
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2001

A User-Level Introduction to the Nuprl Proof Development System A User-Level Introduction to the Nuprl Proof Development System

Eric Aaron
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Eric Aaron, "A User-Level Introduction to the Nuprl Proof Development System", . January 2001.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-32.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/822
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/822
mailto:repository@pobox.upenn.edu

A User-Level Introduction to the Nuprl Proof Development System A User-Level Introduction to the Nuprl Proof Development System

Abstract Abstract
This document is intended to introduce the key elements of the Nuprl Proof Development System (Nuprl,
for short) from the perspective of a Nuprl user, as opposed to the perspective of someone intimately
involved in developing or extending Nuprl. As such, it may be more appropriate than other Kuprl-related
documents for readers who are primarily concerned with uses of Nuprl and not fine details of Nuprl's
mathematical foundation. It introduces and illustrates key Kuprl concepts -such as types, terms,
displayforms, and tactics - in the framework of a model of calculational predicate logic inference.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-32.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/822

https://repository.upenn.edu/cis_reports/822

A User-Level Introduction to the Nuprl Proof
Development System

Eric Aaron
Department of Computer and Information Science

University Of Pennsylvania

Abstract

This document is intended to introduce the key elements of the Nuprl Proof Devel-
opment Sys tem (Nuprl, for short) from the perspective of a Nuprl user, as opposed to
the perspective of someone intimately involved in developing or extending Nuprl. As
such, it may be more appropriate than other Kuprl-related documents for readers who
are primarily concerned with uses of Nuprl and not fine details of Nuprl's mathematical
foundation. It introduces and illustrates key Kuprl concepts -such as types, terms,
displayforms, and tactics- in the framework of a model of calculational predicate logic
inference.

1 Preface and Context

The bulk of this document is a (lightly edited) chapter from the doctoral dissertation [2].
Unlike other documents introducing key elements of the Nuprl Proof Development System
(Nuprl, for short) [8, 121, it was not written by an author whose primary concern was further
developing the underlying Nuprl system per se. Instead, it was written in the context of a
project that applied Nuprl to formally represent a kind of human reasoning. That is, it was
written by a user of Nuprl, not primarily a developer, for readers more attuned to uses of
Nuprl than to fine details of its foundation.

Before presenting this introduction to Nuprl concepts, we present a concise description
of its context, the research from which it emerged. The remainder of this section is an
extremely brief overview of the ideas in [2]; interested readers are strongly encouraged to
read the less-brief overviews in the introductory material of the dissertation itself.

The research explores a new, interdisciplinary approach to cognitive modeling of high-
level inference, combining complementary ideas from applied logic, artificial intelligence, and
cognitive science. The dissertation describes an application of this approach to a particular
inference task: the stylized method for theorem proving in calculational predicate logic (de-
scribed in the undergraduate-level textbook [Ill), a variant of classical first-order predicate
logic. Theorems are proved in calculational logic by applying a chain of equality-preserving
rewrites; for instance, expression A = B could be proved by rewriting -4 t o B or by

Theorem Change of Dummy. Provided -occurs(" y " , " R , P") and function f has
an inverse, (*x I R : P) = (*y I R[x := f .y] : P[x := f .y]) .

Proof. We start with the right side of (*x I R : P) = (*y I R[x := f.y] : P[x := f.y]) and
show it is equal to the left side.

(*y 1 R[x := f.y] : P[x := f.y])
= (One-point rule (8.14)

-Quantification over x has to be introduced. The One-
point rule is the only theorem that can be applied at first.)

(*y I R[x:= f.y] : (*x 1 x = f . y : P))
= (Nesting (8.20) -Moving dummy x t o the outside

gets us closer to the final form.)
(*x, y I R[x := f.y] A x = f.y : P)

= (Substitution (3.84a) - R[x := f.y] must be removed
at some point. This substitution makes it possible.)

(*x,y I R[x:=x] A x = f . y : P)
= (R[x := x] E R ; Nesting, -occurs(" y " , " f in)

-Now we can get a quantification in x alone.)
(*x I R:(*y I x = f . y : P))

= (x = f .y y = f-' .x T h i s step prepares for the
elimination of y using the One-point rule.)

(*x I R : (3 I = f - l .2 : P))
= (One-point rule (8.14))

(*z 1 R : P[y := f-'.XI)
= (Definition of textual substitution - loccurs(" y " , " P "))

(*x I R : P)

Figure 1: Proof of Theorem Change of Dummy.

rewriting the entire expression to a previously proved theorem.

