of this system [JM88, OB881.
They only allowed the extension of a record with a field that was not defined before. Then, the
present author proposed a complete solution to Wand's system [Rem89], but it was formalized only
in the case of a finite set of labels (a solution was also given by Wand in 1988, but the completeness
was obtained at the cost of a complete set of principal types and the algorithm was explosive in
practice). Mitchell Wand revisited this approach and extended it with an "and" operation1 but
did not provide correctness proofs. The case of an infinite set of labels was addressed in [Ren~gOa],
which we review in this article. Works have been contributed by Peter Buneman and Atsushi Ohori,
simplifying the previous system [OB89, Oho901. Though the solution of [Oh0901 solves only the
restricted extension, it shares with this work a reliance on a sorted extension of ML, and pushes
some of the label constraints to the level of sorts.

'You may understand it as an "appendn on association lists in lisp compared to the "with" operation which should
be understood as a "cons".

Operations on records

In this subsection we show with examples what operations on records are expected and introduce
the main constructions. We use a CAML like syntax [CH89, Wei891.

The example we started with already illustrates a few ideas about labels. Like variable names,
labels do not have particular meanings. Though choosing good names (good is very subjective)
will help in writing and reading programs. Names can, of course, be reused in different records,
even to build fields of different types. This is illustrated in the three following examples

let car = {name = "Toyota", age = "old"; id = 7866):;

let truck = {name = "Blazer", id = 6587867567);;

let person = {name = " T i m " ; age = 31; id = 5656787);;

Note that no declaration previous to the use of labels is needed. The record person is defined on
exactly the same fields as the record car, though those fields do not have the same intuitive meaning.
The field age holds values of different types in car and person.

In the previous examples we built records all at once. But we can also do it step by step. A
value driver can be defined as being a copy of the record person but with one more field vehicle filled
with the previously defined car object.

let driver = {person with vehicle = car);;

Note that there is no sharing between the records person and driver. You can simply think as if the
former were discharged into a new empty record before adding a field car to build the latter. This
construction is called the extension of a record with a new field. In this example the field newly
defined was not present in the record person, but that should not be a restriction. For instance, if
our driver needs a more robust vehicle, we write

let truck-driver = {driver with vehicle = truck);;

As above, the operation is not a physical replacement of the vehicle field by a new value2. We do
not wish any constraint between the types of the old and the new values of the vehicle field. To
distinguish between the two kinds of extensions of a record with a new field, we will say that the
extension is strict when the new field could not be previously defined and unrestricted otherwise.

A more general operation than adding a field t o a record is the construction of a new record
from two previously defined ones, taking the union of their defined fields. For instance, assume
that a car has a good engine but a rusty body and that you cannot start your truck. If you are a
good mechanic, you could build this strange object

let repair-truck = {car and truck};;

and drive again. Of course, the semantics of the and construction has to be defined. One question
which arises is what value should be assigned to fields which are in both car and truck? Usually
when there is a conflict, i.e. a same field is defined in both records, its value would be taken from
the last record. But you might also expect from a typechecker that it would prevent this situation
from happening. Although the and construction is less common in the literature, probably because
it causes more trouble, it seems a very interesting one in different respects. This is what happens
in the language SML [HMMSO] when a structure is opened and extended with another one. In the
language LCS the visible ports of two processes run in parallel are exactly the ports visible in any
of them. And as shown by Mitchell Wand [Wan891 multiple inheritance can be coded with an and

construction.
The constructions we described above are not exhaustive but are the more common ones. We

should also mention the permutation, renaming and erasure of fields. We described how to build

2 ~ h i s operation would be ill typed if truck and car had incompatible types.

records, but of course we also want to read them. There is actually a unique construction for that
purpose.

let id x = x.id;;

let age x = x.age;;

This shows that the construction which reads any specified field is a real functional value. But
as labels are not values, there is no function which could take a label and a record as arguments
and would read the field of the record corresponding to that label. Thus we need one extraction
function per label, as for id and age above. Then they can be applied to different records of different
types but all having the field we want to read. For instance

age person, age driver;;

They can also be passed to other functions, as in

let car-info field = field car;;

car-info age;;

The testing function

let eq x y = equal x.id y.id

should of course accept arguments of different types provided they both have an id field of the same
type.

eq car truck;;

These examples were very simple. We will answer them below, but we will also meet more tricky
ones.

1 A small solution when the set of labels is finite

Though this solution will be made obsolete by the extension to a denumerable set of labels, we
choose to present it first, since it is very simple and the extension will be based on the same ideas.
It will also be a very decent solution in some cases when one wants only a few labels. And it
will emphasize a method for getting more polymorphism in ML (in fact, we will not put more
polymorphism in ML but we will make more use of it, sometimes in unexpected ways).

