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Abstract  

Once strictly the province of assembly-language programmers, real-time computing has developed 
into an area of important theoretical interest. Real-time computing incorporates all of the theoretical 
problems encountered in concurrent processing and introduces the additional complexity of accounting 
for the temporal behavior of processes. In this paper we investigate two problems in the theory of real- 
time processes: defining realistic semantic models and developing proof systems for real-time processes. 
We present here a semantic domain for real-time processes that captures the temporal constraints of 
concurrent programs. A partial ordering based on process containment is defined and shown to be a 
complete partial order on the domain. The domain is used to define the denotational semantics of 
a CSP-like language that incorporates pure time delay. An axiomatization of process containment is 
presented and shown to be complete for finite terms in this language. The axiomatization is useful for 
proving properties of real-time processes and deriving their temporal behavior. 

1 Introduction 

In recent years there have been several significant attempts toward defining formal semantic models for 

real-time computing. Once strictly the province of assembly-language programmers, real-time computing 

has developed into an  important theoretical interest. Furthermore, it is becoming generally recognized that 

the semantic models used for untimed computing cannot be trivially modified to incorporate the notion of 

time. This is especially true when one attempts t o  describe the semantics of time-dependent concurrency. 

In this paper we present the Timed Acceptances Model, which captures the  temporal constraints of 

concurrent programs. T h e  model consists of 1) an  abstract, CSP-based language, 2) a partially ordered 

semantic domain, and 3) a complete axiom system, enabling us to prove critical correctness properties of 

real-time programs. 

'This research was supported in part by NSF DCR 8501482, N S F  DMC 8512838, N S F  MCS 8219196CER, ARO DAA6-29- 
84-k-0061, and a grant from AT&T's Telecommunications Program at the University of Pennsylvania. 
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Other contributions in this area range from the abstract requirements languages such as RTL [9, 81, 

to the variable-state based models such as CSP-R [lo] and DNP-R [7], to the purely operational models 

of SCCS [12] and CIRCAL [ll]. Our model occupies the middle ground, in that it retains the structure of 

concurrent processes, but solely captures the timing information retained within each process. To this extent, 

its expressibility is most similar to that found in TCSP [13] and ECP [2]. However, while all three models 

share a CSP-like syntax, our semantic domain is not based on the notion of refusals. Instead, we represent 

nondeterminism using a temporal extension of Hennessy's Acceptance Tree Model [4]. Most importantly, our 

model incorporates a complete axiom system, which should provide the foundation for automated analysis 

of real-time systems. 

2 The Language of Real-Time Processes 

The syntax of our language is similar to that of untimed CSP [6], with one major exception: The traditional 
i 

prefix operator, a -+ P, has been replaced by the timed action operator A -+ P. In our model timed 

action incorporates the notion of true concurrency, and it allows the specification of pure time delay. As 

in the untimed CSP, processes communicate by synchronously engaging in events, which are considered 

instantaneous. At any time during its execution, a process may simultaneously engage in a set of such 

events, after which it delays for some nonzero period of time. The terms of the language are defined as 

follows: 

p ..- ..- CHAOS I STOP I SKIP I A & P I P O P  I P P ( PIlrP I P\A I pP.F(P) 

Here, events are members of a finite alphabet C ,  and are denoted a,  b, and c. Similarly, the letters A, B and 

C range over subsets of C, while i, j and k range over the natural numbers. The letters P, Q and R range 

over terms in our language, while F also ranges over terms, but possibly contains a free term P. 

While the syntax of the language is similar to its untimed counterpart, the semantics of each term 

incorporates an additional factor, the passage of time. CHAOS represents the most nondeterministic process. 

At any moment, CHAOS may execute an arbitrary subset of events from C .  STOP represents abnormal 

termination (deadlock) or divergence. Since these two conditions cannot be distinguished experimentally, we 

let a single process describe them both. Once executed STOP cannot share any event with its environment. 