Calculational logic supports schematic reasoning via nletalinguistic operations (such as
textual substitution) as well as traditional logical reasoning, all without resorting to a higher-
order logic. In particular, it supports reasoning about a general quantifier form -i.e., a
general form that can be instantiated into universal quantification, existential quantification,
and other quantifier-like accumulation operations (such as sums or products over sets)- that
is seen in Figure 1, a calculational proof of a theorem about a familiar property of bound
variables. The unusual (* . . .) syntax represents that general quantifier form; the variable
next to the * (e.g., x in (*x.. .)) is bound in that expression. The theorem holds for any
instantiation, including both existential and universal quantifiers. (A full explanation of the
proof is beyond the scope of this paper. See [2] or [l l] for details.)

Because of this metalinguistic character, we interpret calculational logic as a metalogic;
theorems such as Change Of Dummy (Figure 1) are meta-level theorems about theoremhood
in some object-level logic. We occasionally refer to this fact in the sections that follow, but it

is of only secondary importance to our introduction to Nuprl. Readers interested in further
details should see [2] or [3].

To implement a Nuprl model of how people perform calculational logic inference, we
implemented three distinct levels of mathematics. One level consists of the programs that
simulate the inference processes people use - we return to that level shortly. We also
implemented two distinct levels of logical language. Calculational logic employs metalin-
guistic operations; the semantics of metalanguage variables and expressions is described
with respect t o a lower-level object language. Thus, we implemented the metalanguage
that actually appears in proofs like Figure 1 as well as a simple object language to use in
implementing the semantics of our metalanguage.

We call our formalized metalanguage the data language, because it is the language that
people actually use for the calculational logic of [ll] - it is the data that guided our
implementation. Expressions of the data language may be called data expressions. It was
not trivial to identify and formalize a data language adequate for the material in [ll] that
we covered, but details of that process are beyond the scope of this paper. Again, interested
readers can see the dissertation [2] or the stand-alone paper [3] for further information.

As part of formalizing a semantics for our data language, we implemented a recursive
type OE of object language expressions (object expressions, for short). Neither the details
of type OE nor the object language itself is relevant in this paper. Readers should simply
understand the role of OE: variables (and expressions) in the data language may be of type
OE.

To further explain the role of metalanguage in our formalization of calculational logic,
consider the syn~bol + . It has two meanings in our Nuprl implementation. As a symbol
in the data language, it is an object-language implication constructor: an operator that, on
two arguments of type OE, returns an expression of type OE. (There are, of course, several
OEconstructors in the data language, as mentioned in section 2.3.) The other meaning is
as standard logical implication on data language expressions: an operator that, given two
truth-valued expressions in the data language, returns a truth value. For readers unfamiliar
with metalogic, this bears repeating: For one meaning, the symbol stands for a function
that returns object expressions; for the other meaning, it stands for a function that returns
truth values. (Context disambiguates which meaning of the symbol is intended at any time.)
We refer to such metalinguistic constructions later in the paper. Additional explanation of
the underlying ideas can be found in [2] and [3], but readers need not fully grasp these ideas
to utilize this paper as an introduction to Nuprl.

To implement the actual inference models, we used Nuprl's tactic system (based on [lo]).
The practice of using tactics in automated reasoning allows fully formalized mathematical
inference to be expressed and manipulated a t a level of abstraction away from primitive
logical rules. Tactics are intended to capture high-level inferences, including those that
people might naturally make in constructing a proof, and cognitive modeling of logical
inference seems like a natural application for tactic-based automated reasoning systems.
We apply Nuprl for precisely that reason. (We discuss tactics further in section 3.2.)

The Nuprl proof development system provided a platform for implementing our model
of calculational logic inference. This paper is an overview of Nuprl, intended both as an

introduction for the uninitiated and, for readers familiar with Nuprl, a brief summary of
the Nuprl features most important for the model in [2]. In the text that follows, we use
the word "implementer" to refer to a user of Nuprl, i.e., one (such as the author) who uses
Nuprl to formalize and implement a mathematical language and/or system of inference. For
history of Nuprl and a more complete introduction, see [8] and [12].

2 Implementing Mathematics in Nuprl

In this section, we introduce some important features of Nuprl that we used in implement-
ing the data language. Our definitions were essentially built from Nuprl's type system and
expressed by Nuprl t e r m s , so we briefly discuss types and terms. We also introduce Nuprl's
system of d i s p l a y forms, which preserves the useful distinction between mathematical con-
cepts and notation; for many Nuprl objects, their display forms -which describe how the
objects are to be displayed in various contexts- are defined separately from the objects
themselves. We exploit display forms in several important ways.

We do not yet consider concepts particular to definitions of calculational logic inference
methods or other meta-level programs in this section. We discuss them in the next section.

2.1 Nuprl types

In its standard semantics, Nuprl is based on an intuitionist type theory that is an extension
of that of Martin-Lof (see [5 , 6, 141). This has a few significant consequences for us as
users and implementers. For instance, booleans and propositions are not the same, and we
cannot generally do reasoning by a case split on whether a proposition P is true or false;
we need to prove that the truth of a proposition is dec idab le before we can branch on it in
an if-then context. We intend to model calculational logic, a classical logic. How can this be
accomplished in a constructive logic such as Nuprl? The answer is that calculational logic is
based around the syntactic property of object-level theoremhood, not the semantic property
of object-level truth. Calculational logic is syntactically oriented, and Nuprl is extremely
flexible with respect to syntax. Semantic mismatches between the two systems do not affect
us.

