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General Routing Algorithms for Star Graphs 

1 Introduction 

In designing algorithms for a specific parallel architecture, a programmer has to cope with topological 
and cardinality variations. Both these problems always increase the programmer's effort. However, 
an ideal shared memory abstract parallel model called the parallel random access machine (PRAM) 
[KRUS86, KRUS881 that avoids these problems and also simple-to-program has been proposed. Un- 
fortunately, the PRAM does not seem to be realizable in the present or even foreseeable technologies. 
On the other hand, a packet routing technique can be employed to  simulate the PRAM on a feasible 
parallel architecture without significant loss of efficiency. The problem of routing is also important due 
to its intrinsic significance in distributed processing and its important role in the simulations among 
parallel models. 

The routing problem is defined as follows: Given a specific network and a set of packets of infor- 
mation in which a packet is an (origin, destination) pair. To start with, the packets are placed on their 
origins, one per node. These packets must be routed in parallel to  their own destinations such that 
at most one packet passes through any link of the network at any time and all packets arrive at  their 
destinations as quickly as possible. We are interested in a special case of the general routing problem 
called permutation routing in which the destinations form some permutation of the origins. A routing 
algorithm is said to  be oblivious if the path taken by each packet is only dependent on its source and 
destination. An oblivious routing strategy is preferable since it will lead to a simple control structure 
for the individual processing elements. Also oblivious routing algorithms can be used in a distributed 
environment. In this paper we are concerned with only oblivious routing strategies. 

Both deterministic and randomized schemes have been studied in solving routing problems ([VAL1811 
[VAL1821 [UPFA841 [PIPP84] [RANA87] [LEIG88a7 LEIG88bI [ALT87] [BOR082] [KRIZ88]). How- 
ever, most of the work has focused on bounded degree networks, such as cube-connected cycles (CCC), 
butterfly, shuffle-exchange, and mesh, etc. Some research work has also been done on a binary n-cube 
(hypercube) which is not a bounded degree network. All of these networks (except the mesh) have log- 
arithmic diameter and have randomized routing algorithms that run in logarithmic time. Clearly, 
these algorithms are optimal. An interesting open question is that can we do optimal routing on a. 
network with sublogarithmic diameter? 

In this paper we settle this question in the affirmative. In particular, we present an optimal random- 
ized oblivious routing algorithm for the star graph ([AKER87, AKER861) which has sublogarithmic 
diameter. 

The picture is quite different for the case of oblivious deterministic routing strategies. Borodin and 
Hopcroft [BOR082] have shown that for any graph of N nodes with degree d, the maximum delay, in 

the worst case, of any oblivious deterministic routing scheme is R ( f i ) ( ~ h i s  lower bound assumes that 
each node can process only one packet at  a time, regardless of the number of incoming and outgoing 
links). We present an oblivious deterministic routing algorithm for the star graph. This algorithm runs 
in o m )  time with o*) queue size, where N is number of nodes in the graph. We conjecture that 
the lower bound for the star graph is R@) and that our algorithm is optimal. 



2 An oblivious deterministic routing algorithm for the n-star graph 

2.1 The star graph 

Definition 1 Let d id2 .  . .dn be a permutation of n symbols, e.g., 1.. . n .  For 1 < j 5 n,  we define 
SWAPj(dld2.. . d,) = djd2..  . dj-ldldj+l . . . dn. 

Definition 2 An n-star graph is a graph G=(V,E) with I V I= n! nodes, where V = {dld2.. . dn I 
dld2.. . dn is a permutation of l...n}, and E = {(u,v) I u,v E E and v = SWAPj(u) for some 
j , l  < j 5 n}. 

The 4-star graph is depicted in Figure 1. 

In [AKER87], Akers, Hare1 and Krishnamurthy have shown that the star graph is superior to the 
n-cube with respect to the degree and diameter. An n-star graph has n! nodes, degree n - 1, and 
diameter L$(n - 1)j.  On the other hand, an n-cube has 2n nodes, degree n, and diameter n. Thus, 
the degree and diameter of the star graph grows more slowly as a function of the network size than 
does the n-cube. Moreover, the star graph is both vertex symmetric and edge symmetric (just like the 
n-cube). Oftentimes, these properties lead to a simpler analysis of the routing algorithm. 