We will sketch the path from Wand's proposal to this solution, for it may be of some interest to
describe the method which we think could be applied in other situations. As intuitions are rather
subjective, and ours may not be yours, the section 1.1 can be skipped whenever it does not help.

1.1 The method

Records are partial functions from a set L of labels to the set of values. We simplify the problem
by considering only three labels a, b and c. Records can be represented in three field boxes, once
labels have been ordered:

Defining a record is the same as filling some of the fields with some values. For example, we will
put the values 1 and true in the a and c fields and leave the b field undefined.

1 true

Typeckecking means forgetting some information about values, for instance we will identify two
different numbers and only remember them as being numbers. The structure of types usually
reflects the structure of values, but with fewer details. It is thus natural to type records values
with partial functions from labels to types.

L - types

We first make record types total functions on labels using an explicitly undefined constant abs
("absent").

L -+ types U jabs }

In fact, we replace the union by the sum pre (types) + abs . We decompose record types as follows:

L - [I , Card (L)] - pre (types) + abs

The first function is an ordering from L to the segment [I, Card (L)] and can be set once and for
all. Thus record types can be represented only by the second component, which is a tuple of length
Card (L) of values in pre (types) + abs . The previous example is typed by

II(pre(num) , abs , pre(boo1))

1

A function extracta reading the a field shall accept as an argument any record having the a field
defined with a value M , and return M. The a projection of the type of the argument must be
pre (t) if t is the type of M. We do not care whether other fields are defined or not, so their types
may be anything, i.e. they are variables cp and $. The result has type a.

true

extracta : II(pre (a) , cp, +) + a

1.2 A formulation

Because we want a very restricted use of pre and abs symbols, the language of types will be a
sorted free algebra, F (C , V) . The set C of type symbols contains at least an arrow symbol + and
two symbols pre and abs. We note e the arity function. The set IC is a pair of two sorts usual
and field and the signature C of C is defined by:

pre : usual + field
abs : field

II : field @ field + usual

card(l)
V f € C \ { p r e , abs ,n) , f : psual 8.. . usual, + usual

e(f

The extension of ML with sorted types is straightforward. We will not formalize it further, since
this will be subsumed in the next section. The inference rules are the same as in ML though the
language of types is sorted. The typing relation defined by the inference rules is still decidable and
admits principal solutions in the usual sense.

In this language, we may assume that the primitive environment is composed of the following
assertions:

null : II (abs , . . . abs)
extracta : II (y, . . . , pre (a) . . . 9 ,) + a

newa : I I (y ,,... cp,) -+ a -t II(y, ..., pre(a) , . . . cp ,)

System ITj
The null constant is the empty record. The extracta constant reads the a field from its argument,
and the newa constant extends its first argument on label a with its second argument.

2 Extension to large records

Though the previous solution is very simple, and perfect when there are only two or three labels
involved, it is clearly no longer acceptable when the set of labels is getting larger. This is because
record types are proportional to the size of this set even the type of the null record, which has no
field defined. When a very local use of records is needed, the number of labels may be written with
only one digit and the solution works perfectly. But in a large system where some records are used
globally, the number of labels will quickly be over one hundred.

In any program the number of labels will always be finite, but with modular programming, the
whole set of labels is not often known at the beginning (though in this case, some of the labels
may be local to a module and solved independently). In practice, it is thus interesting to reason
on an "open", i.e. denumerable, set of labels. From a theoretical point of view it is the only way
of avoiding the meta-reasoning which would show that any computation done in a system with a
small set of labels would still be valid in a system with a larger set of labels, and that the typing
in the latter case could be deduced from the typing in the former case. The nice solution consists
in working in a system where all potential labels are taken into account from the beginning.

In the first part we will illustrate the above discussion and describe the intuitions. Then we will
formalize the solution in three steps. First we extend types with record types in a more general
framework of sorted algebras; record types will be sorted types modulo equations. The next step
describes an extension of ML where types are sorted taken modulo equations. Last, we apply the
results to a special case, re-using the same encoding as for the finite case.

2.1 An intuitive approach

We first assume that there are only two labels a and b. Let r be the record equal to {a = 1 ; b = true)
and f the function which reads the a field. What happens when we apply f to r? Assuming f has
type t + s and r has type r , we can apply f to r if the two types t and r are unifiable. In our
example we have

t : I I (a : p r e (a) ; b : pa),
r : ll (a : pre(num); b: pre(bool)),

and s is equal to a. The unification of t and r is done field by field, their most general unifier is

a H num
yb H pre (bool)

If we had one more label c, the types t and r would be

t : I I (a : p r e (a) ; b : cpb; c: cp,),
r : 11 (a : pre (num) ; b : pre (bool) ; c : abs).

and their most general unifier
a I+ num
yb H pre (bool)

cp, abs
We can again replay with one more label d. We would have the types

t : l l (a : p r e (a) ; b: cpb; c : cp, ; d : cpd),
r : I I (a : pre(num); b: pre(boo1); c : abs ; d : abs).