Indeed, we do not need to consider most of the details of Nuprl's type theory in this
introduction. Essentially, we simply defined functions and other mathematical objects in
a lambda calculus within a sophisticated type system; that level of understanding should
suffice for most of our readers. Nuprl's type theory, however, is much deeper and more
broadly applicable than we represent here. See [7] and [8] for more information.

We now discuss some types and related functions, to provide some necessary background
and a feel for how we use Nuprl.

Disjoint union A union operation + is one way to combine types: if T1 and T 2 are
types, then we can express the notion that a term t is in one of T 1 or T 2 by saying
it is in the union of the types, i.e. t E T1 + T2. The type system of Nuprl uses a

dzsjoint union to combine types, so given an element of T I + T 2 , it must be possible
to determine which component t is in, T1 or T 2 . To acconlplish this, Nuprl uses
the term constructors in1 and i n r ; for t 1 E T1 , i n l (t l) is in T1 + T 2 , and for
t2 E T2 , i n r (t 2) is in T 1 + T2 . The respective inverse operations are o u t l and
outr : o u t l (i n l (t)) is t , and similarly for outr . We elide the parentheses from i n l ,
o u t l , etc. when it improves readability.

We take this opportunity to introduce two ways in which union types are used in our
calculational logic in~plementation. For one, in our type OE for object expressions,
we conceptually separate object variables from non-object variable expressions; we
reflect this by using a disjoint unlon type of the general form (varzables) + (other
expressions),l so we can syntactically determine whether or not any object expression
is an object variable. Another use of union types is for a function that looks up values
related to keys in a table; we can use a union type (success type) + (fazlure type) as
the lookup function return type, for any success type and fazlure type we may choose.
When the lookup succeeds on a key, it returns i n l (s) for some s E success type ; when
it fails, it returns i n r (f) for some f E fazlure type.

Cartesian product The expected pair constructor is present: (a , b) E A x B . In contrast,
the primitive Nuprl function for pair deconlposition may be unfamiliar to readers: the
form is spread(p; u, v.b) , where p is a pair and b is an expression in variables u
and v ; spread((p , q); u, v.t) = t [y , qlu , v] . So, for instance, the standard first and
second component projections of a pair can be represented as spread(p; u, v.u) and
spread(p; u, v.v), respectively.

Dependent types Dependent types are used to create compound types in which one com-
ponent type depends on a particular value in another conlponent type. For instance,
consider a function f on integers that returns an integer on odd inputs and returns a
z - z function on other inputs; ure would represent t,he type of f as x:Z - F (x) ,
where F (x) = if x is odd then Z else (Z + Z).

A similar dependent type notion applies to products: if A is a type and B is a type-
valued function on A , then an element of x:A x B (x) would be a pair (y, z) where
y E .4 and z E B (y) .'

Recursive types Nuprl's type theory can also represent recursive types. For example,
consider the recursive structure of unlabeled binary trees with integer leaves; in Nuprl,
it can be defined as r e c (n0de.Z + node x node) , where variable node is bound in the
union type expression. Its elements include in1 5, inr <in1 3, in1 7>, and i n r
< i n r <in1 2 , in1 4>, in1 6>.

The relationship between a Nuprl type T and its menlhers is expressed with assertions of
the form A t T or A = B E T. A E T expresses that .4 is a member of T ; A = B E T

Wc givc a full cxplanation of type OE in [2]. Wc use it hcrc mcrcly as a motivating cxamplc.

20thcr common notationsfor z:z + F (z) and z : A x B (z) arc n z : Z . ~ (z) and C z : A . B (z) , rcspec-
tivcly.

expresses that A and B are members of T and equal in T .3 In this paper, the form
A = B E T refers only to Nuprl equality.

These are just some of the elements of Nuprl's type theory; clearly, it is a very expressive
system. All the concepts above are used in our type OE of object expressions, but our type
definitions do not generally use that much expressive capacity.

In a way, types in Nuprl are the basis for all our work, not just definitions of types needed
for implementing calculational logic. Nuprl uses the propositions-astypes correspondence
known as the Curry-Howard isomorphism, so its general theorem proving emerges directly
from proof rules for its type theory. In addition, Nuprl's lambda calculus -the familiar
formalism extended to Nuprl's type system- is the basis for our mathematical definitions.
Despite this, readers need not understand most of the concepts in Nuprl's type theory
to understand our work in [2]. We generally work with familiar constructs at a level of
abstraction away from the type theory (constructs for recursion, case splits, etc.), and we
generally explain our work that way.