On the other hand, SKIP is the process that terminates correctly. 
i 

The timed action operator, A -+ P, is defined for an event set A and a natural number i > 0. At 

time 0 the events in A are simultaneously executed, and after a delay of exactly i time units the process P 

is executed. If A = 0, the execution of P is delayed by exactly i time units. Choice, PDQ,  differs from its 

untimed counterpart in that it also represents an external decision made on the occurrence time of an event. 

For example, let 

P = (0 -& { a }  & STOP) 0 (0 & { b ,  c) STOP). 



November 9, 1988 3 

P must accept either a at time 1 or both b and c at time 2. If a is offered at time 2, P will not accept it. On 

the other hand, the nondeterministic process P fl Q, internally "decides" at time 0 to behave like P or Q. 

Consider the process P above, with the "U" operator replaced by "fl". Here, the a-event may be accepted 

at  time 1, or b and c may be accepted at time 2. However, the decision on which choices to offer is made 

internally by the process. 

The parallel operator, or P Q, captures the semantics of concurrency by combining both the delay 

times and event executions of the two processes. The set A denotes the events on which both P and Q 

must synchronize, while the processes may execute events in C - A independently. Consider the following 

processes: 

1 
P = (0 {a) -& {c) -+ SKIP) U (0 & {b) { d )  SKIP), Q = 0 {a) & SKIP. 

I 1 7 
The process P l l j a , d l  Q is equivalent to (0 -+ {a) .?a {c) ++ SKIP) 0 (0 & {b) & STOP). 

Examining the left-hand alternative, we see that both processes can synchronize on a at time 1. If this 

choice is taken, then P will execute its local event b one time unit later. Since in this case both processes 

successfully terminate, the combined termination time is the maximum of the two processes' individual 

termination times. The right-hand alternative shows that P may execute 6 at time 4; here synchronization 

with Q is not necessary. However, since Q must synchronize on a at time 1, this step leaves Q deadlocked. 

The deadlock finally infects P at time 9, when synchronization on the event d becomes necessary. Unlike the 

parallel composition described in several other models [12, 11, 10, 71, this parallel operator permits n-way 

synchronization between processes. 

Concealment, or P\A, hides the process' execution of events in A from the environment. However, 

concealment does not affect the possible times that the events in C - A  may occur. Thus, the operator may 

introduce nondeterminism into a process where none previously existed. For example, 

((0 & {a) -& {b) ST0P)O (0 -& {a) f {c) &=- STOP))\{a) 

= ((0 1 { b )  -& STOP) fl(0 -%=- {c) STOP)). 

Finally, the recursion operator, or pP.F(P) ,  is used to specify infinite processes. 

3 The Semantic Model 

The semantic domain is based on two well-known untimed paradigms: Hoare's Trace Algebra [6] and Hen- 

nessy's Acceptance Tree model [4]. In our model, the trace algebra is temporally extended to depict the 

observable execution sequences of real-time processes. However, traces alone are unable to capture the 

meaning of nondeterminism; thus we include a set of states to accompany each trace. This state set denotes 

the array of choices - both internal and external - that a process may make after executing the trace. The 
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representation for the state set is similar to the acceptance tree model of nondeterminism, although it ex- 

plicitly incorporates the notion of time. Here we depart from other CSP-based models [2, 131, which capture 

nondeterminism though the use of refusals. We have found it considerably more natural to specify those 

events a process can execute after a trace, instead of those that it cannot execute. 

In our model a process is defined by all of its possible traces, and the state sets corresponding to those 

traces. Our semantic domain forms a complete partial order, where P C Q if Q is a deterministic refinement 

of P. All of our operators are monotonic with respect to the partial order; except for hiding, they are also 

continuous. 

3.1 Primitives 

Time Domain. Our time domain is discrete. It is represeted by the nonnegative integers W ,  augmented 

with "oo" to denote infinite time intervals. The domain is designated as Ww . 

Events. As noted above, events are instantaneous visible actions that are members of the finite alphabet C. 

Additionally, there is a distinguished event "$' that designates a process' termination. As in the untimed 

CSP model "$' is a "silent" event, in that it is not observable. 