and their most general unifier
a H num
yb H pre (bool)
9, H abs
yd H abs

Since labels c and d do not appear neither in r nor in f , it was obvious that fields c and d would
behave the same, and that all their type components would be equal up to renaming of variables,
i.e. isomorphic types. So we can guess the component of the most general unifier on any new field
t only by taking a copy of its component on the c or d field. Instead of writing the types of all the
fields, we need only to write a template for all fields whose types are isomorphic, and the types of
significant fields, i.e. those which are not isomorphic to the template.

t : TI (a : p re (a) ; b : c p b ; oo: v,),
r : 11 (a : pre (num) ; b : pre (boo]) ; co : abs).

The expression II ((t : te)eE1 ; co : s,) should be read as

n (C : { t e i f t € I
se otherwise, where

But we can directly calculate the most general unifier without developing this expression, which
will actually allow the set of labels to be infinite. We summarize the above different views in this
figure:

This approach is so intuitive that it seems very simple. There is a difficulty though, due to the
sharing among different templates. Sometimes a field has to be extracted from its template, because
it must be unified with a significant field.

The macroscopic operation that we need is the transformation of a template t into a copy s
which will be the type of the extracted field and another copy r to become the new template. We
regenerate the template during an extraction mainly because of sharing. But it is also intuitive that
once a field has been extracted the retained template should remember that and thus it cannot be
the same. In order to keep sharing, we must extract a field step by step starting from the leaves.

For a template variable a, the extraction consists in replacing that variable by two fresh variables
,O and 7, more precisely by the term t : ,O; y. This is exactly the substitution

For a small3 term f (a) , assume that we already extracted field t from a, i.e. we have f (t : P ; y),
we now want to replace it by t : f (a) ; f (7). How can we do that? We simply ask it to be true,
i.e. we assume the axiom

f (t : P ; r G t : f (a) ; f (r)

We do that for every symbol but 114. We have built a record extension of types which is described
in the next section.

2.2 Extending a sorted free algebra with record terms

Because we want a general solution where the encoding of records is not specified, we will study the
problem independently of any particular signature and focus on the construction of record types.

3A term of height one.
4We could wish to do it for the symbol I1 as well in order to allow the template to be composed of records itselft,

but this will not be needed for our application and we will not study this complicated case here.

In this section we forget the semantic of types and simply think of them as the terms of a free
sorted algebra.

Let V be a set of variables, C be a set of symbols and K: be a set of sorts. We note K:+ the union

Let C be a function from C to K:+, also called a signature of C. We write f : x LO 8.. . in-1 + in for
C : f H (LO, . . . in). We extend the term of the the free sorted algebra 3 (C , V) with record terms.

Unsorted records terms

We call the terms of the free unsorted algebra 3 (V , V) where V is the set of symbols

c u { n) u { @ e I e E l) ,

unsorted record terms . We write a : a ; p for aQ,P, and a : a ; b: p ; Y for a : a ; (b : p ; 7).

Example 1 The expressions

II (a : pre (num) ; c : pre (bool) ; abs)

and
II (a : pre (b : num ; num) ; abs)

are unsorted record terms. In section 2.4 we will consider the former as a possible type for the
record {a = 1 ; c = true) but we will not give a meaning to the latter. Unsorted record terms are
too many. We define record terms using sorts to constraint their formation. Only a few of the
unsorted record terms will have associated record terms.

Record terms

Let C' be a subset of C (by default C' is taken to be C), and K:' a subset of K: x K: (by default K:' is
taken to K: x K:).

Definition 1 Record terms are the terms of the free sorted algebra 3(C1 x C", V) where

The set of sorts is the product K: x p where P is composed of the set P of all the finite subsets
of L , extended with a sort constant E .

the set of constants 'Dl is

all symbols being distinct.

the signature C1 x C" is the product signature of C' and C", i.e. for any symbol f in V'

f xll (1;. ~ i) i ~ [l , ~] * (K, B) f :el (ii)ie[l,p1 * K A f :x t l (Ai)iE[l,pl * B

where the two signatures C' and C" on 'Dl are defined by the assertions

Superscript erasure

We define a function erasure from the record terms to the unsorted record terms which remove all
the superscripts of symbols. It is easy to show that for any unsorted term t, any sort L and any
element A of P, there is at most one record term t' such that

1. t is the erasure of t',

2. (L , A) is the signature of t'.

This property allows us to define a record term by giving its erasure and signature, which we shall
usually do. Moreover we shall not write the signature when it is implicit in the context or does not
matter.