2.2 Terms and term structure

The Nuprl data structure term is used for a variety of purposes. For instance, all Nuprl
propositions and expressions in Nuprl's type theory are represented as terms. The math-
ematical/logical objects we define for our data language a s distinguished from inference
methods and other higher-level p rocedures are also represented by terms, so we briefly
discuss Nuprl terms before presenting the data language implementation.

We do not give a full definition of Nuprl term structure, omitting many details that are
not directly relevant to the research in [2]. Our concise description captures the general feel
of Nuprl's use of the general-purpose data structure term, and that should be sufficient.

Nuprl terms have roughly the following structure:

The parts of a term are:4

opid is the operator identifier; we call this feature an opid. Often, opids serve as
the names of terms in our implementation. For instance, the opid of our object-
level theoremhood predicate is Othm and the opid of our object-level conjunction
constructor is oand. Readers should generally be unconcerned with low-level details
such as Nuprl opids, but we do refer to them in describing our implementation in [2],
so we introduce them here.

si is bound-term i of the term. Each bound-term itself has a complex structure:
sj = 4,. . . , zi i . t j , where each of the x 's is a variable and ti is itself a term. This

Type cntcrs into the expressions of Nuprl cquality bccausc diffcrcnt types may have diffcrent equalities.
For example, 5 and 10 are equal in Zs but not equal in .

41t is possible to supply other atomic parameters to operators, but we do not generally do so.

bound-term binds free occurrences of variables x{, . . . , in t j ; this is the standard
notation for variable binding in Nuprl, also used above in contexts such as the pair-
decomposition function, spread(p; u , v.t).

We discuss terms frequently here and in [2] without using Nuprl term notation to display
them. In general, we opt for the common, intuitive notations permitted by the flexible
system of Nuprl display forms, described next.

2.3 Display forms

Although Nuprl terms have a uniform syntax, their appearances on page or screen can
differ greatly from that syntax. This is one of the strengths of Nuprl: The display forms
for a term are defined at a level of abstraction away from the term and its syntax. For
instance, consider pair-decomposition operation spread mentioned above. Displaying it
in uniform term syntax can get somewhat clunky. Instead, it has an abbreviated typical
display form: spread(pair ; u, v .body) is displayed as let <u, v> = pair in body, or sim-
ply as (pair/u,v . body), according to the user's preferences. This significantly improves
readability.

As another example, consider the common propositional logic operators. In a typical
Nuprl session, the logical conjunction operator would be input by typing the word "and,"
corresponding to its opid and therefore its representation in the uniform term syntax pre-
sented above. But it is displayed using the character &, a convenient abbreviation; the
argument slots are structured so that & appears to be an infix operator in the expected
way. Similar mechanisms are used for disjunction, implication, etc., making formulas much
easier to read than they would be if logical operations were expressed in the prefix/English
term syntax.

This allows for the systematic, unambiguous overloading of notation: we may associate
the same display form with several operators, but Nuprl manipulates the unambiguous
underlying terms. We exploit this in our work, using (for instance) the symbol + for
two different infix operations: the OGconstructor for object-level implication and the logi-
cal/propositional implication operator in Nuprl. There is no ambiguity when a user enters
the expressions into Nuprl -they have different names- but they look the same on the
screen. We use display forms to overload traditional logical symbols such as 3 and V .
This helps us correspond to both conventional Nuprl notation, in which the symbols stand
for propositional operations, and the notation in [l l] , in which they are OEconstructors,
without any underlying ambiguity. In [2] as in a Nuprl session, context informally disam-
biguates their usages.

Nuprl users can alter display forms; for instance, a change from & to A could be eas-
ily made. This is relevant when considering our display forms for operations relating to
quantification in calculational logic, one area where we intentionally diverge from the nota-
tion in [ll]. For instance, that textbook's notation for the general form of quantification is
(*X I R : B) , whereas we use (*b X I R : B) , making explicit the indexing argument b .
Users who prefer that the 6 be elided (or perhaps want the star to be a different kind, or
other modifications) could make that change. When entering the term, the b would still

need to be accounted for -the term structure of the quantification wouldn't change- but
it could simply be erased from the display form. This slightly different display form is not
a conceptual divergence from 1111. Indeed, users of our calculational logic implementation
in Nuprl could create quantification display forms to suit their tastes.

This system of display forms also permits case-dependent notation, where the same
operator can be displayed in different display forms depending on its operand. This has
numerous applications, including the ability to elide default values, which we exploit in
managing calculational logic quantification. In [2, Chapter 31, we abstractly defined the
two expected predicate logic quantifiers (VX I R : B) and (3X I R : B) as instances of
the general form (kb X I R : B) for calculational logic quantification, based on whether
argument b indicated universal or existential quantification. We concretely implemented
that directly in Nuprl using our display form for (kb X I R : B) . When argument b is filled
by the constant indicating universal quantification, we simply display (kb X I R : B) as
(VX I R : B) . We do not have a separate object for the specific universal quantifier form;
it is just a different notation for the same object, given a particular value for b . (Similarly
for existential quantification, of course.) When the slot for b is filled by a variable in
the general quantification form -say, as part of a lemma statement that quantifies over the
possible kinds of calculational logic quantifiers- we use its standard display form, explicitly
displaying argument b .