Timed Traces. A visible sequence of events executed during a finite interval is represented by a timed 

trace. Timed traces are denoted as 

Each Ai denotes a set of events that are executed simultaneously; each ni measures the delay between the 

executions of Ai-l and Ai (with no denoting the absolute execution time of A o )  We let the letters s ,  t and 

u range over timed traces. 

The concatenation of two traces, denoted s^ t ,  is defined by normal string concatenation. The identity 

element of this operation is the empty trace, denoted "()", with sA() = ()^s = s .  Furthermore, if s is a trace 

such that s = t lA((A,i))^((B,0))^t2,  then s = t lA( (AU B, i ) )^ t2 .  

Restriction, or s f A, removes from s all events in C - A without altering the absolute occurrence times 

of any remaining event. For example, ( ( { a ,  b), I), ({c), 2), ({d), 1)) f {b, d) = (({b), I), ({d), 3)). 

The duration of a trace S(s) is the absolute occurrence time of the last set of events in s ,  with 6 ( ( ) )  = 0. 

Finally, s 111 t merges the traces s and t ,  while preserving each event's absolute execution time. 

States. Accompanying each trace s is a state set, which represents possible behaviors of the process after 

executing s. Each member of the state set is called a state, containing events that are deterministically 

offered to the environment. The state domain is defined as 
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with the letter a representing a single state. Each pair (A, i) E a represents events that are offered after a 

trace s ,  and the time after 6(s) at which they may occur. 

Note that the pair ((4, oo ) is in every state. This denotes that if the environment fails to select any of 

the other events in the state, the process will diverge. Furthermore, note that no other event set may have 

an occurrence time of oo. Obviously if there is an infinite delay, the events in the set can never be executed. 

Thus we stipulate that VA E P(C)  lim,,,(A, i) = ((4, co). This fact becomes essential when we prove 

that the semantic domain forms a complete partial order. 

S ta te  Sets. After executing a trace, a process may nondeterrninistically choose a state to offer the envi- 

ronment. This array of choices is represented by the state set,  which we denote by a, and which has the 

following definition. 

Definition 1 A set 5 E (?(STATES) - ( 8 ) )  is a valid state set if it is saturated, defined by the following 

four properties: 

1 ,  5 i s  closed under union, o r  8' C a (UoEal a )  E 5.  

2. a is convex closed with respect to set containment: 

Va E STATES ( ( 3 ~ 1 ,  a 2  E *(a1 5 a A a C_ a2)) q a E a) .  

3. In the partial order formed b y  set inclusion, if a direcled chain is in a, the greatest lower bound of the 

chain is also in 8: if ul ,  02,. . . E ii and a1 > a 2  > . . . then  (n ai) E 8. 

4. ~7 is the smallest such set preserming properties 1, 2 and 3. 

If a set is saturated, then we write that 3 = sat(*) .  Note that our requirement for saturated state sets is 

the analogue of the "failure closure" rule found in [2] and other refusal-based models. 

State set addition, 8 + i, adds i to every event time in a,  while state set restriction, (r t A, eliminates 

the events in C - A from a: 

Acceptances. An acceptance ( s ,  a )  represents a possible execution of a process, where 5 is the set of states 

reachable after engaging in the trace s .  At that time, a single state a E i? is nondeterministically offered 

to the environment. Within our semantic domain, a process is totally defined by its entire set of potential 

acceptances. Note that since C is finite and W is discrete, a process may only execute a finite number of 

events during a finite time interval. 
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Now we define several operators on acceptances, letting the symbols A, A1 and A2 denote arbitrary 

acceptance sets. 

Acceptance Set Intersection: A1 n~ A2 = {(s, al n 82) J (s ,c l )  E A1 A (s, 82) E A2) 
Acceptance Set Containment: A1 A2 V(s, 81) E A1 3(s, 52) E d2 (81 E 52) 
Acceptance Set Addition: A + i = { ( ( ) , d + i ) I ( ( ) , 5 ) € A )  

u {(((A, i + j ) jA  t ,  8)  I (((A,j))^ t ,  8)  E A) 

Note that the addition operator delays the starting time of each acceptance by i time units. 