Example 2 The erasure of

is the unsorted record term

II (a : pre (nurn) ; c : pre (bool) ; abs)

but there is no record term whose erasure would be

11 (a : pre (b : n u m ; n u m) ; abs)

Definition 2 The (C', Kt)-record extension of the free sorted algebra F (C , V) over the set of labels
C is the sorted algebra F(Cf x C", V) / E where E is a composed of

a distributivity axioms, for all symbols f : (L ~) ~ ~ [~ , ~ ~ + K and finite subset of labels A which do
not contain a,

a left commutativity axioms for all sort L and finite set of labels A which does contain labels a
and b,

a ~ 2 ~ (p s ; A u { a } y) ~ Q : A (~ Q ; A u O) ~)

Without the superscrit, the equations are written

a distributivity

! a : f ; f (P i) i E [l . p]) f (a : ai ; Pi)iE[l,pl = (

left commutativity

(a : a ; b : 0 ; y) L (b : 1 0 ; a : a ; 7)

Example 3 In the term
11 (a : pre (n u m) ; c : pre (bool) ; abs)

we can replace abs by b : abs ; abs and use the left commutativity axioms to obtain the term

II (a : pre (n u m) ; b : abs ; c : pre (bool) ; abs)

In the term
W a : p r e (4 ; v)

we can substitute p by b: qhb ; c : $, ; $ to get

which can be unified with the previous term field by field.

In [RemSOc] we proved the following theorem:

Theorem 1 Unification in the record extension F(C'x C", V)/E of a n y k e e sorted algebra F(C, V)
is decidable and unitary (every solvable unification problem has a principal unifier).

2.3 Extending the types of ML with a sorted equational theory

In this section we consider a sorted regular theory 'TIE for which unification is decidable and
unitary. Recall that a regular theory is one whose left and right hand sides of axioms always have
the same set of variables. For any term t of 'TIE we write V(t) the set of its variables.

We studied the possibility of adding a sorted equational theory over the types of ML in [RemSOa].
We recall here the main definitions and results. The language ML that we study is pure lambda-
calculus extended with a L E T construction. We assume a set of variables VE.

Definition 3 The set of terms in ML, is the smallest set containing VE and such that if x is a
variable and M and N are terms, then so are M N , Xx.M and let x = M in N .

We define a relation !-TIE, or !- for short, called typing judgments of the form r I- M : V X . t
where

is a typing environment, i.e. a list of assertions of the form x : V X . s where x is an ML
variable, X is a set of type variables and t a type,

M is a term,

X is a finite set of type variables and t is a type, and we abbreviate V 0 . t by t ,

the relation 5 ("is more general than") is defined by

by the set of inference rules (MLTIE)

(INST) rl- M : V X . ~ vx.t 5 v y . ~ r I- M : V Y . s

All but the EQUAL rules are the usual rules for ML. The EQUAL rule is necessary since the
equality on types is modulo the equations.

The problem of type inference for ML is stated as follows. Given a context r and a term M,
find all the substitutions a and type schemes VX . t such that F a I- M : V X t. The principal
type property means that the previous set is either empty which is decidable, or of the form
{aP,V X - tP I E S) where the pair (a,V X . t), called the principal solution, is computable, and
S denotes the set of all substitutions.

Theorem 2 If the sorted theory 'TIE is regular and its unification is decidable and unitary, then
the relation k T I E has the principal type property.

2.4 Record type reconstruction

In this section we apply the two preceding theorems to extend the types of ML with records types,
then we introduce the operations on records following the finite case.

We start with a set of symbols C containing at least the arrow symbol +, and two symbols pre
and abs. The II symbol will be provided by the record extension. Let V be a denumerable set
of type variables. Let K be the set of two sorts usual and field, and C the following signature of
symbols in C over K:

V f EC, f : usual ~ (f) j usud
pre : usual =+ field
abs : field

We write T(C) for the free algebra F(C, V) and R(C)/E the record extension F(Ci x Cfi, V)/E as
defined in section 2.2.

We call ML(C) the language ML, with the typing relation kR(C) IE . It follows from theorem 2
and the above properties that the relation kR(C)IE is decidable and has the principal type property.

Following the finite case we assume in the language ML(C) a primitive environment composed
of the (denumerable) set of assertions

null : II (abs)
extracta : II (a : pre (a) ; cp) -r a

newa : I I (a : cp; +) + a + I I (a : p r e (a) ; $)

System II

It is convenient to use a smoother notation, adding the following macro-syntax facilities:

{) = null
{r with a = x) newa r x

r.a = extracta r
{al = X I ; . . .a, = x,) {{al = XI ; . . . a,-1 = x,-I) with a, = 2,)

We illustrate this system by examples in the next section.

3 Playing with records

In this section we first show on very simple examples how most of the operations are solved by
this system, then we meet its limitations. Some of them find a remedy by slightly improving the
encoding. Last we propose and discuss some further extensions.