This practice not only makes our implementation more readable, it also encodes the
desired relationship between the related quantifier forms. We do not need to define separate
operators and prove relationships between them. We have only one operator, corresponding
to the definition of our data language, which looks different in different contexts.

There is also a facility in Nuprl for associating user-defined input commands with a
display form; for instance, we could type CLquant to get the general form for calculational
logic quantification, no matter what the opid of that operator is. Combining this with the
representation of default values, we can directly input operators with certain default values
filled in; for instance, we could type C L a l l to get the calculational logic universal quantifier
form, i.e., the general form with a particular value filled in for b . It is somewhat similar to
the effect of a macro: It is as if we typed CLquant and entered a value for b , all by typing
C L a l l .

The value of this powerful system in our work is worth noting. In implementing a
language that must have the same appearance as a pre-existing notation, the flexibility to
assign display forms to specific cases, access them directly, and alter display forms without
affecting the underlying mathematics makes our lives as implementers much easier. We
can test designs, recover from notation errors, establish shortcuts, use post-hoc mnemonic
names, etc., all without significant cost. It permits us all the mechanical and logical benefits
of Nuprl's uniform term syntax without constraining the apparent notation of our terms. It
truly separates the underlying meaning of expressions from their appearance, a tremendous
virtue.

For this reason, we are somewhat loose with some aspects of notation and meta-notation
here and in [2]. We may be careless with list notation in our descriptions, for instance,
displaying a singleton list as its element or otherwise dropping the brackets that indicate a

list in Nuprl. Such small differences in appearance between our descriptions and our direct
inclusions of Nuprl notation should not confuse readers (the typing of expressions will often
disambiguate cases when there is some doubt). These differences, after all, are only matters
of display, not about the underlying mathematics.

We do not describe how to create Nuprl display forms. Instead, we have discussed only
the most important aspects and how they are used in our implementation. For more details
on display forms, see [4, 12, 131.

3 Nuprl ML, Tactics, and Proofs

Inference modeling uses a different set of tools from those used for formalizing the mathe-
matical language of calculational logic. Nuprl inferences (such as those used in implementing
calculational logic inference) are at a meta-level to the mathematics formalized using the
concepts introduced in section 2. To implement inferences and various meta-level auxiliary
functions, Nuprl uses a dialect of the programming language ML -the metalanguage of
the Edinburgh LCF system (see [lo])- as its general-purpose metalanguage. Once we have
introduced Nuprl ML and the related concepts of tactics and tacticals, we will discuss a few
details of Nuprl inferences and proofs.

As with section 2, this is a very brief overview of an intricate system. For a more balanced
and thorough introduction to the use of metalanguage in Nuprl, see [I, 8, 121.

3.1 Nuprl ML

VCTe use Nuprl hlL for two distinct but complementary purposes: creating tactics for carrying
out inferences and creating auxiliary functions for doing general tasks that are not well-suited
for expression as inferences, such as

simple list n~anipulation,

heuristic guessing (without proof) whether two expressions might be equal,

heuristic guessing (without proof) the type of an expression in an environment.

The second and third examples above reflect that we may want to use heuristics that are
not as computationally expensive as tactics to determine if a tactic is even worth calling in
a context. Running a small, non-tactic ML program is often far less time-consuming than
running a tactic, so we can use ML to implement heuristics to guide tactic inferences.

Although tactics are ML programs, we tend to consider them separately from general
ML programs that do not involve tactics. Indeed, we may use the phrase "ML programs"
to refer to only those non-tactic programs. In this section, we discuss the ML language
in general, independent of any explicitly tactic-related constructs. We discuss tactics in
section 3.2.

Declarations d

d : : = l e t b ordinary variables
I l e t r e c b recursive functions

Bindings b

b ::= p=e simple binding

I pl pa . . .p, = e function definition

Patterns p

y : := var variable

I Pl.PZ R list cons

I P1,Pz R pairing

I [pl ;pz . . .;p,] list of n elements (n may be 0)

Expressions e

e ::= ce

1 var

I elez

1 e 1 . e ~
I elOez
1 el=ez

I not e
I e ~ & e z
1 e1,ez

I f a i l v i t h e

I i f el then ez e l se es

I el ? ez

1 el;e2 ... ;en

I [el ;ez . . . ; e,l

I d i n e

I \ p l P ~ . . - P n . e

const ant

variable

L function application

R list cons
R list append
L equality

negation
R conjunction
R pairing

failure with string

conditional

failure trap

sequencing

list of 12 elements (n may be 0)

local declaration

abstraction

Figure 2: ML syntax equations

In Figure 2, we present a subset of the ML syntax given in [I, section 3.11. See [I] for
more details on both these syntax equations and their associated semantics.