3.2 The Domain and Process Containment 

In the timed acceptances model, a real-time process P is characterized by a set of acceptances representing 

its potential execution behaviors. We define the trace set of P as TRS(P) = {s((s, 8) E P) and the state set 

associated with a trace s of P as STS(s, P )  = {u E iil(s, 8 )  E P). For consistency, we define STS(s, P )  = 8 

if s @TRS(P). 

Definition 2 A real-time process P is a set of acceptances satisfying the following constraints: 

2. TRS(P) = c15(TRS(P)), where cl< - is the prefix closure of a set of traces. 

4 sA((A, i)) E TRS(P) 3o E STS(s, P )  . ( A ,  i) E a 

6. s E TRS(P) * STS(s, P )  = sat(STS(s, P)) 

Properties 1 through 3 are consistent with the definition of a process found in [I], while properties 5 and 

6 retain the flavor of the Acceptance Tree definitions in [4]. The acceptance sets satisfying all of the above 

rules form the domain of real-time processes, which we denote 727. The domain is partially ordered by 

process containment. That is, P contains Q, or P 5 Q, if P can execute all of Q's traces and make at least 

as many nondeterministic decisions after executing each trace. 

Definition 3 (Partial Order) P C Q af and only if Q QA P 

We proceed to show that process containment forms a complete partial order (Theorem 1). To do this 

we require the following four lemmas, the first two of which we state without proof. Lemma 3 is necessary 

to prove that a directed chain of processes has a least upper bound. 

Lemma 1 Process containment forms a partial order. 
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Lemma 2 The domain R7 contains a least element, CHAOS, such that V  P E R'T CHAOS E P .  

Lemma 3 Given a chain of processes Po Pl 5 . . ., if there exists a trace s such that for all i, s E TRS(Pd), 

then nirO STS(s, Pi) # 0. 

Proof Let s be a trace such that V i s  E TRS(Pi), and for notational convenience, denote STS(s, Pi) as 8i. 

By the definition of the partial order, for all i, Ci 2 8i+l. Now for each i ,  choose some state ad in ai. We 

proceed to  show that there exists a state a such that for all i, a E For each i ,  define the state a: as: 

By this construction, we see that V i  a: > a:+,. Furthermore, as state sets are closed under union, we also 

have V i  Vj 2 i, a; E &. And since state sets are closed under glb's, we derive that 

Now define a = ni,o a:. Sinces the ai's form a nonincreasing sequence of states, we deduce that Vi, a E ai. - 
It remains to be shown that a is in the domain STATES. However, this is trivial, as every state contains 

the pair ({A, m), and thus, any intersection of states does as well. Therefore, n,, STS(s, Pi) # 8 .  - 

Lemma 4 (Least Upper Bound) Given a chaan of processes P = {Piti > 0, Pi C Pi+l) in R?, 

U P  = {nAPi (Pi E P) defines a process and is the least upper bound of the chain. 

Proof To show that UP is in fact an upper bound, we must first show that it satisfies the properties that 

define a process. For convenience, denote UP as P. That P satisfies properties 1, 2 and 3 follows directly 

from the definition of a process and Lemma 3. Properties 5 and 6 follow from the definitions of saturation 

and state set intersection. However, property 4 is not so obvious, and we prove it here. 

Since every Pi E P is a process, every Pi observes property 4. So, 

s^((A, j ) )  E TRS(Pi) =S 3ai E STS(s, 4) . (A, j )  E ai. 

Now, define a: = Uk,i uk. Let a = ni,o a:. By the same argument made in Lemma 3, a is in every - - 
STS(s, Pi), and so, a is in STS(s, P ) .  Also, since ( A ,  j) is in a, P obeys property 4. 

Hence P is an upper bound of the chain P. The proof that P is the least upper bound is straightforward 

and thus omitted. 

Theorem 1 The domain R 7  forms a complete partial order. 



November 9, 1988 8 

3.3 Defining the Semantics of the Operators 

We now define a meaning function, M that maps each term in the language to the real-time process that it 

denotes. The formal semantics of each operator corresponds to the intuitive semantics presented above. 