3.1 A demonstration of the game

A typeckecking prototype has been implemented in the language CAML. It was used to automat-
ically type all the examples presented here and preceded by the # character. We start with very
simple examples and end with a short program.

When building simple record values

#let car = {name = "Toyota"; age = "old"; id = 7866);;

car : {name : Pre (string); age : Pre (string); id : Pre (num); ~ b s)

#let truck = {name = "Blazer"; id = 6587867567);;

truck : {name : Pre (string); id : Pre (num); Abs}

#let person = {name = "Tim"; age = 31; id = 5656787);;

person : {name : Pre (string); age : Pre (num); id : Pre (num); Abs)

each field defined with a value of type t is significant with the type pre (t) . Other fields are not,
and are gathered in the template abs . We can extend a record with a new field,

#let driver = iperson with vehicle = car);;

driver :

{vehicle : Pre ({name : Pre (string); age : Pre (string); id : Pre (num); Abs});

name : Pre (string); age : Pre (num); id : Pre (num); Abs)

whether the field was previously undefined as above, or defined as below:

#let truck-driver = {driver with vehicle = truck);;

truck-driver :

{vehicle : Pre ({name : Pre (string); id : Pre (num); Abs)); name : Pre (string);

age : Pre (num); id : Pre (num); Abs)

But we do not provide an and construction.
The only construction for accessing fields is the "dot" operation.

#let age x = x.age;;

age : {age : Pre ('a); 'P) + 'a

#let id x = x.id;;

id : {id : Pre ('a); + 'a

The accessed field must be defined with a value of typed 'a, so it has type pre ('a), and other fields
may or may not be defined; they are gathered in the template= variable 'p. The return value has
type 'a. To illustrate the plain functionality, we pass age as an argument to another function in the
following example.

#let car-info field = field car;;

car-info : ({name : Pre (string); age : Pre (string); id : Pre (num); Abs) + 'a) -+ 'a

#car-info age; ;

it : string

The function equal below takes two records both possessing an id field of the same type, but we do
not care about the other fields. For simplicity of examples we assume a polymorphic equality equal

on numbers.

#let eq x y = equal x. id y.id;;

eq : {id : Pre ('a); Ip} + {id : Pre ('a); lq} -+ boo1

#eq car truck;;

it : boo1

We will see more examples in section 3.3. Let us turn to the counter-examples.

3.2 Limitations

There are mainly two kinds of limitations, one is due to the encoding method, the other to ML
generic polymorphism.

The only source of polymorphism in record operations is generic polymorphism. Or we saw
that in a record value, a field defined with a value of type t is typed by pre (t). Once a field is
defined every function must see it defined. This forbids merging two records with different sets of
defined fields. We will use the following function to shorten examples

#let choice x y = if t r u e then x else y;;

choice : 'a -+ 'a + 'a

We then fail with

#choice car truck;;

Typechecking error: collision between Pre (string) and Abs

because the age field is undefined in t ruck but defined in car. This is really a weakness, for the
program

#(choice car truck).name;;

Typechecking error: collision between Pre (string) and Abs

which is equivalent (but more efficient) to the program

#choice car.name truck.name;;

it : st r ing

may actually be useful. We will give a partial solution to this problem, and suggest a full but
expensive one.

A natural generalization of the above eq function is to abstract the field which is used for testing
equality

#let field-eq field x y = equal (field x) (field y);;

field-eq : ('a + 'b) + 'a + 'a + boo1

It is so general that it could test equality of other values than records. We would get the old eq

version by applying field-eq to the function id.

#let id-eq = field-eq id;;

id-eq : { id : Pre ('a); 'p} + {id : Pre ('a); 'p} -+ boo1

#id-eq car truck;;

Typechecking error: collision between Pre (string) and Abs

The last example failed. This is not surprising since as field is bound by a lambda in field-eq,

its two instances have the same type and so have both arguments x and y. Though in eq the
arguments x and y were unlinked by two different instances of id. This is nothing else but ML
generic polymorphism restriction. We emphasize that as record polymorphism is only generic the
restriction applies drastically to them.

3.3 Flexibility and Remedies

The method for typeckecking records is very flexible. For the operation on records have not been
fixed at the beginning, but at the very end. They are parameters which can vary in many ways.

The easiest thing to play with is changing the types of primitives. For instance asserting that
newa has the principal type

will make the extension of a record with a new field possible only if the field was previously
undefined. This slight change gives exactly the strong restriction that appears in both attempts
to solve Wand's system [JM88, OB881. Weakening the type of this primitive may be interesting in
some cases, because the restricted construction may be easier to implement, and more efficient.

We can freely change the type of primitives, provided we will know how to implement them
correctly, but we more generally can change the set of operations on records themselves. Since
a defined field may not be dropped implicitly, it would be convenient to dispose of a primitive
removing explicitly a field from a record

and add this syntactic facility

{ r without a) - forgeta r.