In [AKER86, AKER871, an algorithm was presented for routing a single packet from a source to 
an arbitrary destination. The more general problem of permutation routing was not considered. In 
the next two sections, we present efficient deterministic and randomized algorithms for permutation 
routing on the star graph. Both algorithms are oblivious. 

Definition 3 A subgraph of an n-star graph G is said to  be an i-th stage subgraph, denoted GZ, ifS 
Gi is itself an (n - i)-star graph, 0 5 i < n, and the last i symbols of the labels of all nodes in it are 
identical. . 

The G ~ ' S  of any G~-' partition it into n - i + 1 identical subgraphs. Let's define the stage of the 
network during a run of the routing algorithm to  be simply the collection of the nodes together with 
the packets each node holds in its queue. Hence the routing algorithm can be thought of as a sequence 
of stage transitions $1, ..., Sf, where in S1 each node has a single packet that originated in that node, 
and in Sf each node has a single packet that is destined for it. 

Look at all the Gi's that constitute any Gi-l. I t  is easy to see that for any node u in any one of 
these Gd's, there is exactly one other node v adjacent to u such that v is contained in some other Gi. 
We call v the critical point to u and vice-versa, at stage i. For example, ill Figure l (b) ,  node BACD 
is a critical point to  node DACB at stage 1. 

Definition 4 A stage Si is said to be i-th stage stable, denoted Sjtable, iff for every i-th stage subgraph 
Gi, the destination of each packet in the subgraph is in the subgraph itself. 

2.2 An oblivious deterministic routing algorithm 

The routing scheme is based on divide-and-conquer. The algorithm runs in stages. In the first stage 
each packet is sent to the G1 (refer to Definition 1) it belongs to. In the second stage each packet is 
sent to  the G2 it belongs to, and so on. Finally, in stage n - 1, each packet is sent to the Gn-I it 
belongs to  (which is the single node destination of the packet). Thus our routing scheme can be viewed 



0 i s i+ l  n-1 as a sequence of stage transitions SstableSitable.. . Sstable . . Sstable. Also our algorithm is such 

that once the algorithm enters Sftable (for any i), it will also be in Sitable for j < i. Once the routing 
reaches  st^^, the task will be complete. The formd description of the routing scheme is shown in 
Algorithm A. 

Algorithm A 
{Each node has two queues Q1 and Q2. 
Initially, Q1 has a single packet that originates from the node, and Q2 is empty. 
The second for loop stands for transition from S:r,lble to Sftable (for i = 1, ..., n - I).} 
for every node ./r = dld2 . . . dn in parallel do 

f o r e a c h l < i < n d o  
Append Q2 to the tail of Q1; 

for j := 1 to  min (nizi s ,  n"&-i+l s) do - -  - 
Let x be the packet at the head of Q1 and let dld 2...dn be the address of this packet's destination. 
{The algorithm is now in S;;ile. - - - 
From Definition - 3, we know that dn-i+2dn-i+3...dn is identical to dn-i+2dn-i+3...dn)- 
if d,- i+r  = d,-;+i 
then Put x at  the tail of Q2; 

{So it could be processed in the next stage. 
Notice that x is already in the correct Gi) 

else - 
if dl = dn-;+l 
then 

Send x to  node SWAPn-i+l(./r) to be appended to queue Q1; 
{x will be in its correct G~ when it goes there ) 

else 
Choose the unique j such that dj = ;in-i+l; 
Send x to  node SWAPj(n) to be appended to Q1; 
{ When x reaches this node, it has to traverse one more link 
before it is in its correct Gi.) 

end Algorithm A. 

2.3 Performance analysis of Algorithm A 

We will show that (I) 0 (min (c s, fi s)) time is suficient to make the transition from ,!?Zle 
s=1 s=n-i+l 

to  S' ,,., (2) the queue size for the algorithm is ~( f i ) ,  and (3) the run time of the whole algorithm is 
~(fi). Let Mqi be the maximum number of packets queued in any node during the transition from 
~ d t , ' j , ~ ~  to Sttable. Clearly, the time needed for the transition from ~ 5 1 , 1 6 ~ ~  to  Sitable is O(Mqi )  since each 
packet needs only a constant amount of time to process. 