M[CHAOS] = (P(C - {a) x X)*  x (P(STATES) - 0) 

M [SKIP] = ((0, {{({d),i)Ii 2 0)))) 

MUpll~Ql = {(s, s,t(aP U! ag)) 1 3(sp, ap) E M [ P ]  3(sQ, bQ) E MIQ] . 
s = S p  111 sg A SP t A = SQ A) ,  

where: 

ep U! a* = {U 1 3 U p  E Fp + 6(sp) - 6 ( ~ )  3bQ E bQ + ~ ( s Q )  - 6 ( ~ ) .  
u = {(B, i))3(B, i) E (up U uQ) . B n ( A  U {J)) = 0) U 

{(B u C, i)13(B, i )  E u p  3(C, i) E UQ. ( ( B  u C) n (A u (4)) G (B n C ) ) )  

A4 I[P\Al = {(~,STSHIDE(~Q~(~),A))~~S E TRS(P) A t = s  (x- A)A 
a = {U I 3(st, a t )  E M [ P ]  .s t  f (C - A) = t A u E 5' + (6(st) - 6(t)))), 

where: 
STSHIDE(*,A) = ( (5  t (x - (A - {d l ) )  - {{({d?,~))))  U (cn {{({J),03))1) 

Note that the semantics of the parallel operator induce synchronization on the event "$', whether or not it 

is included in the synchronizing event set. Thus, two concurrent processes terminate in finite time if and only 

if both constuent process do. On the other hand, concealment implicitly excludes ''g from the hidden event 

set, maintaining the well-definedness of the operator. Furthermore, concealment intruduces no "artificial" 

deadlocks. S T S H 1 ~ ~  preserves only the stopping states induced by true deadlock, or by divergence due to 

hiding. 

4 Axiomat izing Real-time Processes 

We now describe a sound and complete axiomatization of process containment for finite processes; that is, 

those processes that can be represented by terms containing no occurrences of CHAOS or recursion. The 

semantic function, denoted M,  maps these terms to acceptance sets as defined in Section 3. The logical 

assertions are of the form P & Q or P = Q, where the latter means P 5 Q and Q 5 P. We write I- P Q 
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if there is a proof of P Q in the axiom system. We then introduce axioms that allow us to reason about 

infinite terms (terms with CHAOS and recursion) and explain a possible extension to the model that allows 

us to obtain a complete axiomatization of infinite processes. The infinitary axiom used for reasoning about 

recursively defined terms is based on the well-known idea of syntactic approximation of terms [3]. Our 

approach is similar to that used by Brookes [I] for untimed CSP and Hennessy [5, 41 for CCS. 

4.1 Finite Processes 

We begin by considering terms formed without parallel composition or hiding. Table 1 lists the axioms and 

inference rules for these terms. This axiomatization is consistent with that of untimed CSP [I]. In addition, 

(TAl), (TA2), (CH5), and (D2) allow for reasoning about time. (TA1) and (D2) represent the division of 

time intervals and the distributivity of delay. (TA2) and (CH5) represent the persistence of deadlock and 

termination. 

The soundness of the system follows from the semantics of the terms in the language as defined in 

Section 3. We state the soundness of the axiom system without proof. 

Theorem 2 For all terms P and Q, I- P C Q 4 M [ P ]  MI[Q]. 

To show that the proof system is complete, we introduce a normal form for finite terms and show that 

every term can be provably converted to a unique normal form. We then show the axiom system complete 

for terms in normal form. The completeness for arbitrary terms follows from these two results. 

A term in normal form is a nondeterministic composition of deterministically guarded terms. To ensure 

the uniqueness of normal forms, the nondeterministic composition is indexed by a saturated state set and 

every subterm reachable by the same execution sequence is unique. In addition, each subterm of the nonde- 

terministic composition is indexed by either {({J}, 00)) or a state from which all stopping times except the 

earliest finite one has been removed. Given a state a, this set is defined by 

mint(u) = { ( A  # {A, i) E a) U { ( { d l , j  # a)lj = min{il({J), i) E a)) if u # {({ J), CQ)) 
{({A, otherwise 

For a given term P, we define a subterm P(i,A,l) to be the process P at time i + 1 after executing the events 

in A at time i .  