Our encoding also allows us to type a function which renames fields

renameatb : II (a : c p ; b : +; X) + II (a : abs ; b : 9 ; X)

Note that the renamed field may not be defined. In the result it is no longer accessible. A more
primitive function would just exchange two fields

exchangeawb : I I (a : c p ; b : +; X) + II (a : +; b : c p ; X)

Then the rename constant is simply the composition

But the flexibility is much more than that. The decidability of type inference does not depend
of the specific signature of pre and abs type symbols. The encoding of records can be reviewed.
And we are going to illustrate that by presenting another system for type-checking records.

We mentioned above that one extension of the current system should allow some polymorphism
on records values themselves. We recall the example which we failed to type

#choice car truck;;

Typechecking error: collision between Pre (string) and Abs

because the age field was defined in car but undefined in truck. But we would like the result to have
a type with abs on this field to guarantee than it will not be accessed, but common and compatible
fields should remain accessible. The idea is that a defined field should be seen as undefined when
needed. From the type point of view, this would require that a defined field with a value of type t
should be typed with both pre (t) and abs . If possible not using conjunctive types [Cop80].

The solution is first to force abs to be of arity 1 replacing each use of abs by abs (a) where a
is a free, and so quantified, variable. Then because we cannot write

where would range over abs and pre , we make abs and pre constant symbols by introducing an
infix field symbol noted ".", and a new sort flag

pre : flag
abs : flag

. : flag 8 usual =+ field

We now write pre .a instead of pre (a) and &.a where E is a variable of the sort flag . The solution
II* is defined by the following set of primitives

null : II (abs .a)
extracta : II (a : Pre -a ; 9) -t a:

newa:II(a:cp; $) + a - + T I (a : ~ . a ; $)

System II*

It is easy to see that system 11* is more general than system 11, i.e. that any expression typable
in the system II is also typable in the system TI*: Replacing in a proof in 11 all occurrences of abs
by abs .a and all occurrence of pre (t) by pre .t, where a does not appear in the proof, we obtain a
correct proof in II*.

We retype some of the examples in the system TI*. Building a record creates a polymorphic
object, since all fields have a distinct flag variable

#let car = {name = "Toyota"; age = "old"; id = 7866);;

car : {name : lustring; age : 'vstring; id : 'w.num; abs.'a)

#let truck = {name = "Blazer"; id = 6587867567);;

truck : {name : 'ustring; id : 'v.num; abs.'a)

Now these two records can be merged,

#choice car truck;;

it : {name : lustring; age : absstring; id : 'v.num; abs.'a}

forgetting the age field in car. Note that if the presence of field age has been forgotten, its type has
not: we always remember the types of values which have stayed in fields. Thus we fail with

#let person = {name = "Tim"; age = 31; id = 5656787);;

person : {name : lustring; age : 'v.num; id : 'w.num; abs.'a)

#choice person car;;

Typechecking error: collision between num and string

This is really a failure since both records have common field name and id, which might be tested on
later, and this example would be correct in the explicitly typed language QUEST [Car89]. If we
add a new collection of primitives

forgeta : TI (a : c p ; $1 + II (a : &.a; $),

then we can turn around the above failure, explicitly forgetting label age in any of the two records

#choice {car without age} person;;

it : {name : 'ustring; age : abs.num; id : 'v.num; abs.'a)

#choice car iperson without age);;

it : {name : lustring; age : absstring; id : 'v.num; abs.'a)

#choice {car without age) without age);;

it : {age : abs.'a; name : lustring; id : 'v.num; abs.'b)

We can now present a more realistic example which illustrate the ability to add annotations on
data structures and of course to type the presence of these annotations. The example is run into
the system II*, and we assume an infix addition + of type n u m + nurn + num.

#type tree ('u) = Leaf o f n u m

1 Node o f {left: pre.tree ('u); r ight: pre.tree ('u);

annot: 'u.num; abs.unit}
#;;
N e w constructors declared:

Node : { le f t : pre.tree ('u); r ight : pre.tree ('u); annot : 'u.num; abs.unit} t ree ('u)

Leaf : n u m -+ tree ('u)

The variable 'u indicates the presence of the annotation annot. For instance this annotation is
absent in the structure

#let winter = 'Node { le f t = 'Leaf 1; r ight = 'Leaf 2 1;;
winter : t ree (abs)

The following function annotates a structure.

#let rec annotat ion =
funct ion

L e a f n - + ' L e a f n , n

1 Node { left = r; r i gh t = s) +

let (r,p) = annotat ion r i n

let (s,q) = annotat ion s i n

'Node { left = r; r ight = s; annot = P + ~) , p+q;;

annotat ion : t ree ('u) + tree ('v) * n u m

#let annotate x = match annotat ion x w i t h y,- + y;;

annotate : tree ('u) -+ tree ('v)

We use it to annotate the structure winter.