Lemma 1 Mqi < min (n s, n .s,J 
s=l s=n-i+l 

proof: (By induction) 



Base Case: When i = 1, we have Mqi  5 n. This follows from the following fact. Suppose that we 
have two GI's, say a and ,O, such that a and ,D are connected through several pairs of critical nodes*. 
Let one of them be (al, bl) (See Figure 2). In the transition from S:able to Sitable, the worst case of 
queuing for bl occurs when each node adjacent to  al wants to send its packet through a1 to ,f3 and also 
a1 wants to  send its own packet through bl to ,O. Hence, including the packet that originally resided 
in bl, we have a total of (n - 2) + 1 + 1 = n packets that will pass through bl. The same holds for 
the critical points of the other GI's. But they are independent events, i.e. they will never affect each 
other. 

Induction step: Suppose that Lemma 1 is true for i = k. We will prove it for i = k + 1, i.e. we'll prove 
n-k-1 

that M,,, 5 min ( n s, fi s). 

Fix any node b, and'let a be the critical point to b at stage k + 1. The only packets that will 
ever contribute to the queue size of b during the transition from S,k,ab,, to s,kLlle are those that ever 
reached node a or nodes adjacent to a which are in Gk. Since Gk is an (n - k)-star graph, a has 
n - k - 1 other nodes adjacent to  it (including b) in Gk. It  follows, using the induction hypothesis, 

k+1 that the total number of packets that will reach b during the transition from sLable to Sstable is at 
n 

most ((n - k - 1) + 1)* 
(s=!k+l S) 

which is equal to n s. Notice that b is in a Gk+l.  The 
s=n-k 

n-k-1 

queue size of b can not be greater than n s because, only these many packets are destined for 
s=1 

the G ~ + '  that b is in. (Figure 3 might help the reader better understand the proof.) Thus, we have 

/n-k n n-k 

Case B: Mqk < m i n  
s=1 s=n-k+l s=l 

n-k-1 

Clearly M,,,, is 5 n s,  since there are only these many nodes in any Gk+l and hence only these 
s=l 

many packets are destined for any Gk+l. 

n-k-1 n-k n n 

Theorem 1 The maximum queue needed in Algorithm A is 

' ( a ,  b )  is a pair of critical nodes if a is critical point to b and vice-versa. 

5 



Proof: Follows from Lemma 1 and the following fact. Given any integer N. Let Z = {(X, Y) : X and 
Y are integers and X * Y = N). Then max {min(X, Y)} 5 O ( ~ ) . U  

( X , Y ) € Z  

Theorem 2 A permutation routing in an n-star graph can be performed by an oblivious deterministic 
routing scheme in 0(Jn?) time steps. 

Proof: Let T(n) be the time steps needed for Algorithm A. From Lemma 1, we have 

n = [ m i  , fi s)] < 4 f i  = ~ ( f i ) . ~  
i=l s=l s=n-i+l 

Algorithm A always runs in time 0(Jn?). Even if a packet is very close to its destination at the 
beginning, it still has to  go through n - 1 stage transitions. This algorithm can be modified so that 
a packet can start its stage Ic + 1 without waiting for other packets to  finish their stage k. In such a 
modified algorithm each packet will carry along with it a log n bits information that corresponds to 
the stage the packet is in. This modification will result in a faster run time if every packet is close to 
its destination at the beginning. The modified algorithm follows. (In Algorithm A', long time means 
0 ( G )  in the worst case but is considerably less for special cases.) 

Algorithm A' 
{To begin with each node has a single packet that originates in the node, and there is only one queue. 
Now each packet is in its @.) 
for every node n = dld 2...dn do the following in parallel for a long time - -  - 

Let x be the packet at  the head of n's queue and let dld 2...dn be the address of this packet's destination. 
Also let the packet x be in its Gi (realize that x carries i along with it). - - - 
{From the Definition 1, we know that dn-i+ldn-i+2...dn is identical to dn-i+ldn-i+2...dn). - 
if d,-i = dn-; 
then Set i = i + 1 and put x at the tail of n's queue; 

{So it could be processed in the next stage. 
Notice that x is already in the correct Gi+l) 

else - 
if dl = dn-i 
then 

Set i = i + 1 and send x to  node SWAPn-i(n); 
{x will be in its correct G~+ '  when it goes there ) 

else 
Choose the unique j such that d j  = &-;; 
Send x to node SWAPj(r);  
{ When x reaches this node, it has to traverse one more link 
before it is in its correct G;+~.) 

end Algorithm A'. 