Definition 4 A t e r m  P is in  norrnal form if and only if it has the structure 

STOP 
p = {%Ip i 1 

noEB(n(A,i)Ernin,(o)(@ * A * q i , ~ , l ) )  

i where a as a saturated state set, and each P(i,A,l) is unique and also in  norrnal form. W e  write 0 -+ SI<IP 

for (A,  i )  = ({A, i # oo) and STOP for (A, i) = ( ( 4 ,  co). 
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Timed Action 

(TA2) 
Nondeterminism 

(ND1) 
(ND2) 
(ND3) 

Choice 

(CHI) 
(CH2) 
(CH3) 
((334) 

(CH5) 

(CH6) 
Distributivity 

(D2) 
033) 
(D4) 

Partial Ordering 

( p o l )  
(P02)  
(P03)  
(PO41 

Monotonicity 

i+ j  
A - & ~ - & P = A - - ~ P  

8  cf.b STOP = STOP 

(0 &- SKIP) 0 SKIP = SKIP 

( A &  P ) o ( A - . $ Q ) = ( A ~ ~ - P ) ~ ( A ^ $ Q )  if ~ # 0  

Table 1: A Proof System for Finite Processes Without and \ 
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0 1 0 0 
Note that to simplify the presentation, we write 0 4 A -+ P(O,A,l), 0 -+ SKIP and 8 STOP instead 

1 
of A -+ P(O,A,l)l SKIP and STOP, respectively. Also note that for a term in normal form, the indexing set 

cannot be empty. We frequently abbreviate the normal form of a term P as floPE8pPmint(op). 

Since the proofs of the existence of normal forms and the completeness of the axiom system use structural 
i 

induction on terms, we define the length of term P ,  IP(, as follows: (SKIPI = ISTOPI = 0, IA PI = 1 + IPI 

for A # @,I0 PI = IPI , lPOQl= lPflQl= l+moz(lPI, IQ(), IPIIAQI = l+IPI+JQI, and IP\AI = l+IPJ. 

The following four axioms can be derived from the axioms in Table 1. They are used in the derivation of 

normal forms. 

(Sl) P f l Q = P n Q f l ( P U Q )  

(S2) P n ( P U Q 0 R )  = P n ( P O Q )  n (POQUR) 

(S3) ((A P I )  0 Rl)) fl ((A P2) 0 R2) = 

((A P ~ ) D ( A  P2)0  ~ l )  fl ((A P ~ ) U ( A  & P ~ ) u R ~ )  

Note that we do not need an axiom to ensure the inclusion of glb's since we only consider finite processes. 

Lemma 5 Every t e rm  P that does not contain / I A  and \ can be transformed into a normal form using the 

proof system defined in Table 1. 

Proof. By induction on the length and structure of the term. 

If IPI = 0, then P is SKIP or STOP and the proof is obvious. Now assume that every term P, with 

IP1 < n,  can be transformed into an equivalent normal form using the proof system. We show that given P 
k 

and Q in normal form with \PI < n and IQI < n ,  P fl Q, P O  Q, and A -+ P are reducible to normal form. 

Using (ND1)-(NDS), rewrite P fl Q as flopEap flooEao (Pmint(op) n Qmi,,(,,)). To reduce this new term 

to an equivalent normal form we need to show that (1) for each (A # (4, i) E UoEaPUaO u,  we can derive a 

unique subterm after each (A, i) and (2) na,naQ can be replaced by a single occurrence of n that is indexed 

by an equivalent saturated state set. 