To make this section a somewhat more self-contained introduction, here are a few key
points:

It may be difficult to see how the local declaration construct (given under Expres-
sions) is used, so we provide an example. Consider this contrived definition of a
factorial-like function f :

l e trec f n =
l e t nonzero i = (i > 0) i n

if nonzero n then n - (f n - 1) e l s e I

(We ignore any issues about restricting values of n .) This illustrates the local decla-
ration of function nonzero in the declaration of function f as well as the constructs
for function application and recursive function declaration.

Only functions can be defined with letrec. For example, letrec x = 2-x is syntacti-
cally incorrect.

All the variables occurring in a pattern must be distinct. On the other hand, a pattern
can contain multiple occurrences of the wildcard '0'.

3.2 Tactics

As mentioned in section 1, the tactic structure of Nuprl (based on [lo]) is one of the primary
reasons it seemed practical to model cognitive inference in an automated reasoning system.
(See [9] for elaboration on the idea of tactics used in Nuprl and bheir representation of
mathematical thinking.) Given a collection of pre-specified primitive inferences, a tactic is
a program for reducing a proof goal to premises by iteration of these primitive inferences.
Essentially, a tactic is a program for constructing such an inference tree; which tactics are
applied depends on how one wants to generates subgoals from the proof goal.5 Executing
a tactic gives rise to an inference step; the premises of that inference are the unproved
leaf-premises of the primitive proof tree.

The execution of a tactic might raise an exception or fail to terminate. For a program
to count as a tactic, however, if it terminates without exception, it must be guaranteed to
generate subgoals justifiable by the primitive rules.

In order to freely write heuristic tactics, there must be some practical criterion for
recognizing tactics. In ML, this criterion is type checking to the type of tactics.

The labor of justifying inference is split between justifying "tactichood" and checking
the primitive inference rules. (Presumably, the primitive inference rules are formulated to
make such verification feasible. For example, they tend to be schematic.) The justification

We discuss tactics from a more cognitive science-oriented perspective in the conclusion of [2].

of complex forms of inference via tactics is in terms of the generic criterion for being a tactic
and is not schematically described.

Here are a few simple tactics in Nuprl that pertain to points of interest in our imple-
mentation:

Id is the identity tactic; applying it to a proof goal leaves it unchanged. As we
illustrate shortly, it is useful in constructing complex tactics from simple ones.

FailWith takes a character string as an argument. When applied to a proof goal,
i t fails and outputs its string argument as an error message. In conjunction with
a failure-trapping mechanism, it permits implementers to output more informative,
customized failure messages than Nuprl's generic ones.

AUTO is perhaps the most important tactic in Nuprl. It performs a wide variety of
simple inferences, such as typing judgments, some trivial equalities, and some trivial
proofs from hypotheses. In essence, AUTO represents the class of inferences considered
too obvious for Nuprl's users.

In implementing calculational logic inference, we did not use AUTO in our tactics. It
is very high-level, and tactics built around it can be fragile because someone may
want to change AUTO and the class of obvious inferences it represents without affecting
other, more specific tactics. Therefore, we presume that users of our calculational
logic tactics will invoke AUTO themselves.

There are several varieties of chaining lemmas in Nuprl. For instance, BackThruLemma
is a simple backchaining tactic, whereas BackThru is a more complex one, wrapping
BackThruLemma in levels of pattern-matching and other mechanical intelligence. There
are also other tactics for forward chaining, backward chaining, and lemma instantia-
tion, and we use some varieties of them extensively.

For reasons similar to those expressed regarding AUTO, above, we used only the lowest-
level chaining tactics in our calculational logic implementation. Indeed, higher-level
chaining tactics may themselves call AUTO, so the identical reasons apply.

Although all of Nuprl ML can be used to create new tactics from old ones, for common
applications, it is often simpler to use Nuprl's language of tacticals, which are functions for
composing tactics. We made extensive use of tacticals in creating our calculational logic
tactics, but their use as programming constructs is so simple that we do not spend much
space here even introducing them. Here are a few simple examples of tacticals; see [12] for
a more complete list.

REPEAT is analogous to the common programming language looping construct: for
tactic T , REPEAT T repeatedly runs T on the subgoals resulting from previous
applications until no progress is made.

ORELSE is the failure-trapping tactical: for tactics T1 and T2 , T1 ORELSE T2 tries
running T1 ; if it fails, it runs T2 instead. With the FailWith tactic mentioned
above, this can be used for customizing error messages.