#let spring = annotate winter;;

spring : t ree ('u)

We will read a structure with the following function.

#let read =
funct ion

' L e a f n t n

I 'Node r + r.annot;;

read : tree (pre) + nurn

Of course, it can be applied to the value spring but not to the empty structure winter.

#read winter;;

Typechecking error: collision between pre and abs

#read spring;;

it : n u m

But the function

#let rec le f t =
funct ion

'Leaf n + n

I 'Node r + lef t (r.left);;

left : tree ('u) + num

may be applied to both winter and spring.

#left winter;;

it : num

#left spring;;

i t : nurn

3.4 Extensions

In this section we describe two possible extensions. Both of them have been implemented in a
prototype, but not completely formalized yet.

One important motivation for having records was the encoding of some object oriented features
into them. But the usual encoding uses recursive types [Car84, Wan891. An extension of ML
with variant types is very easy once we have record types, following the idea of [Rem89], but the
extension is actually interesting only if recursive types are allowed.

Thus it would be necessary to extend the results presented here with recursive types. Unification
on rational trees in the empty theory is well understood [Hue76, MM82]. In the case of a finite set
of labels, the extension of Theorem 2 to rational trees is easy. The infinite case use an equational
theory, and unification in its extension with rational trees has no decidable and unitary algorithm
in general, even when the original has. But the specificity of the record theory let us conjecture
that it can be extended with regular trees.

Another extension which was sketched in [Rem89] partially solves the restrictions due to ML
polymorphism. Because subtyping polymorphism goes through lambda abstractions, it could be
used to solve some of the examples we failed with. ML type inference with subtyping polymorphism
has been first studied by Mitchell in [Mit84] and later by Mishra and Fuh in [FM88, FM891. The
LET-case has only been treated in [Jat89]. But as for recursive types, subtyping has never been
studied in the presence of an equational theory. Though the general case is certainly difficult, we
conjecture that subtyping is compatible with the record theory. We present below an extension
with subtyping in the finite case. The extension in the infinite case would be similar but it would
depend on the previous conjecture.

It is straight-forward to extend the results of [FM89] to deal with sorted types. It is thus
possible to embed the language TI into a language with inclusion. In fact, we will start with the
language TI j which is the finite case solution but with the signature of the language TI*. The reason
for that could be that this language is more powerful than TIf, but a more technical reason will
appear later. We make very little use of subtyping, for we assume only the atomic coercion

Pre C abs,

which says that if a field is defined, it can also be considered as undefined. We would assert the
following types to the primitives for records:

null : TI (abs .cwl,. . . abs .a l)
extracta : II (9, . . . , pre .a . . .9 ,) I a

newa : I I (9 , ,... y,) I a t II(9, ..., pre.a, . . . y ,)

System TI;

Note that if the types look the same, they are taken modulo inclusion, and are thus more polymor-
phic. In this system, we could type

let id-eq = field-eq id;;

with

id-eq : {id : Pre . 'a; 'p} -t {id : Pre .'a; 'p} -t boo1

modulo subtyping, which allows the following

id-eq car truck;;

The field age is implicitly forgotten in truck by the inclusion rules.
But we would still fail with the example

choice person car;;

for because we could forget the presence of fields but not their types, and there is presently a
mismatch between num and string for the old field.

The solution would be to use the system IIf instead of TI;. But the difficulty is that the inclusion
we need is

pre (a) c abs

which is not atomic. Such coercions are not allowed. Type inference with inclusion with non atomic
coercions has not been studied yet. The type of primitives for records would be the same as in
the system TI but modulo this inclusion.

Conclusion

We described a simple, flexible and efficient solution for extending ML with operations on records
allowing some kind of inheritance. The solution uses an independent extension of ML with a sorted
equational theory over types. An immediate improvement is to allow recursive types needed in
many applications of records.

The main limitation of our solution is ML polymorphism, but we conjecture a way of going
around. It is not clear yet whether we would want such an extension, for it might not be worth the
extra cost in type inference.

This system may be used to add object oriented features, and we hope that ML will regain the
attraction that it has been loosing to the benefit of explicitly typed languages.

Acknowledgements

I am grateful for interesting discussions with Peter Buneman, Val Breazu-Tannen and Carl Gunter,
and particularly thankful to Benjamin Pierce whose comments on the presentation of this article
were very helpful.

References

[Bert381 Bernard Berthomieu. Une implantation de CCS. Technical Report 88367, LAAS, 7,
Avenue du Colonnel Roche, 31077 Toulouse, France, dgcembre 1988.

[Car841 Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types,
pages 51-68, Springer Verlag, 1984. Also in Information and Computation, 1988.