We construct a unique R ( i , ~ , l )  for each (A # {J),i) E Uoeapuao a as follows. Let a = 8 p  LJ aQ and 

define the terms R((,A,I) for (A # {d),i) E UoEa a by 

Each R(i,A,l) is unique since both P(i,A,l) and Q(i,A,I) are unique. Using (S3) and the distributivity laws we 

derive 

To find the saturated indexing set, we apply (Sl) and (S2) to noEapuaQ Rman,(o) obtaining 
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The proof that P O  Q can be reduced to a normal form is similar to the proof for P n Q and is thus 

omitted. 
k 

To prove (C -+ P)>  we consider three cases: (1) C # 8 and k = 1, (2) C = 0 and (3) C # 0 and k > 1. 
1 

(1) is true because C -+ P is in normal form. (2) is proven using (Dl) and (D2) to distribute the delay 

over choice and nondeterminism and (TA1) to eliminate unnecessary occurrences of 0. To prove (3), apply 
k 1 k-1  k - 1  

(TAl), rewriting C -+ P as C + 0 -+ P. Then, using the same technique as in (2), reduce 0 + P to 

its normal form. 

Lemma 6 (Normal Form Completeness) Given two normal forms P = ngpE4pPmin t (op)  and Q = 

n u o ~ ~ o Q m i n t ( u q ) ,  a f  MIIPII >A MEQIl, then I- P L Q. 
Proof. By induction on the length of the normal forms. 

The base case, when both terms have zero length, is obvious since they are SKIP or STOP. We assume 

that the theorem holds for all terms P and Q such that IPI < n and \Q\ < n. 

Suppose that M[P] >A M[Q] and IPI, IQI < n + 1. Since P and & are in normal form, 5p and CQ are 

saturated. Furthermore, each P(I,A,l) and Q(j,B,l) is unique and in normal form with IP(i,A,l)l, IQ(j,B,l)J < n. 

In order to use the structure of the normal form to prove completeness, we need to show that (1) ap > SQ, 

and (2) for all UQ E @Q and (B,i) E ~ Q J  M f P ( i , ~ , l ) ]  >A M[Q(i,~,l)l. 
Since 5p = STS(() , P) and CQ = STS(() , Q), (1) follows immediately from M [PI >A MI[&] . To prove 

(2), consider a state UQ E 5~ and a pair ( B  # { J), i) E UQ. Since each P(i,B,l) and Q(i,B,l) is unique, we 

have 

Since TRS(P) > TRS(Q), it is easy to show that TRS(P(i,B,l)) > TRS(Q(i,B,l)). Furthermore, for all s E 

TRS(Q(i,B,l)), it  follow^ that STS(s, Q(~,B,I)) = STS(((B, i))^s, Q) STS(((B, i))^s, P )  = STS(s, P(i,B,l)). 

Thus, M[p(i,~,l)] >A MiQ(i,~,l)]. 
For all (B # {,/),i) E UoEao u, we have IP(i,B,l)(,)Q(i,B,l)l < n. Thus, it follows that t- P(i,B,l) L 

Q(i,s,l) from the induction hypothesis. Since f?Q 5 5p, for all UQ E ZQ, we have CQ E 5p.  We then derive 

Pmint(,,) 5 Qmin,(,,) by applying (M3) a finite number of times. Therefore, I- P C Q. 

Adding parallel composition and hiding. To make the proof system complete for all terms with no 

occurrences of CHAOS and recursion, we present axioms that can be used to eliminate parallelism and 

concealment in Table 2. Since all the operators distribute over nondeterniinism, axioms (PI)  and (C4) are 

defined for terms whose outermost operator is 0. 
Before describing the new axioms, we define P(i,O,l) which represents the behavior of P at time i + 1 if 
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Parallelism 

For axioms (PI) and (C4), let 

Concealment 

( c 1 )  (A P) \B = (A - B) & (P\B) 
(c2) STOP\A = STOP 
( c 3 )  SKIP\A = SKIP 

For axiom (C4), let 

i 1 
P = QB,i)Eminr(u)(@ * B P(i,B,l)) 

i 1 

(C4) P\A = ( q B , i ) ~ m i n , ( u ) A ( ~ - A ) ~ B ( @  * (B - A) (P( i ,~ , l ) \A)) )  
i+ l  

n(n(~,i)Emint(u)A(B-A)=#(@ (P(i ,~, l ) \A)))  
Distributivity 

(D5) PIIA(Q n R) = (PIIAQ) n (PIIAR) 
(D6)  ( P  n Q)\A = (P\A) n (&\A) 

Table 2: Additional axioms to the proof system for I J A  and \ 

it has not executed any events up to time i .  