3 A randomized routing algorithm for the n-star graph 

The large worst case delay of oblivious deterministic routing makes such schemes uninteresting from 
a practical point of view. But efficient routing algorithms that employ randomization have been 
discovered. For example, Valiant and Brebner [VALI81, VAL1821 have given an O(1og N) time oblivious 



randomized routing scheme for the n-cube network, with N = 2n nodes. They use a two phase 
strategy in which packets are sent obliviously, first to random intermediate nodes and then to  their 
correct destinations. They showed that there is a constant / such that every packet will reach its own 
destination in 5 c g  log N steps with high probability (i.e. with probability > 1 - N-'). 

After Valiant's work, a lot of research on randomized routing ([ALEL82] [UPFA841 [RANA87] 
[LEIG88b] [KRIZ88]) has been done. But all these employ bounded degree networks such as butterfly, 
shuffle-exchange, d-way shuffle, and mesh, etc. The randomized routing lower bound for a bounded 
degree network is obviously S2(log N )  because the diameter of a constant degree network is at least 
log N. Thus, we won't be able to perform permutation routing on these networks in sublogarithmic 
time steps. The interesting question is: For those unbounded degree networks with sublogarithmic 
diameter, can we route (using randomization) a permutation request in sublogarithmic steps with 
high probability? 

Valiant [VAL1811 has shown that permutation routing can be done on the d-way shuffle gra.ph 
(which has N = dn nodes and diameter n) in O(n log d l  loglog d) steps with high probability. For the 
n-way shuffle graph, Valiant's algorithm runs in time O(n log n/  log log n) and hence is not optimal. In 
this section, we present a randomized routing algorithm for the n-star graph that runs in time of the 
order of the diameter with high probability. 

We assume that all the links are bidirectional and also for each node there is a queue corresponding 
to each incoming and outgoing links. Furthermore, a node can receive a packet from each incoming 
link and send a packet along each outgoing link in one unit of time (this assumption has been made in 
[VAL1811 also). 

Algorithm B 
Phase 1 

Step 1: for each packet x do in parallel select a random intermediate node. 
Step 2: Use Algorithm A' to send the packets to their intermediate random destinations. 
{The queuing discipline is first-in first-out (FIFO). 
A long time in Algorithm A', applied here, means cl'c n (for some / to be fixed in the analysis)) 

Phase 2 
Use Algorithm A' to send each packet x from its intermediate node to its correct destination. 

Analysis 

Fact 1 The number of steps a packet x is delayed is less than or equal to the number of other packets 
that overlapt with x. 

Proof: Refer to  [VALI81].0 

n-i n n-i 
Fact 2 For any n > 0, there .fists an i such that min (, s,  .) = , s and n - i > :. 

s=l s=n-i+l s=l 

We can represent the stage transitions in our algorithm in the form of a logical network. A logical 
network is the following. Each column is simply the nodes in the network. The links from column i - 1 
to column i are the links (in the network) that can be used during the transition from ~ 5 ; : ~ ~ ~  to sftable 

'TWO packets are said to overlap if there are > 1 common links in their paths. 



(in our algorithm). So a logical network represents the stage of the network at each time unit. Our 
proof will be simplified if it is given using the logical network. A logical network for the 3-star graph is 
shown in Figure 4. Since n = 3, we have only two stages (levels). Each node in column i has n - i + 1 
incoming and n - i outgoing links. Packets are delayed only in the case that more than one incoming 
links contain a packet and more than one of them must be forwarded to the same outgoing link. 

Note that, as an example, if a packet x moving from node 123 to node 312 has to pass through 
node 213, it will never cause a delay to the packets in node 213 if the destination of those packets are 
not node 312. Also note that each link corresponds to at most 2 steps. 

Theorem 3 For the n-star graph of N = n! nodes, there exists a c) > 0 such that any permutation 

routing can be completed using Algorithm B in 4(e + 1)n steps with probability at least 1 - 61. 
Proof: (A similar proof technique has been used by [RIVE87].) 