Try T tries to run tactic T on a proof goal, but if T fails, it leaves the proof
goal unchanged; it is defined as T ORELSE Id. This is extremely useful in tactic
development.

T1 THEN T2 first runs T1 and then runs T2 on all subgoals generated by T1 . The
combination of a tactic T with AUTO, written as T THEN AUTO, has an abbreviated
alternative display form: T This abbreviated form comes up in example (3)
in section 3.3 below.

Complete T is useful for determining if tactic T will finish a proof; it runs T and
fails if T generates any subgoals.

Tactics can get increasingly complex; there is a full programming language for use in
constructing them. Some complex inference patterns could also be captured in lemmas;
a lemma can represent the result of a chain of inferences just as a tactic can. In this
way, there is an interesting division of inferential labor, as it were, between tactics and
lemmas: increased reliance on one of them can facilitate less dependence on the other. In
our implementation, we tended to use lemmas where it seemed helpful, rather than create
more complicated tactics. This was, however, simply a design decision. If our important
inferences had been more clearly expressed by tactics than lemmas, we would have decided
differently.

3.3 Proving things in Nuprl

Nuprl's inference style is based around sequents. A sequent is written as H I , . . . , H , k
C , where C is the conclusion of the sequent and each Hi is either a hypothesis or a
declaration of a variable with its type. Normally, Nuprl displays sequents vertically, with
explicit numbers for the hypotheses:

nTe may refer to the hypotheses and the conclusion of a sequent as clauses. In addition, by
goal (or proof goal); we may refer to either a full sequent or only its conclusion.

Our introduction to Nuprl proofs is a simplification of the more detailed one in [12] and
other sources, intended primarily to permit readers to understand [2]. We see proofs as
tree structures in which every node has a sequent component and a tactic component; the
tactic component of a node may be empty or otherwise ill-formed. The children of a node
N are the subgoals generated by the tactic of N applied to the goal of N . If a node has
no children, its tactic fully solves its proof goal.

As an example of how tactics generate subgoals, consider the following contrived example
for backchaining:

(3) 1 . propnl : Prop
2 . propn2 : Prop
I- ~ (p r o p n l V propn2)
by BackThru: Thm* VA,B : Prop. -A & TB =$ 1 (A V B)
\
I- lpropnl by <TACTIC>

It backchains through a simple lemma, then calls tactic AUTO w h i c h is represented in
abbreviated form by the four dots after the backchained lemma- to handle routine ma-
nipulation (proving typing subgoals, etc.). Note that antecedents in the lemma became
subgoals after the tactic.

In the expected way, a proof is complete when all of its nodes have the expected proper-
ties: all variables in every sequent are bound in that sequent; all nodes have a tactic; every
goal is proved by its tactic, assuming provability of its children; etc.

Proof goals in Nuprl also have a label, which roughly indicates their classification or
purpose. For instance, goals corresponding to the primary inferences generally have the
(normally elided) default label main; other labels, such as assertion and rewrite subgoal,
mark proof goals that arise in particular circumstances with which most readers of [2] need
not be concerned. As implementers, we must take some minimal care to manage our tactics
correctly on these labels. With one exception, discussed immediately below, users of the
system never encounter them.

The one kind of non-main proof goal that is significant to users of our calculational logic
system is well-formedness goals, which are used to establish that Nuprl expressions have the
necessary types; they have the label wf. U7ell-formedness goals are critical and pervasive in
Nuprl, because everything must be type-correct. They are typically handled automatically
by Nuprl's AUTO tactic. Often, when Nuprl users want to invoke a tactic T.4C1 they wrap it in
AUTO, instead applying TAC THEN AUTO. It is a strength of the tactic system of Nuprl -and
its AUTO tactic in particular- that Nuprl users are often insulated from typing judgments
and other simple inferences. Further, when AUTO does not solve a well-formedness subgoal,
it is often a useful indication of user error; when a user fails to assign a correct type to a
variable, for instance, it comes up in the form of an unsolved wf goal.

In our implementation of calculational logic inference, we assume that our tactics will
be wrapped in tactic AUTO, so we do not try to solve well-formedness subgoals ourselves.
We do solve all other subgoals that may emerge, no matter what their label, but users of
our calculational logic tactics who do not also call AUTO may well be greeted with a message
from Nuprl informing them that there are hundreds of unsolved subgoals remaining. In
our experience, these are all wf subgoals. Well-formedness subgoals that remain after AUTO
have the same value as in any other Nuprl context: they frequently indicate user error. Our
tactics do nothing to obscure this.

4 Concluding Remarks

As mentioned in this document, specific features of Nuprl guided our design decisions in
several ways. Prominently, Nuprl's type theory influenced our choice for type OE, which
affected the rest of our implementation. Nuprl's many degrees of abstraction -between syn-
tax and display, between term-level and meta-level, etc.- also affected the overall structure
of our mathematics and our implementation of calculational inference, as did the relative
simplicity of expressing some procedures as tactics and others as general ML programs.