[Car861 Luca Cardelli. Amber. In Combinators and Functional Programming Languages,
pages 21-47, Spinger Verlag, 1986. Proceedings of the 13th Summer School of the
LITP.

[Car891 Luca Cardelli. Typefull programming. In IFIP advanced seminar on Formal Methods
in Programming Langage Semantics, Springer Verlag, 1989.

[CCH*89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-
Bounded polymorphism for object oriented programming. In The Fourth International
Conference on Functional Programming Languages and Computer Architecture, 1989.

[CH89] Guy Cousineau and Gdrard Huet. The CAML Primer. Institut National de Recherche
en Informatique et Automatisme, France, 1989.

[CM89] Luca Cardelli and John C. Mitchell. Operations on records. In Fifth International
Conference on Mathematical Foundations of Progmmming Semantics, 1989.

[Cop801 Mario Coppo. An extended polymorphic type system for applicative languages. In
MFCS '80, pages 194-204, Springer Verlag, 1980.

[Cur871 Pave1 Curtis. Constmined Quantification in Polymorphic Type Analysis PhD thesis,
Cornell, 1987.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17 (4):471-522, 1985.

[FM88] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In ESOP '88,
pages 94-114, Springer Verlag, 1988.

[I'M891 You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: closing the theory-
practice gap. In TA PSOFT'89, 1989.

[HMMSO] Robert Harper, David MacQueen, and Robin Milner. The definition of Standard ML,
Version 4. Laboratory for Foundations of Computer Science, University of Edinburgh,
1990.

[HP90] Robert W. Harper and Benjamin C. Pierce. Extensible Records Without Subsumption.
Technical Report CMU-CS-90-102, Carnegie Mellon University, Pittsburg, Pensylvania,
February 1990.

[Hue761 Gdrard Huet. Re'solution d'e'quations duns les langages d'ordre 1 ,2 , . . . ,w. PhD thesis,
Universitd Paris 7, 1976.

[Jat89] Lalita A. Jategaonkar. ML with Extended Pattern Matching and Subtypes. Master's
thesis, MIT, 545 Technology Square, Cambridge, MA 02139, August 89.

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching and
subtypes. In Proceedings of the 1988 Conference on LISP and Functional Programming,
1988.

[LC901 Giuseppe Longo and Luca Cardelli. A semantic basis for QUEST. In Proceedings of the
1990 Conference on LISP and Functional Programming, 1990.

[Mi1801 Robin Milner. A calculus of communicating systems. In Lecture Notes in Computer
Science, Springer Verlag, 1980.

[Mitt341 John C. Mitchell. Coercion and type inference. In Eleventh Annual Symposium on
Principles Of Programming Languages, 1984.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4(2):258-282, 1982.

[OB88] Atsushi Ohori and Peter Buneman. Type inference in a database langage. In ACM
Conference on LISP and Functional Programming, pages 174-183, 1988.

[OB89] Atsushi Ohori and Peter Buneman. Static type inference for parametric classes. In
Object-Oriented and Programming Systems, Languages, and Applications, Conference
Proceedings, pages 445-456, October 1989.

[Oh0901 Atsushi Ohori. Extending ML Polymorphism to Record Structure. Technical Report,
University of Glasgow, 1990.

[Rem89] Didier RQmy. Records and variants as a natural extension of ML. In Sixteenth Annual
Symposium on Principles Of Prognzmming Languages, 1989.

[RemgOa] Didier RQmy. Alg2bres Touflues. Application au Typage Polymorphe des Objects Enreg-
istrements duns les Langages Fonctionnels. PhD thesis, Universitd de Paris 7, 1990.

[RemgOb] Didier Rbmy. Extending ML Type System with a Sorted Equational Theory. Technical
Report, University of Pensylvania, 1990. To appear. Also in [RemgOa], chapter 3.

[Rem9Oc] Didier Rkmy. Unification in Syntactic Theories and its Application to the Record Ex-
tension of a Fme Sorted Algebra. Technical Report, University of Pensylvania, 1990. To
appear. Also in [RemgOa], chapter 2.

[Rey88] John C. Reynolds. Preliminary Design of the Programming Language Forsythe. Tech-
nical Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh, Pennsylvania,
June 1988.

[Wan871 Mitchell Wand. Complete type inference for simple objects. In Second Symposium on
Logic In Computer Science, 1987.

[Wan891 Mitchell Wand. Type inference for record concatenation and multiple inheritance. In
Fourth Annual Symposium on Logic In Computer Science, pages 92-97, 1989.

Lwei891 Pierre Weis. The CAML Reference Manual. Institut National de Recherche en Informa-
tique et Automatisme, France, 1989.

	Type Inference for Records in a Natural Extension of ML
	Recommended Citation

	Type Inference for Records in a Natural Extension of ML
	Abstract
	Comments

	tmp.1192136042.pdf.DO6Ht