Based on Fact 1, to  determine the expected delay of a packet x, we only need to determine how 
many packets x' are expected to overlap with x. To simplify the discussion, let us first determine the 
probability that d packets overlap x's path for the first time in stage i .  Consider a link, say L, in stage 

i .  Based on Lemma 1, we know that these d packets can possibly originate from min 
s=l s=n-i+l 

number of nodes. Thus, there are 
min ns, fi s )  ( (L; ;=n-i+l ) number of ways to  choose the origins 

of these d packets. For each packet, there are fi s possible paths for the packet to take before it 

reaches stage i+ 1. Thus, the probability that all these d packets pass through link L is I i s l  

n- i  n 

Besides, the likelihood for the remaining min (n s ,  n s )  - d packets not to pass through link L 
s=1 s=n-i+l 

[n - i  n \ 

s=l s=n-i+l 

. Hence, we have an upper bound for the probability that 

\ s=n-i-1 I 
the number of packets, whose paths overlap a given path through link L for the first time at stage i ,  
equals d. Let di be number of packets that delay a given packet for the first time in stage i. Then, 

$We will prove Theorem 3 only for Phase 1 and it will be clear how the proof can be modified to apply to t,he second 
phase as a mirror image of the first phase. 



1 
I ,by Fact 2. 
((9 2) d! 

But we are interested in the probability of a total delay d rather than the delay due to packets 
that meet the given packet for the first time in stage i. The total delay for the given packet is E d ; .  

i 
This can be computed using generating functions. 

The generating function for Prob(d; = d) is - ((f)-2)d d 2 
G;(x) = C x = e 4  

d=O 
d! 

Since the generating function of a sum of random variables is the product of the individual gener- 
ating functions, the generating function for P T O ~ ( C ~ ;  = d) is given by 

Z 

k 
G(x) = n G i ( x )  = e T X  4k = [($). i] xd, where k is the number of stages in the algorithm. 

i=l d=O 

Then the probability that the total delay is greater than a given amount, say 6, is: 

A similar proof technique can also be used to analyze the behavior of a simple but efficient ran- 
domized routing algorithm for the d-way shuffle. Our routing algorithm for the n-way shuffle achieves 
a better (in fact, optimal) time bound than that of [VALI81]. 

A d-way shuffle network has N = dn nodes. Each node can be labelled as dndn-l...dl where each 
di is a d-ary digit. A node labelled dnd , -~. . .d~ is connected to the nodes labelled Idndn-1 ... d2 where I 
is an arbitrary d-ary digit. Therefore, the network has diameter n and a unique path of exactly n links 



between any pair of nodes. If we choose d = n, then the network is an n-way shuffle. The following 
algorithm can be used to  perform permutation routing on the n-way shuffle. 

Algorithm C 
Phase 1 

Step 1: for each packet x do in parallel select a random intermediate node. 
Step 2: Send the packets along the unique path to  their intermediate random destinations. 
{The queuing discipline is FIFO) 

Phase 2 
Send each packet x from its intermediate node to its correct destination along the unique path. 

Theorem 4 For the n-way shuffle network of N = nn nodes, there exists a c' > 0, and an a ,  where 
0 < a < 1, such that permutation routing can be performed using Algorithm C in 2(c + l ) n  steps with 

I 

probability at  least 1 - +. 

Proof: Similar to  Theorem 3.0 

4 Conclusions 

An interesting open problem is if the lower bound of ~ ( 8 )  (of [BOR082]) can be improved for the 

star graph or the n-cube. We conjecture that R ( n )  is a lower bound for routing on both the star 
graph and the n-cube. If this were true then it will mean having sublogarithmic diameter doesn't 
help for oblivious deterministic routing strategies. 

Valiant's two phase scheme has been proved to  be a powerful technique for packet routing. Section 
3 demonstrates that making use of generating functions to handle random variables can simplify the 
analysis of the behavior of the routing algorithm and can also lead to a tighter upper bound. 

A deficiency with the state-of-the-art in packet routing is that the algorithms presented and their 
analysis are network-specific. The important open question is: Is there a network-independent routing 
algorithm that works for a large class of networks, rather than a specific network? A significant 
contribution in this direction has been reported very recently by Leighton, Maggs and Rao [LEIG88b]. 
They give a proof that any set of paths with distance d and congestion c can be off-line routed in 
O(c + d) steps using constant-size queues. It  is still open if the same time bound and queue size can 
be achieved for the case of on-line routing. 
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Figure 4: A logical network for the 3-star graph 
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