We conclude this paper with a few comments on how we used tactics. One of the primary
aspects of our design philosophy for tactics has already come up in our discussion of AUTO,
but it bears repeating: It was our conscious goal to keep our tactics as low-level as possible,
to build them from component tactics that are themselves as close as possible to Nuprl's
primitive rules. One result of this is that our tactics never called AUTO directly, but we also
never used high-level tactics for chaining, expression decomposition, etc. This results in a
more robust system, because Nuprl's high-level tactics are more likely to be changed from
version to version (or customized from user to user) than low-level ones, and our dependence
on these more variable tactics is minimized.

In addition, because our implementation is part of a feasibility demonstration for our
overall cognitive modeling method, we frequently used an exceptional tactic that is not
mentionedon the list in section 3.2: F i a t is a tactic that, when applied, signals Nuprl to treat
an incomplete proof as if it were complete. Indeed, it embodies the idea of "proving by fiat,"
resulting in Nuprl's accepting a proof goal as fully solved without further justification. F i a t
could even prove False , which makes it extremely dangerous to use. We used it regularly
to speed up our implementation of calculational logic inference - instead of spending time
proving obvious properties of our implementation, we simply stated them as lemmas and
used them in our tactics, a philosophy we refer to as state-and-use in [2]. If there are errors
in our implementation, they probably arise from gaps in reasoning that are artificially filled
with F i a t .

In fact, we nearly overlooked such an error. We created a heuristic hlL program termeql
to tell if two Nuprl terms are equal modulo a simple equivalence relation that we did not
want to take the time to implement formally in Nuprl; then, we wrote a tactic that essentially
claimed that if we wanted to prove a goal A = B E T , the truth of termeql -4 B was
sufficient. Instead of formally working through all the reasoning for such a tactic, we used
F i a t , and that resulted in a false tactic: It failed to account for all the typing information
needed to prove such a goal. nTe believe that no such errors currently exist in our system,
but as a matter of full disclosure, we felt compelled to mention their possibility due to our
use of F i a t .

Acknowledgments

The author thanks Stuart Allen and Bob Constable for their advice in shaping this paper.

References

[I] Nuprl ML manual, 1993. No author attributed.

[2] E. Aaron. Tactic-based modeling of cognitive inference on logically structured notation.
PhD thesis, Cornell University, 2000.

[3] E. Aaron and S. F. Allen. Justifying calculational logic by a conventional metalinguistic
semantics. Technical Report TR99-1771, Department of Computer Science, Cornell
University, 1999.

[4] S. F. Allen. From dy/dx to LIP: a matter of notation. In Proceedings of the 4th
Workshop on User Interfaces for Theorem Provers, UITP-98, Eindhoven, Netherlands,
1998. Lawrence Erlbaum Associates.

[5] S. F. Allen. A Non-type-theoretic Definition of Martin-Lof's Types. In Proceedings
of the Second Symposium on Logic in Computer Science, pages 215-224. IEEE, June
1987.

[6] S. F. Allen, R. L. Constable, D. J . Howe, and Nrilliam E. Aitken. The semantics of
reflected proof. In Proceedings, Fifth Annual IEEE Symposzzlm on Logic in Computer
Science, pages 95-105, Philadelphia, Pennsylvania, 4-7 June 1990. IEEE Computer
Society Press.

[7] R. L. Constable. Types in logic, mathematics and programming. In S. R. Buss, editor,
Handbook of Proof Theory, pages 683-786. Elsevier, 1998.

[8] R. L. Constable et al. Implementing .Vathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Englewood Cliffs, NJ , 1986.

[9] R. L. Constable, T. Knoblock, and J.L. Bates. Writing programs that construct proofs.
J. Automated Reasoning, 1(3):285-326, 1984.

[lo] hl. Gordon, A. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, New
York, 1979.

[l l] D. Gries and F. B. Schneider. .4 Logical Approach to Discrete Math. Springer-Verlag,
New York, 1993.

[12] P. Jackson. The Nuprl proof development system reference manual and user's guide,
1994. http://cs.cornell.edu/Info/Projects/ NuPrl/manual.with.index/it.html (May,
2000).

[13] C. Mannion and S. F. Allen. A notation for computer aided mathematics. Technical
report, Cornell University, Ithaca, NY, 1994.

[14] P. Martin-Lof. Constructive mathematics and computer programming. In Proceedings
of the Sixth International Congress of Logic, ,Wethodology, and Philosophy of Science,
New York, 1982. North-Holland Publishing Co.

	A User-Level Introduction to the Nuprl Proof Development System
	Recommended Citation

	A User-Level Introduction to the Nuprl Proof Development System
	Abstract
	Comments

	tmp.1200583577.pdf.K68kB