Axiom (PI) reflects the semantics of parallel composition. That is, interleaving with respect to time. 

Note that if P and Q can only engage in events in A but not at common finite times, then PllAQ reduces 

to STOP by the last subterm. The axioms for concealment preserve the possible occurrence times of the 

unconcealed events and capture the possible introduction of nondeterminism by concealment. The soundness 

of the axioms in Table 2 follows from the semantics of the operators. 

These new axioms allow us to derive unique normal forms for all terms denoting finite processes. 
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Lemma 7 (Normal Form) Every P can be transformed into a normal form using the proof system defined 

an Tables 1 and 2. 

Proof. By induction on the length of normal forms. 

The case where P does not contain \ I A  and \ is proven in Lemma 5. To prove that P(IAQ is reducible to 

a unique normal form, we assume that P and Q are already in normal form. Then, we apply axiom (PI) to 

PIIAQ. It is easily shown that the resulting subterms each have length less that PIIAQ and that there are 

a finite number of such subterms. By the induction hypothesis, each subterm can be converted to a normal 

form. The deterministic composition of these normal subterms can then be converted to a normal form by 

Lemma 5. 

The proof for the reducibility of P\A is similar. Thus, all finite terms can be converted to a unique 

normal form. 0 

Note that in the axiom system we have not included laws for the commutativity and associativity of \ ( A .  

These laws are derivable since PllAQ and QJIAP have an equivalent normal form. 

The completeness of the axiom system follows from the Normal Form Lemma and the Normal Form 

Completeness Lemma. 

Theorem 3 (Completeness) For all terms P and Q ,  zf M [PI >A M([Q],  then F P C_ Q. 

4.2 Infinite Processes 

The axiom system can be extended to include infinite processes without hiding (those containing occurrences 

of CHAOS or recursion) by the following axioms: 

(BOT) CHAOS E P 
(R) P[(l.lz.P)\zl E PX.P 
(INF) VQ E FIN(P).Q E R ==+ P E R 

(BOT) states that CHAOS is the least element with respect to C of the domain. (R) represents the 

standard ordering used in reasoning about recursive processes, where P\z denotes the substitution of P for 

each occurrence of x. (INF) is an infinitary rule. It states that any property of a term P is deducible from 

the properties of its finite approximations FINfP). The soundness of these rules follows from the definitions 

of the operators and the definition of finite approximation. 

The introduction of these axioms allows us to reason about infinite processes, but it does not yield a 

complete axiomatization of real-time processes. That is, although P Q may hold for terms P and Q, a 

syntactic proof of this may not exist. The problem arises because many of the operators are not strict with 

respect to CHAOS. Thus, instead of a single infinite process corresponding to CHAOS, we have infinitely 

many processes that are essentially chaotic in nature. In order to obtain a complete axiomatization for 

infinite processes, the model can be augmented with the set of traces that lead to chaotic behavior. This 
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technique was used for CSP [I]. In doing so, we are able to make all operators strict with respect to CHAOS. 

This enables us to define unique normal forms for all processes and to obtain the desired completeness 

results. 

5 Conclusion 

We have developed a partially ordered domain for expressing the semantics of real-time processes and an 

axiomatization of processes in this domain. We argue that the semantic model is realistic because it allows us 

to represent simultaneously occurring events, to derive the absolute occurrence time of events and to model 

nondeterministic behavior. Furthermore, it treats the anomalous conditions of deadlock and divergence 

as equivalent. This is consistent with their operational behavior. The proof system, proven complete for 

finite terms, allows us to reason about the temporal properties of processes and is consistent with related 

axiomatizations of untimed models of concurrency. 

In real-time computing, the temporal behavior of processes depends not only on synchronization between 

processes, but also on the scheduling of resources. Our model and all other existing models treat time 

uniformly and thus allow more possible behaviors that are possible. As a first step toward developing a 

model that incorporates resource availability and scheduling in real-time computation, we are studying the 

extensions necessary to distinguish between execution time and wait time, and investigating the incorporation 

of scheduling into the model. 
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